11 research outputs found

    On r-Dynamic Chromatic Number of the Corronation of Path and Several Graphs

    Full text link
    This study is a natural extension of k-proper coloring of any simple and connected graph G. By an r-dynamic coloring of a graph G, we mean a proper k-coloring of graph G such that the neighbors of any vertex v receive at least min{r, d(v)} different colors. The r-dynamic chromatic number, written as r(G), is the minimum k such that graph G has an r-dynamic k-coloring. In this paper we will study the r-dynamic chromatic number of the coronation of path and several graph. We denote the corona product of G and H by G⨀▒H. We will obtain the r-dynamic chromatic number of χ_r (P_n⨀P_m ),χ_r (P_n⨀C_m )"and " χ_r (P_n⨀W_m ) for m, n>= 3

    On the r-dynamic coloring of the direct product of a path with either a complete graph or a wheel graph

    Get PDF
    In this paper, it is explicitly determined the r-dynamic chromatic number of the direct product of any given path with either a complete graph or a wheel graph. Illustrative examples are shown for each one of the cases that are studied throughout the paper.Junta de Andalucía FQM-01

    The structure and the list 3-dynamic coloring of outer-1-planar graphs

    Full text link
    An outer-1-planar graph is a graph admitting a drawing in the plane so that all vertices appear in the outer region of the drawing and every edge crosses at most one other edge. This paper establishes the local structure of outer-1-planar graphs by proving that each outer-1-planar graph contains one of the seventeen fixed configurations, and the list of those configurations is minimal in the sense that for each fixed configuration there exist outer-1-planar graphs containing this configuration that do not contain any of another sixteen configurations. There are two interesting applications of this structural theorem. First of all, we conclude that every (resp.maximal) outer-1-planar graph of minimum degree at least 2 has an edge with the sum of the degrees of its two end-vertices being at most 9 (resp.7), and this upper bound is sharp. On the other hand, we show that the list 3-dynamic chromatic number of every outer-1-planar graph is at most 6, and this upper bound is best possible

    Problems in graph theory and partially ordered sets

    Get PDF
    This dissertation answers problems in three areas of combinatorics - processes on graphs, graph coloring, and antichains in a partially ordered set.First we consider Zero Forcing on graphs, an iterative infection process introduced by AIM Minimum Rank - Special Graphs Workgroup in 2008. The Zero Forcing process is a graph infection process obeying the following rules: a white vertex is turned black if it is the only white neighbor of some black vertex. The Zero Forcing Number of a graph is the minimum cardinality over all sets of black vertices such that, after a finite number of iterations, every vertex is black. We establish some results about the zero forcing number of certain graphs and provide a counter example of a conjecture of Gentner and Rautenbach. This chapter is joint with Gabor Meszaros, Antonio Girao, and Chapter 3 appears in Discrete Math, Vol. 341(4).In the second part, we consider problems in the area of Dynamic Coloring of graphs. Originally introduced by Montgomery in 2001, the r-dynamic chromatic number of a graph G is the least k such that V(G) is properly colored, and each vertex is adjacent to at least r different colors. In this coloring regime, we prove some bounds for graphs with lattice like structures, hypercubes, generalized intervals, and other graphs of interest. Next, we establish some of the first results in the area of r-dynamic coloring on random graphs. The work in this section is joint with Peter van Hintum.In the third part, we consider a question about the structure of the partially ordered set of all connected graphs. Let G be the set of all connected graphs on vertex set [n]. Define the partial ordering \u3c on G as follows: for G,H G let G \u3c H if E(G) E(H). The poset (G

