25 research outputs found

    Interface-Resolving Simulations of Gas-Liquid Two-Phase Flows in Solid Structures of Different Wettability

    Get PDF
    This PhD study is devoted to numerical investigations of two-phase flows on and through elementary and complex solid structures of varying wettability. The phase-field method is developed and implemented in OpenFOAM®. The numerical method/code is verified by a series of test cases of two-phase flows, and then applied to investigate: (1) droplet wetting on solid surfaces; (2) air bubble rising and interacting with cellular structures and (3) gas-liquid interfacial flows in foam structures

    Spreading and rebound dynamics of sub-millimetre urea-water-solution droplets impinging on substrates of varying wettability

    Get PDF
    The interaction of droplets consisting of urea-water solution (UWS) with a wall is of interest for automotive exhaust gas after-treatment of Diesel engines by selective catalytic reduction (SCR). Since the impingement of tiny UWS droplets on the solid substrate is difficult to examine experimentally, little is known about the detailed dynamics of this process. In the present study, the normal impact of single UWS droplets impinging on dry solid substrates of greatly differing wettability is investigated numerically under axisymmetric conditions. Simulations are performed by a diffuse interface phase-field solver developed by the authors where the coupled Cahn–Hilliard Navier–Stokes equations are solved using OpenFOAM. The code is thoroughly validated against a number of experiments from literature considering the rebound of millimetre-sized water droplets from hydrophobic substrates. The numerical simulations on the impact dynamics of UWS droplets cover wide ranges of sub-millimetre droplet sizes and impact velocities that are relevant in technical SCR systems. A strong influence of substrate wettability on droplet dynamics is identified. Reducing wettability from hydrophilic to superhydrophobic conditions reduces spreading and enables drop rebound with reduced drop-surface contact time. The effects of drop diameter, drop impact velocity and equilibrium contact angle on the maximum spreading ratio are quantified, and regime maps on rebound versus non-rebound (deposition) impact outcomes are provided. The results of the present interface-resolving numerical simulations may be useful for development of more advanced drop-wall interaction models as they are required in CFD codes relying on the Euler–Lagrange approach for large-scale computations of UWS spray

