
UNIVERSITÀ DEGLI STUDI DI PADOVA

Facoltà di Ingegneria

Corso di laurea triennale in ingegneria dell’ informazione

Single Parity Check Product Codes

Laureanda:
Ilaria Savorgnan

Relatore:
Prof. Nevio Benvenuto

Anno Accademico 2009-2010



Ringraziamenti

Desidero innanzitutto ringraziare di cuore i miei genitori, che mi hanno sempre so-
stenuta con fiducia e hanno condiviso ogni tappa del mio percorso.

Un grazie sincero alle persone che sono per me punti fermi e che mi sono state
vicine con costanza e affetto.

Un ringraziamento va anche al Prof. Nevio Benvenuto per la disponibilità e le
utili indicazioni.

1



Contents

1 An introduction to product codes 4
1.1 First order check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Higher order checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The product codes concept 7
2.1 Construction of a product code . . . . . . . . . . . . . . . . . . . . . 8
2.2 The limits to capacity . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Concatenated coding for product codes 12
3.1 Serial concatenation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Parallel concatenation . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Iterative decoding for product codes 16
4.1 Soft-in, soft-out (SISO) decoding . . . . . . . . . . . . . . . . . . . . 17

5 Single Parity Check Product Codes (SPCPC) 19
5.1 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3.1 Asymptotic performance of extended Hamming iterated codes
on the binary symmetric channel . . . . . . . . . . . . . . . . 28

5.3.2 Asymptotic performance of single parity check product codes
on the binary symmetric channel . . . . . . . . . . . . . . . . 29

5.3.3 Asymptotic performance of single parity check product codes
on the AWGN channel . . . . . . . . . . . . . . . . . . . . . . 36

6 Conclusion 38

References 39

2



Introduction

This work has the aim to introduce and delve the concept of product codes, which
were introduced for the first time by Elias in 1954, and represent the first method
capable of achieving error-free coding with a nonzero code rate (as the number of
dimensions increase to infinity). Specifically, single parity check product codes (that
is, a peculiar class of product codes in which the encoder adds one bit to a sequence of
n information bits such that the resultant (n+1)-bit codeword has an even number of
ones) will be analyzed in detail. In Section 1 product codes are introduced, developing
the first order and high order checks. In Section 2 a concrete and visual construction
of a product code is explained, together with a focus on Shannon’s limit to capacity.
Section 3 and Section 4 expose the two concept that are the basis of product codes:
concatenated coding and iterative decoding; both are fully investigated, in order to
have a detailed overview of product codes. Exploiting the knowledge acquired in the
previous sections, Section 5 describes single parity check product codes, focuses on
encoding, decoding, and performance.

3



1 An introduction to product codes

Product codes are serially concatenated codes which were introduced by Elias in
1954. The transmitted symbols are divided into so-called information digits and
check digits. The customer who has a message to send supplies the information digits
which are tramitted unchanged. Periodically the coder at the transmitter computes
some check digits, which are functions of past information digits, and transmits them
[1].

Since these coding procedures are derived by an iteration of simple error-correcting
and detecting codes, their performance depends on what kind of code is iterated. In
1954, Elias suggested that for a binary channel with a small and symmetric error
probability, the best choice among the available procedures is the Hamming-Golay
single-error-correction double-error-detection code developed by Hamming [2] for the
binary case and extended by Golay [3] to the case of symbols selected from an al-
phabet of M different symbols, where M is any prime number.

1.1 First order check

Consider a noisy binary channel, which transmits either a zero or a one, with a
probability (1 - p0) that the symbol will be received as transmitted, and a probability
p0, that it will be received in error. Error probabilities for successive symbols are
assumed to be statistically independent. Let the receiver divide the received symbol
sequence into consecutive blocks, each block consisting of N1 consecutive symbols.
Because of the assumed independence of successive transmission errors, the error
distribution in the blocks will be binomial: there will be a probability:

P (0) = (1− p0)
N1 (1)

that no errors have occurred in a block, and a probability P (i):

P (i) =
N1!

i!(N1 − i)!
pi0(1− p0)

N1−i (2)

that exactly i errors have occurred.

If the expected number of errors per received block, N1p0, is small, then the use of
a Hamming error-correction code will produce an average number of errors per block,
N1p1, after error correction, which is smaller still. Thus p1, the average probability
of error per position after error correction, will be less than p0.

The single-error-correction check digits of the Hamming code give the location of
any single error within the block of N1 digits, permitting it to be corrected. If more

4



errors have occurred, they give a location which is usually not that of an incorrect
digit, so that altering the digit in that location will usually cause one new error, and
cannot cause more than one. The double-error-detection check digit tells the receiver
whether an even or an odd number of errors has occurred. If an even number has
occurred and an error location is indicated, the receiver does not make the indicated
correction, and thus avoids what is very probably the addition of a new error.

The single-correction double-detection code, therefore, will leave error-free blocks
alone, will correct single errors, will not alter the number of errors when it is even,
and may increase the number by at most one when it is odd and greater than one.
This gives for the expected number of errors per block after checking:

≤N1∑
even(i)≥2

iP (i) +
≤N1∑

odd(i)≥3

(i+ 1)P (i) (3)

≤ P (2) +
≤N1∑
i=3

(i+ 1)P (i) (4)

≤
N∑
i=0

(i+ 1)P (i)− P (0)− 2P (1)− P (2) (5)

≤ 1 +N1p0 − P (0)− 2P (1)− P (2). (6)

Substituting the binomial error probabilities from (2), expanding and collecting
terms, gives, for N1p0 ≤ 3:

N1p1 ≤ N1(N1 − 1)p20 (7)

or:
p1 ≤ (N1 − 1)p20 < N1p

2
0 (8)

The error probability per position can therefore be reduced by making N1 suf-
ficiently small. The shortest code of this type requires N1 = 4 and the inequality
(8) suggests that a reduction will therefore not be possible if p0 ≥ 1

3
. The fault is

in the equation, however, and not the code: for N1 = 4 it is a simple majority-rule
code which will always produce an improvement for any p0 <

1
2
. A Hamming single-

correction double-detection code uses C of the N positions in a block for checking
purposes and the remaining N − C positions for the customers symbols, where:

C = ⌈log2(N − 1) + 2⌉ (9)

5



1.2 Higher order checks

After completing the first-order check, the receiver discards the C1 check digits, lea-
ving only the (N1−C1) checked information digits, with the reduced error probability
p1 per position. (It can be shown that the error probability after checking is the same
for all N1 positions in the block, so that discarding the check digits does not alter
the error probability per position for the information digits).

