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In this paper, we consider identifying codes in binary Hamming
spaces F

n , i.e., in binary hypercubes. The concept of (r,� �)-
identifying codes was introduced by Karpovsky, Chakrabarty and
Levitin in 1998. Currently, the subject forms a topic of its own with
several possible applications, for example, to sensor networks.
Let us denote by M(��)

r (n) the smallest possible cardinality of
an (r,� �)-identifying code in F

n . In 2002, Honkala and Lobstein
showed for � = 1 that

lim
n→∞

1

n
log2 M(��)

r (n) = 1 − h(ρ),

where r = �ρn�, ρ ∈ [0,1) and h(x) is the binary entropy func-
tion. In this paper, we prove that this result holds for any fixed
� � 1 when ρ ∈ [0,1/2). We also show that M(��)

r (n) = O (n3/2)

for every fixed � and r slightly less than n/2, and give an explicit
construction of small (r,� 2)-identifying codes for r = �n/2� − 1.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let F = {0,1} be the binary field and denote by Fn the n-fold Cartesian product of it, i.e., the
Hamming space. We denote by A � B the symmetric difference (A \ B) ∪ (B \ A) of two sets A
and B . The (Hamming) distance d(x, y) between the vectors (called words) x, y ∈ Fn is the num-
ber of coordinate places in which they differ, i.e., x(i) 	= y(i) for i = 1,2, . . . ,n. The support of
x = (x(1), x(2), . . . , x(n)) ∈ Fn is defined by supp(x) = {i | x(i) = 1}. The complement of a word x ∈ Fn ,
denoted by x, is the word for which supp(x) = {1,2, . . . ,n} \ supp(x). Denote by 0 the word where
all the coordinates equal zero, and by 1 the all-one word. Clearly 0 = 1. The (Hamming) weight w(x)
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of a word x ∈ Fn is defined by w(x) = d(x,0) = |supp(x)|. We say that x r-covers y if d(x, y) � r (if x
r-covers y, then also y r-covers x). The (Hamming) ball of radius r centered at x ∈ Fn is

Br(x) = {
y ∈ Fn

∣∣ d(x, y) � r
}

and its cardinality is denoted by V (n, r). For X ⊆ Fn , denote

Br(X) =
⋃
x∈X

Br(x) = {
y ∈ Fn

∣∣ d(y, X) � r
}
.

We also use the notation

Sr(x) = {
y ∈ Fn

∣∣ d(x, y) = r
}
.

A nonempty subset C ⊆ Fn is called a code and its elements are codewords. Let C be a code and
X ⊆ Fn . We denote (the codeword r-neighbourhood of X by)

Ir(X) = Ir(C; X) = Br(X) ∩ C .

We write for short Ir(C; {x1, . . . , xk}) = Ir(x1, . . . , xk).

Definition 1. Let r and � be non-negative integers. A code C ⊆ Fn is said to be (r,� �)-identifying if
for all X, Y ⊆ Fn such that |X | � �, |Y | � � and X 	= Y we have

Ir(C; X) 	= Ir(C; Y ).

The idea of the identifying codes is that given the set Ir(X) we can uniquely determine the set
X ⊆ Fn as long as |X | � �.

The seminal paper [15] by Karpovsky, Chakrabarty and Levitin initiated research in identifying
codes, and it is nowadays a topic of its own with different types of problems studied, see, e.g.,
[2,4–6,11,12,20,22]; for an updated bibliography of identifying codes see [19]. Originally, identifying
codes were designed for finding malfunctioning processors in multiprocessor systems (such as binary
hypercubes, i.e., binary Hamming spaces); in this application we want to determine the set of mal-
functioning processors X of size at most � when the only information available is the set Ir(C; X)

provided by the code C . A natural goal there is to use identifying codes which are as small as pos-
sible. The theory of identification can also be applied to sensor networks, see [21]. Small identifying
codes are needed for energy conservation [16]. For other applications we refer to [17].

The smallest possible cardinality of an (r,� �)-identifying code in Fn is denoted by M(��)
r (n).