    An improved CFD-DEM framework for gas-liquid-solid multiphase free surface flow

    Get PDF
    Gas-Flüssig-Fest-Mehrphasensysteme sind in technischen Anwendungen allgegenwärtig, z. B. beim direkten Tintenstrahldruck, der Sprühtrocknung und der Sprühbeschichtung. Der direkte Tintenstrahldruck ist eine vielversprechende additive Fertigungstechnologie für die Herstellung temperaturempfindlicher Bauteile. Allerdings leiden tintenstrahlgedruckte Strukturen unter dem so genannten „Kaffeering-Effekt“ oder „Kaffeefleck-Effekt“, der zu einem ringförmigen Abscheidungsmuster führt, bei dem mehr Material um den Rand herum abgeschieden wird, aber viel weniger Material im Inneren des gedruckten Tintenrings übrig bleibt. Das Verständnis der physikalischen Zusammenhänge beim Verdampfen von mit Tintenstrahldruckern gedruckten Tröpfchen mit vielen suspendierten Feststoffpartikeln im Inneren hilft, den Coffee-Ring-Effekt zu unterdrücken und gleichmäßigere Materialabscheidungsmuster zu gewährleisten. Dementsprechend ist die Entwicklung eines numerischen Rahmens für die Modellierung des Mehrphasensystems Gas-Flüssigkeit-Feststoff mit Verdampfung von großer Bedeutung. In der vorliegenden Arbeit wird ein verbessertes CFD-DEM (Computational Fluid Dynamics-Discrete Element Method)-Kopplungssystem vorgeschlagen und entwickelt, um das Mehrphasensystem Gas-Flüssigkeit-Feststoff mit und ohne Verdampfung zu modellieren. Für die Modellierung eines solchen Mehrphasensystems, in dem die Oberflächenspannung dominiert, müssen einige grundlegende wissenschaftliche Probleme angegangen werden: Partikeltransport und-akkumulation, Oberflächenspannung und Erfassen der freien Oberfläche, Tröpfchenbenetzung und Verdampfung, Kontaktlinien-Pinning, Partikel-Fluid-Wechse- lwirkungen usw. Die DEM wird eingesetzt, um die Trajektorie von Feststoffpartikeln zu verfolgen, und CFD wird verwendet, um Oberflächenspannung, Verdunstung, Kontaktlinien-Pinning usw. zu modellieren. Darüber hinaus wird die Kopplung von CFD und DEM eingesetzt, um die komplexen Partikel-Flüssigkeits-Wechselwirkungen zu berechnen. Auf der DEM-Seite wird die konventionelle DEM erweitert, um mikroskopisch kleine Partikel zu modellieren. Die berührungslosen Oberflächenkräfte, z.B. Van-der-Waals-, elektrostatische und Derjaguin-Landau-Verwey-Overbeek-(DLVO)-Kräfte, sowie ein durch Brownsche Bewegung induziertes Zufallskraftmodell werden in den Open-Source DEM-Code LIGGGHTS implementiert. Ausführliche numerische Validierungen zeigen, dass diese neu implementierten Kraftmodelle sowohl berührungslose als auch zufällige Kräfte mit recht guter numerischer Genauigkeit vorhersagen können. Auf der CFD-Seite wird das verbesserte Coupled Level Set and Volume of Fluid (i-CLSVoF)-Framework entwickelt und in die Open-Source-C++-Bibliothek OpenFOAM implementiert, um die oberflächenspannungsdominierte Strömung zu modellieren. Das i-CLSVoF-Framework kann scharfe freie Oberflächen mit wenig Grenzflächendiffusion erfassen. Das in i-CLSVoF implementierte verbesserte Modell der Oberflächenspannungskraft kann diese genauer vorhersagen und bietet eine Unterdrückung unphysikalischer Störgeschwindigkeiten. Drei Verdunstungsmodelle wurden in i-CSLVoF implementiert, um die Verdunstung der flüssigen Phase zu modellieren. Numerische Validierungen zeigen, dass diese Verdunstungsmodelle den Phasenübergang von Flüssigkeit zu Gas genau modellieren können. Darüber hinaus ist ein Kontaktlinien-Pinning-Modell integriert, um die Tröpfchenverdampfung mit einem konstanten Kontaktradius zu beschreiben. Der sogenannte aufgelöste CFD-DEM-Ansatz stellt die Wechselwirkungen zwischen kontinuierlichen flüssigen und diskreten festen Phasen in ortsaufgelöster Form dar. Ein in dieser Arbeit entwickeltes verbessertes aufgelöstes CFD-DEM-Modell ist in der Lage, die mehrphasige freie Oberflächenströmung zwischen Gas, Flüssigkeit und Feststoff mit und ohne Verdampfung der flüssigen Phase zu modellieren. Der i-CLSVoF-Rahmen wird verwendet, um den Oberflächenspannungseffekt zu modellieren und die scharfe freie Oberfläche zu erfassen. Ein verbessertes Kapillarkraftmodell wird entwickelt, um die Kapillarinteraktionen für teilweise schwimmende Feststoffteilchen an einer freien Oberfläche zu berechnen. Zur Validierung des aufgelösten CFD-DEM-Modells werden zwei bekannte Vergleichsfälle durchgeführt, nämlich die Berechnung des Widerstandsbeiwert und das Absinken einer einzelnen Kugel. Es zeigt sich, dass das in dieser Arbeit entwickelte aufgelöste CFD-DEM-Modell die Fluid-Feststoff-Wechselwirkungen genau berechnen und die Trajektorie von Feststoffpartikeln, die mit der flüssigen Phase wechselwirken, vorhersagen kann. Numerische Demonstrationen, z.B. zwei Partikel, die sich entlang einer freien Oberfläche bewegen, wenn die flüssige Phase verdampft, sowie Partikeltransport und -ansammlungen innerhalb eines verdampfenden Tropfens auf einem Substrat zeigen die Leistungsfähigkeit des aufgelösten Berechnungswerkzeugs bei der Modellierung komplexer Partikel-Flüssigkeits-Wechselwirkungen. Der aufgelöste CFD-DEM-Ansatz löst die Strömungsfelder um Feststoffpartikel genau auf, ist aber rechenintensiv. Daher eignet er sich nur für die rechnerische Modellierung eines Mehrphasensystems mit einer begrenzten Anzahl von Partikeln (weniger als 1000). Daher wird in dieser Arbeit ein sogenanntes unaufgelöstes CFD-DEM-Modell weiterentwickelt. In dem unaufgelösten CFD-DEM-Modell enthält jede CFD-Zelle mehrere Feststoffteilchen und kann somit zur Untersuchung des globalen Verhaltens vieler Feststoffteilchen (bis zu 10610^{6}) verwendet werden. Ein neues Widerstandskraftmodell mit einem korrigierten Widerstandsbeiwert, der mit umfangreichen experimentellen Daten gut übereinstimmt, wurde implementiert. Dieses Widerstandskraftmodell ist über einen weiten Bereich der Reynoldszahl (10410610^{-4} - 10^{6}) anwendbar. Zur Validierung des Widerstandskraftmodells und des unaufgelösten CFD-DEM-Ansatzes wurden umfangreiche numerische Validierungen durchgeführt. Ein 3D-Dammbruch-Benchmark-Fall zeigt, dass das unaufgelöste CFD-DEM-Modell die Vier-Wege-Kopplung zwischen der festen und der flüssigen Phase mit etwa 40004000 Feststoffpartikeln realisieren kann. Der Vergleich zwischen numerischen Simulationen und den entsprechenden experimentellen Studien beweist, die Genauigkeit des unaufgelösten CFD-DEM-Modells

