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PREFACE

This dissertation features research from two publications. The first publication is joint

work with Gábor Mészáros, António Girão, [20], is titled, ”On a conjecture of Gentner

and Rautenbach”, and appears in Discrete Mathematics. This research appears in Section

I, Chapter 3. The second publication is joint work with István Tomon, [36] is titled ”The

poset of connected graphs is Sperner”, appears in The Journal of Combinatorial Theory,

Series A. This research is the entirety of Section III.
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ABSTRACT

Smith, Stephen G. Z. Ph.D. The University of Memphis. May 2019. Graphs and
Partially Ordered Sets. Major Professor: Béla Bollobás, Ph.D and Paul Balister, Ph.D.

This dissertation answers problems in three areas of combinatorics - processes on

graphs, graph coloring, and antichains in a partially ordered set.

First we consider Zero Forcing on graphs, an iterative infection process introduced by

AIM Minimum Rank - Special Graphs Workgroup in 2008. The Zero Forcing process is a

graph infection process obeying the following rules: a white vertex is turned black if it is

the only white neighbor of some black vertex. The Zero Forcing Number of a graph is the

minimum cardinality over all sets of black vertices such that, after a finite number of

iterations, every vertex is black. We establish some results about the zero forcing number

of certain graphs and provide a counter example of a conjecture of Gentner and

Rautenbach. This chapter is joint with Gábor Mészáros, António Girão, and Chapter 3

appears in Discrete Math, Vol. 341(4).

In the second part, we consider problems in the area of Dynamic Coloring of graphs.

Originally introduced by Montgomery in 2001, the r-dynamic chromatic number of a

graph G is the least k such that V (G) is properly colored, and each vertex is adjacent to at

least r different colors. In this coloring regime, we prove some bounds for graphs with

lattice like structures, hypercubes, generalized intervals, and other graphs of interest.

Next, we establish some of the first results in the area of r-dynamic coloring on random

graphs. The work in this section is joint with Peter van Hintum.

In the third part, we consider a question about the structure of the partially ordered set

of all connected graphs. Let G be the set of all connected graphs on vertex set [n]. Define

the partial ordering < on G as follows: for G,H ∈ G let G < H if E(G)⊂ E(H). The

poset (G ,<) is graded, each level containing the connected graphs with the same number

of edges. We prove that (G ,<) has the Sperner property, namely that the largest antichain

of (G ,<) is equal to its largest sized level. This chapter is in collaboration with István

Tomon and appears in The Journal Theory Series A, Vol. 150
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CHAPTER 1

INTRODUCTION

The Zero Forcing Number of a graph was first introduced by Burgarth and Giovannetti in

2007 [15] and independently by the AIM Minimum Rank - Special Graphs Workgroup in

2008 [1]. The original motivation for the latter came about, due to the problem of

bounding the minimum rank of adjacency matrices of a graph, while the former used the

model to describe the controllability of certain quantum systems. Despite its beginnings in

linear algebra and small applications in physics, the model has received considerable

attention from combinatorialists due to its obvious ties to graph theory ([11, 12, 18, 13]).

The Zero Forcing process is a discrete-time process in which we have a set of vertices of a

graph G that is initially colored black, while the remaining vertices are colored white. At

each time step, the color change rule is applied, according to Definition 1. Once a vertex

has been changed to black, it remains black forever. The process terminates if all of the

vertices are colored black in finite time. Otherwise, if there are some white vertices that

are unable to be colored in finite time, then we may artificially halt the process.

For the purposes of this paper, the Zero Forcing Process is always on a finite, simple,

undirected graph.

In this chapter, we prove that the forcing number of a graph, F(G), can be affected by the

removal of edges. Namely, if we remove k edges from a graph, then F(G) can drop by at

most k, or it can increase by at most k. We also determine the forcing number for complete

graphs when a triangle is removed, as well as the forcing number for complete d-ary trees.

Finally, we end this chapter with a counter example to a conjecture of Gentner and

Rautenbach [19]. Genter and Rautenbach conjectured that for all graphs with maximum

degree 3, the forcing number is at most 1
3 |V (G) |+2. We construct an infinite family of

graphs with maximum degree 3 such that the forcing number is at least 4
9 |V (G) |.
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Definitions and Preliminaries

Definition 1. The Color Change Rule states that if u is a white vertex in G, it will be

recolored if it is the only white neighbor of some black vertex v. We say that the vertex v

forced u to change color.

Definition 2. An Initial Set or Forcing Set, is a set of black vertices of G such that, after a

finite number of applications of the Color Change Rule, every vertex in G is colored black.

Definition 3. The Zero Forcing Number for a graph G, written F(G), is the minimum

cardinality of all zero forcing sets of G. In other words,

F(G) = min{|Z| : Z ⊂V (G), Z forces G}. It is clear there might be distinct forcing sets

with minimum cardinality, however we shall refer to any such set as a Zero Forcing Set.

Definition 4. A black vertex u is said to be an active vertex if it has only one white

neighbor.

Definition 5. A black vertex u is said to be a support vertex of v, u ∈ supp(v), if v is active

and u is a black neighbor. Equivalently, recoloring u from black to white results in v being

unable to force any vertex.

Definition 6. A forcing sequence is a sequence of vertices, S = (v0,v1, . . . ,vk), such that

vi−1 forces vi, for i = 0, . . . ,k−1.

Definition 7. A forcing chain is a list of all forces performed;

C = {(z0→ v0), . . .(zi→ vi), . . . ,(zk→ vk)}.

Definition 8. A derived set is a chronological list of forces performed, D = (S0,S1, . . .Sl),

where S0 is the set of verticies initially colored black, and Si is the set of vertices colored

black at time i.
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CHAPTER 2

ALTERATIONS

Introduction

In this section, we explore the effect of some elementary graph operations on the zero

forcing number F(G). In [33], Row introduced a technique for computing the forcing

number of a graph with a cut-vertex. In particular, it was shown that one may be able to

more easily compute the forcing number of a graph G, with a cut-vertex v, by considering

the forcing numbers of the components of G− v. In [32], Owens showed that, for a given

edge e, the forcing number of G− e satisfies F(G)−1≤ F(G− e)≤ F(G)+1. In this

same spirit, we explore the effect that some graph operations have on the forcing number.

The following lemma shall be quite useful as it gives us a clear and obvious way to

identify some of the edges that we may add or remove from a graph while avoiding a

change in the zero forcing number.

Lemma 9. Let G be a graph with derived set D = (S0, . . .Sl), of length l, generated by

minimum zero forcing set S0 = Z. If u and v are two distinct vertices that appear in Si,

then we may add edge e = uv, or if it already exists, remove it, without affecting the zero

forcing number.

Proof.

Consider two vertices in the Si. Adding an edge between any two vertices in Si does not

affect whether vertices in Si−1 were active. Once the vertices in Si are active, no edge in Si

affects which vertices of Si are active.

Corollary 10. If k vertices are forced simultaneously, we can add enough edges to create

a clique on those vertices, and similarly, we may remove all of the edges between any pair

of the vertices.
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F(G) Under Edge Removal

Let G be a simple, undirected, loopless graph. Let F(G) be its forcing number. We begin

with a simple lemma for the lower bound of F(G) and few questions about edge and

vertex removal.

Lemma 11. Let δ(G) be the minimum degree of a graph G, then F(G)≥ δ(G).

Proof.

Let v be a vertex. If v is active, it must have deg(v)−1 neighbors that are black, as well as

itself. Therefore, at time zero, we have at least δ(G) black vertices.

Question 12. Let G be a graph, F(G) its forcing number, and 0≤ k ≤ F(G). How many

edges may we remove from G such that its forcing number decreases or increases by k?

Question 13. How many edges may we add to a graph without affecting its forcing

number?

Indeed, given a vertex v, its addition to, or deletion from a graph can cause the zero

forcing number of drop by one, increase by one, or remain unchanged. Similarly, edge

removal or addition can wildly alter the forcing number. The following two propositions

are due to K. Owens [32].

Proposition 14. Let v be a vertex of the graph G. Then

F(G− v)−1≤ F(G)≤ F(G− v)+1.

Proposition 15. Let e be an edge of the graph G. Then F(G)−1≤ F(G− e)≤ F(G)+1.

We now know that we should be a bit more restrictive with the base graph we begin with

and which operations we execute. To that end, let us modify Question 12 by asking, ”If e

is any edge in G = Kn, and G′ = Kn− e, what is F(G′)?” It is easy to see that

F(G′) = n−2. Take the same initial set as in Kn , label the white vertex w1, and remove

any edge e. Let u,v ∈V (G). There are two cases: e = uv, or e = uw1. For the former case,
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without loss of generality, recolor u from black to white and observe that v is now the only

vertex without two white neighbors. Thus, v forces w1, followed by the forcing of u. For

the latter, recolor any other black vertex that is not u. This results in every vertex

neighboring two white vertices, except for u, which only neighbors the recently recolored.

This is clearly enough to force the graph.

Next, F(G′) can not be less than n−2 by Lemma 11. If not, then there exists a forcing set

of size n−3. This clearly does not work as now every vertex has at least two white

neighbors, contradicting the assumption that a set of n−3 vertices forces the graph.

Removal of Independent Sets

Theorem 16. Let G be a complete graph on n vertices. Let M be a partial matching. Let

G′ = G−M. Then F(G′) = n−2.

Proof.

Let A be the set of initially colored vertices such that A forces G. Let G′ = G−M. The

removal of M causes the degree of every vertex that is an incident to an edge in M to

decrease by 1. Let u,v ∈ A such that the edge uv ∈M, and let w 6∈ {u,v} be the only white

vertex of G. Without loss of generality, suppose u is white. Then v forces w, followed by

w forcing u. Thus, |A|= n−2 and F(G′) = n−2.

Finally, we can not improve this as the minimum degree is a lower bound for the forcing

number of any graph.

Before proceeding further, it is worth pointing out that a graph with forcing number n−1

is both a necessary and sufficient condition for a graph to be complete. In other words,

removing any edge e1 from a Kn causes the forcing number to decrease by one. However,

if we have two independent edges in Kn that we call e1 and e2, their simultaneous removal

does not decrease the forcing number by 2. In other words, F(Kn− e1) = F(Kn− e1− e2)

here.

5



In Theorem 16, we showed that the forcing number drops by one after a matching, even a

partial matching, is removed from a complete graph. However, Propositions 14 and 15

hint that it is not always the case for any set of edges. To that end, we explore effect that

removal of more edges from a graph has on the forcing number.

Theorem 17. Let G be a graph with two edges, e1 = uv,e2 = xy. Then

F(G)−2≤ F(G− e1− e2)≤ F(G)+2

Proof.

Apply Proposition 14 twice.

Theorem 18. Let G be a graph with a set M of k edges. Then

F(G)− k ≤ F(G−M)≤ F(G)+ k.

Proof.

Apply Proposition 15 k times.

Theorem 19. Let e1 = ux1,e2 = ux2,e3 = ux3 . . . ,en = uxk be n dependent edges in a

graph G. Let G′ = G−{∪k
i ei}. Then F(G)− k ≤ F(G′)≤ F(G)+2.

Proof.

For the inequality on the left hand side, apply Theorem 18.

For the inequality on the right hand side, let B be a forcing set for G. Again, any force by a

vertex that is not u or one of the xi’s is still a valid force in G′, as any force by u or xi to a

vertex not in {u,x1, . . . ,xk} is still a valid force. If u is the only vertex from the end points

of dependent edges that forces an xi, then we can add that xi to B to guarantee that the

process completes as all other xi must already be black when u forces xi. Therefore,

B∪{xi} is a forcing set for G′. Suppose, without loss of generality, that x1→ u is a force

and is followed by u→ x2. Then it must have been the case that for all i ∈ {3, . . . ,k}, xi

was either in the initial forcing set, or that it was forced by another vertex. Therefore,

B∪{u,x2} is a forcing set for G′. Thus, F(G′)≤ F(G)+2.
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Removal of Triangles

Theorem 20. Let G be a graph with a triangle ∆, whose edges are e1 = xy,e2 = xz, and

e3 = yz. Let G′ = G−∆. Then F(G)−2≤ F(G′)≤ F(G)+1.

Proof.

First, we show F(G)−2≤ F(G′). Suppose that x→ x1,y→ y1, and z→ z1 in G′. Let B be

a forcing set for G′. Then B∪{y,z} is a forcing set for G where x is the first black vertex

in the forcing process on G′. For the other inequality, the forcing number only changes

when one of the vertices of the triangle forces another. Again, without loss of generality,

suppose x→ y. Then z must have already been colored black, so removing the three edges

requires us to only color y. Thus, the forcing number of G′ is at most F(G)+1.

Edge Additions to Cycles

Theorem 21. If Cn is a cycle on n vertices, then at most n−3 edges can be added such

that the forcing number is unaffected.

Proof.

Let G be a graph on n vertices with forcing number F(G) = 2. We will show by induction

on the number of vertices that | E(G) |≤ 2n−3. For the case n = 3, there can be at most 3

edges, thus satisfying | E(G) |≤ 2n−3. This means that G must be a K3 since we have

assumed that F(G) = 2, otherwise G would be a path and have forcing number 1.

Henceforth, we assume that n≥ 4 and | E(G) |≤ 2n−3.

Let v ∈ G be a vertex forced at the last time step t. Then, at time t−1, v is the only white

neighbor to some black vertex. Since a black vertex can force at most one white vertex,

and F(G) = 2, then at most 2 vertices are active at each time step.

There are two possibilities here. Since we can not have more than 2 vertices forced at any

time step, either v was the only white vertex at time step t−1, or there was at most one

other vertex that was white at time step t−1, say u.

7



We first consider the case when v was the sole white vertex at time step t−1 in the forcing

process on G. Let G′ = G− v. Since there can be at most two active vertices for each time

step, v was adjacent to at most two vertices in G, hence

| E(G′) |≤ 2n−3−2 = 2(n−1)−3.

If u and v were the remaining white vertices at time step t−1, then each was adjacent to

only 1 active vertex at time step t−1 since we have assumed they were both forced at

time t. Therefore, at most 2 edges can be removed and

| E(G′) |≤ 2n−3−2 = 2(n−1)−3.

Remark 22. The run-time of the forcing process as in Theorem 21 is lengthened from

bn/2c steps to n−2 steps.

On graphs with F(G)≥ n−2

It was proved in [16] that, for any graph G, F(G) = n−1 if and only if it is a Kn and

F(G) = 1 if and only if it is a path. We continue this investigation by giving a constructive

characterization of graphs with F(G)≥ n−2. We will use the number of vertices

contained in a path to refer to its length.

Let H be an induced subgraph of the graph G, and let N ⊂V (H) denote the set of vertices

with neighbors in V (G)\V (H). The following lemma establishes a bound on the number

of black vertices within the induced subgraph H.

Lemma 23. Let G,H,N be defined as above and let S⊂V (G) a forcing set. Then

|S∩V (H)| ≥ F(H)−|N|.

Proof.

Assume the converse inequality holds for a particular choice of G,H,N,and,S. Observe

that S′ = (S∩V (H))∪N will be a forcing set in H with |S′|< F(H), a contradiction.

8



Definition 24. A graph G is complement reducible (cograph) if every induced subgraph

of G with at least two vertices is either disconnected or is the complement of a

disconnected graph.

The characterization of cographs as induced P4-free graphs is a folklore theorem that we

use in our later proofs.

Theorem 25. A graph G is a cograph if and only if it does not contain an induced

subgraph isomorphic to P4.

Proof.

First, P4 itself is not a cograph as it and its complement, P4, are both connected. If G

contains P4 as an induced subgraph, it is not a cograph since every cograph has an induced

subgraph on at least 2 vertices that is either disconnected, or is the complement of a

disconnected graph.

Assume that G has no induced P4. We will proceed by induction on |V (G) | and assume

that every graph on fewer vertices is a cograph. Trivially, we note that any graph on 3

vertices is a cograph, so we may assume that |V (G) |≥ 4. If G is not connected, then we

are done, as G contains an induced subgraph that is disconnected. Thus, we may assume

that G is connected.

For v ∈V (G), let G′ = G− v and observe that by induction hypothesis, G′ is a cograph.

Here, we consider two cases; when G′ is disconnected or connected. When G′ is

disconnected, let A1, . . . ,An be its connected components. Since G is connected, there is a

vertex ai ∈ Ai such that ai is a neighbor of v in G, for 1≤ i≤ n. If v is connected to every

vertex in G, then G = G′∪ v, a cograph, and we are done. Suppose that v is not connected

to every vertex. Then, without loss of generality, there is a vertex b1 ∈ A1 such that v is not

a neighbor of b1. Since A1 is connected, we may assume that a1 is a neighbor of b1. But

this means that for some vertex a2 ∈ A2, b1a1va2 is an induced path of length 4. This

contradicts our assumption that there is no induced P4 in G.