Now some of these checked digits are made use of for further checking, again with
a Hamming code. The receiver divides the checked digits into blocks of N2; the C2

checked check digits in each block enable it, again, to correct any single error in the
block, although multiple errors may be increased by one in number. In order for the
checking to reduce the expected number of errors per second-order block, however,
it is necessary to select the locations of the N2 symbols in the block with some care.

The simplest choice would be to take several consecutive first-order blocks of
(N1 − C1) adjacent checked information digits as a second-order block, but this is
guaranteed not to work. For if there are any errors at all left in this group of digits
after the first-order checking, there are certainly two or more, and the second-order
check cannot correct them. In order for the error probability per place after the
second-order check to satisfy the analog of (8), namely:

pj ≤ (Nj − 1)p2j−1 < Njp
2
j−1 (10)

It is necessary for the N2 positions included in the second-order check to have
statistically independent errors after the first check has been completed. This will
be true if, and only if, each position was in a different block of N1 adjacent symbols
for the first-order check. The simplest way to guarantee this independence is to put
each group of N1ÖN2 successive symbols in a rectangular array, checking each row of
N1 symbols by means of C1 check digits, and then checking each column of already
checked symbols by means of C2 check digits. The transmitter sends the (N1 − C1)
information digits in the first row, computes the C1 check digits and sends them,
and proceeds to the next row. This process continues down through row (N2 − C2).
Then the transmitter computes the C2 check digits for each column and writes them
down in the last C2 rows. It transmits one row at a time, using the first (N1 − C1)
of the positions in that row for the second-order check, and the last C1 digits in the
row for a first-order check of the second-order check digits [1].

6



2 The product codes concept

The concept of product codes is very simple and relatively efficient for building very
long block codes by using two or more short block codes. Let us consider two sy-
stematic linear block codes C1 with parameters (n1, k1, δ1) and C2 with parameters
(n2, k2, δ2), where ni, ki and δi (i= 1,2) stand for codeword length, number of in-
formation bits, and minimum Hamming distance, respectively. The product code
P = C1 � C2 is obtained by:

1. placing (k1Ök2) information bits in an array of k1 rows and k2 columns;

2. coding the k1 rows using code C2;

3. coding the n2 columns using code C1;

The parameters of the product code P are n = n1Ön2, k = k1Ök2, δ = δ1Öδ2,
and the code rate R is given by R = R1ÖR2, where Ri is the code rate of code Ci.
Thus, we can build very long block codes with large minimum Hamming distance by
combining short codes with small minimum Hamming distance. Given the procedure
used to construct the product code, it is clear that the (n2 − k2) last columns of the
matrix in Fig.1 are codewords of C1. By using the matrix generator, one can show [4]
that the (n1 − k1) last rows of matrix P are codewords of C2. Hence, all of the rows
of matrix P are codewords of C2 and all of the columns of matrix P are codewords
of C1 [5].

Figure 1: Construction of product code P = C1
ÖC2.

7



2.1 Construction of a product code

It is possible to combine the use of two or more codes so as to obtain a more powerful
code. For example, a single parity check on a vector is capable of detecting all single
errors. Now consider information symbols arranged in a rectangular array, with a
single over-all parity check on each row and each column. This iteration of a simple
parity-check code is capable of correcting all single errors, for if a single error occurs,
the row and column in which it occurs are indicated by parity-check failures. In fact
this code, which is a linear code, has minimum weight 4, the minimum weight code
word having non-zero components at the intersections of two rows and two columns.

An important generalization results if each row of the array is a vector taken from
one code and each column a vector from a different code. Product codes can also
be generalized to three or higher dimensional arrays. These are all linear codes, and
the generator matrix for the product of two codes is combinatorially equivalent to
the tensor product of the generator matrices of the two original codes. It should be
noted that certain symbols, such as those in the lower right-hand corners (see Fig.1)
are checks on check symbols. These can be filled in as checks on rows and will be
consistent as checks on columns, or viceversa. If they are filled in as checks on rows
according to the parity-check rules for the row code, then each parity-check column
is actually a linear combination of the columns that contain information symbols.
Each of these has parity symbols added to it to make it a code vector, and therefore
the parity-check columns, being linear combinations of code vectors for the column
code, are also code vectors for the column code [6].

A multidimensional product code can be constructed in the following way. The
data to be transmitted are arranged in a hypercube of dimension d with the length
in each dimension defined by {k1, k2, ...kd}. The i-th dimension is encoded with a
systematic (ni, ki, dmin(i)) code, and this is repeated for all i = 1, ....d dimensions.
The order of encoding is not important. The resulting d-dimensional product code
has block length:

N =
d∏

i=1

ni (11)

and code rate:

R =
d∏

i=1

ri (12)

8



where ri =
ki
ni

is the rate of the code in the i-th dimension. The two-dimensional
(2-D) code consists of a data block, parity checks on the rows, checks on the columns,
and checks on the checks [8]. The single parity check code is one of the most popular
error detection codes because it is easy to implement. In these codes, the encoder
adds one bit to a sequence of n information bits such that the resultant (n + 1)-
bit codeword has an even number of ones. Two or more SPC codes can be used to
construct a product code [7]. We will consider only product codes formed from binary,
systematic, linear component codes, specifically single parity check component codes
which have the same length in each of the dimensions. The code rate and minimum
distance are [8]:

R =
(
n− 1

n

)d

(13)

dmin = 2d (14)

We shall then introduce the two concepts that are the basis of the single pa-
rity check product codes we are going to analyse: concatenated coding and iterative
decoding. Let’s first introduce Shannon bound on capacity [9].

