
 

Abstract— This paper proposes a nonsingular terminal sliding 
mode control for uncertain multivariable systems with 
parameter uncertainties or disturbances. A hierarchical control 
structure is utilized for simplifying the controller design. 
Uncertain multivariable linear systems are converted into the 
block controllable form consisting of two subsystems, an 
input-output subsystem and a stable internal dynamic 
subsystem. In order to guarantee fast convergence and better 
tracking precision, a nonsingular terminal sliding mode 
manifold is proposed for the input-output subsystem. To 
eliminate the chattering phenomenon, a continuous nonsingular 
terminal sliding mode control law is designed using the 
second-order sliding mode approach. Under the proposed 
controllers, the states of the input-output subsystem can be 
driven to converge to zero asymptotically and the stability of the 
zero-dynamics of the system is guaranteed. The simulation 
results are presented to validate the design.  

I. INTRODUCTION

 HE control of uncertain linear multivariable systems with 
internal parameter uncertainties and external disturbances 

is a significant issue both theoretically and practically. Two 
methodologies are commonly used: the state-space feedback 
control and the optimal control [1]. If a system, however, has a 
relatively higher dimension, the above two methods may 
impose severe computational demands in the real time control 
applications. One approach proposed in [2] alleviates this 
problem by transforming uncertain linear multivariable 
systems into a block controllable canonical form (BC-form). It 
is relatively simple for designing the controllers for this block 
controllable canonical form. But it does not seem to exhibit 
robustness. 

Variable structure systems (VSS) are well known for their 
robustness to system parameter variations and external 
disturbances [3, 4]. An aspect of VSS of particular interest is 
the sliding mode control, which is designed to drive and 
constrain the system states to stay in the prescribed switching 
manifolds that exhibit the desired dynamics. When in the 
sliding mode, the closed-loop responses of the systems 
become totally insensitive to certain internal parameter 
uncertainties and external disturbances. A characteristic of the 
conventional VSS is that the convergence of the system states 
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to the equilibrium points is usually asymptotical due to the 
asymptotical convergence of the linear switching manifolds 
that are commonly chosen. Recently, a terminal sliding mode 
(TSM) controller was developed [5, 6, 7]. Compared with the 
linear hyperplane based sliding mode, TSM offers some 
superior properties such as fast, finite time convergence and 
better tracking precision. This controller is particularly useful 
for high precision control as it speeds up the rate of 
convergence near the equilibrium points. But there exists a 
singularity problem in TSM control. Based on TSM, a 
nonsingular terminal sliding mode (NTSM) control has been 
presented [10]. The novel NTSM manifold is different from 
TSM manifold and the control methodology can avoid the 
singularity. 

Although sliding mode approaches have many advantages, 
chattering is a major drawback. Chattering is undesirable 
because it can excite unmodelled high-frequency dynamics of 
the system. Chattering is the high-frequency finite amplitude 
oscillations with finite frequency caused by system 
imperfections and is produced due to the discontinuity of the 
sign function. There are two methods of eliminating the 
chattering. The first method is to introduce a boundary layer. 
Within the layer, the sign function in the control signal is 
replaced with a saturation function or a sigmoid-like function 
at the price of a small deterioration in system performance. 
The second method is to use a continuous signal instead of 
switching signal in the control signal, such as the second-order 
sliding mode approach. The second-order sliding mode 
control can be used to smoothen the control signal. It is a 
continuous control, robust to the parameter uncertainties and 
disturbances. Meanwhile, the characteristics of the traditional 
sliding mode approaches are guaranteed in the second-order 
sliding mode control systems [11]. 

The paper proposes a second-order NTSM decomposed 
control method for linear multivariable systems, which is 
robust to certain internal parameter uncertainties and external 
disturbances. Linear multivariable systems are transformed to 
the lower controller-Hessenberg forms by the unitary state 
transformation, then further to the block decoupled BC-forms, 
in which the coupled state variables are eliminated. As a 
result, a linear multivariable system is transformed to r 
(controllability index of the system) block decoupled 
BC-form system consisting of an input-output subsystem and 

nonsingular TSM manifold is then proposed for the 
input-output subsystem. The control law is designed to drive 
the states of the input-output subsystem to zero 
asymptotically. Then, the stability of the zero-dynamics of the 
system is guaranteed by the controller. With the advantages of 
simple controller design and the hierarchical controller 
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structure, the proposed method in the paper can be easily 
applied to higher-dimensional linear multivariable systems. 
Moreover, the second-order sliding mode control proposed in 
this paper can eliminate the chattering phenomenon. The 
simulation results are presented to validate the method. 