Let h(x) = −x log2 x−(1−x) log2(1−x) be the binary entropy function and ρ ∈ [0,1) be a constant.
Let further r = �ρn�. Honkala and Lobstein showed in [14] that, when � = 1, we have

lim
n→∞

1

n
log2 M(�1)

r (n) = 1 − h(ρ). (1)

The lower bound that is part of (1) comes from the simple observation that if C is an (r,� �)-
identifying code for any � � 1, then necessarily Br(C) = Fn (otherwise there would be a word
x /∈ Br(C) and then Ir(x) = ∅ = Ir(∅), so {x} and ∅ cannot be distinguished by C ) and also
|Fn \ Bn−r−1(C)| � 1 (otherwise there would be two words x, y /∈ Bn−r−1(C) and then Ir(x) = C =
Ir(y), so {x} and {y} cannot be distinguished by C ); consequently, for any n, r, � � 1,

M(��)
r (n) � M(�1)

r (n) � max

(
2n

|V (n, r)| ,
2n − 1

|V (n,n − r − 1)|
)

= max

(
2n∑r

i=0

(n
i

) ,
2n − 1∑n−r−1
i=0

(n
i

))
(2)

and the lower bound in (1) follows from Stirling’s formula. Cf. [7, Chapter 12], [3,10,14,15] for this and
similar arguments and related estimates.
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Let us now consider any fixed � > 1. When r = �ρn�, we have by (1) or (2) the same lower bound
as for � = 1:

lim inf
n→∞

1

n
log2 M(��)

r (n) � 1 − h(ρ). (3)

In the opposite direction, it is shown in [10] that

lim sup
n→∞

1

n
log2 M(��)

r (n) � 1 − (1 − 2�ρ)h

(
ρ

1 − 2�ρ

)
, (4)

where 0 � ρ � 1/(2� + 1). In this paper, we improve (4) by showing that the lower bound (3) is
attained for any fixed � � 1 when ρ ∈ [0,1/2). (The proof is given in Section 2.)

Theorem 1. Let � � 1 be fixed, let ρ ∈ [0,1/2) and assume that r/n → ρ . Then

lim
n→∞

1

n
log2 M(��)

r (n) = 1 − h(ρ).

Furthermore, it is easy to see that when � � 2, unlike the case � = 1, no (r,� �)-identifying codes
at all exist for r � �n/2�. (This explains why we have to assume ρ < 1/2 in Theorem 1.)

Theorem 2. If n � 2 and r � �n/2�, then there does not exist an (r,� 2)-identifying code in Fn.

Proof. If r � �n/2�, then Br(x) ∪ Br(x) = Fn and thus Ir(x, x) = Ir(y, y) for any C ⊆ Fn and
x, y ∈ Fn . �

We give this theorem mainly because the proof is so simple. In fact, it is proved in [18] that any
(r,� �)-identifying code in Fn has to satisfy

r � �n/2� + 2 − �, (5)

which is slightly better than Theorem 2 when � > 3.
Since h(ρ) < 1 unless ρ = 1/2, Theorem 1 implies that an (r,� �)-identifying code has to be

exponentially large unless r is close to n/2. We give in Section 3 an explicit construction of a small
(r,� 2)-identifying code for the largest possible r permitted by Theorem 2, viz. r = �n/2� − 1.

Theorem 3. Let n � 2. There exists an (r,� 2)-identifying code in Fn of size at most n3 − n2 when r =
�n/2� − 1.

For comparison, it is shown in [14] that for � = 1 and n � 3,

M(�1)
�n/2�(n) �

{
n2−n+2

2 , n odd,
n2−4

2 , n even.

For � > 2, we do not know any explicit constructions of small (r,� �)-identifying codes in Fn , but
we can show the existence of small such codes (even smaller than the one provided by Theorem 3) for
every � � 1 when r is a little smaller than n/2. For � = 1, there exist by the explicit estimate in [10,
Corollary 13] (r,� 1)-identifying codes in Fn of size O (n3/2) for every r < n/2 with r = n/2 − O (

√
n ).

Our next theorem, proved in Section 2, yields a bound of the same order (although less explicit) for
every fixed � and certain r.

Theorem 4. Let � � 1 be fixed and let 0 < a < b. Then there exist n0 and A such that for every n � n0 and r
with n/2 − b

√
n � r � n/2 − a

√
n,

M(��)
r (n) � An3/2.
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Remark 1. This is not far from the best possible, since an (r,� �)-identifying code C in Fn trivially
must satisfy

∑�
i=0

(2n

i

)
� 2|C | and in particular 2n < 2|C |; thus M(��)

r (n) > n for r and � � 1. (Moreover,

this argument yields M(��)
r (n) � �n − O (1) for every fixed � � 1.)