9



Finally, we consider the case when G′ is connected. Since G′ was assumed to be a

cograph, G′ must be disconnected. We now apply the same argument to G′ to see that

there is no induced P4 in G. Thus, G is a cograph.

Lemma 26. If G is a graph with an induced path of length at least k then

F(G)≤ n− k+1.

Proof.

Let G be a graph on n vertices with an induced path Pk of length at least k. If we color

every vertex of G black except the first k−1 vertices in Pk (that is, n− k+1 vertices in

total), G will clearly be forced.

Remark 27. Equality in the last lemma may occur. For instance, take a path Pk of length k

and a complete graph Km and connect all vertices of Km to all vertices of Pk.

Corollary 28. A graph G with F(G) = n−2 is a cograph.

While the constructive characterization of cographs is well known, observe that not every

cograph G on n vertices has forcing number F(G)≥ n−2 .

On the forcing number of complete d-ary trees

For any tree T , let L(T ) denote the number of leaves in T . The upper bound

F(T )≤ L(T )−1, originally shown in [1], may be sharp for certain classes of trees (e. g.

paths and stars), but may also be very far from the zero-forcing number. For further results

pertaining to the relationship between F(T ) and L(T ), see [1].

In this section, we determine the zero-forcing number of the complete d-ary trees. Let Td,n

denote the complete d-ary tree of depth n on 1+d +d2 + · · ·+dn vertices (dn leaves) and

let rn denote the root of Td,n. The study of F(Td,n) in the binary case d = 2, for small

values, already reveals an intriguing parity-pattern. For a better understanding, we also

calculate the forcing number F̂(T2,n) of T2,n with rn passive; in this setting a forcing set

10



S⊆V (T2,n) has to force the tree without the root rn ever becoming active. In other words,

a passive vertex is one that may be forced, but may never force any vertex. Note, however,

that rn once turned to black, may then support further forcing in the tree.

n 1 2 3 4 5 6 7
F(T2,n) 1 3 5 11 21 43 85
F̂(T2,n) 2 3 6 11 22 43 86

Figure 1: Passive roots only increase the forcing number for odd indexes.

Observe, F(T2,2n) = F̂(T2,2n) and F(T2,2n+1)+1 = F̂(T2,2n+1) for n = 1,2,3. We

generalize this observation by an inductive proof. Consider the sequence (td
n ) defined as

follows:

td
n =

dn+1 +(−1)n

d +1
.

Furthermore, observe that (td
n ) satisfies the following recursions:

td
2k+1 = d · td

2k−1,

td
2k+2 = d · td

2k+1 +1.

We prove the following statement:

Theorem 29.

i) F(Td,2k) = F̂(Td,2k) = td
2k. There exist forcing sets of size td

2k that contain r2k.

ii) F(Td,2k+1) = td
2k+1 and ̂F(Td,2k+1) = td

2k+1 +1. There exists no forcing set of size

td
2k+1 that contains r2k+1.

Proof.

For a shorthand notation we write Tn and tn instead of Td,n and td
n unless the notation is

equivocal. Both statements are obviously true for T0 and T1. We prove our claim by

induction on n in two steps:
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Step 1: T2k→ T2k+1

Let v1, . . . ,vd denote the neighbors of u in T2k+1. These vertices may be viewed as

roots of subraphs of T2k+1 isomorphic to T2k. We denote these subgraphs by

T 1
2k, . . . ,T

d
2k. Obviously, if S⊆V (T2k+1) is a forcing set, then by Lemma 23, it

follows that |S∩T i
2k| ≥ t2n−1. Moreover, we may assume due to symmetry that u

does not force any of the roots u1, . . . ,ud−1. If |S∩T i
2k|= t2k−1 for i = 1, . . . ,d−1,

that would imply F(T2k)≤ t2k−1, contradicting the inductive assumption. Thus,

|S| ≥ (d−1) · t2k +(t2k−1) = t2k+1. In particular, if |S|= t2k+1 then d−1 of the

corresponding subtrees contain exactly t2k vertices, initially colored black, while the

one remaining subtree has exactly t2k−1 vertices initially colored black, hence

u 6 ∈ S.

Equality can be achieved as follows. Let Si ⊆V (T i
2k) be forcing sets of size t2n

containing vi that force T i
2k with their roots passive. Such sets are guaranteed to exist

by induction. It is easy to see that

[
d⋃

i=1

Si
2k

]
\{ud}

is a forcing set of T2k+1. Then u will get be forced by any neighbor but vd , and

afterwards it will force vd . Now, the initial forcing set in T2k together with vd will

force the rest of the tree.

Step 2: T2k+1→ T2k+2

Let S⊆V (T2k+2) be a forcing set. We investigate two potential cases: u ∈ S and

u 6∈ S.

Case 1: Let u ∈ S. Observe that in this case F̂(T2k+2)≥ 1+d ·F(T2k+1) = t2k+2.

Also, a minimum forcing set of T i
2k+1 does not contain vi by induction, thus, even

with u forcing vi, the respective subgraph has to contain t2k+1 vertices initially

colored black, implying F(T2k+2)≥ t2k+2.

12



Case 2: Let u 6∈ S and assume and that it is forced by vd . In this case

|S∩V (T d
2k+1)| ≥ t2k+1 +1

since the root vd cannot force another vertex in T d
2k+1, implying vd is passive. As

before, we know that

|S∩V (T i
2k+1)| ≥ t2k+1, i = 1 . . . ,d−1,

hence |S| ≥ (t2k+1 +1)+(d−1) · t2k+1 = t2k+2.

Finally, observe that coloring u black initially, together with arbitrary minimum

forcing sets of every T i
2k+1, will result in a forcing set of T2k+2 of size t2k+2 that

forces every vertex, even with u passive.

13



CHAPTER 3

A COUNTEREXAMPLE TO A CONJECTURE OF GENTNER AND

RAUTENBACH

Introduction

Amos, Caro, Davila, and Pepper [4] proved that for a connected graph G of order n and

maximum degree ∆≥ 2

F(G)≤ ∆−2
∆−1

n+
2

∆+1
.

It is not difficult to show that this bound is attained exactly when G is either K∆+1, the

complete bipartite graph K∆,∆ or a cycle. Later, pushing this bound a little further, Gentner

and Rautenbach [19] were able to remove the additive constant 2
∆+1 (for ∆≥ 3). Namely,

they showed that F(G)≤ ∆−2
∆−1n holds for every connected graph G of order n and

maximum degree ∆≥ 3, unless when G is one of five exceptional graphs

K∆+1,K∆,∆,K∆−1,∆ or two other specific graphs (we do not exhibit them, for full details

see [19]). Note that the zero forcing number of a connected graphs with maximum degree

2 is completely understood. Indeed, for such graphs the forcing number is either 1 in the

case of a path or 2 in the case of a cycle. However, even when the maximum degree is 3,

the limit

z3 = lim
n→∞

sup
{

F(G)

|V (G)|
: G connected, |V (G)| ≥ n and ∆(G)≤ 3

}
is not known. The currently best known upper bound for z3 is 1/2, proved by Amos, Caro,

Davila, and Pepper, and follows from the result mentioned above. Furthermore, Gentner

and Rautenbach ([19]), have proved that the upper bound of n/2 is far off when G has

maximum degree 3 and girth at least 5, where n is the order of G. They showed that such

graphs have zero forcing number at most n
2 −

n
24log2n+6 +2. We remark that this result

does not affect the best known upper bound for z3 but suggests 1/2 might not be the

14



correct value. Motivated by this, the same authors conjectured that F(G)≤ 1
3n+2 for

every connected graph G with maximum degree 3 [19].

In this section, we disprove this conjecture by presenting an infinite family of connected

graphs {Gn}, with maximum degree 3, such that the zero forcing number of Gn is at least

4
9 |V (Gn)|, thus proving z3 ≥ 4

9 .

Main Result

We create our counterexamples by substituting each leaf of a complete binary tree Bd on

on 2d−1 vertices by a complete graph on 4 vertices with one of its edges subdivided (see

Figure 1). Indeed, let Gn (n≥ 1) be the graph obtained by replacing every leaf of B2n−1 by

the aforementioned subdivided K4. We also denote y1
n−1, y2

n−1 to be the neighbors of rn in

Gn and H1
n−1, H2

n−1 to be the corresponding connected components of Gn− rn. Observe

that both subgraphs are isomorphic to the binary tree B2n−2 with their leaves replaced by

the subdivided K4. Moreover, let Ĝn be the graph obtained from Gn by attaching a new

leaf yn to the root rn of the underlying binary tree in Gn. Throughout this note, we will

view Gn as a subgraph of Ĝn and containing 4 induced copies of Gn−1. Observe that the

maximum degree of Gn and Ĝn is 3, for all n≥ 1.

Figure 2: We substitute every leaf of Bd by a subdivided K4 (the dashed vertex denotes a
leaf in Bd).

We take a closer look at the structure of Ĝn to obtain the required lower bound on F(Ĝn).

First, let the sequence tn be defined inductively as follows: t1 = 2 and tn+1 = 4tn +2 for

every n≥ 1. Now we shall prove the following lemma.
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y1

r1
r1,1

1 r1,2
1

y1
1

r2,1
1 r2,2

1

y2
1

y2

r2

Figure 3: The graphs G1 (left), and G2 (right). The graphs Ĝ1(left) and Ĝ2(right) are the
graphs containing G1 and G2 respectively, with the added dashed edge and vertex.

Lemma 30. Let F be a graph containing Ĝn as an induced subgraph and such that there is

no edge between V (Gn) and V (F)\V (Ĝ). Then, for every zero forcing set P of F , the

following holds

i) |V (Gn)∩P| ≥ tn.

ii) If |V (Gn)∩P|= tn then rn 6∈ P and V (Gn)∩P does not force rn within Gn.

Proof.

For i ∈ {1,2}, denote the induced left subtree of H i
n− yi

n by Gi,1
n , and the right subtree by

Gi,2
n . The root of Gi, j

n will be denoted by ri, j
n .

Both statements are straightforward for n = 1. For the inductive step, observe that if

|V (Gn+1)∩P| ≤ tn+1−1 = 4 · tn +1, then we may assume |V (H1
n )∩P| ≤ 2 · tn. Since

|V (G1,1
n )∩P|, |V (G1,2

n )∩P| ≥ tn by induction, we must have

|V (G1,1
n )∩P|= |V (G1,2

n )∩P|= tn. From (ii) we may deduce r1,1
n ,r1,2

n 6∈ P. Moreover,

during the process neither of these vertices can be forced by the vertices of V (G1,1
n ) or

V (G1,2
n ), respectively. As a corollary, r1,1

n and r1,2 must be forced by y1
n, yet y1

n clearly can

not force them both. This is a contradiction and it concludes the proof of part i). Note that

we have proved |V (H i
n)∩P| ≥ 2 · tn +1.

Assume now that |V (Gn+1)∩P|= tn+1. Therefore, by the above, |V (H i
n)∩P|= 2 · tn +1
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(i ∈ {1,2}), which implies rn+1 /∈ P. Finally, suppose that rn+1 6∈ P but it is forced during

the process by a vertex in Gn+1. As NGn+1(rn+1) = {y1
n,y

2
n}, we may assume y1

n forced

rn+1. We proceed with a case by case analysis:

a) If y1
n ∈ P, then we must have |V (G1,1

n )∩P|= |V (G2,1
n )∩P|= tn. By the induction

hypothesis, neither r1,1
n nor r2,1

n belong to P, and neither of them is forced by a

vertex in their respective subgraph G1,i
n . Thus y1

n cannot force rn+1 as it has two

unforced neighbors throughout the forcing process.

b) If y1
n 6∈ P, then it must be forced by r1,1

n or r1,2
n . Let us assume r1,1

n forced y1
n, then we

must have |V (G1,1
n )∩P| ≥ tn +1 and we may deduce

|V (G1,1
n )∩P|= tn +1 and

|V (G1,2
n )∩P|= tn

Hence, again by induction, r1,2
n does not belong to P and can not be forced within

G1,2
n . Although y1

n might indeed be forced by r1,1
n , it still has two white neighbors

r1,2
n and rn+1 thus it cannot force rn+1, which is a contradiction. This completes our

case check and the proof of the lemma.

Corollary 31. F(Ĝn)≥ 4
9 |V (Ĝn)|, for all n≥ 1.

Proof.

Observe that tn +1 = 8·4n−1+1
3 and |V (Ĝn)|= 6 ·4n−1. Now, by Lemma 30, F(Ĝn)≥ tn +1

and therefore F(Ĝn)≥
(

4
9 +

1
18·4n−1

)
|V (Ĝn)|.

We end this section by determining the exact value of the zero forcing numbers of Gn and

Ĝn.
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Proposition 32. F(Gn) = F(Ĝn) = tn +1.

Proof.

Lemma 30 implies both F(Gn) and F(Ĝn) are greater or equal to tn +1. We shall prove

equality holds, by induction on n. To do so, we will prove a stronger assertion, namely

that Gn has a zero forcing set Pn of size tn +1 satisfying the following properties:

a) it contains rn,

b) rn does not need to force any of its neighbors.

The set P1 can easily be found in G1. For the inductive step, let Pn+1 be the union of rn+1

with four ismorphic copies of the zero forcing set Pn inside each Gi, j
n (i, j ∈ {1,2}), but

with the two roots r1,2
n and r2,2

n removed. Clearly Pn+1 has size 4 · tn +3 = tn+1 +1 and

satifies i). It is also easy to see that the vertices of both subgraphs G1,1
n and G2,1

n will be

forced by the vertices in Pn+1∩G1,1
n and Pn+1∩G1,1

n , respectively. (observe that this step

requires the forcing to be completed without the active involvement of the root). Now, as

rn+1 is black, y1
n and y2

n will force r1,2
n and r2,2

n , respectively. Using induction again it

follows both G1,2
n and G2,2

n will become black. Hence, Pn+1 is a zero forcing set and rn+1

does not need to force any of its neighbours. From ii) we deduce Pn+1 is also a zero

forcing set of Ĝn.

Additional Remarks

One of the most interesting remaining questions in the field is to find the value of z3.

Knowing our constructions, we believe the result of Amos et al. gives the correct value of

z3. We formulate this belief as a conjecture:

Conjecture 33. z3 = 1/2.

The counterexamples we presented in this note used the idea of an appropriate ”injection”

of a subdivided K4 in certain base graphs; we mention that, although the bound we
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obtained used binary trees as base graphs, we were able to beat the conjectured upper

bound of 1
3n+2 using different base graphs. For example, we state the following result

(without proof):

Proposition 34. Let n be divisible by 6 and let Cn denote the cycle on n vertices.

Furthermore, set Ĉn to be the graph obtained by attaching a distinct leaf to every vertex in

Cn, and finally, let Gn be constructed from Ĉn by replacing every leaf with the subdivided

K4 graph. Then, F(Gn)
|V (Gn)| ≥

5
12 .

Before we prove Proposition 34, we will establish notation similar to that used in Lemma

30. Let {y1, . . . ,yn} be the vertices of the subgraph Cn and let {r1, . . . ,rn} be the vertices

that lie on the subdivided edges of the K4’s such that riyi is an edge in E(Gn) for every

1≤ i≤ n. Since we will always be dealing with an attached subdivided K4 to each yi, we

will denote by Ki, the subdivided K4 attached to vertex yi in Cn. Furthermore, we define

K̂i to be the induced subgraph of Gn on vertex set V (Ki)∪ yi. See graph Ĝ1 on the left

hand side of Figure 3.

We make the following observation on the number of vertices in Gn. Since n is divisible

by 6 and since every vertex yi is attached to a graph with 5 vertices (Ki), the number of

vertices in Gn is |V (Gn)|= 62k, where n = 6k and k ≥ 1.

Lemma 35. Every forcing set of K̂i contains at least one neighbor of ri in Ki, for every

1≤ i≤ n.

Proof.

Suppose not. Let ui,vi be the two neighbors of ri in Ki. Let every vertex in K̂i be initially

colored black except ui,vi. Every vertex now has two white neighbors, except yi, which is

of degree 1 in K̂i and is already adjacent to a black vertex. Since ui and vi are the only two

remaining white vertices, and both are adjacent to the same three black vertices, K̂i never

forces. Therefore, any forcing set must contain at least one of ui or vi in Ki.
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Suppose yi is a passive vertex. By Lemma 35, it is easy to see that if yi is passive, and ui is

in the initial set of forcing vertices for K̂i, then any two of ui’s neighbors in Ki also being

initially colored black will result in every vertex in K̂i being forced. In particular, at least 2

vertices in our forcing set must be vertices in V (Ki)− ri. Therefore, in each Ki, we need at

most 3 vertices initially colored black to force K̂i, even if yi is not passive. Moreover, if

S = {ui,ri,vi} is a set of initially colored black vertices for Ki, no force occurs as both ui

and vi have two white nieghbors in Ki.