II. DECOMPOSITION OF UNCERTAIN LINEAR MIMO SYSTEM

Consider the uncertain linear multivariable system given 
by: 

)()()()( tttt perABuAxx ++=&  ,                   (1) 

where x(t) ∈ Rn is the state variable vector; u(t)∈ Rm with 
1 ≤ m < n is the control input vector, A∈Rn×n and B∈Rn×m are 
the known parameters matrices, Aper(t) ∈ Rn represents any 
uncertainties or nonlinearities. Assume system (1) satisfies the 
following three assumptions: 

1) A, B are constant matrices; 
2) The pair {A, B} is controllable; 
3) Aper(t) satisfies the following matching condition: 

)()( ttper BdA =  ,                                 (2) 

where d(t) ∈Rm×1, is some bounded time-varying matrix and 

satisfies:. dlt ≤)(d , 0>dl ; ddlt ≤)(d& , 0>ddl . 

The control objective is to force system (1) to converge to 
zero asymptotically or in a finite time from any initial state 
x(0)≠0. 

In order to simplify the controller design of system (1), two 
state transforms are made. First, system (1) is transformed to 
the lower controller-Hessenberg form by the unitary state 
transformation: 

′ =x Fx  ,                                     (3) 
where x’∈Rn. The state transformation matrix F is constructed 
by using the staircase algorithm [15].  

Using state transformation (3), system (1) is converted into: 
)()()()( tttt uBdBxAx ′+′+′′=′&  ,                    (4) 

where TFAFA =′ , [ ]TT
0,10 BFBB ==′ , mr×∈ RB 0,1

, 

rankB10=r, r≤ m, r is the controllable index of system (1), 
therefore the pseudo-inverse matrix of +

0,1B  exists and is given 

by: 

[ ] 1

0,1100,10,1

−+ = TT BBBB  .                                (5) 

Since the pair (A’, B’) is the lower controller-Hessenberg 
form, system (4) can be rewritten as: 
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where TT
r

TT ][ 1 xxx ′′=′ L , in
i Rx ∈′ , i=1, …, r; Bi,i−1, i= 

1, …, r, have full rank; 
1−

′ix  is regarded as the virtual control 

vector of the ith layer of the system (6).  
For the convenience of the controller design, system (6) is 

further transformed to the decoupled BC-form using the state 
transformation [2]: 

zFx ′=′  ,                                     (7) 
where nR∈z  and the nonsingular transformation matrix F ′

is: 
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where Ki,j, i= 1, …, r−1; j=2, …, r can be determined as 
follows: 

1,2,1

)(( 11,11,22,1,11,

−=

−+= +++++++
+
++

ri

tiiiiiiiiiii

L

NABKBK  ,           (9) 

2,2,1,,3,2

)(
1

1
,,1,11,1,1,1,1,

−=++=

−++= ∑
+

−=

++++++

+

+

ririij

i

jk
jkkijjjijijjiiiji

LL

KABKANKBK ,   (10) 

where Kij=0, ∀ i∉[1, 2, …, r−1] or j∉[2, 3, …, r], Bij=0, 
∀ i∉[1, 2, …, r] or j∉[0, 1, …, r−1]. Ni, i= 1, …, r are the 
designed parameter matrices, which will be determined later. 

Then, the lower controller-Hessenberg form (6) can be 
further transformed to the following form by using the 
nonsingular state transformation (7): 

)()()()( tttt uBdBzAz ′′+′′+′′=&  ,                   (11) 

where FAFA ′′′=′′ −1)(  and [ ]TT
10

1 0)( BBFB =′′=′′ − . 

System (11) can be rewritten as: 
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where TT
r

T ][ 1 zzz L= , in
i Rz ∈ ; Ni, i=2, …, r, are the 

matrices. Every eigenvalues of Ni can be designed to have 
negative real part. After Ni is determined, F′ and 

α,1A  can be 

determined also. 
Therefore, the uncertain linear multivariable system (1) is 

transformed to the decoupled BC-form (12) using the two 
state transformations (3) and (7). It can be seen that it is 
relatively simple for designing the controller of the decoupled 
BC-form system (12). 

III. SECOND-ORDER NONSINGULAR TSM CONTROL

For the convenience of the controller design, the paper 
assumes that the uncertain linear multivariable system (1) is 
already in the decoupled BC-form (12) after the state 
transformations (3) and (7).  

A second-order nonsingular TSM control strategy is 
proposed in this paper. The controller design consists of the 
following two steps. The first is to design the second-order 
nonsingular TSM manifold and ensure that the states of the 
system on the sliding mode manifold can converge to zero 
asymptotically. The second is to design the robust control law 
for ensuring that the states of the system always move towards 
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the NTSM manifold and the system is robust to certain 
internal parameter uncertainties and external disturbances. 