For r closer to n/2, we can show a weaker result, still with a polynomial bound. (This theorem too
is proved in Section 2.)

Theorem 5. Let � � 1 be fixed and let L be fixed with L � 2� . Then there exist n0 and A such that for every
n � n0 and r with r = �n/2� − L,

M(��)
r (n) � An2�−1+1.

For � � 3, we do not know the largest possible r such that there exists an (r,� �)-identifying code
in Fn , but Theorem 5 leaves only a small gap to the bounds in Theorem 2 and (5).

2. Proofs of the main results

Our non-constructive upper bounds in Theorems 1, 4 and 5 are based on the following general
theorem proven in [10]. Let mn(r, �) stand for the minimum of |Br(X) � Br(Y )| over any subsets
X, Y ⊆ Fn , X 	= Y and 1 � |X | � � and 1 � |Y | � �. Denote further by N� (= Nn,�) the number of
(unordered) pairs {X, Y } of subsets of Fn such that X 	= Y and 1 � |X | � � and 1 � |Y | � �.

Theorem 6. (See [10].) Let r � 1, � � 1 and n � 1. Provided that mn(r, �) > 0, there exists an (r,� �)-
identifying code of size K in Fn such that

K �
⌈

2n

mn(r, �)
ln N�

⌉
+ 1.

Obviously,

N� �
(

�∑
i=1

(
2n

i

))2

� 22n�

and thus Theorem 6 yields

M(��)
r (n) � 2n+1�n

mn(r, �)
+ 2. (6)

It remains to estimate mn(r, �). Using probabilistic arguments, we are able to show in Theorems 7
and 8 the following crucial result: we have (with certain conditions on n, r and �) that for c > 0

mn(r, �) � c

(
n

r

)
. (7)

In Theorem 9 the slightly weaker estimate (for certain values of n, r and �) is given

mn(r, �) � cn−2�−1
2n. (8)

(We do not know whether (7) holds in this case too.) Combining (6)–(8) and standard estimates for
binomial coefficients, see [7, p. 33], we obtain Theorems 1, 4 and 5.

We prove the required estimates of mn(r, �) in the following form. In applying the following results
to obtain the bounds (7) and (8) on mn(r, �) just notice that we can assume that there is x ∈ X \ Y
and Y ⊆ {y1, . . . , y�}.



S. Janson, T. Laihonen / Journal of Combinatorial Theory, Series A 116 (2009) 1087–1096 1091
Theorem 7. Let � � 1 be fixed. For every ε > 0 there is a constant c > 0 and n0 such that for n � n0 and any
� + 1 words x and y1, . . . , y� in Fn, with yi 	= x for i = 1, . . . , �, and every r with 0 � r � (1/2 − ε)n, there
exist at least c

(n
r

)
words z ∈ Fn with d(z, x) = r and d(z, yi) > r for i = 1, . . . , �.

Theorem 8. Let � � 1 be fixed. For every a,b > 0 there is a constant c > 0 and n0 such that for n � n0 and any
�+1 words x and y1, . . . , y� in Fn, with yi 	= x for i = 1, . . . , �, and every r with n/2−b

√
n � r � n/2−a

√
n,

there exist at least cn−1/22n � c
(n

r

)
words z ∈ Fn with d(z, x) = r and d(z, yi) > r for i = 1, . . . , �.

Theorem 9. Let � � 1 be fixed. For every L � 2� there is a constant c > 0 and n0 such that for n � n0 and
any � + 1 words x and y1, . . . , y� in Fn, with yi 	= x for i = 1, . . . , �, and r = �n/2� − L, there exist at least

cn−2�−1
2n words z ∈ Fn with d(z, x) = r and d(z, yi) > r for i = 1, . . . , �.

The proofs of Theorems 7–9 are similar, although some details differ. We begin with some common
considerations.

By symmetry we may assume that x = 0. Given y1, . . . , y� , partition the index set [n] = {1, . . . ,n}
into 2� subsets Aα (some of which can be empty), indexed by α ∈ F� , such that

Aα = {
i ∈ [n]: y j(i) = α j for j = 1, . . . , �

}
.