Lemma 36. For any K̂i ∈ Gn, if only 2 vertices in K̂i are initially colored black, and Gn is

forced, then only one of {ui,vi} is black and only one of their mutual neighbors in Ki is

black. Moreover, yi forces ri.

Proof.

Let every vertex in Gn be initially colored except for V (K̂i). At the first time step, since

both yi−1 and yi+1 are black, yi is forced. The next step in the forcing sequence sees yi

forcing ri. Since ri is now black, but has two white neighbors, ui,vi, we color one black.

Without loss of generality, color ui black and observe that ri now forces vi at the next step.

However, as {ui,ri,vi} is not a forcing set for any Ki, we must color another vertex black.

As there are only two remaining white vertices, and they are both adjacent to ui and vi, we

can color either of them black, and observe that there is only one remaining white vertex,

which gets forced by any of its neighbors.

Proof of Proposition 34:

Without loss of generality, for each K̂i, color ui and one of its neighbors that is not ri

black. Observe that with this coloring, each K̂i has only 2 black vertices and Gn will never

force since every black vertex has two white neighbors.

Choose an i ∈ [n] and consider K̂i and K̂i+1. Add a new black vertex to each of K̂i and

K̂i+1 so that yi and yi+1 are forced by ri and ri+1, respectively. As both yi and yi+1 are now

black, they support one another during the next step of the forcing process, thus yi forces
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yi−1, and yi+1 forces yi+2.

For K̂i−2 and K̂i+3, we recolor a vertex in each so that yi−2 and yi+3 are forced by ri−2 and

ri+3, respectively. Then, yi−2 and yi are supporting vertices for yi−1, and yi−1 forces ri−1.

Similarly, yi+2 now has enough support to force ri+2. By Lemma 36, K̂i−1 and K̂i+2 are

forced.

We conclude by repeating this process of adding a new black vertex to every other Ki until

we find that we have a K̂ j and K̂ j+1 remaining, both with two black vertices. Since K̂ j−1

and K̂ j+2 both had a new black vertex added, both y j−1 and y j+2 were forced by r j−1 and

r j+2, respectively. Finally, y j−1 forces y j, and y j+2 forces y j+1, and thus, r j is forced, as

well as r j+1. Therefore, by Lemma 36, both K̂ j and K̂ j+1 are forced.

Finally, as half of the subgraphs K̂i have 3 black vertices, and the other half have 2 black

vertices, for every 12 vertices, there are 5 initially colored black. Therefore,
F(Gn)
|V (Gn)| ≥

5
12 .

It would be interesting to know if the presented injection technique with the appropriate

choice of a base graph can imply even better lower bounds on z3.
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Part II

The Dynamic Chromatic Number



CHAPTER 1

INTRODUCTION

The chromatic number of a graph G on n vertices is the least number of colors need to

color the vertices such that no two adjacent vertices have the same color. The r-dynamic

chromatic number of a graph, introduced in 2001 by Montgomery [31], is a variation of

the usual chromatic number for a graph with the additional requirement that each vertex

sees at least r different colors in its neighborhood. Let G be a graph and v ∈V (G). Denote

the neighborhood of v by Γ(v). Then an r-dynamic k-coloring of G is a proper k-coloring

f of G such that | f (Γ(v)) |≥min{r,deg(v)}.

In Chapter 1, we determine the r-dynamic chromatic number of the Hexagonal,

Triangular, and Integer lattices. For these lattices, we provide maps that give

easy-to-check bounds on the number of colors needed. Additionally, we establish results

for the n-dimensional hypercube, Qn, and its generalization to products of intervals. In

particular, we show that the 2-dynamic chromatic number is 4, and when r and n are both

2n−1 or 2n−2, the r-dynamic chromatic number is 2n. Finally, we extend a result of

Akbari, Ghanbari, and Jahanbekam [2], who determined the 2-dynamic chromatic number

of cartesian products of paths and cycles to r = 3,4, and use this to prove that the

4-dynamic chromatic number of Möbius graphs of sufficiently large length is at least 6.

In Chapter 2, we study the r-dynamic chromatic number of Erdős-Rényi random

graph model, G(n, p). Moreover, we study the behavior of χr(G) for three separate

regimes of r: when r� χ(G), when r is roughly the same as χ(G), and when r� χ(G).

Let p ∈ (0,1) and G ∈ G(n, p). When r� χ(G), we show that with high probability,

χr(G) = χ(G). When r� χ(G), we show that χr(G) = r
(

1+(1− p)
n
r (1+o(1))

)
. Finally,

when r is roughly the same as χ(G), we show that χr(G) = χ(G)+o(1) and, with high

probability, χr(G) = χ(G).
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CHAPTER 2

THE R-DYNAMIC CHROMATIC NUMBER OF CERTAIN GRAPHS

For the entirety of this section, G is a finite, simple, undirected graph on n vertices.

Definition 37. Given a graph G, the square of G, denoted by G2, is the graph on V (G)

vertices in which two vertices are adjacent if and only if they have distance at most 2.

From the definition of the r-dynamic coloring, we state the following immediate

observations.

Observation 38. χr+1(G)≥ χr(G)

Observation 39. If r ≥ ∆(G), then χr(G) = χ∆(G)(G) = χ(G2)

Observation 40. χr(G)≥min{∆(G),r}+1

From these observations, we note that r = 1 is the usual chromatic number of a graph. In

other words, χ1(G) = χ(G).

We begin this section with a result about regular graphs. Regular graphs became a

topic of interest for 2-dynamic colorings due a conjecture of Montgomery that stated, for

all regular graphs G, χ2(G)≤ χ(G)+2 [31]. This conjecture remained open until a recent

paper of Bowler, Erde, Lehner, Merker, Pitz, Stavropoulos, [10], found a construction for

an infinite family of graphs with a sharp upper bound satisfying χ2(G)≤ 2χ(G). Despite

this counter example, we find that the regularity property of the graph to still be of interest

for values of r > 2. This leads us to the following lemma.

Lemma 41. If G is an r-regular graph of order n, and χr(G) = r+1, then (r+1) | n.

Proof.

Assume G is r-regular and let f be the r-dynamic (r+1)-coloring of G. For any vertex v,

let Γ(v) denote its neighborhood. For each color ci, 0≤ i≤ r, define

Ai = {v ∈V (G) : f (v) = ci}.

23



Let v be chosen from V (G) uniformly at random and choose u from (v∪Γ(v)) uniformly

at random. As every color appears exactly once among v∪Γ(v) for any v ∈V (G), the

probability that u is color ci is P( f (u) = ci) =
1

r+1 .

On the other hand, as G is regular, choosing a random vertex in the way we choose u is

equivalent to choosing a vertex uniformly at random. Therefore, we find

P( f (u) = ci) =
|Ai|
n . Combining these gives P( f (u) = ci) =

|Ai|
n = 1

r+1 . Therefore,

| Ai |= n
r+1 , and since |Ai| is integral, (r+1) | n.

Lemma 42. χ2(C5) = 5.

Proof.

By Observation 39, if r ≥ ∆(G), then χr(G) = χ∆(G)(G) = χ(G2). Then, we have that

C2
5 = K5, and the claim follows.

Lemma 43. If C5 is an induced subgraph of a cubic graph G, then χ3(G)≥ 5.

Let V (C5) = {v0,v1,v2,v3,v4} be the vertices of the induced 5-cycle, C5. Define ui to be

the neighbor of vi not on C5. N = {u0, . . . ,u4}. Note that not all ui need to be distinct.

Proof.

Consider the square of the graph G. As there is an induced C5 in G, there is an induced K5

in G2. Following Observation 39, χ3(G) = χ∆(G)(G) = χ(G2)≥ 5

Hypercubes and Tori

Hypercubes

In this section, we study the r-dynamic chromatic number for n-dimensional hypercubes

Qn, with vertices of Qn identified with Zn
2.. We note that trivially, Qn is n regular, so that

χr(Qn) = χn(Qn) for all r ≥ n. Assume henceforth that r ≤ n.
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Definition 44. Let the Hamming code H ⊂Q2n−1 be the set {x ∈Q2n−1 : ∃y ∈Q2n−1} with

xi =


yi if i is not a power of 2

∑
i 6= j

b j/ic≡1 mod 2

y j mod 2 if i is a power of 2

Lemma 45. Let n≥ 2. Then χ2(Qn)> 3.

Proof.

For a contradiction, let f be a 2-dynamic 3-coloring of Qn. Define ei to be the

n-dimensional vector with 0s in every coordinate except 1 in the ith coordinate. We

consider all coordinates modulo 2, such that x+ ei is just the neighbor of x in the ith

coordinate, either x+ ei or x− ei.

We’ll show by induction on k that for all 1≤ k ≤ n, there exists a vertex x with at least k

neighbors that belong to the same color class. Note that for k = 1 this is trivial. Define

I = {i : f (x+ ei) = c} for some x ∈ Qn. Assume by the induction hypothesis, |I| ≥ k.

Consider a neighbor of x belonging to a different color class, say y = x+ e j, with j /∈ I.

For each i ∈ I, the neighbor of y, y+ ei, has neighbor x+ ei.

Thus, f (y+ ei) 6= c, and f (y+ ei) 6= f (y), hence f (y+ ei) = f (x) so y has at least k+1

neighbors of the color f (x). This completes induction. Finally, setting k = n contradicts

our assumption that f is a 2-dynamic 3-coloring.

In the following proposition, we generalize the result in Lemma 45 to the product of

intervals by showing that for any n > 1 and for every ai ∈ N such that ai > 1 for every

i ∈ [n], the 2-dynamic chromatic number of ∏
n
i=1[ai] is 4.

Proposition 46. Let ai > 1. If n≥ 2, then χ2

(
∏

n
i=1[ai]

)
= 4

Proof.

We prove the lower bound using a similar argument to Lemma 45. Assume, without loss
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of generality, ai > 1.

For a contradiction, let f be a 2-dynamic 3-coloring of ∏
n
i=1[ai].

Let k be the greatest number such that there exists a vertex x with at least k neighbors that

belong to the same color class. Define I = {±ei : f (x± ei) = c} for some x ∈∏
n
i=1[ai].

Assume | I |= k.

We distinguish two cases; either for every i ∈ [n], at least one of ei and −ei is in I, or not.

In the latter case, choose an i for which ±ei is not in I and consider y = x+ ei (or

y = x−ei if xi = ai). Note that f (y) 6= f (x) and f (y) 6= c. For every a ∈ I, we have that the

neighbor y+a = (x+a)+ ei is a neighbor of y and of x+a, so must have the same color

as x, that gives k+1 neighbors of y with color f (x), a contradiction.

Alternatively, assume that for every i ∈ [n] at least one of ei and −ei is in I. Let

J = {±ei : i ∈ [n]}\ I. Note that if J = /0 all neighbors of x have the same color

contradicting 2-dynamic nature of f .

Let b ∈ ZJ
≥0. We will show by induction on ∑ j∈J b j that if y = x+∑ j∈J b j j ∈∏

n
i=1[ai],

then we have that {y+a : a ∈ I} have the same color. For b =~0, this is trivially true by

our assumption on x. Assume it is true for b.

Consider any v ∈ J such that y+ v is in ∏
n
i=1[ai]. First, we see that f (y+ v) 6= f (y) as they

are neighbors and f (y+ v) 6= f (y+a) for any a ∈ I as v 6∈ I and we have assumed that

there is no vertex with more than k neighbors of the same color. Furthermore, all f (y+a)

have the same color by induction.

Note −v ∈ I and let I′ = I \{−v}. For all a ∈ I′, we have that (y+ v)+a is a neighbor to

both y+ v and y+a, and as these have different colors, we find that f (y+ v+a) = f (y).

Hence, all elements in {(y+ v)+a : a ∈ I} have the same color, namely f (y). This

concludes the induction.

We now consider the maximal b such that
(

x+∑ j∈J b j j
)
+v is outside of ∏

n
i=1[ai] for any

v ∈ J. That implies that all neighbors of x+∑ j∈J b j j are of the form
(

x+∑ j∈J b j j
)
+a

for some a ∈ I, but we just proved that these all have the same color. Hence, x+∑ j∈J b j j
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does not see two colors and f was not 2-dynamic. This is a contradiction.

The upper bound comes from a construction. Setting f (x) = 2x1 +∑i>1 xi (mod4) yields

a proper 2-dynamic 4-coloring of ∏
n
i=1[ai].

Corollary 47. Let ai > 1. If n≥ 3, then χ3

(
∏

n
i=1[ai]

)
= 4

Proof.

The lower bound is given by Observation 39, since the maximum degree is at least 3. For

the upper bound, define

f : [2]3→ [4],x 7→



0 if x = (0,0,0),(1,1,1)

1 if x = (1,0,0),(0,1,1)

2 if x = (0,1,0),(1,0,1)

3 if x = (0,0,1),(1,1,0)

We extend this to a coloring of ∏
n
i=1[ai]. Let x ∈∏

n
i=1[ai] and let y ∈ [2]3 such that yi ≡ xi

mod 2. Then define the coloring by x 7→ f (y)+∑i>3 xi mod 4.

Proposition 48. Let ai > 1 and n≥ 1. Then χ2n

(
∏

n
i=1[ai]

)
= 2n+1

Proof.

Lower bound is Observation 39. For the upper bound consider the coloring x 7→ ∑ ixi

mod 2n+1 This coloring has the property that for any vertex x, f (x+ ei) = f (x)+ i

mod 2n+1, which is always distinct from f (x)+ j, for some j 6= i, or even f (x)− i.

Therefore, given a vertex x and this mapping, the colors in the neighborhood of x are

always distinct from f (x).

Proposition 49. If r 6= 2n−1 for any n ∈ N, then χr(Qr)≥ r+2

Proof.

Observe that Qn is regular and apply Lemma 41.
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Proposition 50. Let n≥ 1. Then χ2n−1(Q2n−1) = 2n

Proof.

Lower bound is the trivial lower bound given by Observation 40. Consider a Hamming

code H ⊂ Q2n−1. We color the vertices of H with the same color. After this first coloring,

we take another distinct Hamming code and color its vertices with a new color. Since the

minimum distance between Hamming codes is 3, we are in no danger of coloring a vertex

from a previously used code. Because the codes do not intersect, we can do this 2n times,

partitioning Q2n−1. This code has the property that H is independent and every vertex in

Q2n−1 \H has exactly one neighbour in H [22]. If every vertex sees every color class at

most once, then it must see at most 2n−1 colors. Hence, the following coloring will be

2n−1 dynamic:

f (x) =


0 if x ∈ H

i if x+ ei ∈ H

Corollary 51. Let n > 2. Then χ2n−2(Q2n−2) = 2n

Proof.

Observe that Q2n−2 is a subgraph of Q2n−1. Apply Proposition 50 for the upper bound and

Proposition 49 for the lower bound.

Tori

For a = (a1, . . .an) ∈ Nn, let T(a) denote the n-dimensional torus, i.e. the graph on vertex

set V = ∏i[ai] where x and y are adjacent if and only if there exists j ∈ [n] such that for

every i 6= j, xi = yi and |x j− y j| ≡ 1 mod ai.

Note that we always work modulo ai in direction ei. For instance, one would write

(0,0)− (0,1) = (0,4) ∈ T(5,5).
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Proposition 52. If n≥ 3 and ai > 2, then χ2(T(a)) =


3 if ∃i : 3|ai

4 otherwise

Proof. First consider the latter case. For the lower bound, let, for a contradiction, f be a

2-dynamic 3-coloring of T(a).

Let k be the greatest number such that there exists a vertex x with at least k neighbors that

belong to the same color class. Define I = {±ei : f (x+±ei) = c} for some x ∈∏
n
i=1[ai].

Assume |I|= k.

Distinguish two cases; either for every i ∈ [n] at least one of ei and −ei is in I or not.

In the latter case, choose an i for which it isn’t and consider y = x+ ei (or y = x− ei if

xi = ai). Note that f (y) 6= f (x) and f (y) 6= c. For every a ∈ I, we have that the neighbor

y+a = (x+a)+ ei is a neighbor of y and of x+a, so must have the same color as x, that

gives k+1 neighbors of y with color f (x), a contradiction.