9



2.2 The limits to capacity

In 1948 Claude Shannon was working at Bell Laboratories in the USA on the fun-
damental information transmission capacity of a communication channel. (In doing
so he also rigorously quantified the concept of information, and thus founded the
discipline of information theory.) He showed that a communication channel is in
principle able to transmit information with as few errors as we wish, even if the
channel is subject to errors due to noise or interference, provided the capacity of the
channel is not exceeded. This capacity depends on the signal-to-noise ratio (SNR),
the ratio of the signal power to noise power, as shown in Fig.2.

Figure 2: Shannon bound on capacity per unit bandwidth, plotted against signal-to-
noise ratio. ‘x’ indicates the capacity and SNR requirements of BPSK for a BER of
10−3.

Note that the capacity obtainable by conventional means is much less than this
capacity limit. For example, the x mark on Fig.1 shows the performance achieved on
a radio system with a simple modulation scheme: binary phase-shift keying (BPSK).
This is for a bit error ratio (BER) of 0.001, which is low enough for only a few
services, such as speech, whereas the Shannon theory promises an arbitrarily low
BER. Note that at the same SNR a capacity several times greater could be achieved;
or equivalently that the same capacity could be achieved with a signal power many

10



decibels lower. This highlighted the potential gains available and led to the quest for
techniques that could achieve this capacity in practice. Shannon did in fact also show
in principle how to achieve capacity. The incoming data should be split into blocks
containing as many bits as possible (say k bits). Each possible data block is then
mapped to another block of n code symbols, called a codeword, which is transmitted
over the channel. The set of codewords, and their mapping to data blocks, is called
a code, or more specifically a forward error correcting (FEC) code. At the receiver
there is a decoder, which must find the codeword that most closely resembles the
word it receives, including the effects of noise and interference on the channel. The
decoder is more likely to confuse codewords that resemble one another more closely:
hence the power of the code to correct errors and overcome noise and interference
depends on the degree of resemblance. This is characterised in terms of the minimum
number of places in which any two codewords differ, called the Hamming distance.

Remarkably, Shannon showed that capacity could be achieved by a completely
random code, that is a randomly chosen mapping set of codewords. The drawback
is that this performance is approached only as k and n tend to infinity. Since the
number of codewords then increases as 2k, this makes the decoders search for the
closest codeword quite impractical, unless the code provides for a simpler search
technique.

11



3 Concatenated coding for product codes

The power of FEC codes increases with length k and approaches the Shannon bound
only at very large k, but also the decoding complexity increases very rapidly with k.
This suggests that it would be desirable to build a long, complex code out of much
shorter component codes, which can be decoded much more easily. Concatenation
provides a very straightforward means of achieving this. So the serial and parallel
concatenation of codes is well established as a practical means of achieving excellent
performance [10].

3.1 Serial concatenation

Figure 3: Principle of serial-concatenated codes.

The principle is to feed the output of one encoder (called the outer encoder) to the
input of another encoder, and so on, as required. The final encoder before the channel
is known as the inner encoder (Fig.3). The resulting composite code is clearly much
more complex than any of the individual codes. This simple scheme suffers from a
number of drawbacks, the most significant of which is called error propagation. If a
decoding error occurs in a codeword, it usually results in a number of data errors.
When these are passed on to the next decoder they may overwhelm the ability of that
code to correct the errors. The performance of the outer decoder might be improved
if these errors were distributed between a number of separate codewords. This can
be achieved using an interleaver — de-interleaver. The simplest type of interleaver
is illustrated in Fig.4.

This simple interleaver (sometimes known as a rectangular or block interleaver)
consists of a two-dimensional array, into which the data is read along its rows. Once
the array is full, the data is read out by columns, thus permuting the order of the
data. (Because it performs a permutation, an interleaver is commonly denoted by the
Greek letter π, and its corresponding de-interleaver by π−1.) The original order can
then be restored by a corresponding de-interleaver : an array of the same dimensions
in which the data is read in by columns and read out by rows. This interleaver

12



Figure 4: Operation of interleaver and de-interleaver.

may be placed between the outer and inner encoders of a concatenated code that
uses two component codes, as for 2-D single parity check product codes as shown in
Fig.5. Then, provided the rows of the interleaver are at least as long as the outer
codewords, and the columns at least as long as the inner data blocks, each data bit
of an inner codeword falls into a different outer codeword. Hence, provided the outer
code is able to correct at least one error, it can always cope with single decoding
errors in the inner code.

Figure 5: Concatenated encoder and decoder with interleaver.

13



Usually the block codes used in such a concatenated coding scheme are systematic:
that is, the k data bits appear in the codeword, along with n−k parity or check bits
(1 check bit for SPCPC), which allow the data bits to be corrected if errors occur,
making a codeword of length n. Now suppose the outer code has data length k1 and
code length n1, while the inner code has data length k2 and code length n2, and the
interleaver has dimension k2 rows by n1 columns. Then the parity and data bits may
be arranged in an array as shown in Fig.6.

Figure 6: Array for interleaved concatenated code.

Part of this array (within the heavy line) is stored in the interleaver array: the
rows contain codewords of the outer code. The parity of the inner code is then ge-
nerated by the outer encoder as it encodes the data read out of the interleaver by
columns. This includes the section of the array generated by encoding the parity of
the outer code in the inner code, marked “checks on checks” in the figure. The co-
lumns of the array are thus codewords of the inner code. Observe that the composite
code is much longer, and therefore potentially more powerful, than the component
codes: it has data length k1Ök2 and overall length n1Ön2.