Let z ∈ Fn and let further sα = sα(z) = |{i ∈ Aα: z(i) = 1}|. Then d(z, x) = w(z) = ∑
α sα and

d(z, y j) =
∑

α:α j=0

sα +
∑

α:α j=1

(|Aα | − sα
) = d(z, x) +

∑
α:α j=1

(|Aα | − 2sα
)
.

Hence, if d(z, x) = r, we need also∑
α:α j=1

(|Aα | − 2sα
)
� 1

for each j = 1, . . . , �, then d(z, y j) > d(z, x) = r.
For simplicity, we consider only z such that sα < |Aα |/2 for every α such that Aα 	= ∅; we say that

such z’s are good. Note that
∑

α:α j=1 |Aα | = d(x, y j) � 1 for each j, so Aα 	= ∅ for some α with α j = 1,

and if z is good, then
∑

α:α j=1(|Aα | − 2sα) > 0, and thus, as shown above, we get d(z, y j) > d(z, x)

for each j. Thus, it suffices to show that the number of good words z with d(z, x) = r is at least the
given bounds in the theorems.

Proof of Theorem 7. It now suffices to show that there exist c and n0 such that for any choice of
n � n0, x = 0, y1, . . . , y� and r with 0 � r � (1/2 − ε)n, if z is a random word with d(z, x) = r, i.e., a
random string of r 1’s and n − r 0’s, then

P(z is good) � c.

Suppose that this is false for all c and n0. Then there exists a sequence of such (n, y1, . . . , y�, r),
say nγ , y(γ )

1 , . . . , y(γ )

� ∈ Fnγ and rγ , γ = 1,2, . . . , such that nγ → ∞ and if z ∈ Fnγ is a random string
with rγ 1’s, then

P(z is good) → 0.

The sets Aα depend on γ , but by selecting a subsequence, we may assume that for each α ∈ F� ,
either

|Aα | = aα for some finite aα (9)

or

|Aα | → ∞. (10)
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Let S = {α: α is of type (9)}. Let z be a random word as above (length nγ and weight rγ with
rγ � (1/2 − ε)nγ ). Let E1 be the event that sα(z) = 0 for each α of type (9). The bits z(i) for the
finitely many indices i ∈ Aα for some α of type (9) are asymptotically independent and each is 0 with
probability (nγ − rγ )/nγ > 1/2.

Hence

lim inf
γ →∞ P(E1) � 2−∑

α∈S aα > 0.

(This depends on aα , but we have chosen them and they are now fixed.) Given E1, for every α /∈ S
(i.e., α is of type (10)) the random variable sα(z) has a hypergeometric distribution with mean

rγ
nγ − ∑

α∈S aα
|Aα |

and it follows by the law of large numbers that

P

(∣∣∣∣ sα(z)

|Aα | − rγ
nγ

∣∣∣∣ < ε
∣∣∣ E1

)
→ 1.

Since rγ /nγ � 1/2 − ε, it follows that

P

(
sα(z)

|Aα | <
1

2

∣∣∣ E1

)
→ 1

for each α /∈ S . Hence, with probability (1 + o(1))P(E1),{ sα(z) = 0, α ∈ S,

sα(z) <
1

2
|Aα |, α /∈ S,

and then z is good.
Hence

lim inf
γ →∞ P(z is good) � lim inf

γ →∞ P(E1) > 0,

a contradiction. �
For the remaining two proofs we will use the central limit theorem in its simplest version, for

symmetric binomial variables. (This was also historically the first version, proved by de Moivre in 1733
[1,8].) We let, for N � 1, XN denote a binomial random variable with the distribution Bi(N,1/2). The
central limit theorem says that (XN − N/2)/

√
N/4 converges in distribution to the standard normal

distribution N(0,1), which means that if Z ∼ N(0,1), then for any interval I ⊆ R,

P

(
XN − N/2√

N/4
∈ I

)
→ P(Z ∈ I) as N → ∞. (11)

We will also need the more precise local central limit theorem which says that if xN is any sequence
of integers, then, as N → ∞,

P(XN = xN ) =
(

N

xN

)
2−N = (2/π N)1/2(e−2(xN −N/2)2/N + o(1)

)
. (12)

(This is a simple consequence of Stirling’s formula.)