Alternatively assume for every i ∈ [n] at least one of ei and −ei is in I. Note that if

{±ei : i ∈ [n]}\ I = /0 all neighbors of x have the same color contradicting 2-dynamic

nature of f . Let v be any element of {±ei : i ∈ [n]}\ I. We’ll show by induction that for all

b≥ 0, we have that if y = x+bv, then {y+a : a ∈ I} have the same color. For b = 0 this is

trivially true. Assume it is true for b.

Let y = x+bv. First, we see that f (y+ v) 6= f (y) as they’re neighbors and

f (y+v) 6= f (y+a) for any a ∈ I as v 6∈ I and we have assumed that there is no vertex with

more than k neighbors of the same color.

Note −v ∈ I and let I′ = I \{−v}. For all a ∈ I′, we have that (y+ v)+a is a neighbor to

both y+ v and y+a, and as these have different colors, we find that f (y+ v+a) = f (y).

Hence, all elements in {(y+ v)+a : a ∈ I} have the same color, viz f (y). This concludes

the induction.

Moreover, we know that x+bv, x+(b+1)v and x+(b+2)v all have distinct colors since

we have a 2-dynamic coloring. Hence, x+bv and x+(b+3)v must have the same color.

Thus, by the induction, if b 6≡ b′ mod 3, then f (x+bv) 6= f (x+b′v). However, if v is in

29



the ith direction (i.e. v ∈ {±ei}), this implies f (x) 6= f (x+aiv) as 3 - ai, which is

evidently false as x = x+aiv.

Hence, at least 4 colors are needed if 3 - ai.

Claim. For l 6= 5, there exists a 2-dynamic 4 coloring of the l-cycle.

Proof If ai = 5 for all i, consider the following coloring. Let

f : [5]→ [4]; x 7→


2 if x = 5

x otherwise

Then the coloring x 7→ 2 f (x1)+∑i f (xi) mod 4 is a 2-dynamic 4-coloring of T(a).

Otherwise, consider some coordinate i such that ai 6= 5 and let f : [ai]→ [4] be a

2-dynamic 4-coloring of the ai-cycle. Let g j : [a j]→ [4] for j 6= i be proper colorings of

the a j-cycles. Then the coloring x 7→ f (xi)+∑ j 6=i g j(x j) mod 4 is a 2-dynamic

4-coloring of T(a). This proves the claim.

Finally, if 3|ai, let again g j : [a j]→ [3] for j 6= i be proper colorings of the a j-cycles. Then

x 7→ xi +∑ j 6=i g j(x j) mod 3 is a 2-dynamic 6-coloring of T(a) that only uses 3 colors..

Extension of Cartesian Products to a Möbius graph

In this section, we build upon work completed by Kang, Müller, and West [25]. The

m−by−n Möbius Strip, denoted Mm,n, is the graph with vertex set [m]× [n] where

vertices (i, j) and (i′, j′) are adjacent if and only if i = i′ and | j− j′|= 1, j = j′ and

|i− i′|= 1, or i = m+1− i′, j = n and j′ = 1.

The purpose of this section is to extend some results on Cartesian products of some graphs

and use those to show the main result of this section. Namely, that we can find a family of

graphs that is always at least 4-dynamically 6-colorable with a very regular structure. We

now state the main result of this section.
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Theorem 53. For m,n sufficiently large, χ4(Mm,n) = 6.

In keeping with the statement of Theorem 53, we will always assume that m,n≥ 5 unless

otherwise specified. We will also let f denote our valid 4-dynamic coloring of Mm,n. We

now state an observation that is immediate from these assumptions.

Observation 54. Any two entries that have the same color must have distance at least 2

from one another.

Observation 54 may also be read to mean that any 3×3 subgrid of Mm,n must have a

uniquely colored ’center’ with respect to the remainder of the 3×3. Applying this same

observation, we arrive at the following set of excluded entries for repeating colors

displayed in Figure 4.

Figure 4: Excluded Colors

Before proving Theorem 53, we present some related results and small lemmas that will

be of use. For the remainder of this section, we represent colorings of our graphs by a

matrix X , with xi, j = f (i, j), where f is the specified dynamic coloring.

The Cartesian product of two graphs G = (V (G),E(G)) and H = (V (H),E(H)), written

as G�H, is the graph with vertex set V (G)×V (H) where vertex (a,x) is adjacent to

vertex (b,y) whenever ab ∈ E(G) and x = y, or a = b and xy ∈ E(H). Akbari, Ghanbari,

and Jahanbekam calculated the 2-dynamic Cartesian product of cycles with paths in [2].

We calculate the 3 and 4-dynamic chromatic numbers for these graphs.

In the following lemma, we note that if n = 1, we are left with simply calculating the

dynamic chromatic number of a cycle. In the case m = n = 2, we can not color this graph
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with a 3 or 4 dynamic coloring as in any case, every vertex is a border vertex, but sees the

same neighbor twice. Therefore, we will only consider the case when at least m or n is at

least 3.

Lemma 55. Let m≥ 8. χ3(P2�Cm) =


4 if 4 | m

5 if 4 - m

Proof.

Observe that every vertex in this graph has degree 3. By Observation 40, we must have at

least 4 colors. For 4 | m, the coloring (i, j) 7→ 2i+ j mod 4 is 3-dynamic.

Assume henceforth that 4 - m.

For the lower bound, note that if it is possible to 3-dynamically 4-color the graph, then

four consecutive vertices on the top row must all have distinct colors. For a contradiction,

consider four consecutive vertices not satisfying this condition. As the coloring is

3-dynamic the first and the last must have the same color, say x0,i = x0,i+3 = a, x0,i+1 = b

and x0,i+2. However, that implies that in order for v0,i+1 and v0,i+2 to see three colors, both

x1,i+1 = d and x1,i+2 = d which is a contradiction of the dynamic property. Hence, four

consecutive vertices on the top row must all have distinct colors, and thus the length of the

top row must be a multiple of 4.

For the upper bound consider the coloring of P2�C4 in Figure 5. Repeating this pattern

will give a 3-dynamic coloring of P2�Cm, very similar to the one for 4 | m. Unfortunately,

because 4 | m, this pattern cannot be repeated until the entire graph is colored. We can use

the fifth color to mitigate the problem we get at the point where we can no longer repeat

the pattern in Figure 5. Figures 6 through 8 show how to recolor parts of the graph to get

3-dynamic 5 colorings, with the alterations boldfaced.

a b c d
c d a b

Figure 5: A 3-dynamic coloring of P2�C4
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a b c d · a b c d
c d a b · c d a b ⇒ a b c d e a b c d

c d e a b c d a b

Figure 6: A recoloring of P2�Cm when m≡ 1 mod 4

a b c d · · a b c d
c d a b · · c d a b ⇒ e b a d c b a e c d

c d e b a e c d a b

Figure 7: A recoloring of P2�Cm when m≡ 2 mod 4

Corollary 56. All 3-dynamic colorings in Lemma 55 may be extended to arbitrary n by

repeating rows and shifting columns to the left or right by one position.

Remark 57. For 3-dynamic colorings of Cm�Pn, any of the interior vertices, i.e. those not

on the border, will see one color twice after applying Lemma 55.

Proposition 58. For m≥ 7, and n≥ 3 and G =Cm�Pn

χ4(G) =


5 if 5 |m

6 otherwise

To prove this propositions, we need two little lemmas.

Lemma 59. If Cm�Pn is 4-dynamically 5-colored, then the coloring is 5-periodic on the

middle rows.

Proof.

Let X be a 3×3 subgrid of Cm�Pn, with m and n sufficiently large, and let f be a

4-dynamic 5-coloring. Without loss of generality, we color x1,1 = a, x1,2 = b, x2,1 = c,

x1,0 = d, x0,1 = e. It suffices to show that x1,5 = d.

We are limited to two colors for each of the corners:

x0,0 ∈ {b,c},x0,2 ∈ {c,d},x2,2 ∈ {d,e}, and x0,2 ∈ {e,b}. Observe that selecting a color

for one of the corners determines the colors for the other corners.

Assume without loss of generality x2,0 = x0,1 = e. Now note if v1,2 is to see four colors,

then entry x1,3 must be e as well. From here, we are forced to set x0,3 = x2,2 = d, and
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a b c d · · · a b c d
c d a b · · · c d a b ⇒ a b c d e b c a b e d

c d a b c a e d c a b

Figure 8: A recoloring of P2�Cm when m≡ 3 mod 4

Figure 9: Excluded Colors for border entries in a subgrid with r = 3

x2,3 = x1,1 = a. We fill the next column similarly: if v0,3 is to see four colors we need

x0,4 = x1,1 = a, and then by exclusion x1,4 = x2,1 = c, and x2,4 = x0,0 = b. Thence, in the

same way x1,5 = d

· e · · · ·
d a b · · ·
· c · · · ·

⇒
b e c d a b
d a b e c d
e c d a b e

or
c e d a b c
d a b c e d
b c e d a b

Figure 10: Two 4-dynamic 5-colorings for a 3×5 subgrid of Cm�Pn

Lemma 60. For every l ≥ 7, there is a 2-dynamic [6]-coloring of the l-cycle such that

adjacent vertices have colors differing by at least 2.

Proof.

Find x,y ∈ N, such that l = 3x+2y and 3x > 2y. Now consider some sequence (ai)
l
i=1 of

2’s and 3’s such that there are 3x 2’s and 3y 3’s, a1 = al = 2 and there are no two

consecutive 3’s. Now consider coloring

f : [l]→ [6],k 7→
k

∑
i=1

ai mod 6

Note that the definition of the ai’s makes sure that consecutive vertices have colors

differing by at least 2 and moreover that are distinct. The only cases to check are vertices

1 and l. Fortunately as ∑
l
i=1 ai ≡ 3x ·2+2y ·3≡ 0 mod 6, we find that
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f (l) = 0 6= f (2) = a1 +a2 = 2+a2, so 1 sees two distinct colors differing at least 2 from

its own color a1. Finally f (l−1)≡−al 6≡ a1 ≡ f (1) mod 6, so also l sees two distinct

colors differing at least 2 from its own color.

Proof of Proposition 58

Suppose 5 |m. The trivial lower bound, as shown in Observation 39, holds. Our upper

bound is given by (i, j) 7→ i+2 j mod 5.

Now, we suppose that 5 - m. To see that we need 6 colors, note that Lemma 59 implies that

5 colors cannot be enough. On the other hand, to see 6 colors suffice we construct the

following coloring. We find a coloring f of the m-cycle using Lemma 60. Then we define

the coloring (i, j) 7→ i+ f ( j) mod 6. By the definition of f , we know that for any vertex

the neighbors in the second dimension have distinct colors differing by at least 2, while

the neighbors in the first dimension are easily seen to differ by exactly 1.

Proposition 61. χr(M2,2) = 4 for every r.

Proof.

M2,2 is a complete graph on 4 vertices. Therefore, each vertex is a neighbor to every other

vertex and each must have a distinct color.

Theorem 62. χ2(M2,n) = 4 for each n ∈ N

Proof.

First note that M2,n is isomorphic to the graph on vertex set [2n] with edge set

{i j : |i− j| ≡ 1,n mod 2n}. We will work with this definition for simplicity in this

theorem. Assume for a contradiction that f is a 2-dynamic 3-coloring of M2,n.

Claim: f is 3-periodic on [2n].

Note that every 2×2 square of vertices must have a diagonal of identically colored

vertices. Say without loss of generality f (i) = f (i+n+1) = 1 and f (i+1) = 2, then
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f (i+2) = 3 as i+1 must see two colors. Now i+n+2 has neighbors i+n+1 and i+2,

so f (i+n+2) = 2. For i+2 to see two colors we need f (i+3) = 1, which proves the

claim.

If f is 3-periodic, then n = 3k for some k. However, that implies that

f (1+n) = f (1+3k) = f (1), which is obviously absurd as 1 and 1+n are adjacent.

For the upper bound, we consider simple alterations of the coloring i 7→ i mod 3. If 3 | n,

consider coloring

i 7→


i mod 3 if i≤ n

4 if i = n+1

i+1 mod 3 if i > n+1

If n≡ 1 mod 3, then i 7→ (i mod 3), is in fact a proper coloring although not completely

2-dynamic. Figure 11 shows how the end of the strip makes the coloring not 2-dynamic,

and how a simple recoloring can fix it. The italicized 1 indicates vertex 1. Similarly,

Figure 12 shows how the following case, n≡ 2 mod 3, works:

i 7→


i mod 3 if i < 2n

4 if i = 2n

2 3 1 2 1 2 3
1 2 3 1 2 3 1 ⇒ 2 3 4 3 1 2 3

1 4 2 1 2 3 1

Figure 11: A recoloring of M2,n for n≡ 1 mod 3

1 2 3 1 1 2 3
2 3 1 2 3 1 2 ⇒ 1 2 3 4 1 2 3

2 3 1 2 3 1 2

Figure 12: A recoloring of M2,n for n≡ 2 mod 3

36



The method for the 3-dynamic chromatic number is very similar to the proof of Theorem

55.

Lemma 63. Let n≥ 8. χ3(M2,n) =


4 if n≡ 2 mod 4

5 if n 6≡ 2 mod 4

Proof.

As in Theorem 62, let M2,n = ([2n],{i j : |i− j| ≡ 1,n mod 2n}). Observe that every

vertex in this graph has degree 3. By Observation 40, we must have at least 4 colors. For

n≡ 2 mod 4, the maps i 7→ i mod 4 is a 3-dynamic colouring as the numbers i−1, i+1

and i+n are all distinct modulo 4.

Assume henceforth that n 6≡ 2 mod 4.

For the lower bound, note that if f is a 3-dynamic 4-coloring of the graph, then four

consecutive vertices must all have distinct colors. For a contradiction, consider four

consecutive vertices not satisfying this condition. As the coloring is 3-dynamic the first

and the last must have the same color, say f (i) = f (i+3) = a, f (i+1) = b and

f (i+2) = c. However, that implies that for i+1 and i+2 to see three colors, both

f (i+1+n) = d and f (i+2+n) = d which is absurd. Hence, four consecutive vertices

must all have distinct colors, so 4|2n. As n 6≡ 2 mod 4 this implies f (i) = f (i+n) which

is absurd. Hence, we need at least 5 colors.

To see that 5 colors suffice, consider slight alterations of the coloring

i 7→


i mod 4 if i≤ n

i−n+2 mod 4 if i > n

around vertex 1 (indicated by italics), as specified in Figures 14 through 16.
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1 2 3 4 1 2 3 4
3 4 1 2 3 4 1 2

Figure 13: The coloring of M2,n for n≡ 2 mod 4

2 3 4 1 2 1 2 3 4 1
4 1 2 3 4 3 4 1 2 3 ⇒ 2 3 4 5 2 1 4 3 5 1

4 5 2 1 4 3 5 1 2 3

Figure 14: Recoloring of M2,n for n≡ 0 mod 4

Lemma 64.

χr(M3,3) =


3 if r = 2

6 if r = 3

9 if r = 4

Proof.

Case r = 2 The lower bound is trivial. For the upper bound, consider the coloring given by

f (i, j) = i+ j mod 3 for the first two rows. For the last row, color each entry the same as

the color in the corresponding column from the first row.

Case r = 3

Consider the 3×4 matrix, where the 4th column is the inverted 1st column. Without loss

of generality, color entry (1,0) with color a. Notice that since entries (1,0) and (1,3) are

identified with one another, we may not use the same color to either horizontal neighbor

of (1,0), as that would force two adjacent entries to be colored the same. Therefore, we

color entries (1,0),(1,1),(1,2) with colors a,b, and c respectively.

Observe that we are not able to reuse any of the colors from row 1, as that would force at

least one entry in either row 0 or row 2 to be see only two colors, contradicting a

3-dynamic coloring. Therefore, we must use a new color to color an entry from either of

the two rows. Again, without loss of generality, we color both entries (0,0) and (2,0) with

color d. If both of these entries are not the same color, then we note that neither of the

colors they have may be used again as it would force an entry in either row 0 or row 2 to
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4 1 2 3 1 2 3 4 1 2
2 3 4 1 3 4 1 2 3 4 ⇒ 4 1 2 3 2 1 3 4 5 2

2 3 4 1 5 4 2 1 3 4

Figure 15: Recoloring of M2,n for n≡ 1 mod 4

2 3 4 1 1 2 3 4 1 2
4 1 2 3 3 4 1 2 3 4 ⇒ 2 3 5 4 1 2 3 4 1 2

4 1 2 3 5 4 1 2 3 4

Figure 16: Recoloring of M2,n for n≡ 3 mod 4

see only two colors. Finally, it is clear that the remaining entries may not be the same

color if they are in the same row, but they may repeat in the same column as every entry in

row 1 has degree 4 and already sees two colors. Therefore, the remaining four may be

colored with 2 new colors, e and f .