    Hydrodynamic characteristics and capillary-assisted heat transfer enhancement of non-condensing/condensing two-phase flows

    Get PDF
    Interfacial characteristics of two-phase flows were studied through visualization experiments and numerical simulation using computational fluid dynamics (CFD) based on the volume-of-fluid (VOF)-continuum surface force (CSF) method. An experimentally-validated analytical method was also presented for the geometrical correction of the optically-distorted objects in cylindrical tubes that is applicable to geometrical measurements (e.g., liquid-gas interfaces, solid particles, gas bubbles, void fraction) inside the tubes. The numerically-simulated two-phase flows agreed favorably with the visually-observed flows. The simulation of two-phase flows under reduced gravities indicated the important contribution of gravity on hydrodynamics of intermediate scale two-phase flows such as void fraction, pressure drop, slip ratio, and bubble velocity; the pressure drop of horizontal plug/bubble flows and Taylor bubble velocity of vertical slug flow is minimum around normal gravity. The computational model is then extended to account for convective and condensation heat transfer. The numerical results for a vertical slug flow show that a porous-tube-insert (PTI) promotes the internal liquid circulations in both axial and radial directions resulting in an enhanced convective heat transfer up to five times of that in bare tube. In addition, the PTI enhances the flow condensation heat transfer up to three times mainly due to the enforced ultra-thin liquid film near the tube wall and increased area for thin-film condensation

    Model-based analysis as a tool for intensification of a biocatalytic process in a microreactor

    Get PDF
    Chiral amines are highly valuable functionalised molecules which play an important role in the pharmaceutical, agrochemical and chemical industry. To produce these interesting compounds, chemical synthesis pathways are typically used. However, these chemical methods are operated under high temperatures and pressures, are air- and water-sensitive, and need highly flammable metal-organic reagents or heavy metals. The chemical approach thus requires specialised (and expensive) equipment and has a large environmental impact. To overcome these drawbacks, enzymatic processes have recently received increased attention to produce these chiral amines. However, the low productivity of enzymatic processes hampers the widespread industrial implementation of such enzymatic processes. In this dissertation, the aim is to make the enzymatic production of chiral amines more productive by using model-based analyses which allow to build process knowledge. First, the kinetic behaviour of the enzyme (i.e. ω-transaminase) is identified using an optimal experimental design approach, allowing a more accurate estimation of the kinetic parameters from the experimental data. Second, a generic methodology is developed to identify mass transfer limitations in microreactors. These mass transfer limitations reduce the reactor performance and should therefore be minimised. The use of the generic methodology allows to estimate productivity losses due to these mass transfer limitations. Finally, the estimation of kinetic parameters under mass transfer limited conditions is investigated. It is shown that accurate kinetic parameter estimates can be obtained under mass transfer limited conditions, but this is highly dependent on the experimental design. The results of this dissertation allow to speed up kinetic characterisation of enzymes and to improve overall productivity by reducing mass transfer limitations

    CFD Modeling of Complex Chemical Processes: Multiscale and Multiphysics Challenges

    Get PDF
    Computational fluid dynamics (CFD), which uses numerical analysis to predict and model complex flow behaviors and transport processes, has become a mainstream tool in engineering process research and development. Complex chemical processes often involve coupling between dynamics at vastly different length and time scales, as well as coupling of different physical models. The multiscale and multiphysics nature of those problems calls for delicate modeling approaches. This book showcases recent contributions in this field, from the development of modeling methodology to its application in supporting the design, development, and optimization of engineering processes
    corecore