14



3.2 Parallel concatenation

Figure 7: Principle of parallel-concatenated codes.

There is an alternative connection for concatenated codes, called parallel conca-
tenation (Fig.7), in which the same data is applied to M encoders in parallel, but
with M − 1 interleavers between them, as shown in Fig.8(a) for M = 2:

Figure 8: Parallel concatenation: (a) encoder structure; (b) code array.

If systematic block codes and a rectangular interleaver are used, as in Section 3.1,
but the systematic component of the second code output is not transmitted (since it
is duplicated), then the code array is as shown in Fig.8(b). It is essentially the same
as in Fig.6, except that the “checks on checks” are not present [9].

15



4 Iterative decoding for product codes

In Section 2.1 we introduced two concepts that are the basis of single parity check
product codes: concatenated coding and iterative decoding.

Concatenated coding has been analysed in Section 3. In this section we introduce
the concept of iterative decoding. Then, in Section 5, it will be shown how iterative
decoding can be used to realize a parallel decoder structure for single parity check
product codes.

The conventional decoding technique for product codes is that shown in Fig.5:
the inner code is decoded first, then the outer. However, this may not always be as
effective as we might hope [9].

Consider a received codeword array with the pattern of errors shown by the Os
in Fig.9. Suppose that both component codes are capable of correcting single errors
only. As mentioned above, if there are more errors than this the decoder may actually
introduce further errors into the decoded word. For the pattern shown this is the
case for two of the column codewords, and errors might be added as indicated by X.
When this is applied to the outer (row) decoder some of the original errors may be
corrected (indicated by a cross through the O), but yet more errors may be inserted
(marked with +). However, the original pattern would have been decoded correctly
had it been applied to the row decoder first, since none of the rows contains more
than one error.

Figure 9: Pattern of received errors (O) in codeword array, with errors introduced
by inner (column) decoder (X) and outer (row) decoder (+).

16



Note that if the output of the outer decoder were reapplied to the inner decoder it
would detect that some errors remained, since the columns would not be codewords of
the inner code. (A codeword of a single error correcting code must contain either no
errors or at least three.) This in fact is the basis of the iterative decoder : to reapply
the decoded word not just to the inner code, but also to the outer, and repeat as many
times as necessary. However, it is clear from the foregoing argument that this would
be in danger of simply generating further errors. One further ingredient is required
for the iterative decoder: this ingredient is Soft-in, soft-out (SISO) decoding [9].

4.1 Soft-in, soft-out (SISO) decoding

The performance of a decoder is significantly enhanced if, in addition to the hard
decision made by the demodulator on the current symbol, some additional soft in-
formation on the reliability of that decision is passed to the decoder. For example,
if the received signal is close to a decision threshold (say between 0 and 1) in the
demodulator, then that decision has low reliability, and the decoder should be able
to change it when searching for the most probable codeword. In the decoder of a
concatenated code the output of one decoder provides the input to the next. Thus to
make full use of soft-decision decoding requires a component decoder that generates
soft information as well as making use of it. This is the SISO decoder.

Soft information usually takes the form of a log-likelihood ratio for each data
bit. The likelihood ratio is the ratio of the probability that a given bit is 1 to the
probability that it is 0. If we take the logarithm of this, then its sign corresponds
to the most probable hard decision on the bit (if it is positive, 1 is most likely; if
negative, then 0).

Λ(b) = ln

(
P (b = 1|Y )

P (b = 0|Y )

)
(15)

Where b represents the transmitted data bits.
The absolute magnitude is a measure of our certainty about this decision. Sub-

sequent decoders can then make use of this reliability information. It is likely that
decoding errors will result in a smaller reliability measure than correct decoding.
In the example this may enable the outer (row) decoder to correctly decode some
of the errors resulting from the incorrect inner decoding. If not it may reduce the
likelihood ratio of some, and a subsequent reapplication of the column decoder may
correct more of the errors, and so on [9].

Thus we can regard the log-likelihood ratio as a measure of the total information
we have about a particular bit. In fact this information comes from several separate

17



sources. Some comes from the received data bit itself: this is known as the intrinsic
information.

Information is also extracted by the two decoders from the other received bits of
the row and the column codeword. When decoding one of these codes, the informa-
tion from the other code is regarded as extrinsic information. It is this information
that needs to be passed between decoders, since the intrinsic information is already
available to the next decoder, and to pass it on would only dilute the extrinsic infor-
mation. The most convenient representation for the concept of extrinsic information
is as a log-likelihood ratio, in which case extrinsic information is computed as the
difference between two log-likelihood ratios. In effect, extrinsic information is the
incremental information gained by exploiting the dependencies that exist between a
message bit of interest and incoming raw data bits processed by the decoder [12].

18



5 Single Parity Check Product Codes (SPCPC)

5.1 Encoding

Consider parallel SPCPC which have the same length in every dimension, as seen
before the i-th component code can be defined as:

(ni, ki, δi) = (kD + 1, kD, 2) (16)

where:

� ni stands for codeword length

� ki stands for number of information bits

� δi stands for minimum Hamming distance

� D stands for dimension

i = 1,2....D

For a 2D code, it consists of data block, parity checks on the rows, parity checks
on the columns, and parity on parity checks.

Therefore the code rate can be given as:

R =
(
n− 1

n

)D

(17)

For a 2D-single parity check product code, the encoding is performed by generating
the even parity check bit for every rows and columns of the block code as illustrated
in Fig.10.

This code consists of the data block, the parity checks on row and column also
parity on parity check bits for n1 = n2 = n = 6.