· · · ·
a b c a
· · · ·

⇒
d · · d
a b c a
d · · d

⇒
d e f d
a b c a
d e f d

Figure 17: The 3-dynamic coloring of a 3×3 subgrid and its inverted first column.

Case r = 4 By considering the entries that are excluded, as shown in Figure 4, it is clear to

see that the entries must all be distinct.

Proof of Theorem 53

Proof.

For the lower bound, assume for a contradiction that f is a 4-dynamic 5-coloring of Mm,n.

Lemma 59 implies that f has to be 5-periodic in the middle rows. In particular that

implies that n = 5k for some k ∈ N. However, as in Theorem 62, this is problematic; for m

odd, this implies that f (m+3
2 , i) = f (m−1

2 , i), so (m+1
2 , i) doesn’t see four colors. For m

even, this implies that f (m
2 , i) = f (m+2

2 , i) which is also absurd as (m
2 , i) and (m+2

2 , i) are

adjacent. Therefore, f is not a 4-dynamic 5-coloring, a contradiction.

For the upper bound, note that the coloring f (i, j) = i+2 j mod 5 is almost a 4-dynamic

5-coloring in the sense that all entries (i, j) with 1 < j < n see four distinct colors. We
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will take advantage of this by recoloring select vertices (i, j) with columns j around n.

Since f : V (Mm,n)→ [0,1,2,3,4]
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CHAPTER 3

THE DYNAMIC CHROMATIC NUMBER OF RANDOM GRAPHS

Thus far in the study of the dynamic chromatic numbers of graphs, very little has

been accomplished in the regime of random graphs. However, the probabilistic method

has been employed successfully in a number of problem. Dehghan and Ahadi [14] used

probabilistic tools to find upper bounds of χ2(G) for regular graphs in terms of χ(G), as

well as by Alishahi [3], who proved a similar result, but for d-regular graphs, further

sharpened by Taherkhani [35].

The Erdős-Rényi random graph model, G(n, p), is a probability space of graphs on n

vertices with edges included with probability p ∈ (0,1). The first result for G(n, p) is due

to Alishahi, who showed in [3] that almost all graphs in G(n, p) have the same chromatic

number as dynamic chromatic number. This result, however, is limited to the case when

r = 2. In this section, we extend this result. Namely, we use the classical result of

Bollobás [7].

Question 65. Let G ∈ G(n, p). What is χr(G)?

The behavior of χr might be separated into three different regimes of r, roughly, the

regimes r� χ(G), r ∼ χ(G) and r� χ(G). In the first, we find χr(G) = χ(G) almost

surely. In the second the behavior is still a bit unclear. In the last, we find

χr(G) = r
(

1+(1− p)
n
r (1+o(1))

)
.

In this section, we’ll write log = log 1
1−p

and ln = loge.

Note that if in a coloring every color class is to be seen by many vertices, a roughly

equitable coloring might seem like an attractive way to color. A study by Krivelevich and

Patkós [28] showed that finding an equitable color is almost as easy as finding a coloring.

These equitable colorings will provide us with important machinery to find an upper

bound to χr(G)
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The behavior of small r

Theorem 66. For every p ∈ (0,1), there is a constant C, such that if n→ ∞, r ≤ Cn
log(n) and

G ∈ G(n, p), then E[χr(G)] = E[χ(G)]+o(1). Moreover, χr(G) = χ(G) with high

probability.

Proof. We let the base of our log’s be 1
1−p . Let α,ε > 0 be any constants and

k(n) = (2+ ε) log(n). Finally, let C be the solution to

(2+ ε)C
[

log
(

e
(2+ ε)C

)
+1
]
= α

Start by noting that E[χ(G)] = Θ( n
log(n)) [7]. Consider a χ(G) coloring of G, say f . Every

color class is an independent set, so

P(there exists a color class of size≥ k)≤ E[#independent sets of size k]

=

(
n
k

)
(1− p)(

k
2)

≤ nk(1− p)(
k
2)

= (1− p)−k log(n)(1− p)
k(k−1)

2

= (1− p)k( k−1
2 −log(n))

Substituting k = (2+ ε) log(n) back into the inequality,

= (1− p)(2+ε) log(n)
(
(2+ε) log(n)−1

2 −log(n)
)

≤ 1

n
(2+ε) log(n)

2 (log(n)−1)

≤ 1
n2
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If a color class has size at least k, give each vertex in the graph a different color. This

changes E[χr(G)], by at most 1
n2 ·n = o(1). Henceforth, assume the biggest independent

set has size at most k.

If a vertex v does not satisfy the condition of seeing at least r colors then it can connect to

at most r−1 color classes, i.e. to at most O(r log(n)) vertices. The probability such a

vertex exists is tiny: (note that the logs have base 1
1−p )

P(∃a vertex with degree≤ rk)≤ E[#vertices with degree≤ rk]

≤ n
(

n
rk

)
(1− p)n−rk

≤ n
(en

rk

)rk
(1− p)n−rk

= n(1− p)−rk log( en
rk )(1− p)n−rk

≤ n(1− p)n−rk log( en
rk )−rk

Before we proceed to the next step, note that:

rk log
(en

rk

)
+ rk = (2+ ε)n

r log(n)
n

[
log
(

en
(2+ ε)r log(n)

)
+1
]

≤ n(2+ ε)C
[

log
(

e
(2+ ε)

)
+1− log(C)

]
≤ αn

This shows that

n(1− p)n−rk log( en
rk )−rk ≤ n(1− p)(1−α)n

Hence, coloring all vertices a different color in this case only affects E[χr(G)], by at most

n2(1− p)(1−α)n = o(1).

Note that after these two conditionings, both of which occur almost never, the regular

coloring of G is immediately also r-dynamic.
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Theorem 67. Let n→ ∞, p ∈ [0,1] constant, r = Ω( n
log3(n)

), α ∈ (0,1) and G ∈ G(n, p),

then E[χr(G)]≤Cr+E[χ(G)], where C is the solution of Ce(1− p)C = α.

Proof. Pick a set X of Cr vertices at random from the graph. Distinguish two cases; either

all vertices in the graph connect to at least r of these, or not. First consider the latter. In

this case give all vertices a distinct color, we claim that as this case has small probability,

this won’t seriously affect our bound on E[χr(G)].

Note that for a vertex to connect to at most r vertices in X we can condition on what

vertices it does connect to and use a union bound there on.

P(∃a vertex connecting to < r vertices in X)

≤ E[#vertices connecting to < r vertices in X ]

= n ·P(a given vertex connects to < r vertices in X)

≤ n ∑
Y⊂X ,|Y |=r

P(a given vertex connects only to some subset of the vertices in Y )

≤ n
(

Cr
r

)
(1− p)Cr−r

≤ n
(

Cre
r

)r

(1− p)Cr−r

= n
(

Ce(1− p)C−1
)r

= α
r−log 1

α

(n)

≤ α

n
log4(n)

Hence the effect of this conditioning on our bound is at most

nα

n
log4(n) = o(1)

For the other case, where every vertex connects to at least r elements of X , give every

element in X a distinct color and extend this to a coloring of the whole of G. This requires

at most Cr+χ(G) colors. Hence, we find E[χr(G)]≤Cr+χ(G) and χr(G)≤Cr+χ(G)
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almost surely

This method also extends to r = Θ(n/ log(n)), to give;

Corollary 68. Let n→ ∞, p ∈ [0,1] constant, r = Θ( n
log(n)) and G ∈ G(n, p), then

E[χr(G)]≤ O(r)

And to the regime o( n
log(n)) = r = Ω( n

log2(n)
) to give

Corollary 69. Let n→ ∞, p ∈ [0,1] constant, o( n
log(n)) = r = Ω( n

log2(n)
) and G ∈ G(n, p),

then E[χr(G)]≤ χ(G)(1+o(1))

Upper Bound on large r from Equitable Colorings

For the purposes of analytic convenience, it would be easier to control the number of

colors. Therefore, for the regime of larger r, we use an equitable coloring since this allows

us maximize the expected number of color classes seen by a particular vertex. An

equitable coloring a graph, written as χ=(G) is a proper coloring in which the sizes of any

two color classes differ by at most one. Following the work of Krivelevich and Patkós

[28], we define χ∗=(G) to be the minimal k ∈ N such that for all k′ ≥ k there exists a

coloring of G with k′ colors with the biggest difference in sizes of color classes is at most

one.

For sake of clarity, we state four results of Krivelevich and Patkós, since we use their ideas

heavily.

Theorem 70. [28] For constant p < 0.99 and G ∈ G(n, p), with high probability

χ(G)≤ χ=(G)≤ χ(G)(1+o(1)).

Theorem 71. [28] For constant p < 0.99 and G ∈ G(n, p), with high probability

χ(G)≤ χ∗=(G)≤ χ(G)(2+o(1)).

The form that we need for the purposes of this section puts no upper bound on p, the

following is an intermediate result from [28]
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Lemma 72. [28] For any p ∈ (0,1) constant, l = o(n) and G ∈ G(n, p), we have

P(6 ∃an equitable coloring of G using l colors)≤ O(ne−l(1−p)
n
l
)

and its corollary

Corollary 73. For any γ > 0, there is a C > 0, such that if l ≥ n
log(n)(1+ γ), then

P(6 ∃an equitable coloring of G using l colors)≤ O

(
exp

(
−C

n
γ

1+γ

log2(n)

))

Theorem 74. Let p ∈ (0,1) constant and G ∈ G(n, p). Let γ,ε > 0, such that γ(1+ ε)> 1

and eventually r = r(n)≥ n
log(n)(1+ γ) and r(n) = o(n), Then for sufficiently large n

χr(G)≤ r
(

1+(1− p)
n

(1+ε)r
)

Proof.

First note that trivially χr(G)≥ r+1. Let

a =
γ

1+ γ
− 3loglog(n)

log(n)

δ ∈
(

max
{

1
γ
−1,0

}
,ε

)
k = 1+

[
(1+(1− p)

n
(1+δ)r )r

]a

l =
[
(1+(1− p)

n
(1+δ)r )r

]1−a

f =
kl
r
−1 =

(
1+(1− p)

n
(1+δ)r

)(
1+
[
r
(

1+(1− p)
n

(1+δ)r
)]−a

)
−1

Here, we note that γ(1+δ)> 1.

Consider the following process to handle random graphs. First, partition the graph

deterministically in k parts of size n
k , {Xi : 1≤ i≤ k}. Second, color each of the parts Xi in
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an equitable fashion as is possible by Lemma 72, with l colors, different colors for each

part. Note that to be able to repeatedly invoke Lemma 72 with high probability, we need

the probability of failure to be o(1).

P(6 ∃an equitable coloring of one of the parts)

≤ k ·P(6 ∃an equitable coloring of a given part)

≤ k ·O
(

n
k

e−l(1−p)
n
kl

)
≤ O

(
exp
(

ln(n)− l(1− p)
n
kl

))
≤ O

(
exp
(

ln(n)− n1−a

log(n)
(1− p)

log(n)
(1+γ)

))

≤ O

exp

ln(n)− n
3loglog(n)

log(n)

log(n)


≤ O

(
exp
(
ln(n)− log2(n)

))
= o(1)

Third, consider for every vertex v ∈ Xi in the graph the number of color classes outside Xi

it connects to. Noting that the edges between v and these color classes have had no

influence on the coloring as constructed in the second step.

Note that all color classes have at least b n
kl c elements and note that none of the

computations are affected by the ignoring the rounding.

Let v ∈ Xi and Y ⊂ X j (i 6= j) some other color class.

P(v∼ Y ) = 1− (1− p)|Y | ≥ 1− (1− p)
n
kl

Let this latter probability be p0 = p0(n). Note that p0→ 1 as n→ ∞ since r = o(n).

For a vertex v let Zv denote the number of color classes v is connected to. Let

Z ∼ Bin((k−1)l, p0), by the obvious coupling checking only the color classes in other
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parts of the partition, we find that Zv ≥ Z. Let k−1 = k′ for convenience. That prepares us

for the big calculation.

P(∃v : Zv < r)≤ E[#v with Zv < r]

= nP(Zv < r)

≤ nP(Z < r)

≤ n
(

k′l
k′l− r

)
(1− p0)

k′l−r

≤ n
(

ek′l
k′l− r

(1− p0)

)k′l−r

≤ n
(

ek′l
k′l− r

(1− p)
n
kl

)k′l−r

evaluating k′l− r in the denominator

= n
(

ek′l
r

(1− p)
n
kl−

n
(1+δ)r

)k′l−r

≤ n
(

ek′l
r

(1− p)
δn

2r(1+δ)

)k′l−r

= n
(

ek′l
r

(1− p)
δn

2r(1+δ)

)(1−p)
n

(1+δ)r r

Note that taking logarithms we find;

log(n)+(1− p)
n

(1+δ)r r log
(

ek′l
r

(1− p)
δn

2r(1+δ)

)
= log(n)+(1− p)

n
(1+δ)r r log

(
ek′l

r

)
+(1− p)

n
(1+δ)r r log((1− p)

δn
2r(1+δ) )

= log(n)+o(1)+(1− p)
n

(1+δ)r
δn

2(1+δ)
log(1− p)

= log(n)+o(1)− (1− p)
n

(1+δ)r
δn

2(1+δ)

≤ log(n)+o(1)− δ

2(1+δ)
n1− 1

(1+δ)(1+γ) as r ≥ n
log(n)

(1+ γ)

≤−ω(log(n))
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Hence

P(∃v : Zv < r)≤ n−ω(1)

Recoloring all vertices if this event occurs will affect E[χr(G)] by at most n−ω(1)n = o(1).

Hence, we find

χr(G)≤ kl

= r
(

1+(1− p)
n

(1+δ)r
)
+
[
r
(

1+(1− p)
n

(1+δ)r
)]1−a

Finally, note that as r = o(n) the last term is r ·o(n−a+ξ) for any ξ > 0. Choose some

ξ ∈ (0,
γ− 1

δ+1
1+γ

), which is possible as γ(1+δ)> 1.

(1− p)
n

(1+δ)r ≥ n
−1

(1+γ)(1+δ)

= ω

(
n
−γ

1+γ
+

3loglog(n)
log(n) +ξ

)
= ω

([
r
(

1+(1− p)
n

(1+δ)r
)]1−a

)

Thus,

χr(G)≤ r
(

1+(1− p)
n

(1+δ)r (1+o(1))
)

≤ r
(

1+(1− p)
n

(1+ε)r
)

Theorem 75. Let γ > 1, ε ∈
(

0, 1
2

(
1− 1

γ

))
, eventually r = r(n)≥ (1+ γ) n

log(n) and

r(n) = o(n). Define ϕ(n,r) = 1+3log(n)n
−r log(n)
n+r log(n) , and ψ(n,r,ε) = n+εr log(n)

n+r log(n) . Then for
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sufficiently large n

χr(G)≤ r
(

1+(1− p)
n
r (ϕ(n,r))

−1
)
+
[
r
(

1+(1− p)
n
r (ϕ(n,r))

−1
)]ψ(n,r,ε)

= r
(

1+(1− p)
n
r (1−o(1))

)

Proof.

First note that trivially χr(G)≥ r+1. Let

a =
γ(1− ε)

(1+ γ)

f ′ =
(

1+(1− p)
n

1.001r

)(
1+
[
r
(

1+(1− p)
n
r

)]−a
)
−1 = o(1)

δ = f ′+
3log(n)

n
γ

1+γ

= o(1)

k = 1+
[
(1+(1− p)

n
(1+δ)r )r

]a

l =
[
(1+(1− p)

n
(1+δ)r )r

]1−a

f =
kl
r
−1 =

(
1+(1− p)

n
(1+δ)r

)(
1+
[
r
(

1+(1− p)
n

(1+δ)r
)]−a

)
−1

We follow the same process as outlined in the proof of Theorem 74. Namely, that we

partition the graph deterministically in k parts of size n
k , {Xi : 1≤ i≤ k} in the first step.

For the second step, we color each of the parts Xi in an equitable fashion as is possible by
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invoking Lemma 72 to ensure that the probability of failure is o(1).