Proof of Theorem 8. Let nα = |Aα |, and note that
∑

α∈F� nα = n. Fix an index α0 with nα0 � n/2� (for
example the index maximizing nα ). Let A = {α ∈ F� : nα > 0} and A′ = A \ {α0}. Consider a random
z ∈ Fn . The numbers sα = sα(z) thus are independent binomial random variables: sα ∼ Bi(nα,1/2).
Let δ = 2−�−1a. Let Eα be the event

nα/2 > sα � nα/2 − �δ√n �, (13)
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for α ∈ A′ , let Eα0 be the event

sα0 = r −
∑

A′
sα, (14)

and let E = ∧
α∈A Eα . Assume in the sequel that

√
n � 2�+1/a. If E holds, then

sα0 = r −
∑

A′
sα � n/2 − a

√
n −

∑
A′

(nα/2 − δ
√

n − 1)

< nα0/2 − a
√

n + 2�δ
√

n + 2� � nα0/2, (15)

and thus z is good; further, d(z, x) = ∑
α sα = r. It thus suffices to prove that P(E ) � cn−1/2, since then

the number of good words z with d(z, x) = r is at least P(E )2n � cn−1/22n , and further
(n

r

)
� n−1/22n

by (12) (at least for large n).
First, let

pN = P
(
N/2 > XN � N/2 − �δ√N �).

Note that pN � P(XN = �(N − 1)/2�) > 0 for every N � 1, and that the central limit theorem (11)
shows that as N → ∞, pN → P(0 � Z � −2δ) > 0. Hence, p∗ = infN�1 pN > 0. Consequently, for
α ∈ A′ , P(Eα) � pnα � p∗ . Moreover, the events Eα , α ∈ A′ , are independent, and thus

P

( ∧
α∈A′

Eα

)
=

∏
α∈A′

P(Eα) � p2�

∗ .

Secondly, if (13) holds for α ∈ A′ , then r − ∑
A′ sα < nα0/2 by the calculation in (15), and

r −
∑

A′
sα � n/2 − b

√
n −

∑
A′

nα/2 = nα0/2 − b
√

n � nα0/2 − b2�/2√nα0 .

The random variable sα0 is independent of {sα: α ∈ A′}, and sα0 ∼ Bi(nα0 ,1/2). Thus, the local limit
theorem (12) shows that for every set of numbers sα , α ∈ A′ , satisfying (13),

P(Eα0 | sα, α ∈ A′) = (2/πnα0 )
1/2

(
exp

(
−2

(
r −

∑
A′

sα − nα0/2

)2

/nα0

)
+ o(1)

)

� (2nα0 )
−1/2(exp

(−2�+1b2) + o(1)
)
� c1n−1/2

for some c1 > 0, provided n, and thus also nα0 � 2−�n, is large enough. Consequently, for large n,

P(E ) = P

( ∧
α∈A

Eα

)
= P

(
Eα0

∣∣∣ ∧
α∈A′

Eα

)
P

( ∧
α∈A′

Eα

)
� c1n−1/2 p2�

∗ = cn−1/2,

which completes the proof. �
Proof of Theorem 9. Let nα , α0, A and A′ be as in the preceding proof and consider again a random
z ∈ Fn . Define the numbers tα , α ∈ A, by

tα =
{ �(nα − 1)/2�, α ∈ A′,

r − ∑
A′ tα, α = α0,

and let E be the event

sα = tα, α ∈ A.

Note that

tα0 � r −
∑

A′
(nα/2 − 1) � nα0/2 − L + |A′| < nα0/2,

and thus E implies that z is good and d(z, x) = ∑
α sα = r.
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Since also tα0 � r − ∑
A′ nα/2 � nα0/2 − L − 1, it follows from (12) that for some constant c2 > 0

(depending on L) and every n � 2�L,

P(sα = tα) � c2n−1/2
α � c2n−1/2

for every α ∈ A, and thus

P(E ) =
∏
α∈A

P(sα = tα) � c3n−2�/2,

which completes the proof. �
3. Construction of small (r,��� 2)-identifying codes

Proof of Theorem 3. We make an explicit construction for r = �n/2� − 1. If 2 � n � 3, then r = 0
and we trivially may take C = Fn . Furthermore, the following few values are known (see [9,13])
M(�2)

1 (4) = 11, M(�2)
1 (5) = 16, M(�2)