The data is encoded using dimensional based reading order (DBRO), to obtain
several distinct of the codeword sequences. The first and second possible codeword
sequences, X1 and X2 are obtained from DBRO algorithm which is given as:

Xl = X (e1, e2)|e1 = 1 + (l + n1 − 1)modn1; e2 =

⌈
l

n1

⌉
(18)

where the l-th bit of the 2D-SPCPC codeword sequence is the bit at (e1, e2) in
two dimensional coordinate of codeword block X for l = 1,2..N .

19



Figure 10: 2D-SPCPC Codeword, (a) two dimensions codeword block, (b) corre-
sponding two possible codeword sequences.

N is the length of the codeword sequence and ⌈ x ⌉ is ceil function that defines
the smallest integer greater than x.

The detail of the SPCPC encoder block is illustrated in Fig.11.
The scramble information bits are divided into a data frame with length K for:

K =
D∏

d=1

kd (19)

and kd are the length of component encoder input at dimension d-th.
In Fig.10, a data block size is k1Ök2.

20



Figure 11: Detail of SPCPC encoder block. Turbo product code (TPC) consists of
the product of two systematic block codes separated by uniform interleaver.

The 2D data block is encoded with identical SPC component codes of (n2, k2, 2)
and the resulting codeword is n1Ön2. Then, using (17), the possible codeword se-
quence is selected [13].

21



5.2 Decoding

The decoding process of product codes is based on a suboptimal iterative proces-
sing in which each component decoder takes advantage of the extrinsic information
produced by the other decoder at the previous step [14].

The parallel decoder structure proposed here is based on [11] with an extension
of using weighting extrinsic information.

We then start from the general decoding structure in Fig.12, where each compo-
nent soft decoder accepts the soft information from the demodulation process. This
soft information is combined with a priori information from all other component de-
coders to generate extrinsic information. All soft information is properly interleaved
and deinterleaved before being fed forward or backward.

Figure 12: Decoder structure for a 3-PC-SPC code.

22



Then, we extend the decoder structure in Fig.12 by using weighting extrinsic
information as illustrated in Fig.13 [13].

Figure 13: 2D-SPCPC parallel decoder with weighting extrinsic information.

The iterative decoding algorithm for SPC Product Codes is described below:

� Initialization: Calculate the channel log-likelihood ratios for all received sym-
bols. Set the extrinsic information values Λe to zero for all bits in the product
code and every dimension.

� Decode each dimension: Calculate the extrinsic information, Λe, for all bits in
every SPC component code, over all dimensions. Only the extrinsic information
is passed between the decoders in each dimension.

� Repetition: The decoding cycle, or iteration, is complete once all dimensions
have been decoded. Repeat this decoding process for as long as required [8].

23



Then, for a 2-D SPC product codes, the decoding process starts by calculating
the log-likelihood ratio (LLR) for each received bit as:

Λ(b) = ln

(
P (b = 1|Y )

P (b = 0|Y )

)

= ln

(
p(Y |b = 1)P (b = 1)

p(Y |b = 0)P (b = 0)

)

= ln

(
p(Y |b = 1)

p(Y |b = 0)

)
+ ln

(
P (b = 1)

P (b = 0)

)
(20)

Where b represents the transmitted data bits.

At beginning the second term, which represent the a-priori information, is ignored
for the assumption that all bits are equally likely.

The first term in (20) yields the so called soft channel output LLR or channel
output metric Λc(b):

Λc(b) = ln

(
p(Y |b = 1)

p(Y |b = 0)

)

= ln


1

σ
√
2π
e

(
(Y −HS1)

2σ2

)
1

σ
√
2π
e

(
(Y −HS0)

2σ2

)


=
1

2σ2

[
(Y −HS1)

2 − (Y −HS0)
2
]

(21)

Where S1 is the hypothesis representation of b = 1 and S0 is the hypothesis
representation of b = 0.

The Λc bits consist of LLR data bits that are passed to all component decoders
and LLR parity bits are passed to the corresponding decoder.

We compute extrinsic information, Λe for the l-th data bit bl using log likelihood
algebra which is given as:

Λe(b̂l) = 2(−1)ni arctan

tanh(Λ(p))

2

ni−1∏
j=1,j ̸=l

tanh(Λ(bj))

2

 (22)

where Λ(p) is the LLR for the parity bit, and Λ(bj) is the LLR for the j-th data
bit.

24



The soft detected bits, Λ(b̂l) is computed as:

Λ(b̂l) = Λc(b̂l) + Λe(b̂l) (23)

The soft detected bits from all component decoder are summed up. Since the soft-
detected bits have yielded from decoder, the first decoding iteration has been done.
The received bits are obtained by applying hard-decision detector to the soft detected
bit. For the next iteration, the extrinsic information from all component decoders is
fed back to the input of all component decoders. The extrinsic information is used
as a priori probability of detected bit. The decoding process will be terminated until
a defined iteration [13].

The detail of the SPCPC decoder block is illustrated in Fig.14.

Figure 14: Detail of SPCPC decoder block.

25



5.3 Performance

The concatenated single parity check product codes have very good performance
while the coding-decoding complexity is not high. It can be shown that the proba-
bility of bit error for a class of SPC product codes can be driven to zero as the block
length tends to infinity within 2 dB of capacity on the additive white Gaussian noise
(AWGN) channel [15].