P(6 ∃an equitable coloring of one of the parts)

≤ k ·P(6 ∃an equitable coloring of a given part)

≤ k ·O
(

n
k

e−l(1−p)
n
kl

)
≤ O

(
exp
(

ln(n)− l(1− p)
n
kl

))
≤ O

(
exp
(

ln(n)− n1−a

log(n)
(1− p)

log(n)
(1+γ)

))
≤ O

(
exp

(
ln(n)− n

εγ

1+γ

log(n)

))

= o(1)

Again, we follow the third step outlined in the proof of Theorem 74, which is identical

with the exception of the big calculation, which follows.
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P(∃v : Zv < r)≤ E[#v with Zv < r]

= nP(Zv < r)

≤ nP(Z < r)

≤ n
(

k′l
k′l− r

)
(1− p0)

k′l−r

≤ n
(

ek′l
k′l− r

(1− p0)

)k′l−r

≤ n
(

ek′l
k′l− r

(1− p)
n
kl

)k′l−r

evaluating k′l− r in the denominator

= n
(

ek′l
r

(1− p)
n
kl−

n
(1+δ)r

)k′l−r

≤ n
(

ek′l
r

(1− p)
(δ− f )n

r(1+ f )(1+δ)

)k′l−r

= n
(

ek′l
r

(1− p)
(δ− f )n

r(1+ f )(1+δ)

)(1−p)
n

(1+δ)r r

Note that taking logarithms we find;

log(n)+(1− p)
n

(1+δ)r r log
(

ek′l
r

(1− p)
(δ− f )n

r(1+ f )(1+δ)

)
= log(n)+(1− p)

n
(1+δ)r r log

(
ek′l

r

)
+(1− p)

n
(1+δ)r r log((1− p)

(δ− f )n
r(1+ f )(1+δ) )

= log(n)+o(1)+(1− p)
n

(1+δ)r
(δ− f )n

r(1+ f )(1+δ)
log(1− p)

= log(n)+o(1)− (1− p)
n

(1+δ)r
(δ− f )n

(1+ f )(1+δ)

≤ log(n)+o(1)− (δ− f )
(1+ f )(1+δ)

n1− 1
(1+δ)(1+γ) as r ≥ n

log(n)
(1+ γ)

≤ log(n)+o(1)− 3
(1+ f )(1+δ)

log(n)− ( f ′− f )n1− 1
(1+δ)(1+γ)

(1+ f )(1+δ)

≤−1.1log(n)
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Hence

P(∃v : Zv < r)≤ n−ω(1)

Recoloring all vertices if this event occurs will affect E[χr(G)] by at most n−1.1n = o(1).

Hence, we find

χr(G)≤ kl

= r
(

1+(1− p)
n

(1+δ)r
)
+
[
r
(

1+(1− p)
n

(1+δ)r
)]1−a

Finally, we compare the two error terms r(1− p)
n

(1+δ)r and
[
r
(

1+(1− p)
n

(1+δ)r
)]1−a

.

Note that the latter is r ·o(n−a+ξ) for any constant ξ > 0. Choose some

0 < ξ < γ

γ+1

(
1
2 −

1
2γ

)
.

−a+ξ =
−γ(1− ε)

(1+ γ)
+ξ

<
−γ

(
1
2 +

1
2γ

)
(1+ γ)

+ξ

<
−γ

(
1
2 +

1
2γ

)
+ γ

(
1
2 −

1
2γ

)
(1+ γ)

=
−1

1+ γ

<
−1

(1+ γ)(1+δ)

≤ logn

(
(1− p)

n
(1+δ)r

)

Hence

χr(G) = r
(

1+(1− p)
n

(1+δ)r
)
+
[
r
(

1+(1− p)
n

(1+δ)r
)]1−a

= r
(

1+(1− p)
n
r (1−o(1))

)
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Lower bound on large r

Note that as χ(G)∼ n
2log(n) which is only a factor two from the bound given in the

theorem. Thus if there is an r such that χr(G) = r+1 with non-vanishing probability, it’s

in the range n
2log(n) ≤ r ≤ n

log(n) .

Theorem 76. For all ε > 0, α > 1, r > αn
(1−ε) log(n) , we have

χr(G)> r
(

1+
[

ε2

3
(1−p)

n
(1−ε)r

−n
(1−ε)r ln(1−p)

])
almost surely for sufficiently large n.

Proof.

Let l = r
[

ε2

3
(1−p)

n
(1−ε)r

−n
(1−ε)r ln(1−p)

]
Let w = 1

1−ε
. Note that r

w ≥ l and (r+l)
w ≤ r for sufficiently large

n.

Consider an r-dynamic (r+ l)-coloring of G. The number of color classes with at least
w(n)n
r+l vertices is at most r+l

w , so at least (1− 1
w) color classes have less vertices. On

average these classes must be seen by ϕ(r,w) = r(1− 1
w )

r(1− 1
w )+l

of the vertices. In particular,

there must be a color class of size at most wn
r+l vertices seen by at least ϕ(r,w) vertices.

P(∃ color class of size ≤ wn
r+ l

seen by at least ϕ(r,w)n vertices)

≤ P(∃a set of size
wn

r+ l
seen by at least ϕ(r,w)n vertices)

≤
(

n
wn
r+l

)(
n

ϕ(r,w)n

)
(1− (1− p)

wn
r+l )ϕ(r,w)n

≤
(

e(r+ l)
w

) wn
r+l
(

n
l

r(1− 1
w )+l

n

)
1− 1

1
(1−p)

wn
r+l

 1
(1−p)

wn
r+l

(1−p)

wn
r+l ϕ(r,w)n

≤
(

e(r+ l)
w

) wn
r+l
(

e(r(1− 1
w)+ l)

l

) l
r(1− 1

w )+l
n

e−(1−p)
wn
r+l ϕ(r,w)n
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Taking logarithms on both sides, we have

wn
r+ l

ln
(

e(r+ l)
w

)
+

ln
r(1− 1

w)+ l
ln

(
e(r(1− 1

w)+ l)
l

)
− (1− p)

wn
r+l ϕ(r,w)n

≤ wn
r

ln(er)+
ln

r(1− 1
w)

ln
(er

l

)
− (1− p)

wn
r

(
1− 1

w

)
n

=
n
r

[
w ln(er)+

l
1− 1

w

ln
(er

l

)
− r(1− p)

wn
r (1− 1

w
)

]

≤ n
r

[
2l

1− 1
w

ln
(er

l

)
− r(1− p)

wn
r (1− 1

w
)

]

=
n
r

[
2l
ε

ln
(er

l

)
− εr(1− p)

n
(1−ε)r

]
=

n
r

[
2l
ε

ln
(er

l

)
− εr(1− p)

n
(1−ε)r

]
=

n
r

[
2εr
3

[
ln
(er

l

)
−n

(1−ε)r ln(1− p)

]
(1− p)

n
(1−ε)r − εr(1− p)

n
(1−ε)r

]

= εn(1− p)
n

(1−ε)r

[
2
3

[
ln
( re

l

)
−n

(1−ε)r ln(1− p)

]
−1

]
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= εn(1− p)
n

(1−ε)r

2
3

 ln
(

e n
(1−ε)r ln(1−p)

ε2
3

)
− ln

(
(1− p)

n
(1−ε)r

)
−n

(1−ε)r ln(1− p)

−1


= εn(1− p)

n
(1−ε)r

[
2
3

[ r
n

ln
(n

r

)
+O

( r
n

)
+1
]
−1
]

≤−ε

4
n(1− p)

n
(1−ε)r

≤−ε

4
n1− 1

α

→−∞

Hence, with high probability such a color class doesn’t exist and such a coloring doesn’t

exist.

Corollary 77. For all C > 1, exists δ > 0, such that if r ≥C n
log(n) , then χr(G) = r+ω(nδ)

Proof.

Choose any α > 1 and ε > 0 such that α

1−ε
<C, i.e. such that r ≥ αn

(1−ε) log(n) . Then

applying the theorem gives

χr(G)≥ r

(
1+

[
ε2

3
(1− p)

n
(1−ε)r

−n
(1−ε)r ln(1− p)

])

≤ r+
αn

(1− ε) log(n)

ε2

3
(1− p)

n
(1−ε) αn

(1−ε) log(n)

−n
(1−ε) αn

(1−ε) log(n)
ln(1− p)


= r+

ε2α2

3(1− ε) ln(1− p)
n1− 1

α

log(n)2

= r+ω(n
1
2 (1−

1
α
))

56



Part III

The Poset on Connected Graphs is

Sperner



Introduction

Let (P,≤) be a partially ordered set (poset). We only consider partially ordered sets with

finitely many elements. A chain in P is a set C ⊂ P of pairwise comparable elements. An

antichain A⊂ P is a set of pairwise incomparable elements. The poset (P,≤) is graded if

there exists a partition of P into subsets A0, ...,Am such that A0 is the set of minimal

elements of P, and whenever x ∈ Ai and y ∈ A j with x < y and there is no z ∈ P with

x < z < y, then we have j = i+1. If such a partition exists, it is unique and the sets

A0, ...,Am are the levels of P.

A graded poset (P,≤) is Sperner if the largest antichain in P is the largest sized level.

Let m be a positive integer, [m] = {1, ...,m}. The Boolean lattice 2[m] is the power set of

[m] ordered by inclusion, and [m](k) = {A⊂ [m] : |A|= k}. By the well known theorem of

Sperner [34], the poset (2[m],⊂) is Sperner, the largest antichains being equal to [m](bm/2c)

and [m](dm/2e). The question whether certain posets are Sperner is widely studied. For a

short list of such results, see [5]. In this paper, we investigate the Sperner property of the

following poset.

Let n be a positive integer and let C denote the set of all connected graphs on vertex set

[n]. (In other words, C is the family of labeled connected graphs on n vertices.) The

family C is endowed with the following natural partial ordering: for G,H ∈ C , let G≤ H

if G is a subgraph of H, or more formally, if E(G)⊂ E(H). When there is no risk of

confusion, we shall simply write C when referring to the poset (C ,≤). Observe that C is

graded, the levels of C being the families C (k) = {G ∈ C : |E(G)|= k} for k = n−1, ...,m.

The following question originates from Katona [26].

Question 78. Is (C ,≤) Sperner?

We prove that the answer is yes. More precisely, setting m =
(n

2

)
and M = dm/2e, the

main result of this paper is the following theorem.

Theorem 79. If n is sufficiently large, the unique largest antichain in C is C (M).
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Let us make a remark about how this result compares to Sperner’s theorem [34]. Let G be

the set of all graphs on vertex set [n] and extend the ordering ≤ to G in the obvious way.

Also, for k = 0, ...,m, let G (k) be the set of graphs in G with k edges. Observe that (G ,<)

is isomorphic to (2[m],⊂), hence (G ,<) is Sperner. Note that C is a very dense subset of

G . As we shall see in Section III, the size of C is at least 2m(1−2−n−o(n)). This

corresponds to the well known statement that a graph chosen uniformly at random among

all graphs with n vertices (that is an element of G(n,1/2) in the Erdős-Rényi random

graph model) is disconnected with a probability that is exponentially small.

A problem similar to Question 78 has been considered in a paper of Jacobson, Kézdy and

Seif [23]. Let G be a connected graph and let (C(G),<) be the poset, whose elements are

the connected, vertex-induced subgraphs of G, and H < H ′ if H is an induced subgraph of

H ′. In [23], it was proved that this poset need not be Sperner, even if G is a tree.

This paper is organized as follows. In Section III, we discuss our notation and prove a few

technical results. In Section III, we shall prove various bounds on the number of

connected graphs with certain properties. These bounds provide us with some of the

ingredients needed for the proof of Theorem 79 in Section III. In Section III, we propose

some open problems.

Preliminaries

Let us say a few words about our notation, which is mostly conventional. If G is a graph,

V (G) is the vertex set of G, E(G) is the set of its edges, and e(G) = |E(G)|. If U ⊂V (G),

G[U ] denotes the subgraph of G induced on the vertex set U . If F ⊂ E(G), then G−F is

the graph on vertex set V (G) and edge set E(G)\F . If e ∈ E(G), we simply write G− e

instead of G−{e}.

For the sake of readability, we use the notation exp2(x) = 2x, when necessary.

Furthermore, log denotes base 2 logarithm.
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Our paper contains a lot of technical computations that are made more convenient by the

following extension of the binomial coefficient. We define the binomial coefficient
(x

k

)
for

any k ∈ N, x ∈ R such that

(
x
k

)
=


x(x−1)...(x−k+1)

k! if k ≤ x,

0 otherwise.

We collect some of the simple properties of
(x

k

)
in the following lemma.

Lemma 80. Let k ∈ N, x ∈ R.

(i) If x≥ k, we have
( x

k−1

)
/
(x

k

)
= k

x−k+1 .

(ii) Let δ be a non-negative integer and suppose that k ≤ x≤ 2k−δ. Then
(x+δ

k

)
≥ 2δ

(x
k

)
.

(iii)
(x

k

)
≤
(x+1

k

)
and

(x
k

)
≤
(x+1

k+1

)
.

Proof.

(i) and (iii) easily follows from the definition.

Now let us prove (ii). If we prove the case δ = 1, that is
(x+1

k

)
≥ 2
(x

k

)
for k ≤ x≤ 2k−1,

the result follows by induction on δ. But in this case, we have(x+1
k

)
/
(x

k

)
= (x+1)/(x− k+1)≥ 2.

We remark that by continuity, for any fixed positive integer k and a real number r ≥ 1,

there is a unique x ∈ R such that r =
(x

k

)
.

Throughout this paper, we shall also use the following simple inequalities.

Lemma 81. Let a1, ...,as be positive integers and let a1 + ...+as = n. We have

s

∑
i=1

(
ai

2

)
≤
(

n− s+1
2

)
, (i)
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and

∑
1≤i< j≤s

aia j ≥ (n− s+1)(s−1)+
(

s−1
2

)
. (ii)

Also, if ai ≤ k for i ∈ [s], where n/2 < k ≤ n− s+1, then

s

∑
i=1

(
ai

2

)
≤
(

n− k− s+2
2

)
+

(
k
2

)
, (iii)

and

∑
1≤i< j≤s

aia j ≥ k(n− k). (iv)

Proof.

The function f (x) = x2 is convex, so ∑
s
i=1 a2

i attains its maximum under the conditions

∑
s
i=1 ai = n and ai ∈ Z+ when a1 = ...= as−1 = 1 and as = n− s+1. Note that the left

hand side of (i) is ∑
s
i=1 a2

i /2−n/2, and the left hand side of (ii) is (n2−∑
s
i=1 a2

i )/2, while

the right hand sides of these inequalities are the respective values when

a1 = ...= as−1 = 1 and as = n− s+1.

For the inequalities (iii) and (iv), notice that with the additional condition that ai ≤ k,

∑
s
i=1 a2

i attains its maximum when a1 = ...= as−2 = 1, as−1 = n− k− s+2, as = k. The

right hand side of (iii) is exactly ∑
s
i=1
(ai

2

)
with these values inserted. On the other hand,

we have

∑
1≤i< j≤s

aia j ≥ as(a1 + ...+as−1) = as(n−as) = k(n− k),

which proves (iv).
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Connectivity of graphs

In this section, we investigate the following problems. How many edges can a graph G

have, whose removal destroys the connectivity, or 2-edge-connectivity of G? Also, what is

the number of 2-edge-connected graphs G on vertex set [n] in which there are exactly r

edges, whose removal destroys the 2-edge-connectivity of G?

Let us start this section with the following well known result about the number of

disconnected graphs. For completeness, we shall provide a short proof. A stronger form of

this result can be found in [17], p. 138 as well.

Lemma 82. The number of disconnected graphs on vertex set [n] is less than

exp2

((n−1
2

)
+o(n)

)
.

Proof.

A graph G is disconnected if there is a partition of [n] into two nonempty sets A and B

such that there are no edges between A and B. The number of disconnected graphs, where

|A|= 1 and |B|= n−1 is at most n · exp2

((n−1
2

))
, as we have n choices for the partition

{A,B}, and exp2

((n−1
2

))
number of different choices for the edges in B.

The number of disconnected graphs where |A|, |B| ≥ 2 is at most

exp2

(
n+
(n−2

2

)
+1
)
= exp2

((n−1
2

)
+3
)

, as there are at most exp2(n) number of choices

for the partition (A,B), and the number of ways to choose the edges inside A and B is at

most exp2

((|A|
2

)
+
(|B|

2

))
≤ exp2

((n−2
2

)
+1
)

. Hence, the total number of disconnected

graphs is at most exp2

((n−1
2

)
+o(n)

)
.

We define the block tree of a connected graph G as follows. An edge e ∈ E(G) is a bridge,

if G− e is disconnected. Let B be the set of bridges in G and let A1, ...,At be the vertex

sets of the components of G−B. Then the block tree of G is Bt(G) = (B,{A1, ...,At}).
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Figure 18: A graph and an illustration of its blocktree

The following lemma lists the main properties of the block tree, which may be easily

verified by the reader.

Lemma 83. Let G be a connected graph with block tree (B,{A1, ...,At}). Then |B|= t−1

and G[Ai] is 2-edge-connected for i ∈ [t].