2 (6) � 22. So, we may assume that n � 7.
Let C0 consist of the words c0 = 0 ∈ Fn and ci ∈ Fn such that supp(ci) = {1,2, . . . , i} for i =

1,2, . . . ,n. Clearly |C0| = n + 1. Let Cu = {a ∈ Fn | a ∈ C0 or a ∈ C0}. Now |Cu | = 2n. The code which
we claim to be (r,� 2)-identifying for r = �n/2� − 1 is then the following

C = {
c ∈ Fn

∣∣ 1 � d(c,a) � 2 for some a ∈ Cu
} = {

c ∈ Fn
∣∣ d(c,a) = 2 for some a ∈ Cu

}
, (16)

where the equality follows since every word in Cu has two neighbours in Cu . Obviously, |C | �(n
2

)|Cu | = n3 − n2. (We are interested in the order of growth, so this estimate is enough for our pur-
poses. However, with some effort one can check that |C | = n3 − 5n2 + 4n for n � 7.)

We consider separately the cases n even and n odd.
(1) Let first n be odd. Now r = (n −3)/2. The code C0 is such that from every word x ∈ Fn we have

a codeword exactly at distance (n − 1)/2. Indeed, either d(x,0) > (n − 1)/2 and d(x,1) � (n − 1)/2 or
d(x,0) � (n − 1)/2 and d(x,1) > (n − 1)/2. Moving (in the first case—the second case is analogous)
from the codeword c0 = 0 to cn = 1 visiting every codeword ci (i = 1, . . . ,n), there exists an index
i such that d(x, ci) = (n − 1)/2, since every move between two codewords ci and ci+1 changes the
distance by ±1.

Now we need to show that

Ir(X) 	= Ir(Y )

for any two distinct subsets X ⊆ Fn and Y ⊆ Fn where |X | � 2 and |Y | � 2. Assume to the contrary
that Ir(X) = Ir(Y ) for some X, Y ⊆ Fn with |X |, |Y | � 2 and X 	= Y .

Without loss of generality, we can assume that |X | � |Y | and that we have a word x ∈ X \ Y . Using
the property of Cu , we know that there exists a codeword a ∈ Cu such that d(x,a) = (n − 1)/2 and
d(x,a) = (n + 1)/2. We concentrate on the words in the sets S1(a)∪ S2(a) and S1(a)∪ S2(a) which all
belong to C . Since Ir(x) ⊆ Ir(X), we know that the sets

Ir(X) ∩ S1(a), Ir(X) ∩ S2(a) and Ir(X) ∩ S2(a) (17)

are all nonempty. By the symmetry of Fn , we can assume without loss of generality, that a = 0 (and
so, a = 1).

Since Ir(X) ∩ S1(0) is nonempty, there must be γ ∈ Y such that w(γ ) � (n − 1)/2.

(i) Suppose first that w(γ ) � (n − 5)/2. This implies that S1(0) ⊆ Ir(γ ) ⊆ Ir(Y ) = Ir(X). Conse-
quently, there must exist y ∈ X (y 	= x) such that w(y) � (n − 1)/2, since x does not r-cover all
of S1(0). Since |X | � 2, thus X = {x, y}.
In order to cover the (nonempty) set Ir(X) ∩ S2(1), there has to be β in Y (β 	= γ ) such that
w(β) � (n − 1)/2. Thus Y = {γ ,β}. If w(β) > (n − 1)/2, then Ir(β) (and hence Ir(Y )) contains
elements from S1(1), but the set Ir(X) ∩ S1(1) is empty, immediately giving a contradiction.
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If w(β) = (n − 1)/2, then Ir(x) contains a codeword not in Ir(Y ). Indeed, since x 	= β (and
w(x) = w(β)), then there exists an index j ∈ supp(β) such that j /∈ supp(x). This implies that
the needed codeword, say c′ , is found in S2(1) by taking supp(c′) = {i, j} for any i /∈ supp(x) and
i 	= j—clearly, β cannot r-cover this codeword and γ cannot r-cover any word in S2(1).

(ii) Assume then that w(γ ) = (n−3)/2. Now γ cannot r-cover all the words in Ir(x)∩ S1(0), so there
must be β ∈ Y such that w(β) � (n − 1)/2. If w(β) < (n − 1)/2, then Ir(Y ) ∩ S2(1) = ∅ which
contradicts Ir(X) ∩ S2(1) 	= ∅. If w(β) = (n − 1)/2, we are done as in (i), using again x 	= β .