In order to investigate performance on the AWGN channel, we first investigate
the performance of single parity check product codes over the binary-symmetric
channel (BSC) as an extension of the classic paper by Elias [1]. This approach
has the advantage that numerical simulation can be used to drive the asymptotic
analysis, and hence iterative decoding can be considered. The key to this analysis is
the relationship between the probability of bit error before and after the decoding of
each subcode. The overall code is analyzed by calculating the change in the average
probability of bit error associated with the decoding of each subcode. In general,
this type of analysis is quite simple provided the subcodes are independent. The
simplest class of codes satisfying this criterion are product codes. In this case, the
subcodes are the component codes of the product code, and each dimension forms a
set of similar nonintersecting subcodes. For example, in a two-dimensional product
code, the component codes form row and column codes within an array and the
support of all the row codes form a nonintersecting set, likewise, the support of the
column codes form a nonintersecting set. However, the natural construction of the
product code ensures that the support of every row code intersects exactly once with
the support of each column code (and thus the support of every column code also
intersects exactly once with the support of every row code). Thus, product codes
have the advantage that the probability of bit error can be recursively calculated as
each subcode is decoded (in a particular order) for every subcode in the code. We will
initially focus on the BSC in order to obtain the asymptotic analysis which will allow
iterative decoding on the AWGN channel, specifically using numerical simulation to
obtain an asymptotic result. The analysis of SPC product codes over the BSC can
be cast in a form very similar to that for the extended Hamming “iterated codes”,
as studied by Elias [1] (see Section 1).

These iterated codes are simply product codes in which the length of the compo-
nent code doubles with every dimension encoded. Hence:

Ni = 2Ni−1 (24)

where Ni is the length of the component code in the i-th dimension.
An extended Hamming product code can always correct a single error in each

26



component code, but an SPC product code cannot correct any errors within a single
component code over the BSC. The solution to this problem is to consider two
consecutive dimensions of the SPC product code as a Super Component (SC) code,
so that two-dimensional SPC product codes are the component codes of the overall
SPC product code (the product code constructed from two-dimensional SPC product
codes as component codes is also an SPC product code).

This SC code has minimum distance four and an extremely simple decoding algo-
rithm which can be used to correct a single error (over the BSC). We will introduces
the analysis of SPC product codes by first considering the asymptotic performance
of extended Hamming iterated codes [1] on the binary symmetric channel; then, we
will extend this analysis to SPC product codes.

27



5.3.1 Asymptotic performance of extended Hamming iterated codes on
the binary symmetric channel

The extended Hamming codes have parameters (2m, 2m −m− 1, 4) for some m ≥ 2,
and the overall code rate is simply the product of the component codes rates. Then,
we find that the asymptotic code rate R is given by:

R =
∞∏

j=m

2j − j − 1

2j
=

∞∏
j=m

(
1− j + 1

2j

)
(25)

It can be shown that this code rate tends to a constant greater than zero [1].
Furthermore, R depends on the parameter m, where m = log2N1 and N1 is the
length of the component code in the first dimension.

It has been shown by Elias [1] that the probability of bit error Pi after decoding
the extended Hamming code in the i-th dimension of a product code on the BSC is
bounded by:

Pi ≤ NiP2
i−1 (26)

where Pi−1 is the probability of bit error before decoding the i-th dimension and,
initially, P0 = P is the crossover probability of the channel. The relationship given
by (26) requires that bits decoded in the i-th dimension are indipendent with respect
to the probability of bit error in the (i−1)-th dimension. The simplest code structure
which satisfies this requirement is the product code.

Given that the length of the component codes double in each dimension and
in view of (26), the optimal decoding order is the same as the order of encoding
(shortest to largest block length). This is because the shortest codes will have the
most success in reducing the probability of bit error [15].

Following Elias, we can recursively calculate the probability of bit error after
decoding k dimensions using (24) and (26) to give:

Pk ≤ (N12
k−1)

20

. . . (N12
k−i)

2j−1

. . . (N12
0)

2k−1

P2k

0

=
1

N1

(2N1P0)
2k2−(k+1) (27)

The right side of this expression approaches zero as k increases, provided the
crossover probability P satisfies:

P ≤ 1

2N1

(28)

28



5.3.2 Asymptotic performance of single parity check product codes on
the binary symmetric channel

We will extend the analysis in the previous subsection to single parity check product
codes. Consider SPC product codes on the BSC as the number of dimensions tends
to infinity. Note that an SPC component code cannot correct any errors on the BSC
thus we need to consider the SC codes. In order to maximize the rate of the SC code,
for a given block length, the SPC codes in each of the two dimensions are chosen to
have the same length ni. Therefore, Ni = n2

i and the SC code rate is given by:

Ri =

(
(ni − 1)

ni

)2

(29)

Furthermore, in keeping with Elias’ iterated code philosophy, the length of the
SC code needs to approximately double in each dimension. Ni is the length of the
SC code in the i-th dimension and the block length satisfies the recursion:

Ni =
(⟨√

2Ni−1

⟩)2

(30)

where ⟨x⟩ denotes the integer closest to x. Hence, Ni ≈ 2Ni−1 and the approxi-
mation approaches equality as i increases.

The following algorithm is used to decode these SC codes:

� Find all rows and columns within the two-dimensional SPC product code such
that the parity-check equations are unsatisfied.

� If, and only if, one row and one column equations are unsatisfied, flip the bit
at the intersection of this row and column; otherwise, leave the received word
unchanged.

Clearly, this algorithm has very low complexity and will correct all weight-one
error patterns. More importantly, this algorithm will detect (and leave the received
word unchanged), all other error patterns which are at more than Hamming distance
one from any codeword. Thus, it will detect all even-weight error patterns, assuming
the pattern is not a codeword. This is due to the fact that an SC code contains
only even-weight codewords (hence, any even-weight error pattern which is not a
codeword must be at least distance two from a codeword and, therefore, can be
detected). The error detection properties of this algorithm are very advantageous.
It will be shown that, unlike the extended Hamming decoder in [1], this decoding

29



algorithm will detect the majority of weight three error patterns and, therefore, it
will not incorrectly decode these received words (which would add an extra bit error).