If G is a 2-edge-connected graph, let R(G) be the set of edges f ∈ E(G) such that G− f is

not 2-edge-connected. Lemma 84 gives an upper bound on the size of R(G).

Lemma 84. Let G be a 2-edge-connected graph and let H = G−R(G). Denote the

number of components of G−R(G) by q. Then |R(G)| ≤ 2q−2.

To make our proof more convenient, we shall work with multi-graphs. A multi-graph is a

graph where we allow multiple edges between a pair of vertices, but no loops. We extend

the definition of a cycle as follows: a cycle is either 2 vertices connected by 2 edges or a

simple graph that is a cycle. A chord in a cycle C is an edge not in E(C) connecting two

vertices of C. For example, if the vertices x and y are connected by 3 edges, any two edges

form a cycle and the third edge is a chord of this cycle.

Proof.

Let the components of H be H1, ...,Hq. Every edge in R(G) connects two different
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components in H. Define the multi-graph K on vertex set [q] as follows: if Hi and H j are

connected by l edges in G, then i and j are connected by l edges in K.

Note that the graph K cannot contain a cycle with a chord. Otherwise, suppose that there

is a cycle with vertices i1, ..., is and a chord iaib. Let e ∈ R(G) be an edge connecting Hia

and Hib in G. Then Hia and Hib are still connected by at least 2 disjoint paths in G− e,

hence e cannot be an element of R(G).

Our lemma follows from the following result about multi-graphs without cycles with a

chord.

Claim 85. If L is a multi-graph on q vertices without a cycle with a chord, then

e(L)≤ 2q−2.

Proof.

We proceed by induction on q. If q = 1, E(L) is empty, so we are done. Suppose that

q > 1. If L has a vertex v of degree at most 2, then let L′ = L− v. Then L′ has q−1

vertices, at least e(L)−2 edges, and does not contain a chorded cycle. Hence, by

induction, e(L)−2≤ 2q−4, which gives e(L)≤ 2q−2. Now suppose that every vertex

of L has degree at least 3. Let v1, ...,vs be the consecutive vertices of a longest path in L.

Every neighbor of v1 is contained in the set {v2, ...,vs}, otherwise we can find a longer

path in L. Hence, there exist i, j satisfying 2≤ i≤ j ≤ s such that the multi-set E(L)

contains three different edges, v1v2,v1vi and v1v j. But then v1, ...,v j forms a cycle, and

v1vi is a chord of this cycle.

As K does not contain a cycle with a chord and has |R(G)| edges, we get |R(G)| ≤ 2q−2.

This completes the proof of Lemma 84.

We remark that if R(G) is non-empty, it has at least 2 elements. This is true because if

e ∈ R(G), then G− e contains a bridge f . But then f ∈ R(G) as well.
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Let Ir be the set of 2-edge-connected graphs G such that |R(G)|= r, and let I(k)r = Ir∩C (k).

In the next lemma, we give an upper bound on the size of I(k)r . Recall that M = d
(n

2

)
/2e.

Lemma 86. Let ε be a positive real number. There exists n1(ε) such that if n > n1(ε), the

following holds. For any positive integers r and k satisfying 2≤ r ≤ n and

M ≤ k ≤M+n, we have

|I(k)r | ≤
((n−r/2

2

)
+ εrn

k

)
.

Proof.

Let q = dr/2e+1. If G is a 2-edge-connected graph with |R(G)|= r, then G−R(G) has

at least q components by Lemma 84. We now count the number of graphs G where

G−R(G) has exactly s components. Note that s≤ r, otherwise the edges of R(G) could

not connect all the components of G−R(G).

The number of graphs G, for which |R(G)|= s, and where the components in G−R(G)

have sizes a1, ...,as with e1, ...,es edges inside them, respectively, is at most

(
n2

r

)(
n

a1, ...,as

) s

∏
i=1

((ai
2

)
ei

)
. (1)

Here,
(n2

r

)
is an upper bound on the number of ways to pick the edges of R(G),

( n
a1,...,as

)
is

the number of ways to partition [n] into parts of size a1, ...,as, and
((ai

2)
ei

)
is the number of

ways to choose the ei edges in a component of size ai. We shall prove that (1) is at most((n−s+1
2 )
k

)
exp2(3εrn/6). Let us bound the terms in (1).

First,
(n2

r

)
≤ exp2(2r logn)< exp2(εrn/6), if n is sufficiently large given ε.

Also,
( n

a1,...,as

)
≤ sn = exp2(n logs). Unfortunately, if r is small, we cannot bound this

term by exp2(cεrn), where c is some fixed constant. We shall overcome this obstacle later

in the proof.

Finally,
s

∏
i=1

((ai
2

)
ei

)
≤
(

∑
s
i=1
(ai

2

)
k− r

)
≤
((n−s+1

2

)
k− r

)
,

65



where the last inequality holds by (i) in Lemma 81. Here,

((n−s+1
2

)
k− r

)
<

(
r+
(n−s+1

2

)
k

)
,

see (iii) in Lemma 80. Hence, we have

s

∏
i=1

((ai
2

)
ei

)
≤
((n−s+1

2

)
+ εrn/6
k

)
,

provided n > 6/ε.

First, suppose that r is such that logr < εr/6. In this case, we have( n
a1,...,as

)
≤ exp2(εrn/6). Hence, (1) is at most

((n−s+1
2 )+εrn/6

k

)
· exp2(2εrn/6).

Now consider the case when logr > εr/6. Then r < R(ε), where R(ε) is a constant only

depending on ε. In this case, we shall bound the product

(
n

a1, ...,as

) s

∏
i=1

((ai
2

)
ei

)
. (2)

Without loss of generality, suppose that a1 ≥ ...≥ as and observe that( n
a1,...,as

)
< na2+...+as . Thus, if a1 ≥ n−4r, then

( n
a1,...,as

)
< n4r < exp2(εrn/6), if n is

sufficiently large given ε. Now suppose that a1 < n−4r. Applying (iii) in Lemma 81, we

get
s

∑
i=1

(
ai

2

)
≤
(

4r− s−2
2

)
+

(
n−4r

2

)

≤ 8r2 +

(
n−4r

2

)
.

Suppose n > 20R(ε), then the inequality

8r2 +

(
n−4r

2

)
≤
(

n− s+1
2

)
−2rn

66



holds as well. Hence,

s

∏
i=1

((ai
2

)
ei

)
<

(
∑

s
i=1
(ai

2

)
k− r

)
≤
((n−s+1

2

)
−2rn

k− r

)
<

((n−s+1
2

)
−2rn+ r
k

)
,

where the last inequality holds by (iii) in Lemma 80. Also, using (ii) in Lemma 80,

((n−s+1
2

)
−2rn+ r
k

)
≤
((n−s+1

2

)
k

)
exp2(−rn).

Thus, we can bound (2) from above by
((n−s+1

2 )
k

)
, and so (1) is at most

((n−s+1
2

)
+ εrn/6
k

)
exp2(2εrn/6)

in this case as well.

Now let us bound the number of all 2-edge-connected graphs with k edges, for which

|R(G)|= r and G−R(G) has s components. The number of such graphs is at most

∑
a1+...+as=n

∑
e1+...+es=k−r

(
n2

r

)(
n

a1, ...,as

) s

∏
i=1

((ai
2

)
ei

)
. (3)

The first sum has exactly
( n

s−1

)
terms since ai ≥ 1 for every i ∈ [s], while the second sum

has
(k−r+s

s−1

)
terms. Therefore, (3) is at most

(
n

s−1

)(
k− r+ s

s−1

)((n−s+1
2

)
+ εrn/6
k

)
exp2(2εrn/6).

Here,
( n

s−1

)
≤ exp2(r logn) and

(k−r+s
s−1

)
< exp2(2r logn). Thus, (3) is at most

((n−s+1
2

)
+ εrn/6
k

)
exp2(3εrn/6),

provided n is sufficiently large given ε.

Finally, the number of 2-edge-connected graphs with |R(G)|= r and k edges is at most
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r

∑
i=q

((n−i+1
2

)
+ εrn/6
k

)
exp2(3εrn/6)<

((n−q+1
2

)
+ εrn/6

k

)
exp2(4εrn/6).

Applying (ii) in Lemma 80, we get

|I(k)r | ≤
((n−q+1

2

)
+ εrn

k

)
.

In the proof of Theorem 79, we shall also use the following technical lemma. Again,

recall that M = d
(n

2

)
/2e.

Lemma 87. Let n > 150. Let G be a connected graph on vertex set [n] such that

e(G)≥M and Bt(G) = (B,{A1, ...,At}). Suppose that |Ai| ≤ n−2 for i ∈ [t]. Then

∑
1≤i< j≤t

|Ai||A j|−2(t−1)−
t

∑
i=1
|R(G[Ai])| ≥ n. (4)

Proof.

By Lemma 84, we have |R(G[Ai])|< 2|Ai|. Hence, ∑
t
i=1 |R(G[Ai])|< 2n.

First, suppose that max{|A1|, .., |At |} ≤ n−6. By (iv) in Lemma 81, we have

∑
1≤i< j≤t

|Ai||A j| ≥ 6(n−6)≥ 5n.

Hence, using the trivial bound t−1 < n, we have that (4) holds.

Now suppose that |A1| ≥ n−5. In this case, we have t ≤ 6. Let H = G[A1]. Every edge of

G not contained in H is either in B or it is an edge of G[[n]\A1]. Hence, the number of

edges not contained in H is at most 20, so e(H)≥M−20.

Let H1, ...,Hq be the vertex sets of the components of H−R(H). Then, by Lemma 84, the
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number of edges of H is at most

2q−2+
q

∑
i=1

(
|V (Hi)|

2

)
< 2n+

(
n−q+1

2

)
,

where the inequality holds by (i) in Lemma 81. Comparing the lower and upper bounds on

e(H) we get the inequality

M−20 < 2n+
(

n−q+1
2

)
.

If q > n/3, the right hand side of the inequality is at most 2n2/9+3n, while the left hand

side is larger than n2/4−n. This is a contradiction, noting that 2n2/9+3n < n2/4−n for

n > 150. Hence, we have q < n/3, implying |R(H)|< 2n/3. This gives

t

∑
i=1
|R(G[Ai])| ≤ |R(H)|+2(|A2|+ ...+ |At |)< 2n/3+10.

Since |A1| ≤ n−2, we have ∑1≤i< j≤t |Ai||A j| ≥ 2(n−2) by (iv) in Lemma 81, so (4)

holds.

Matchings between levels

In this section, we prove Theorem 79.

Let n−1≤ k, l ≤ m. We say that there is a complete matching from C (k) to C (l), if there is

an injection f : C (k)→ C (l) such that G and f (G) are comparable for all G ∈ C (k). The

next lemma states that to prove Theorem 79, it is enough to find a complete matching

from the smaller sized level to the larger sized level for any two consecutive levels. Due to

its simplicity, we shall only sketch the proof of this lemma.

Lemma 88. Suppose that there is a complete matching from C (k) to C (k+1) for

k = n−1, ...,M−1, and there is a complete matching from C (l+1) to C (l) for
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l = M, ...,m−1. Then the largest antichain in C is C (M).

Proof.

Using the complete matchings, one can build a chain partition of C into |C (M)| chains. But

the size of the maximal antichain in C is at most the number of chains in any chain

partition of C .

First, we show that if we are below the middle level C (M), or at least n above the middle

level, then it is easy to prove the existence of a complete matching between consecutive

levels.

Let X ⊂ C (k) for some n−1≤ k ≤ m. The lower shadow of X is

∆(X) = {G ∈ C (k−1) : ∃H ∈ X ,G < H},

and the upper shadow of X is

∇(X) = {G ∈ C (k+1) : ∃H ∈ X ,H < G}.

In our proofs, we shall apply the well known theorem of Hall [21].

Theorem 89. (Hall’s theorem) Let G = (A,B;E) be a bipartite graph. There is a complete

matching in G from A to B if and only if |X | ≤ |Γ(X)| for all X ⊂ A, where Γ(X) denotes

the set of vertices adjacent to some element of X .

First, let us deal with the levels below C (M).

Lemma 90. There is a complete matching from C (k) to C (k+1) for k = n−1, ...,M−1.

Proof.

Let X ⊂ C (k). By Hall’s theorem, it is enough to show that |X | ≤ |∇(X)|. Let B be the

bipartite graph with vertex partition (X ,∇(X)), and the edges of B being the comparable
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pairs. If G ∈ X , the degree of G is m− k. Also, if H ∈ ∇(X), the degree of H is at most

k+1.

Let e be the number of edges of B. Then, counting e from X , and then from ∇(X), we have

|X |(m− k) = e,

and

e≤ |∇(X)|(k+1).

Hence,

|X | ≤ |∇(X)|(k+1)/(m− k)≤ |∇(X)|.

Using similar ideas, we now show that if we are above the middle level by at least n, then

there is a matching from C (k+1) to C (k).

Lemma 91. There is a complete matching from C (k+1) to C (k) for k = M+n, ...,m.

Proof.

Let X ⊂ C (k+1). By Hall’s theorem, it is enough to show that |X | ≤ |∆(X)|. Let B be the

bipartite graph with vertex partition (X ,∆(X)), and the edges of B being the comparable

pairs. If G ∈ ∆(X), then the degree of G in B is at most m− k.

Now let G ∈ X . If e ∈ E(G) such that G− e is not an element of C , then e is a bridge of G.

However, by Lemma 83, the number of bridges of G is at most n−1. Hence, the degree of

G is at least k+2−n. Counting the number of edges of B two ways, we get

|X |(k+2−n)≤ |E(B)|,
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and

|∆(X)|(m− k)≥ |E(B)|.

Hence,

|∆(X)|
|X |

≥ k+2−n
m− k

≥ 1.

Proving that there is a matching from C (k) to C (k−1) for the values of k that are slightly

larger than M is more difficult. The remainder of this section is devoted to this problem.

Before showing the details, we briefly outline the strategy for showing that there exists a

complete matching from C (k) to C (k−1), where M+1≤ k < M+n.

Our goal is to show that for every X ⊂ C (k), we have |∆(X)| ≥ |X |. To accomplish this, we

write X as Y ∪Z, where Y is the set of 2-edge-connected graphs in X and Z is the set of the

non-2-edge-connected graphs in X . We first show that if the two sets, Y and Z, do not have

roughly the same size, then the larger of the two has a lower shadow that is already larger

than |X |.

Now suppose that |Y | ≈ |Z|. We show the existence of three functions c1,c2,c3 : N→ R+

satisfying the following properties:

1. |∆(Y )| ≥ |Y |(1+ c1(|Y |)),

2. |∆(Z)| ≥ |Z|(1+ c2(|Z|)),

3. if U is the set of 2-edge-connected graphs in ∆(Y ), then |U | ≥ |Y |(1− c3(|Y |)),

4. c1(|Y |)c2(|Z|)≥ c3(|Y |), if |Y | ≈ |Z|.

Roughly, 1. and 2. state that the lower shadow of Y and Z is slightly larger than Y and Z,

respectively. Now, we would like to guarantee that ∆(X) = ∆(Y )∪∆(Z) is also larger than

Y ∪Z. If this is not the case, then we must have that ∆(Y )\∆(Z) is too small. But note that
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as ∆(Z) contains only non-2-edge-connected graphs, U is contained in ∆(Y )\∆(Z).

Hence, |U | is a lower bound on the size of the set ∆(Y )\∆(Z). Thus, 3. tells us that

∆(Y )\∆(Z) cannot be much smaller than Y , and property 4. guarantees (as we shall see

later) that we truly have |Y ∪Z| ≤ |∆(Y )∪∆(Z)|.

We remind the reader that G is the family of all graphs on vertex set [n]. For X ⊂ C (k), let

∂(X) = {H ∈ G (k−1) : ∃G ∈ X ,H < G}. As (G ,<) is isomorphic to (2[m],⊂), the

Kruskal-Katona theorem [27, 29] tells us which subfamily of G (k) of given size minimizes

the lower shadow. Instead of using this, however, we use a weaker form of the Kruskal-

Katona theorem, proved by Lovász [30]. This affords us a computationally more

convenient way to obtain a lower bound on the size of ∂(X).

Lemma 92. (Lovász [30]) Let X ⊂ C (k) be nonempty and let x be a real number such that

|X |=
(x

k

)
. Then

|∂(X)| ≥
(

x
k−1

)
.

In particular,

|∂(X)|
|X |

≥ k
x− k+1

.

We remind the reader that we use the extended definition of binomial coefficients

introduced in Section III, so both in the previous lemma and in what comes, x need not to

be an integer in
(x

k

)
.

Let B be the set of 2-edge-connected graphs in C and let B(k) = C (k)∩B . If X ⊂ B(k),

then ∆(X) = ∂(X). Hence, we can use Lemma 92 to get a lower bound for the size of

∆(X).

