2,421 research outputs found

    Travelling on Graphs with Small Highway Dimension

    Get PDF
    We study the Travelling Salesperson (TSP) and the Steiner Tree problem (STP) in graphs of low highway dimension. This graph parameter was introduced by Abraham et al. [SODA 2010] as a model for transportation networks, on which TSP and STP naturally occur for various applications in logistics. It was previously shown [Feldmann et al. ICALP 2015] that these problems admit a quasi-polynomial time approximation scheme (QPTAS) on graphs of constant highway dimension. We demonstrate that a significant improvement is possible in the special case when the highway dimension is 1, for which we present a fully-polynomial time approximation scheme (FPTAS). We also prove that STP is weakly NP-hard for these restricted graphs. For TSP we show NP-hardness for graphs of highway dimension 6, which answers an open problem posed in [Feldmann et al. ICALP 2015]

    Sparse geometric graphs with small dilation

    Get PDF
    Given a set S of n points in R^D, and an integer k such that 0 <= k < n, we show that a geometric graph with vertex set S, at most n - 1 + k edges, maximum degree five, and dilation O(n / (k+1)) can be computed in time O(n log n). For any k, we also construct planar n-point sets for which any geometric graph with n-1+k edges has dilation Omega(n/(k+1)); a slightly weaker statement holds if the points of S are required to be in convex position

    Spanning trees short or small

    Full text link
    We study the problem of finding small trees. Classical network design problems are considered with the additional constraint that only a specified number kk of nodes are required to be connected in the solution. A prototypical example is the kkMST problem in which we require a tree of minimum weight spanning at least kk nodes in an edge-weighted graph. We show that the kkMST problem is NP-hard even for points in the Euclidean plane. We provide approximation algorithms with performance ratio 2k2\sqrt{k} for the general edge-weighted case and O(k1/4)O(k^{1/4}) for the case of points in the plane. Polynomial-time exact solutions are also presented for the class of decomposable graphs which includes trees, series-parallel graphs, and bounded bandwidth graphs, and for points on the boundary of a convex region in the Euclidean plane. We also investigate the problem of finding short trees, and more generally, that of finding networks with minimum diameter. A simple technique is used to provide a polynomial-time solution for finding kk-trees of minimum diameter. We identify easy and hard problems arising in finding short networks using a framework due to T. C. Hu.Comment: 27 page

    The Stretch - Length Tradeoff in Geometric Networks: Average Case and Worst Case Study

    Full text link
    Consider a network linking the points of a rate-11 Poisson point process on the plane. Write \Psi^{\mbox{ave}}(s) for the minimum possible mean length per unit area of such a network, subject to the constraint that the route-length between every pair of points is at most ss times the Euclidean distance. We give upper and lower bounds on the function \Psi^{\mbox{ave}}(s), and on the analogous "worst-case" function \Psi^{\mbox{worst}}(s) where the point configuration is arbitrary subject to average density one per unit area. Our bounds are numerically crude, but raise the question of whether there is an exponent α\alpha such that each function has Ψ(s)(s1)α\Psi(s) \asymp (s-1)^{-\alpha} as s1s \downarrow 1.Comment: 33 page
    corecore