To begin with, we decode the SC code without using this extra information. Note
that in this case, the performance of the decoder is exactly the same as the extended
Hamming decoder since it will attempt to correct all odd-weight error patterns and
leave all even-weight error patterns [1]. Consequently, this decoder will correct all
odd-weight error patterns (greater than weight one) to a wrong codeword and hence
are assumed to add an extra bit error. Therefore, the expected number of bit errors
remaining after decoding a single dimension is bounded by:

N1P1 ≤
N1∑

even(i)≥2

i

(
N1

i

)
P iQN1−i +

N1∑
odd(i)≥3

(i+ 1)

(
N1

i

)
P iQN1−i (31)

where P is the probability that any codeword bit is in error and Q = 1−P . We
can write (31) in closed form, as shown in the following:

N1P1 ≤
N1∑
i=2

i

(
N1

i

)
P iQN1−i +

N1∑
odd(i)≥3

(
N1

i

)
P iQN1−i

=
N1∑
i=2

N1

(
N1 − 1

i− 1

)
P iQN1−i +

 N1∑
odd(i)≥1

(
N1

i

)
P iQN1−i −N1PQN1−1


= N1

N1−1∑
i=1

(
N1 − 1

i

)
P i+1QN1−1−i +

1

2

[
(P +Q)N1 − (−P +Q)N1

]
−N1PQN1−1

= N1P
[
(P +Q)N1−1 −QN1−1

]
+

1

2

[
(P +Q)N1 − (−P +Q)N1

]
−N1PQN1−1

= N1P
[
1− 2QN1−1

]
+

1

2

[
1− (1− 2P)N1

]
(32)

This analysis extends directly to any dimension of the PC where Pi = P1, Ni =
N1,Pi−1 = P, provided the bit errors in the subcode to be decoded are independent.
Note that using the bound (1−P)n > 1 − nP reduces the analysis to the result
given by Elias (26).

30



The relationship between the probability of bit error before and after decoding an
SC code can be improved by considering the number of detectable weight-three error
patterns. When a weight-three error pattern is detected, no decoding is attempted

and hence no extra error is incurred, unlike the bound (32). All but 4
(
n1

2

)2
of the

weight-three error patterns are detectable. This is due to the fact that all
(
n1

2

)2
of the

weight-four codewords are square patterns, as shown in Fig.15, and hence the only
weight-three error patterns which are at distance one from the weight-four codewords
are those obtained by removing a single vertex from these codewords [15].

Figure 15: Relationship between weight-four codewords (a) and undetectable weight-
three error patterns (b). The dots represent ones in the two-dimensional SPC Pro-
duct codeword. Note that removing a vertex from a codeword creates an undetectable
weight-three error pattern.

31



Using this extra information, we can calculate the expected number of bit errors
after decoding the SC code as:

N1P1 ≤ N1P
[
1− 2QN1−1

]
+

1

2

[
1− (1− 2P)N−1

]
−

1− 4
(
n1

2

)2(
n2
1
3

)
(N1

3

)
P3QN1−3

(33)

which is always better than (32), especially at high crossover probabilities, P, as
shown in Fig.16.

Figure 16: Improvement of (33) compared to the closed-form solution (32) and the
bound (26) derived by Elias.

32



It is possible to use a seminumerical method for improving the bounds on asymp-
totic performance of an SPC product code, compared to Elias’ threshold of 1

2N1
.

The probability of bit error after decoding the i-th dimension Pi is calculated
recursively using (33) and the probability of bit error after decoding the previous
dimension, Pi−1. Then Pi is compared to a threshold 1

2Ni+1
, to determine the point

at which the asymptotic probability of bit error will tend to zero. This threshold is
determined using the following variation of Elias’ analysis.

Consider the decoding of an SPCPC in terms of the SC codes. Because the
decoding of a single SC code satisfies (26), and assuming the block length satisfies
Ni = 2Ni−1 (which is true for large i), the asymptotic probability of error can be
determined. Specifically, we will only consider decoding dimensions j through k
(where 1 ≤ j ≪ k). Therefore:

Pk ≤ Nk(Nk−1)
2(Nk−2)

4. . . (Nj)
2k−j

P2k−j+1

j−1

= P2k−j+1

j−1

k∏
i=j

(
Nj2

k−i
)2k−j−1

=
1

Nj

(2NjPj−1)
2k−j+1

2−(k−j+2) (34)

and, hence, Pk Õ 0 as k Õ ∞ provided:

Pj−1 ≤
1

2Nj

(35)

Thus, the probability of bit error can be calculated numerically using (33) for each
dimension up to the j-th, at which point the result is compared to the threshold (35)
to determine the point at which the overall probability of bit error will tend to zero.

Fig.17 shows the performance of a SPC product code with n1 = 8 and N1 = 64,
N2 = 121, N3 = 256, N4 = 529, N5 = 1089, N6 = 2209.

33



Figure 17: Performance of a SPC Product Code.

The abscissa is the crossover probability of the BSC, which is P0 and is also re-
presented by the curve labeled first dimension. The curve labeled second dimension
is the probability of bit error after decoding all the SC codes in the first dimen-
sion, using (33), and is, therefore, the input probability of bit error into the second
dimension. The remaining curves follow the same pattern. Now the most impor-
tant information about each of these curves is the point at which the probability of
error intersects the threshold 1

2Nj
. All bit error probabilities less than or equal to

this point will force the asymptotic probability of bit error to zero as the number of
dimensions tends to infinity. The intersection is then mapped back to the original
crossover probability to determine the maximum P such that the overall probability
of bit error can be forced to zero. Note that this limit improves with every dimension
considered (although the improvement diminishes with each dimension). Also note
that this method constructs, by default, an upper bound on the performance of the
code after decoding the appropriate number of dimensions.

34



By choosing different values of N1, the maximum crossover probability such that
Pk Õ 0 as k Õ ∞ can be determined over a wide range of code rates. The results
are shown in Fig.18 for both the original threshold of Elias (28), and the improved
thresholds given in this subsection. These results clearly show that SPC product
codes can, asymptotically, allow error-free transmission at nonzero code rates on the
BSC [15].

