126 research outputs found

    Distance-regular graphs

    Get PDF
    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN' [Brouwer, A.E., Cohen, A.M., Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989] was written.Comment: 156 page

    Hypercellular graphs: partial cubes without Q3−Q_3^- as partial cube minor

    Full text link
    We investigate the structure of isometric subgraphs of hypercubes (i.e., partial cubes) which do not contain finite convex subgraphs contractible to the 3-cube minus one vertex Q3−Q^-_3 (here contraction means contracting the edges corresponding to the same coordinate of the hypercube). Extending similar results for median and cellular graphs, we show that the convex hull of an isometric cycle of such a graph is gated and isomorphic to the Cartesian product of edges and even cycles. Furthermore, we show that our graphs are exactly the class of partial cubes in which any finite convex subgraph can be obtained from the Cartesian products of edges and even cycles via successive gated amalgams. This decomposition result enables us to establish a variety of results. In particular, it yields that our class of graphs generalizes median and cellular graphs, which motivates naming our graphs hypercellular. Furthermore, we show that hypercellular graphs are tope graphs of zonotopal complexes of oriented matroids. Finally, we characterize hypercellular graphs as being median-cell -- a property naturally generalizing the notion of median graphs.Comment: 35 pages, 6 figures, added example answering Question 1 from earlier draft (Figure 6.

    On the geodesic pre-hull number of a graph

    Get PDF
    AbstractGiven a convexity space X whose structure is induced by an interval operator I, we define a parameter, called the pre-hull number of X, which measures the intrinsic non-convexity of X in terms of the number of iterations of the pre-hull operator associated with I which are necessary in the worst case to reach the canonical extension of copoints of X when they are being extended by the adjunction of an attaching point. We consider primarily the geodesic convexity structure of connected graphs in the case where the pre-hull number is at most 1, with emphasis on bipartite graphs, in particular, partial cubes

    Unlabeled sample compression schemes and corner peelings for ample and maximum classes

    Full text link
    We examine connections between combinatorial notions that arise in machine learning and topological notions in cubical/simplicial geometry. These connections enable to export results from geometry to machine learning. Our first main result is based on a geometric construction by Tracy Hall (2004) of a partial shelling of the cross-polytope which can not be extended. We use it to derive a maximum class of VC dimension 3 that has no corners. This refutes several previous works in machine learning from the past 11 years. In particular, it implies that all previous constructions of optimal unlabeled sample compression schemes for maximum classes are erroneous. On the positive side we present a new construction of an unlabeled sample compression scheme for maximum classes. We leave as open whether our unlabeled sample compression scheme extends to ample (a.k.a. lopsided or extremal) classes, which represent a natural and far-reaching generalization of maximum classes. Towards resolving this question, we provide a geometric characterization in terms of unique sink orientations of the 1-skeletons of associated cubical complexes

    Developments on Spectral Characterizations of Graphs

    Get PDF
    In [E.R. van Dam and W.H. Haemers, Which graphs are determined by their spectrum?, Linear Algebra Appl. 373 (2003), 241-272] we gave a survey of answers to the question of which graphs are determined by the spectrum of some matrix associated to the graph. In particular, the usual adjacency matrix and the Laplacian matrix were addressed. Furthermore, we formulated some research questions on the topic. In the meantime some of these questions have been (partially) answered. In the present paper we give a survey of these and other developments.2000 Mathematics Subject Classification: 05C50Spectra of graphs;Cospectral graphs;Generalized adjacency matrices;Distance-regular graphs

    Unlabeled Sample Compression Schemes and Corner Peelings for Ample and Maximum Classes

    Get PDF
    We examine connections between combinatorial notions that arise in machine learning and topological notions in cubical/simplicial geometry. These connections enable to export results from geometry to machine learning. Our first main result is based on a geometric construction by H. Tracy Hall (2004) of a partial shelling of the cross-polytope which can not be extended. We use it to derive a maximum class of VC dimension 3 that has no corners. This refutes several previous works in machine learning from the past 11 years. In particular, it implies that the previous constructions of optimal unlabeled compression schemes for maximum classes are erroneous. On the positive side we present a new construction of an optimal unlabeled compression scheme for maximum classes. We leave as open whether our unlabeled compression scheme extends to ample (a.k.a. lopsided or extremal) classes, which represent a natural and far-reaching generalization of maximum classes. Towards resolving this question, we provide a geometric characterization in terms of unique sink orientations of the 1-skeletons of associated cubical complexes
    • …
    corecore