365 research outputs found

    Decoding techniques and a modulation scheme for band-limited communications

    Get PDF

    Peak-to-Mean Power Control in OFDM, Golay Complementary Sequences, and Reed–Muller Codes

    Get PDF
    We present a range of coding schemes for OFDM transmission using binary, quaternary, octary, and higher order modulation that give high code rates for moderate numbers of carriers. These schemes have tightly bounded peak-to-mean envelope power ratio (PMEPR) and simultaneously have good error correction capability. The key theoretical result is a previously unrecognized connection between Golay complementary sequences and second-order Reed–Muller codes over alphabets â„€2h. We obtain additional flexibility in trading off code rate, PMEPR, and error correction capability by partitioning the second-order Reed–Muller code into cosets such that codewords with large values of PMEPR are isolated. For all the proposed schemes we show that encoding is straightforward and give an efficient decoding algorithm involving multiple fast Hadamard transforms. Since the coding schemes are all based on the same formal generator matrix we can deal adaptively with varying channel constraints and evolving system requirements

    Iterative decoding for error resilient wireless data transmission

    Get PDF
    Both turbo codes and LDPC codes form two new classes of codes that offer energy efficiencies close to theoretical limit predicted by Claude Shannon. The features of turbo codes include parallel code catenation, recursive convolutional encoders, punctured convolutional codes and an associated decoding algorithm. The features of LDPC codes include code construction, encoding algorithm, and an associated decoding algorithm. This dissertation specifically describes the process of encoding and decoding for both turbo and LDPC codes and demonstrates the performance comparison between theses two codes in terms of some performance factors. In addition, a more general discussion of iterative decoding is presented. One significant contribution of this dissertation is a study of some major performance factors that intensely contribute in the performance of both turbo codes and LDPC codes. These include Bit Error Rate, latency, code rate and computational resources. Simulation results show the performance of turbo codes and LDPC codes under different performance factors

    A comparison of frame synchronization methods

    Get PDF
    Different methods are considered for frame synchronization of a concatenated block code/Viterbi link. Synchronization after Viterbi decoding, synchronization before Viterbi decoding based on hard-quantized channel symbols are all compared. For each scheme, the probability under certain conditions of true detection of sync within four 10,000 bit frames is tabulated

    Single parity check product codes

    Get PDF
    Questo elaborato presenta ed analizza nel dettaglio i Single Parity Check Product Codes; vengono inizialmente esaminati i concetti alla base di product codes generici, per poi passare ad una focalizzazione sui Single Parity Check Product Codes e sulla relativa codifica e decodifica. Verranno trattate nel dettaglio la codifica concatenata e la decodifica iterativa, nozioni fondamentali per i product codes, nonché le prestazioni degli SPCPC su canale binario simmetrico e canale AWG

    A STUDY ON WIRELESS COMMUNICATION ERROR PERFORMANCE AND PATH LOSS PREDICTION

    Get PDF
    One channel model that characterises multipath fading eïŹ€ect of a wireless channel is called Flat Rayleigh Fading channel model. Given the properties of Flat Rayleigh Fading channel, an equation to ïŹnd the capacity of a Flat Rayleigh fading channel with hard decision decoding is derived. The diïŹ€erence of power requirement to achieve the Additive White Gaussian Noise (AWGN) capacity over a Flat Rayleigh Fading channel fading is found to increase exponentially with Es /N0 . Upper and lower bounds of error performance of linear block codes over a Flat Rayleigh Fading channel are also studied. With the condition that the excess delay of a channel is known earlier, it is shown that a correlator with shorter length, according to excess delay of the channel, can be constructed for use in wireless channel response measurements. Therefore, a rule of construction of a shorter length correlator is deïŹned, involving concatenation of parts of a Constant Amplitude Zero Auto-Correlation (CAZAC) sequence. Simulation of [136,68,24] Double Circulant Code with Dorsch List Decoding is also done in order to evaluate error performance of the channel coding scheme over one of the IEEE Wireless Metropolitan Area Network (WirelessMAN) channel models, the Stanford University Interim Channel Model No. 5 (SUI-5) channel. Performance of the channel cod- ing was severely degraded over the SUI-5 channel when it is compared to its performance over the AWGN channel. Indoor path losses within three multiïŹ‚oor oïŹƒce buildings were investigated at 433 MHz, 869 MHz and 1249 MHz. The work involved series of extensive received signal strength measurements within the buildings for all of the considered frequencies. Results have shown that indoor path loss is higher within a square footprint building than indoor path loss in a rectangular building. Parameters of Log-Distance Path Loss and Floor Attenuation Factor Path Loss models have been derived from the measurement data. In addition, a new indoor path loss prediction model was derived to cater for path loss pre- diction within multiïŹ‚oor buildings with indoor atriums. The model performs with better prediction accuracy when compared with Log-Distance Path Loss and Floor Attenuation Factor Path Loss models.Ministry of Higher Education of Malaysia, Universiti Teknologi Malaysi

    The deep space network, volume 18

    Get PDF
    The objectives, functions, and organization of the Deep Space Network are summarized. The Deep Space Instrumentation Facility, the Ground Communications Facility, and the Network Control System are described

    Sparse Graph Codes for Quantum Error-Correction

    Full text link
    We present sparse graph codes appropriate for use in quantum error-correction. Quantum error-correcting codes based on sparse graphs are of interest for three reasons. First, the best codes currently known for classical channels are based on sparse graphs. Second, sparse graph codes keep the number of quantum interactions associated with the quantum error correction process small: a constant number per quantum bit, independent of the blocklength. Third, sparse graph codes often offer great flexibility with respect to blocklength and rate. We believe some of the codes we present are unsurpassed by previously published quantum error-correcting codes.Comment: Version 7.3e: 42 pages. Extended version, Feb 2004. A shortened version was resubmitted to IEEE Transactions on Information Theory Jan 20, 200
    • 

    corecore