Figure 18: The maximum crossover probability and code rate such that the asymp-
totic probability of bit error can be forced to zero on the BSC.

35



5.3.3 Asymptotic performance of single parity check product codes on
the AWGN channel

In this subsection we extend the previous results on the BSC to the AWGN channel.
This is achieved by iteratively soft-decoding the first few dimensions then hard-
decoding the remaining dimensions. Consequently, the asymptotic analysis can be
applied provided the soft decoding in the first few dimensions can drive the pro-
bability of bit error below a specific threshold, as determined from the previous
subsection. The soft-decoding of the first few dimensions will be based upon maxi-
mum a posteriori (MAP) decoding of the component SPC codes. The motivation
behind this analysis is that the soft-decoding of the first few dimensions will reduce
the probability of bit error much faster than the corresponding hard-decoding. Thus,
the signal-to-noise ratio (SNR) at which the probability of bit error is less than the
threshold (defined in the previous subsection) is the point at which, asymptotically,
the probability of bit error can be driven to zero. At most, the first three dimensions
of the SC codes will be soft-decoded, which corresponds to six dimensions of the SPC
product code.

The use of iterative decoding to decode a dimension of a PC does not affect the
independence of bit errors in higher dimensions. To show this is true, the indepen-
dence needs to be viewed from the decoding point of view, specifically looking at the
probability of bit error. Initially, the probability that any bit is received in error is
independent of any other bit due to the memoryless nature of the channel. Therefore,
decoding the PC in a single dimension will introduce dependencies in that dimension
but not in higher dimensions. For example, in the two-dimensional case, decoding
the rows will not introduce statistical dependency between the columns because the
support of a row code intersects with only one element of the support of a column
code. In fact, dependencies related to the probability of bit error only occur after a
code is decoded (in a given dimension). Hence, repeated decoding of the rows in a
two-dimensional code will not introduce any dependencies among the bit errors in
the columns.

The results are shown in Fig.19 for iterative soft-decoding of up to the first
three dimensions of the SPC product code (in terms of the SC codes). The codes
correspond to n1 = 4, 5, 6, . . . 13, 14, 20, 40. Over a wide range of rates, these codes
can asymptotically drive the probability of bit error to zero at SNRs within 2 dB of
capacity, and even closer at higher code rates. The improvement in performance is
due to iterative soft-decoding of the first few dimensions of the SPC product code
[15].

36



Figure 19: Asymptotic performance, defined as code rate versus Eb

N0
such that Pb Õ 0,

after iterative soft-decoding up to the first three (six) dimensions of the SPC product
code and then hard-decoding the remaining dimensions over the binary input AWGN
channel.

37



6 Conclusion

We have seen that product codes, and specifically single parity check product codes,
are a class of codes based on concatenated coding and iterative decoding. These
two fundamental concepts allow product codes to be very efficent and to force the
probability of error to zero within 2 dB of capacity on a binary-input AWGN channel.
We note that the resulting performance is surprisingly close to capacity on the AWGN
channel, given the simplicity of these codes.

38



References

[1] P. Elias, “Error free coding”, IRE Trans. Inform. Theory, vol. IT-4, pp. 29-37,
September 1954.

[2] R. W. Hamming, “Error Detecting and Error Correcting Codes”, Bell System
Tech. vol. 29, pp. 147-161, April 1950.

[3] M. J. E. Golay, “Notes on Digital Coding”, Proc. I.R.E. vol. 37, pp. 657, 1949.

[4] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes.
Amsterdam, The Netherlands: North-Holland, vol. 16, pp. 567-580, 1978.

[5] R. M. Pyndiah, “Near-Optimum Decoding of Product Codes: Block Turbo Co-
des”, IEEE Trans. on Commmun.,vol. 46, pp. 1003-1010, August 1998.

[6] W. W. Peterson and E. J. Weldon Jr, Error Correcting Codes, 2nd ed. Cam-
bridge, MIT Press, 1972.

[7] H. Xu and F. Takawira, “A New Structure of Single Parity Check Product
Codes”, IEEE Africon, September 2004

[8] D. M. Rankin and T. A. Gulliver, “Single Parity Check Product Codes”, IEEE
Trans, on Commun., vol. 49, no. 8, pp. 1354-1362, August 2001.

[9] A. Burr, “Turbo Codes: the ultimate error control codes?”, Journal on Electro-
nics and Communication Engineering, vol. 13, pp. 155-165, August 2001.

[10] M. Rankin, T. A. Gulliver, “Parallel and Serial Concatenated Single Parity
Check Product Codes”, EURASIP Journal on Applied Signal Processing, pp.
775-783, January 2005.

[11] J. S. K. Tee, D. P. Taylor and P. A. Martin, “Multiple serial and parallel conca-
tenated single parity check codes”, IEEE Trans. on Commun., vol. 51, no. 10,
pp. 1666-1675, October 2003.

[12] Y. Isukapalli, S. Rao, “Exploiting the Nature of Extrinsic Information in Itera-
tive Decoding”, Department of Electrical and Computer Engineering, Villanova
University, 2003.

[13] N. Ahmad, S. Yusof, N. Fisal, “Single Parity Check Product Code in MB-
OFDM Ultra Wideband System”, IEEE Trans. on Commun., Ultra Modern
Telecommunications and workshops, 2009. ICUMT ’09. pp. 1-5, October 2009.

39



[14] G. Colavolpe, G. Ferrari, R. Raheli, “Extrinsic Information in Iterative Deco-
ding: a Unified View”, IEEE Trans. on Commun., vol. 49, no. 12, pp. 2088-2094,
December 2001.

[15] M. Rankin, T.A. Gulliver, D.P. Taylor, “Asymptotic Performance of Single Pa-
rity Check Product Codes”, IEEE Trans. on Commun., vol. 49, no. 9, pp.
2230-2235, September 2001.

40