(iii) Let then w(γ ) = (n − 1)/2. Because there are codewords in Ir(x)∩ S1(0) which are not r-covered
by γ , it follows that there exists β ∈ Y with w(β) � (n − 1)/2. By the previous cases, it suffices
to consider w(β) = (n − 1)/2, since otherwise we can interchange β and γ . Let i ∈ supp(x) be
such that i /∈ supp(γ ) and j ∈ supp(x) such that j /∈ supp(β). Since x /∈ Y , such indices (it is
possible that i = j) exist. When i 	= j, a codeword c ∈ S2(0) such that supp(c) = {i, j}, gives a
contradiction. If i = j, then we pick a codeword with supp(c) = {i,k} where k ∈ supp(x), i 	= k.

(2) Let now n be even. Now r = (n − 2)/2. Take Cu as in the odd case; it has now the analogous
property that from every word x ∈ Fn there is a codeword a ∈ Cu such that d(x,a) = d(x,a) = n/2. Let
C be defined also as above. We will show that it is (r,� 2)-identifying for r = n/2−1. If Ir(X) = Ir(Y ),
we can again assume that |X | � |Y | and choose x ∈ X \ Y . We know that there is a ∈ Cu such that
d(x,a) = n/2. The sets (17) as well as now the set Ir(x) ∩ S1(a) are nonempty. Again it suffices to
consider a = 0. Since Ir(x)∩ S1(0) is nonempty, so there must be a word γ ∈ Y such that w(γ ) � n/2.

(i) Suppose first that w(γ ) � n/2−2. Then S1(0) ⊆ Ir(γ ). Since S1(0) � Ir(x), this implies that there
is y ∈ X , y 	= x, such that w(y) � n/2.
Let first w(y) � n/2 − 1. Subsequently, neither y nor γ r-covers any of the codewords of S1(1)

whereas |Ir(x)∩ S1(1)| = n/2. Hence there has to be β ∈ Y such that Ir(x)∩ S1(1) = Ir(β)∩ S1(1).
However, this implies that x = β , a contradiction.
Assume next that w(y) = n/2. Due to the fact that γ r-covers all the codewords S1(0) we know
that y = x. Hence S1(1) ⊆ Ir(X) = Ir(Y ). On the other hand, S1(1) ∩ Ir(γ ) = ∅. Consequently,
S1(1) ⊆ Ir(β) which implies w(β) � n/2 + 2. Thus β does not r-cover any of the words in S2(0).
• If w(γ ) � n/2 − 3, then γ r-covers all of S2(0). However, all of S2(0) is not contained in Ir(X).

Indeed, take i ∈ supp(x) and j /∈ supp(x) (notice that now X = {x, x}). The codeword c′ of S2(0)

which has supp(c′) = {i, j} does not belong to Ir(X).
• If w(γ ) = n/2 − 2, then supp(x) has (at least) two distinct indices, say i and j, which are not

in supp(γ ). Consequently, the codeword c′ in S2(0) with supp(c′) = {i, j} belongs to Ir(x) but
not to Ir(Y ), a contradiction.

(ii) Let now w(γ ) = n/2 − 1. Now Ir(x) ∩ S1(0) has one more codeword than Ir(γ ) ∩ S1(0) and,
therefore, there exists β ∈ Y such that w(β) � n/2 (or we are done). But now Ir(x) ∩ S1(1)

contains at least one codeword not in Ir(β)—notice that γ does not r-cover any words in S1(1).
(iii) Assume finally that w(γ ) = n/2. Since γ 	= x, there must exist an index i ∈ supp(x) such that

i /∈ supp(γ ). Consequently, the r codewords z j ∈ S2(0) ∩ Ir(x) such that supp(z j) = {i, j}, where
j ∈ supp(x) and j 	= i, do not belong to Ir(γ ) and hence must belong to Ir(β) for some other
β ∈ Y or we are done. By the previous cases and symmetry with respect to a and a, we can also
assume that w(β) = n/2. However, this means that supp(z j) ⊆ supp(β) for all j. Subsequently,
x = β or w(β) > n/2 and we get a contradiction in both cases. �
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