In the next lemma we show that if the size of X ∈ C (k) is sufficiently large, then we have

|∆(X)| ≥ |X |.
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Lemma 93. Let ε > 0. There exists n2(ε) such that if n > n2(ε) the following holds. Let

M+1≤ k < M+n and let |X |=
(x

k

)
, where x >

(n−1
2

)
+ εn. We have |∆(X)|> |X |.

Proof.

By Lemma 92,

|∂(X)| ≥
(

x
k−1

)
.

Let D be the set of disconnected graphs with k−1 edges. By Lemma 82,

|D| ≤ exp2

((
n−1

2

)
+o(n)

)
.

Also,

|∆(X)|= |∂(X)\D| ≥ |∂(X)|− |D| ≥
(

x
k−1

)
− exp2

((
n−1

2

)
+o(n)

)
.

Thus, we get

|∆(X)|− |X | ≥
(

x
k−1

)
−
(

x
k

)
− exp2

((
n−1

2

)
+o(n)

)
=

=

(
x

k−1

)
2k− x−1

k
−exp2

((
n−1

2

)
+o(n)

)
>

((n−1
2

)
+ εn

k−1

)
1
n2−exp2

((
n−1

2

)
+o(n)

)
.

By (ii) in Lemma 80, we have
((n−1

2 )+εn
k−1

)
≥
((n−1

2 )
k−1

)
· exp2(εn). Also,((n−1

2 )
k−1

)
= exp2(

(n−1
2

)
+o(n)) holds by Stirling’s formula. Hence, we have

|∆(X)|− |X | ≥ exp2

((
n−1

2

)
+ εn+o(n)

)
− exp2(

(
n−1

2

)
+o(n)).

Thus, if n is sufficiently large given ε, |∆(X)|> |X |.

Now we show that if X is a set of 2-edge-connected graphs in C (k), then the number of

2-edge-connected graphs in the shadow of X cannot be much less than |X |.
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Lemma 94. Let 0 < ε < 1/4. There exists n3(ε) such that if n > n3(ε), the following

holds. Let M < k < M+n and let X ⊂ B(k). Let |X |=
(x

k

)
and let r be a positive integer

satisfying r < n. If x >
(n−(r+1)/2

2

)
+ εrn, then

|∆(X)∩B(k−1)|
|X |

> 1− 4r
n2 .

Proof.

Define U = ∆(X)∩B(k−1) and let B be the bipartite graph with vertex partition (X ,U), the

edges being the comparable pairs. Every element of U has degree at most m− k+1 in B.

Also, the degree of a graph G in X is exactly k−|R(G)| in B. Let a be the number of

graphs in X with degree at most k− r−1 and let a′ be the number of graphs in B(k) with

|R(G)| ≥ r+1. Then a < a′ and by Lemma 86, we have a′ <
((n−(r+1)/2

2 )+εrn/2
k

)
, provided

n > n1(ε/2). Moreover, we have the following bounds on the number of edges of B:

(k− r)(|X |−a′)≤ e(B)≤ (m− k+1)|U |.

Hence,
|U |
|X |−a′

≥ k− r
m− k+1

.

Here, k ≥ m/2+1, so

|U |
|X |−a′

≥ m/2− r+1
m/2

≥ 1− 4r−4
n(n−1)

.

If |X |> 8n3a′, we get |U ||X | ≥ 1− 4r
n2 , using that r ≤ n−1. But note that if n is sufficiently

large given ε, then 8n3 < exp2(εn/3), which means that

8n3a′ <
((n−(r+1)/2

2

)
+ εrn/2

k

)
· exp2(εn/3)<

((n−(r+1)/2
2

)
+ εrn

k

)
<

(
x
k

)
,

where the second inequality is a consequence of (ii) from Lemma 80.
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We remark that we do not have to consider the case when r ≥ n. If |X |=
(x

k

)
≥ 1, then

x≥ k, and we can always find r < n satisfying x >
(n−(r+1)/2

2

)
+ εrn. This remark holds

true for the upcoming lemmas as well.

In the next lemma, we show that if X ⊂ C (k) is a set of non-2-edge-connected graphs, then

the size of the shadow of X is slightly larger than |X |.

Lemma 95. Let ε be a positive real number such that ε < 1/2. There exists n4(ε) such

that if n > n4(ε), the following holds. Let k be a positive integer with M < k < M+n and

let X ⊂ C (k) \B(k). Let |X |=
(x

k

)
and let r be a positive integer such that r < n and

x >
(n−(r+1)/2

2

)
+ εrn. Then

|∆(X)|
|X |

> 1+
4−4r/n

n
.

Proof.

Define the bipartite graph B between X and U = ∆(X) as follows. Let G ∈ X and

H ∈ ∆(X) be connected by an edge if H < G and Bt(G) = Bt(H). If T = (C,{A1, ...,At})

is the block tree of some graph, let X(T ) be the set of graphs in X with block tree T , and

define U(T ) similarly. Let B(T ) be the bipartite subgraph of B induced on X(T )∪U(T ),

and let us estimate |U(T )|/|X(T )|. If H ∈U(T ) and e ∈ [n](2) \E(H) is an edge

connecting Ai and A j with i 6= j, then the block tree of H ′ = H ∪{e} differs from T .

Hence, the degree of H in this bipartite graph is at most

uT = m− k+1− ∑
1≤i< j≤t

|Ai||A j|+ t−1.

Note that the term t−1 corresponds to the number of edges in C. Now let G ∈ X(T ) and

e ∈ E(G). We have Bt(G− e) = T if and only if e ∈ G[Ai]\R(G[Ai]) for some i ∈ [t].

Hence, the degree of G in B(T ) is

xT (G) = k−
t

∑
i=1
|R(G[Ai])|− (t−1).
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Suppose that t ≥ 3 or min{|A1|, |A2|}> 1. Then by Lemma 87, we have

xT (G)−uT = ∑
1≤i< j≤t

|Ai||A j|−2(t−1)−
t

∑
i=1
|R(G[Ai])| ≥ n.

Setting xT = uT +n, we have xT (G)≥ xT .

Bounding the edges of B(T ) in two different ways, we get

|X(T )|xT ≤ e(B(T ))≤ |U(T )|uT .

We now consider the remaining case, when t = 2 and min{|A1|, |A2|}= 1. Note that we

need not consider the case t = 1 as T is not the block tree of a 2-edge-connected graph.

Without loss of generality, let |A1|= 1. We have uT ≤M− (n−2), while

xT (G)≥M−|R(G[A2])| for every G ∈ X(T ). Let a be the number of graphs G in X(T )

with |R(G[A2])| ≥ r+3. By Lemma 86, we have

a <

(((n−1)−(r+3)/2
2

)
+ εrn/2

k

)
,

if n > n1(ε/2).

Counting the number of edges of B(T ) two ways, we get the following bounds:

(|X(T )|−a)(M− (r+2))≤ e(B(T ))≤ (M− (n−2))|U(T )|.

Hence,

|U(T )|
|X(T )|−a

≥ M− (r+2)
M− (n−2)

= 1+
(n− r)

M− (n−2)
> 1+

(4n−4r)
n(n−1)

.

If |X(T )|> 2n3a, this implies |U(T )|
|X(T )| ≥ 1+ 4n−4r

n2−1 .

Let T0 be the set of pairs T = (C,{A1,A2}) satisfying the following conditions: T is the

block tree of some graph in C , |A1|= 1, and |X(T )| ≤ 2n3a. Let X0 =
⋃

T∈T0
X(T ). Note

that |T0|< n2 as we have at most n choices for A1 and at most n−1 choices for the one
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edge in C. Hence, we have |X0| ≤ 2n5a. This gives the following bound on the size of

∆(X).

|∆(X)| ≥
(

1+
4n−4r
n2−1

)
(|X |− |X0|)≥

≥
(

1+
4n−4r
n2−1

)
|X |−4n5

(((n−(r+1)/2
2

)
+ εrn/2

k

)
.

Therefore, if |X | ≥ 4n9(((n−(r+1)/2
2 )+εrn/2

k

)
, then

|∆(X)|
|X |

≥ 1+
4n−4r

n2 .

But if n is sufficiently large given ε, we have

4n9
(((n−(r+1)/2

2

)
+ εrn/2

k

)
<

(((n−(r+1)/2
2

)
+ εrn

k

)
≤ |X |.

In the next lemma, we show that if the number of 2-edge-connected graphs in X is not in

the same range as the number of non-2-edge-connected graphs in X , then |X |< |∆(X)|.

Lemma 96. There exists n5 such that if n > n5, the following holds. Let

M+1≤ k < M+n, X ⊂ C (k) and Y = X ∩B , Z = X−Y . Suppose that |Z|> n|Y | or

|Y |> n|Z|. Then |∆(X)|> |X |.

Proof.

If |X | ≥
(m−n/2

k

)
, we are done by Lemma 93. So we can suppose that |X |<

(m−n/2
k

)
.

Firstly, consider the case when |Y |> n|Z|. Let Y =
(y

k

)
, then y < m−n/2. As

∂(Y ) = ∆(Y ), we can apply Lemma 92 to get

|∆(Y )|
|Y |

>
k

m−n/2− k
≥ 1+

2
n
.
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Hence, |∆(X)| ≥ |∆(Y )|> |Y |+2|Y |/n > |Y |+ |Z|.

Now consider the case when |Z|> n|Y |. Let |Z|=
(z

k

)
, then z≥ k = n2/4+O(n).

Set ε = 1/40 and r = d2n/3e. We choose r and ε such that r < n and z >
(n−(r+1)/2

2

)
+ εrn

holds. Hence, by Lemma 95, we have

|∆(Z)|
|Z|

≥ 1+
4−4r/n

n
≥ 1+

4
3n

,

for n sufficiently large. Estimating the size of the shadow of X with |∆(Z)|, we get

|∆(X)| ≥ |∆(Z)| ≥ |Z|+ 4|Z|
3n
≥ |Z|+ |Y |= |X |.

We also need the following technical lemma, which tells us what conditions need to be

satisfied for the sizes of the shadows of Y,Z to have |X |< |∆(X)|.

Lemma 97. Let a,b,c1,c2,c3 be positive real numbers and A = a(1+ c1), B = b(1+ c2)

and C = a(1− c3). If c3 ≤ c1c2, then

a+b≤C+max{B,A−C}.

Proof.

We need to show that ac3 +b < max{B,A−C}. Observe that we can suppose that

B = A−C. Otherwise, if B < A−C, we can substitute b with b′ > b ,and B with

B′ = b′(1+ c3), satisfying B′ = A−C. Then the left hand side of the inequality increases,

while the right hand side does not change. We can proceed similarly if A−C < B.

If B = A−C, then b = c1+c3
1+c2

a. Hence, our inequality becomes

ac3 +
c1 + c3

1+ c2
a≤ (c1 + c3)a.
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Simplifying this inequality, we get that it is equivalent with c3 ≤ c1c2.

Now we are ready to show the existence of a complete matching between the levels close

to the middle level.

Theorem 98. There exists n6 such that if n > n6, the following holds. If

M+1≤ k < M+n, then there exists a complete matching from C (k) to C (k−1).

Proof.

By Hall’s theorem, it is enough to prove that for any X ⊂ C (k), we have |X | ≤ |∆(X)|. Fix

ε = 1/18. Let |X |=
(x

k

)
. By Lemma 93, if x >

(n−1
2

)
+ εn, then we are done if n > n2(ε).

Now suppose that x≤
(n−1

2

)
+ εn. Let Y = X ∩B and Z = X−Y . Let |Y |=

(y
k

)
, |Z|=

(z
k

)
,

and suppose that n > n5. By Lemma 96, if |Y |> n|Z| or |Z|> n|Y |, we are done. Hence,

we can suppose that x− εn < y,z≤ x, if n is sufficiently large.

Let U = ∆(Y )∩B and let r be a positive integer satisfying

(
n− (r+1)/2

2

)
+ ε(r+1)n≤ x <

(
n− r/2

2

)
+ εrn

One can easily check that as k ≤ x <
(n−1

2

)
+ ε and ε < 1/4, such an r always exists, it is

unique, and r < n. Furthermore, y,z >
(n−(r+1)/2

2

)
+ εrn.

By Lemma 94, if n > n3(ε), we have

|U |
|Y |

> 1− 4r
n2 .

Also, by Lemma 92

|∆(Y )|
|Y |

≥ k
y− k+1

>
k(n−r/2

2

)
+2εrn− k

,

where the term 2εrn comes from bounding 1+εrn above by 2εrn. Using that k > m/2, we

have
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Figure 19: The comparability graph between X and its shadow

k(n−r/2
2

)
+2εrn− k

>
m/2(n−r/2

2

)
+2εrn−m/2

=

=
1

1− r(2n−1)/n(n−1)+ r2/2n(n−1)+8εr/(n−1)
>

>
1

1−2r/n+ r2/2n2 +9εr/n
,

where the last inequality holds if n is sufficiently large.

Finally, by Lemma 95, if n > n4(ε), we have

|∆(Z)|
|Z|

> 1+
4−4r/n

n
.

Now we are ready to estimate |∆(X)|. We have

∆(X) =U ∪· ((∆(Y )\U)∪∆(Z)),

where ∪· denotes disjoint union. Hence,

|∆(X)| ≥ |U |+max{|∆(Y )|− |U |, |Z|}.

Also, |X |= |Y |+ |Z|. Let c1 =
2r/n−r2/2n2−9εr/n
1−2r/n+r2/2n2+9ε

, c2 =
4−4r/n

n and c3 = 4r/n2. We have

|∆(Y )|> (1+ c1)|Y |, |∆(Z)|> (1+ c2)|Z| and |U |> (1− c3)|Y |. Hence, by Lemma 97,

our task is reduced to proving that c3 ≤ c1c2. Namely,
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4r
n2 ≤

2r/n− r2/2n2−9εr/n
1−2r/n+ r2/2n2 +9εr/n

4−4r/n
n

.

Simplifying this inequality, we get

1−2r/n+ r2/2n2 +9εr/n≤ (2− r/2n−9ε)(1− r/n).

For our convenience, let α = r/n. Then the previous inequality can be written as

1−2α+α
2/2+9εα≤ (2−α/2−9ε)(1−α),

which reduces to

α+18ε≤ 2.

As α < 1 and ε = 1/18, this inequality holds. Hence, if n is sufficiently large, we have

|X | ≤ |∆(X)|.

We are now ready to prove our main theorem.

Proof of Theorem 79. Let n > n6, where n6 is the constant given in Lemma 98. By Lemma

88, it is enough to prove that for k = 1, ...,M−1 there is a complete matching from C (k) to

C (k+1), and for k = M+1, ...,m, there is a complete matching from C (k) to C (k−1). But we

proved exactly this statement in Lemma 90, Lemma 91 and Theorem 98.

�

As a final remark, we observe that the proof also shows that C (M) is the unique largest

antichain, as the strict inequality |∆(X)|> |X | holds.

Open problems

In this section, we propose several open problems.
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The first problem we propose is inspired by the question investigated in [23], which we

mentioned in the Introduction. Let G be a connected graph and let C′(G) be the family of

subgraphs of G that are connected on the vertex set V (G). Define the partial ordering < on

C′(G) as usual: H < H ′ if E(H)⊂ E(H ′).

Question 99. Let G be a connected graph. Is (C′(G),<) Sperner?

We believe that there should be graphs G for which (C′(G),<) is not Sperner.

Unfortunately, even for small graphs, it is difficult to check this property.

We also propose another variation of Question 78. Let GP be a monotone graph property

(a family of graphs closed under isomorphism, and adding edges) and let GPn denote the

family of graphs in GP with vertex set [n]. Also, for k = 0, ...,
(n

2

)
let GP(k)

n be the set of

graphs in GPn with k edges. Define the partial ordering < on GPn as usual. The poset

(GPn,<) might not be graded, however it still makes sense to ask the following question.

For which graph properties GP is it true that the largest antichain in (GPn,<) is GP(k)
n for

some k? To ask a more specific question, we propose the following problem.

Question 100. Let H be the family of Hamiltonian graphs. Is (Hn,<) Sperner?

Finally, we suggest the following variation of Question 78. Suppose we do not distinguish

graphs that are isomorphic. More precisely, define the equivalence relation ∼ on C such

that G∼ H if G and H are isomorphic, and let C0 be the set of equivalence classes of C .

Define < on C0 such that for G̃, H̃ ∈ C0 we have G̃ < H̃ if there exists G ∈ G̃ and H ∈ H̃

satisfying G < H in (C ,<).

Question 101. Is (C0,<) Sperner?
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