    Coloring and covering problems on graphs

    Get PDF
    The \emph{separation dimension} of a graph GG, written π(G)\pi(G), is the minimum number of linear orderings of V(G)V(G) such that every two nonincident edges are ``separated'' in some ordering, meaning that both endpoints of one edge appear before both endpoints of the other. We introduce the \emph{fractional separation dimension} πf(G)\pi_f(G), which is the minimum of a/ba/b such that some aa linear orderings (repetition allowed) separate every two nonincident edges at least bb times. In contrast to separation dimension, we show fractional separation dimension is bounded: always πf(G)3\pi_f(G)\le 3, with equality if and only if GG contains K4K_4. There is no stronger bound even for bipartite graphs, since πf(Km,m)=πf(Km+1,m)=3mm+1\pi_f(K_{m,m})=\pi_f(K_{m+1,m})=\frac{3m}{m+1}. We also compute πf(G)\pi_f(G) for cycles and some complete tripartite graphs. We show that πf(G)<2\pi_f(G)<\sqrt{2} when GG is a tree and present a sequence of trees on which the value tends to 4/34/3. We conjecture that when n=3mn=3m the K4K_4-free nn-vertex graph maximizing πf(G)\pi_f(G) is Km,m,mK_{m,m,m}. We also consider analogous problems for circular orderings, where pairs of nonincident edges are separated unless their endpoints alternate. Let π(G)\pi^\circ(G) be the number of circular orderings needed to separate all pairs, and let πf(G)\pi_f^\circ(G) be the fractional version. Among our results: (1) π(G)=1\pi^\circ(G)=1 if and only GG is outerplanar. (2) π(G)2\pi^\circ(G)\le2 when GG is bipartite. (3) π(Kn)log2log3(n1)\pi^\circ(K_n)\ge\log_2\log_3(n-1). (4) πf(G)32\pi_f^\circ(G)\le\frac{3}{2}, with equality if and only if K4GK_4\subseteq G. (5) πf(Km,m)=3m32m1\pi_f^\circ(K_{m,m})=\frac{3m-3}{2m-1}. A \emph{star kk-coloring} is a proper kk-coloring where the union of any two color classes induces a star forest. While every planar graph is 4-colorable, not every planar graph is star 4-colorable. One method to produce a star 4-coloring is to partition the vertex set into a 2-independent set and a forest; such a partition is called an \emph{\Ifp}. We use discharging to prove that every graph with maximum average degree less than 52\frac{5}{2} has an \Ifp, which is sharp and improves the result of Bu, Cranston, Montassier, Raspaud, and Wang (2009). As a corollary, we gain that every planar graph with girth at least 10 has a star 4-coloring. A proper vertex coloring of a graph GG is \emph{rr-dynamic} if for each vV(G)v\in V(G), at least min{r,d(v)}\min\{r,d(v)\} colors appear in NG(v)N_G(v). We investigate 33-dynamic versions of coloring and list coloring. We prove that planar and toroidal graphs are 3-dynamically 10-choosable, and this bound is sharp for toroidal graphs. Given a proper total kk-coloring cc of a graph GG, we define the \emph{sum value} of a vertex vv to be c(v)+uvE(G)c(uv)c(v) + \sum_{uv \in E(G)} c(uv). The smallest integer kk such that GG has a proper total kk-coloring whose sum values form a proper coloring is the \emph{neighbor sum distinguishing total chromatic number} χΣ(G)\chi''_{\Sigma}(G). Pil{\'s}niak and Wo{\'z}niak~(2013) conjectured that χΣ(G)Δ(G)+3\chi''_{\Sigma}(G)\leq \Delta(G)+3 for any simple graph with maximum degree Δ(G)\Delta(G). We prove this bound to be asymptotically correct by showing that χΣ(G)Δ(G)(1+o(1))\chi''_{\Sigma}(G)\leq \Delta(G)(1+o(1)). The main idea of our argument relies on Przyby{\l}o's proof (2014) for neighbor sum distinguishing edge-coloring

