17 research outputs found

    On the size of identifying codes in triangle-free graphs

    Get PDF
    In an undirected graph GG, a subset CV(G)C\subseteq V(G) such that CC is a dominating set of GG, and each vertex in V(G)V(G) is dominated by a distinct subset of vertices from CC, is called an identifying code of GG. The concept of identifying codes was introduced by Karpovsky, Chakrabarty and Levitin in 1998. For a given identifiable graph GG, let \M(G) be the minimum cardinality of an identifying code in GG. In this paper, we show that for any connected identifiable triangle-free graph GG on nn vertices having maximum degree Δ3\Delta\geq 3, \M(G)\le n-\tfrac{n}{\Delta+o(\Delta)}. This bound is asymptotically tight up to constants due to various classes of graphs including (Δ1)(\Delta-1)-ary trees, which are known to have their minimum identifying code of size nnΔ1+o(1)n-\tfrac{n}{\Delta-1+o(1)}. We also provide improved bounds for restricted subfamilies of triangle-free graphs, and conjecture that there exists some constant cc such that the bound \M(G)\le n-\tfrac{n}{\Delta}+c holds for any nontrivial connected identifiable graph GG

    On the size of identifying codes in binary hypercubes

    Get PDF
    We consider identifying codes in binary Hamming spaces F^n, i.e., in binary hypercubes. The concept of identifying codes was introduced by Karpovsky, Chakrabarty and Levitin in 1998. Currently, the subject forms a topic of its own with several possible applications, for example, to sensor networks. Let C be a subset of F^n. For any subset X of F^n, denote by I_r(X)=I_r(C;X) the set of elements of C within distance r from at least one x in X. Now C is called an (r,<= l)-identifying code if the sets I_r(X) are distinct for all subsets X of size at most l. We estimate the smallest size of such codes with fixed l and r/n converging to some number rho in (0,1). We further show the existence of such a code of size O(n^{3/2}) for every fixed l and r slightly less than n/2, and give for l=2 an explicit construction of small such codes for r the integer part of n/2-1 (the largest possible value).Comment: 13 page

    Identifying codes of corona product graphs

    Full text link
    For a vertex xx of a graph GG, let NG[x]N_G[x] be the set of xx with all of its neighbors in GG. A set CC of vertices is an {\em identifying code} of GG if the sets NG[x]CN_G[x]\cap C are nonempty and distinct for all vertices xx. If GG admits an identifying code, we say that GG is identifiable and denote by γID(G)\gamma^{ID}(G) the minimum cardinality of an identifying code of GG. In this paper, we study the identifying code of the corona product HGH\odot G of graphs HH and GG. We first give a necessary and sufficient condition for the identifiable corona product HGH\odot G, and then express γID(HG)\gamma^{ID}(H\odot G) in terms of γID(G)\gamma^{ID}(G) and the (total) domination number of HH. Finally, we compute γID(HG)\gamma^{ID}(H\odot G) for some special graphs GG

    Random subgraphs make identification affordable

    Full text link
    An identifying code of a graph is a dominating set which uniquely determines all the vertices by their neighborhood within the code. Whereas graphs with large minimum degree have small domination number, this is not the case for the identifying code number (the size of a smallest identifying code), which indeed is not even a monotone parameter with respect to graph inclusion. We show that every graph GG with nn vertices, maximum degree Δ=ω(1)\Delta=\omega(1) and minimum degree δclogΔ\delta\geq c\log{\Delta}, for some constant c>0c>0, contains a large spanning subgraph which admits an identifying code with size O(nlogΔδ)O\left(\frac{n\log{\Delta}}{\delta}\right). In particular, if δ=Θ(n)\delta=\Theta(n), then GG has a dense spanning subgraph with identifying code O(logn)O\left(\log n\right), namely, of asymptotically optimal size. The subgraph we build is created using a probabilistic approach, and we use an interplay of various random methods to analyze it. Moreover we show that the result is essentially best possible, both in terms of the number of deleted edges and the size of the identifying code

    Bounds for identifying codes in terms of degree parameters

    Full text link
    An identifying code is a subset of vertices of a graph such that each vertex is uniquely determined by its neighbourhood within the identifying code. If \M(G) denotes the minimum size of an identifying code of a graph GG, it was conjectured by F. Foucaud, R. Klasing, A. Kosowski and A. Raspaud that there exists a constant cc such that if a connected graph GG with nn vertices and maximum degree dd admits an identifying code, then \M(G)\leq n-\tfrac{n}{d}+c. We use probabilistic tools to show that for any d3d\geq 3, \M(G)\leq n-\tfrac{n}{\Theta(d)} holds for a large class of graphs containing, among others, all regular graphs and all graphs of bounded clique number. This settles the conjecture (up to constants) for these classes of graphs. In the general case, we prove \M(G)\leq n-\tfrac{n}{\Theta(d^{3})}. In a second part, we prove that in any graph GG of minimum degree δ\delta and girth at least 5, \M(G)\leq(1+o_\delta(1))\tfrac{3\log\delta}{2\delta}n. Using the former result, we give sharp estimates for the size of the minimum identifying code of random dd-regular graphs, which is about logddn\tfrac{\log d}{d}n

    Connecting identifying codes and fundamental bounds

    Full text link
    corecore