First, the paper proposes a linear sliding mode manifold for 
system (12): 

dtt
t

∫
−

+=
0 11)( zβzs  ,                          (13)

where s∈Rn1; z1∈Rn1, ββββ∈diag(β1,… ,βn1), βi >0 is a constant, 

dt
t

∫
−0 1z  is denoted as: 

Tt

n

tt
dtzdtzdt ⎥⎦
⎤

⎢⎣
⎡= ∫∫∫

−−− 0 10 110 1 1
,,Lz . 

In order to guarantee the linear sliding mode manifold s(t) 
converge to zero in finite time, the paper proposes the 
following NTSM manifold: 

ssl += − qpt &1)( γ  ,                           (14) 

where l ∈Rm; γγγγ = diag(γ1,…,γm), γI >0 are constant. p, q are all 
odds, 1<p/q<2. pqs&  is denoted as: 

[ ]Tqp
m

qpqp ss &L&& ,,1=s  . 

The aim of introducing s(t) is to control the input-output 
subsystem to reach s(t), while introducing l(t) is to realize the 
second-order sliding mode control and eliminate the 
chattering phenomena using the second-order approach [11]. 
Therefore, l(t) is designed as a nonsingular TSM to guarantee 
the linear sliding mode s(t) to reach zero in finite time and 
have no singularity.  

Suppose tr is the time when l(t) reaches to 0, that is l(t)=0, 
∀t ≥ tr. From Eq.(14), solving 0)()(1 =+− ttqp ss&γ  gives the 

time from s(tr) to s(ts)=0: 
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Thus, through the control design, s(t) and )(ts&  can be 

driven to reach l(t)=0 and then remain on l(t)=0 to realize the 
sliding mode motion. Among l(t)=0, s(t) will reach zero in 
finite time ts (15). After s(t) reaches zero, the system will 
remain in the linear sliding mode motion (13), that is, the 
dynamics of system (12) can be determined by the design 
parameters γγγγ, ββββ, p, q, and has nothing to do with the system’s 
parameters (14). The relevant control strategy will be given in 
the theorem below. In order to prove the theorem, the 
following Lemma is given firstly. 

Proposition 1. For any vector x∈Rn, the diagonal matrix
Q=diag[q1, …, qn]

T satisfies 

xQxQxT )()sgn( minλ−≤−              (16) 

where sgn(x) is defined as sgn(x) = [sgn(x1), … , sgn(xn)]
T.  

Proof: The quadratic form always satisfies the Rayleigh 

principle, namely [14]: 
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that is, Eq.(16) holds.  

Theorem 1 For uncertain linear multivariable system (1), if 
the linear sliding mode manifold and the second-order 
nonsingular TSM manifold are chosen as (13) and (14) 
respectively, and the control law is designed as follows, then  
system (1) is asymptotically stable: 

)()()( 10 ttt uuu +=   ,                           (17)

where: 

∑
=

+−=
r

t
1

,1100 )(
α

αα zABu ,                         (18)

u1(t) is obtained through the low-passed filter: 
)()()( 11 ttt uuβv += &  ,                          (19) 

where v(t) is the input of the low-passed filter: 

)()()( ttt neq vvv +=  ,                           (20) 

qp
eq p

q
t −+−= 2

10)( sγBv &  ,                         (21) 

( )( ) )sgn()( 0,10,1 lβBBv η++−= +

dddn llt  ,           (22) 

where ld and ldd are defined in Eq.(2); γγγγ , α and η are design 
parameters, α>0, 0<η<1. 

Proof: The following Lyapunov function is considered: 

)()(
2

1
)( tttV T ll=  . 

Differentiating V(t) with respect to time gets: 
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Notice that in the above expression, γγγγ-−1 is a diagonal matrix, 
then )()/( 11 −− qpdiagqp sγ &η  is also a diagonal matrix. From 

Proposition 1, the above expression can be written as follows: 

lsγ ⎟⎟
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−≤ −− )()( 11
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tV && ηλ
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lγ )(min)( 11
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since p and q are all odds, it can be seen that 01 >−qp
is&  for 

any 0≠is&  and 01 =−qp
is&  only for 0=is& . Therefore, for 

0≠l , there are two different cases: 0≠is&  for any i and 0=is&

for some i.  
For the former case, it can be gotten: 

0)(min)( 11

],1[
<−≤ −−

∈
lγ qp

ii
mi

s
q

p
tV && η     for    0≠l

For the latter case, that is, 0=is&  but si ≠ 0, the state 

variables of the system will not always stay on the points 
( 0=is& , si ≠ 0) and will continue to cross the axis 0=is& in the 

phase plane 0−
ii ss & [10].  

