2,679 research outputs found

    Design, analysis, and control of a cable-driven parallel platform with a pneumatic muscle active support

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG gefΓΆrderten) Allianz- bzw. Nationallizenz frei zugΓ€nglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The neck is an important part of the body that connects the head to the torso, supporting the weight and generating the movement of the head. In this paper, a cable-driven parallel platform with a pneumatic muscle active support (CPPPMS) is presented for imitating human necks, where cable actuators imitate neck muscles and a pneumatic muscle actuator imitates spinal muscles, respectively. Analyzing the stiffness of the mechanism is carried out based on screw theory, and this mechanism is optimized according to the stiffness characteristics. While taking the dynamics of the pneumatic muscle active support into consideration as well as the cable dynamics and the dynamics of the Up-platform, a dynamic modeling approach to the CPPPMS is established. In order to overcome the flexibility and uncertainties amid the dynamic model, a sliding mode controller is investigated for trajectory tracking, and the stability of the control system is verified by a Lyapunov function. Moreover, a PD controller is proposed for a comparative study. The results of the simulation indicate that the sliding mode controller is more effective than the PD controller for the CPPPMS, and the CPPPMS provides feasible performances for operations under the sliding mode control

    Nonsingular terminal sliding mode control of uncertain multivariable systems

    Get PDF
    This paper proposes a nonsingular terminal sliding mode control for uncertain multivariable systems with parameter uncertainties or disturbances. A hierarchical control structure is utilized for simplifying the controller design. Uncertain multivariable linear systems are converted into the block controllable form consisting of two subsystems, an input-output subsystem and a stable internal dynamic subsystem. In order to guarantee fast convergence and better tracking precision, a nonsingular terminal sliding mode manifold is proposed for the input-output subsystem. To eliminate the chattering phenomenon, a continuous nonsingular terminal sliding mode control law is designed using the second-order sliding mode approach. Under the proposed controllers, the states of the input-output subsystem can be driven to converge to zero asymptotically and the stability of the zero-dynamics of the system is guaranteed. The simulation results are presented to validate the design

    Modified PSO based PID Sliding Mode Control using Improved Reaching Law for Nonlinear systems

    Full text link
    In this paper, a new model based nonlinear control technique, called PID (Proportional-Integral-Derivative) type sliding surface based sliding mode control is designed using improved reaching law. To improve the performance of the second order nonlinear differential equations with unknown parameters modified particle swarm intelligent optimization (MPSO) is used for the optimized parameters. This paper throws light on the sliding surface design, on the proposed power rate exponential reaching law, parameters optimization using modified particle swarm optimization and highlights the important features of adding an integral term in the sliding mode such as robustness and higher convergence, through extensive mathematical modeling. Siding mode control law is derived using Lyapunov stability approach and its asymptotic stability is proved mathematically and simulations showing its validity. MPSO PID-type Sliding mode control will stabilize the highly nonlinear systems, will compensate disturbances and uncertainty and reduces tracking errors. Simulations and experimental application is done on the non-linear systems and are presented to make a quantitative comparison.Comment: arXiv admin note: substantial text overlap with arXiv:2207.1112

    Fuzzy second order sliding mode control of a unified power flow controller

    Get PDF
    Purpose. This paper presents an advanced control scheme based on fuzzy logic and second order sliding mode of a unified power flow controller. This controller offers advantages in terms of static and dynamic operation of the power system such as the control law is synthesized using three types of controllers: proportional integral, and sliding mode controller and Fuzzy logic second order sliding mode controller. Their respective performances are compared in terms of reference tracking, sensitivity to perturbations and robustness. We have to study the problem of controlling power in electric system by UPFC. The simulation results show the effectiveness of the proposed method especiallyin chattering-free behavior, response to sudden load variations and robustness. All the simulations for the above work have been carried out using MATLAB / Simulink. Various simulations have given very satisfactory results and we have successfully improved the real and reactive power flows on a transmission lineas well as to regulate voltage at the bus where it is connected, the studies and illustrate the effectiveness and capability of UPFC in improving power.Π’ настоящСй ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСна ΡƒΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½Π½Π°Ρ схСма управлСния, основанная Π½Π° Π½Π΅Ρ‡Π΅Ρ‚ΠΊΠΎΠΉ Π»ΠΎΠ³ΠΈΠΊΠ΅ ΠΈ Ρ€Π΅ΠΆΠΈΠΌΠ΅ скольТСния Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка ΡƒΠ½ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π»Π΅Ρ€Π° ΠΏΠΎΡ‚ΠΎΠΊΠ° мощности. Π”Π°Π½Π½Ρ‹ΠΉ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π»Π΅Ρ€ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ прСимущСствами с Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния статичСской ΠΈ динамичСской Ρ€Π°Π±ΠΎΡ‚Ρ‹ энСргосистСмы, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π·Π°ΠΊΠΎΠ½ управлСния синтСзируСтся с использованиСм Ρ‚Ρ€Π΅Ρ… Ρ‚ΠΈΠΏΠΎΠ² ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π»Π΅Ρ€ΠΎΠ²: ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ-ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π»Π΅Ρ€Π° ΡΠΊΠΎΠ»ΡŒΠ·ΡΡ‰Π΅Π³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΠ° ΠΈ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π»Π΅Ρ€Π° ΡΠΊΠΎΠ»ΡŒΠ·ΡΡ‰Π΅Π³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΠ° Π½Π΅Ρ‡Π΅Ρ‚ΠΊΠΎΠΉ Π»ΠΎΠ³ΠΈΠΊΠΈ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка. Π˜Ρ… ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ характСристики ΡΡ€Π°Π²Π½ΠΈΠ²Π°ΡŽΡ‚ΡΡ с Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния отслСТивания эталонов, Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΊ возмущСниям ΠΈ надСТности. НСобходимо ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ управлСния ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒΡŽ Π² энСргосистСмС с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΡƒΠ½ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π»Π΅Ρ€Π° ΠΏΠΎΡ‚ΠΎΠΊΠ° мощности (UPFC). Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ модСлирования ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°, особСнно Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ отсутствия Π²ΠΈΠ±Ρ€Π°Ρ†ΠΈΠΈ, Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π½Π° Π²Π½Π΅Π·Π°ΠΏΠ½Ρ‹Π΅ измСнСния Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ ΠΈ устойчивости. ВсС расчСты для Π²Ρ‹ΡˆΠ΅ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ с использованиСм MATLAB/Simulink. Π Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ расчСтныС исслСдования Π΄Π°Π»ΠΈ вСсьма ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹, ΠΈ ΠΌΡ‹ ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎ ΡƒΠ»ΡƒΡ‡ΡˆΠΈΠ»ΠΈ ΠΏΠΎΡ‚ΠΎΠΊΠΈ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈ Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ мощности Π½Π° Π»ΠΈΠ½ΠΈΠΈ элСктропСрСдачи, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ напряТСния Π½Π° шинС, ΠΊ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΎΠ½Π° ΠΏΠΎΠ΄ΠΊΠ»ΡŽΡ‡Π΅Π½Π°, Ρ‡Ρ‚ΠΎ позволяСт ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΈ ΠΏΡ€ΠΎΠΈΠ»Π»ΡŽΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈ возмоТности UPFC для увСличСния мощности
    • …
    corecore