    Games on graphs, visibility representations, and graph colorings

    Get PDF
    In this thesis we study combinatorial games on graphs and some graph parameters whose consideration was inspired by an interest in the symmetry of hypercubes. A capacity function f on a graph G assigns a nonnegative integer to each vertex of V(G). An f-matching in G is a set M ⊆ E(G) such that the number of edges of M incident to v is at most f(v) for all v ⊆ V(G). In the f-matching game on a graph G, denoted (G,f), players Max and Min alternately choose edges of G to build an f-matching; the game ends when the chosen edges form a maximal f-matching. Max wants the final f-matching to be large; Min wants it to be small. The f-matching number is the size of the final f-matching under optimal play. We extend to the f-matching game a lower bound due to Cranston et al. on the game matching number. We also consider a directed version of the f-matching game on a graph G. Peg Solitaire is a game on connected graphs introduced by Beeler and Hoilman. In the game, pegs are placed on all but one vertex. If x, y, and z form a 3-vertex path and x and y each have a peg but z does not, then we can remove the pegs at x and y and place a peg at z; this is called a jump. The goal of the Peg Solitaire game on graphs is to find jumps that reduce the number of pegs on the graph to 1. Beeler and Rodriguez proposed a variant where we want to maximize the number of pegs remaining when no more jumps can be made. Maximizing over all initial locations of a single hole, the maximum number of pegs left on a graph G when no jumps remain is the Fool's Solitaire number F(G). We determine the Fool's Solitaire number for the join of any graphs G and H. For the cartesian product, we determine F(G ◻ K_k) when k ≥ 3 and G is connected. Finally, we give conditions on graphs G and H that imply F(G ◻ H) ≥ F(G) F(H). A t-bar visibility representation of a graph G assigns each vertex a set that is the union of at most t horizontal segments ("bars") in the plane so that vertices are adjacent if and only if there is an unobstructed vertical line of sight (having positive width) joining the sets assigned to them. The visibility number of a graph G, written b(G), is the least t such that G has a t-bar visibility representation. Let Q_n denote the n-dimensional hypercube. A simple application of Euler's Formula yields b(Q_n) ≥ ⌈(n+1)/4⌉. To prove that equality holds, we decompose Q_{4k-1} explicitly into k spanning subgraphs whose components have the form C_4 ◻ P_{2^l}. The visibility number b(D) of a digraph D is the least t such that D can be represented by assigning each vertex at most t horizontal bars in the plane so that uv ∈ E(D) if and only if there is an unobstructed vertical line of sight (with positive width) joining some bar for u to some higher bar for v. It is known that b(D) ≤ 2 for every outerplanar digraph. We give a characterization of outerplanar digraphs with b(D)=1. A proper vertex coloring of a graph G is r-dynamic if for each v ∈ V (G), at least min{r, d(v)} colors appear in N_G(v). We investigate r-dynamic versions of coloring and list coloring. We give upper bounds on the minimum number of colors needed for any r in terms of the genus of the graph. Two vertices of Q_n are antipodal if they differ in every coordinate. Two edges uv and xy are antipodal if u is antipodal to x and v is antipodal to y. An antipodal edge-coloring of Q_n is a 2-coloring of the edges in which antipodal edges have different colors. DeVos and Norine conjectured that for n ≥ 2, in every antipodal edge-coloring of Q_n there is a pair of antipodal vertices connected by a monochromatic path. Previously this was shown for n ≤ 5. Here we extend this result to n = 6. Hovey introduced A-cordial labelings as a simultaneous generalization of cordial and harmonious labelings. If S is an abelian group, then a labeling f: V(G) → A of the vertices of a graph G induces an edge-labeling on G; the edge uv receives the label f(u) + f(v). A graph G isA-cordial if there is a vertex-labeling such that (1) the vertex label classes differ in size by at most 1, and (2) the induced edge label classes differ in size by at most 1. The smallest non-cyclic group is V_4 (also known as Z_2×Z_2). We investigate V_4-cordiality of many families of graphs, namely complete bipartite graphs, paths, cycles, ladders, prisms, and hypercubes. Finally, we introduce a generalization of A-cordiality involving digraphs and quasigroups, and we show that there are infinitely many Q-cordial digraphs for every quasigroup Q

    On r-dynamic coloring of grids

    Get PDF
    Contains fulltext : 141230.pdf (publisher's version ) (Closed access) Contains fulltext : 141230.pdf (preprint version ) (Open Access

    On r-dynamic coloring of grids

    No full text
    An r-dynamic k-coloring of a graph G is a proper k-coloring of G such that every vertex in V(G) has neighbors in at least min{d(ν), r} different color classes. The r-dynamic chromatic number of a graph G, written χr (G, is the least k such that G has such a coloring. Proving a conjecture of Jahanbekam, Kim, O, and West, we show that the m-by-n grid has no 3-dynamic 4-coloring when mn = 2 mod 4 (for m, n ≥ 3). This completes the determination of the r-dynamic chromatic number of the m-by-n grid for all r, m, n
    corecore