Therefore, the condition for Lyapunov stability is satisfied. 
The states of the system can reach the NTSM manifold l(t)=0 
within finite time.  

In the sliding mode l(t)=0, from Eq.(14), there is 

01 =+− ssγ qp& , or 0=+ pqγss& , s(t) will reach the zero in 

ts (15). 
When the states of the system reach and stay on the linear 

sliding mode manifold s=0, there is 0d
0 11 =+ ∫ −

t
t

zβz . The 

input-output subsystem of system (12) is stable asymptotically 
for t>ts, that is z1 will converge to zero asymptotically. 
Furthermore, because of Ni= −λi Ini, i=2, …, r, −λ2 < −λ3 < …
< − λr <0, the other states of system (12), z2, …, zr, will 
converge to zero asymptotically.  

Since the state transformations between x and z, (3) and (7), 
are linear, the state x of the original system (1) will converge 
to zero asymptotically. This completes the proof. 

Remark 1 In the controller in Theorem 1, the derivative of 

sliding mode manifold, s& , should be used. Since it is used 
only within the closed loop system, it can be directly obtained 
using a differentiator. It is similar with the derivative 
operation in the traditional PID controllers. 

IV. SIMULATIONS

A simulation with a seventh-order system is performed for 
the purpose of evaluating the performance of the proposed 
control scheme for uncertain linear multivariable systems in 
the paper.  

Consider the following seventh-order system [13]: 

BuBdAxx ++= )(t&  ,                   (23) 

where the disturbance is Ttttt )]2sin(1.0)2sin(1.0)2sin(1.0[)( =d , 

A and B are given by: 
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First, system (23) is transformed into the lower 
Hessenberg form (6): 
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then, Eq.(24) is further transformed into the following 
decoupled block controllable canonical form by using the 
state transformation (7): 
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In above transformation, the parameters N2 and N3 are 
chosen as: N2= diag(−1, −1, −1), N3=−0.6. Then, it gets: 
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The state transformation from x’ to z is: 
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From Eq.(13), three linear sliding mode manifolds are chosen 
as: 
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From Eq.(14), the three nonsingular terminal sliding mode 
manifolds are chosen as: 

1
3/5

11 ssl += & , 

2
3/5

22 ssl += & , 

3
3/5

33 ssl += & , 

According to Theorem 1, the NTSM controller of the system 
is designed as follows: 
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According to Eq.(19), u1(t) is obtained through the 
low-passed filter, which is designed as follows: 
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where the input of the low-passed filter v(t) is designed as 
follows according to Eqs. (20), (21) and (22): 
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Assume the initial states of the system are: x3(0)= 3.26, x21(0)= 
3.86, x22(0)= 4.52, x23(0)= 14.64, x11(0)= 7.96, x12(0)= 
−10.62, x13(0)= −2.26.  

The simulation results are illustrated in Fig.1 to Fig.7. The 
phase plane of s1, s2, s3 and their differentials are shown in 
Fig.1 to Fig.3 respectively. It is seen that s1, s2, and s3 realize 
the nonsingular terminal sliding mode. The system states z and 
x are depicted in Fig.4 and Fig.5, respectively. They all 

Fig.1. phase plane of s1and its differential. Fig. 4. state variable z . 

Fig.2. phase plane of s2and its differential.

Fig.3. phase plane of s3 and its differential. 
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converge to zero asymptotically. Fig.6 shows the input v of the 
low-passed filter. The control signals are shown in Fig.7. It is 
seen that no chattering phenomenon occurs. 

V. CONCLUSION

This paper has proposed a special second-order nonsingular 
TSM decomposed control method for uncertain linear 
multivariable systems. First, the systems are transformed into 

the BC–form for design convenience using two state 
transformations. Then, a second-order nonsingular TSM is 
proposed for the BC–form system. The proposed control law 
can drive the states of the input-output subsystem to zero 
asymptotically and then the states of the stable zero-dynamic 
subsystem converge to zero asymptotically. The method 
proposed in the paper can simplify the design of controller and 
realize hieratical control. The chattering phenomena is 
eliminated utilizing the second-order sliding mode method. 
The proposed control method is significant for the 
high-dimensional uncertain linear multivariable systems. 
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Fig. 5. state variable x. 

 Fig.6. the control signal v . 

Fig.7. the control signal u. 
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