285 research outputs found

    On-line learning of a fuzzy controller for a precise vehicle cruise control system

    Full text link
    Usually, vehicle applications require the use of artificial intelligent techniques to implement control methods, due to noise provided by sensors or the impossibility of full knowledge about dynamics of the vehicle (engine state, wheel pressure or occupiers weight). This work presents a method to on-line evolve a fuzzy controller for commanding vehicles? pedals at low speeds; in this scenario, the slightest alteration in the vehicle or road conditions can vary controller?s behavior in a non predictable way. The proposal adapts singletons positions in real time, and trapezoids used to codify the input variables are modified according with historical data. Experimentation in both simulated and real vehicles are provided to show how fast and precise the method is, even compared with a human driver or using different vehicles

    Fuzzy logic control of a fluidized bed combustor

    Get PDF

    Automatic lateral control for unmanned vehicles via genetic algorithms

    Get PDF
    It is known that the techniques under the topic of Soft Computing have a strong capability of learning and cognition, as well as a good tolerance to uncertainty and imprecision. Due to these properties they can be applied successfully to Intelligent Vehicle Systems; ITS is a broad range of technologies and techniques that hold answers to many transportation problems. The unmannedcontrol of the steering wheel of a vehicle is one of the most important challenges facing researchers in this area. This paper presents a method to adjust automatically a fuzzy controller to manage the steering wheel of a mass-produced vehicle; to reach it, information about the car state while a human driver is handling the car is taken and used to adjust, via iterative geneticalgorithms an appropriated fuzzy controller. To evaluate the obtained controllers, it will be considered the performance obtained in the track following task, as well as the smoothness of the driving carried out

    A Comparison of Type-1 and Type-2 Fuzzy Logic Controllers in Robotics: A review

    Get PDF
    Most real world applications face high levels of uncertainties that can affect the operations of such applications. Hence, there is a need to develop different approaches that can handle the available uncertainties and reduce their effects on the given application. To date, Type-1 Fuzzy Logic Controllers (FLCs) have been applied with great success to many different real world applications. The traditional type-1 FLC which uses crisp type-1 fuzzy sets cannot handle high levels of uncertainties appropriately. Nevertheless it has been shown that a type-2 FLC using type-2 fuzzy sets can handle such uncertainties better and thus produce a better performance. As such, type-2 FLCs are considered to have the potential to overcome the limitations of type-1 FLCs and produce a new generation of fuzzy controllers with improved performance for many applications which require handling high levels of uncertainty. This paper will briefly introduce the interval type-2 FLC and its benefits. We will also present briefly some of the type-2 FLC real world applications

    Fuzzy Stabilization of Fuzzy Control Systems

    Get PDF

    Model fusion using fuzzy aggregation: Special applications to metal properties

    Get PDF
    To improve the modelling performance, one should either propose a new modelling methodology or make the best of existing models. In this paper, the study is concentrated on the latter solution, where a structure-free modelling paradigm is proposed. It does not rely on a fixed structure and can combine various modelling techniques in ‘symbiosis’ using a ‘master fuzzy system’. This approach is shown to be able to include the advantages of different modelling techniques altogether by requiring less training and by minimising the efforts relating optimisation of the final structure. The proposed approach is then successfully applied to the industrial problems of predicting machining induced residual stresses for aerospace alloy components as well as modelling the mechanical properties of heat-treated alloy steels, both representing complex, non-linear and multi-dimensional environments

    Hierarchical Control of Production Flow based on Capacity Allocation for Real-Time Scheduling of Manufacturing System

    Get PDF
    8International audienceThis paper considers the modelling and simulation of a hierarchical production-flow control system. It uses a continuous control approach for machine capacity allocation at the design level and real time scheduling at the shop-floor level. Particularly, at the design level, the control of machine throughput has been addressed by a set of distributed and supervised fuzzy controllers. The objective is to adjust the machine's production rates in such a way that satisfies the demand while maintaining the overall performances within acceptable limits. At the shop-floor level, the problem of scheduling of jobs is considered. In this case, the priority of jobs (actual dispatching times) is determined from the continuous production rates through a discretization procedure. A case study demonstrates the efficiency of the proposed methodology through a simulation case study

    Design and implementation of fuzzy logic controller for a process control application

    Get PDF
    Many industrial applications of fuzzy logic control have been reported. This thesis studies and reports the problems associated with the Heat-exchanger temperature control via conventional PID control implemented with Programmable Logic Controllers (PLC) and provides an example of design and implementation of fuzzy logic controllers (FLC\u27s) for a Heat exchanger in a Water for Injection (WFI) system. After a basic FLC was designed and tested, it is shown how its rule base evolved to achieve superior performance by utilizing additional low-cost sensing information in the process and its environment. A method for the implementation of FLC\u27s into the existing PLC is discussed. The system performance of the five designed FLC rule-base strategies is compared with that of the existing PIID controller and it is concluded that better performance can be achieved by using the fuzzy logic control technology. Finally, this thesis discusses some blocking problems in widespread industrial applications of FLCs and the possible solutions to them
    • …
    corecore