1,528 research outputs found

    Efficient reconstruction of band-limited sequences from nonuniformly decimated versions by use of polyphase filter banks

    Get PDF
    An efficient polyphase structure for the reconstruction of a band-limited sequence from a nonuniformly decimated version is developed. Theoretically, the reconstruction involves the implementation of a bank of multilevel filters, and it is shown that how all these reconstruction filters can be obtained at the cost of one Mth band low-pass filter and a constant matrix multiplier. The resulting structure is therefore more general than previous schemes. In addition, the method offers a direct means of controlling the overall reconstruction distortion T(z) by appropriate design of a low-pass prototype filter P(z). Extension of these results to multiband band-limited signals and to the case of nonconsecutive nonuniform subsampling are also summarized, along with generalizations to the multidimensional case. Design examples are included to demonstrate the theory, and the complexity of the new method is seen to be much lower than earlier ones

    Algorithms for external sorting

    Get PDF
    The thesis presents the field of external sorting. In the thesis we describe and compare multiple sorting algorithms for external sorting based on their behavior, their advantages and disadvantages. The algorithms we compare are the straight multiway merge sort, balanced multiway merge sort, natural multiway merge sort, polyphase merge sort, cascade sort, distribution sort, funnel sort and two pre-sorting algorithms. The purpose of the thesis is to describe and present how the algorithms work in theory and in practice. We implemented the algorithms in the C programming language and then experimentally compared them on a personal computer with one external storage device

    Simple Signal Extension Method for Discrete Wavelet Transform

    Full text link
    Discrete wavelet transform of finite-length signals must necessarily handle the signal boundaries. The state-of-the-art approaches treat such boundaries in a complicated and inflexible way, using special prolog or epilog phases. This holds true in particular for images decomposed into a number of scales, exemplary in JPEG 2000 coding system. In this paper, the state-of-the-art approaches are extended to perform the treatment using a compact streaming core, possibly in multi-scale fashion. We present the core focused on CDF 5/3 wavelet and the symmetric border extension method, both employed in the JPEG 2000. As a result of our work, every input sample is visited only once, while the results are produced immediately, i.e. without buffering.Comment: preprint; presented on ICSIP 201

    Approaches towards Implementation of Multi-bit Digital Receiver using Fast Fourier Transform

    Get PDF
    This paper compares different digital receiver signal processing schemes as applied to current ESM/RWR systems. The schemes include fast fourier transform (FFT)-based, FIR filter-based and mixed architectures. Use of polyphase FFT and IIR filters is also discussed. The specifications and signal processing requirements of a modern digital electronic warfare (EW) receiver are discussed. The design procedures and architectures for all the schemes are brought out. The tradeoffs involved in selection of different parameters for these schemes are also discussed. The digital receiver schemes are modeled and analyzed for different metrics such as, Parameter measurement accuracies, Pulse handling capability, Frequency separation capability, Number of multipliers required for implementation etc. The analysis is done for a 500 MHz BW digital receiver and assumes 8 bit ADC in the front end. The results obtained for the comparison are discussed in the paper. Limited simulations show that overlapped FFT scheme is a better approach for digital receiver processing.Defence Science Journal, 2013, 63(2), pp.198-203, DOI:http://dx.doi.org/10.14429/dsj.63.426

    Efficient Digital Signal Processing Techniques and Architectures for On-Board Processors

    Get PDF
    In this paper, we present a number of algorithmic and architectural DSP solutions to be incorporated in digital OBPs for communication satellites to boost the system performance primarily in terms of reducing their power consumption. More specifically this article addresses (1) Infinite impulse response (IIR) implementation of digital filters, (2) Efficiency savings in channeliser FFT twiddle storage and multiplications and their reconfigurable implementation (3) Companding of interconnect data, and (4) Critically sampled/reduced over-sampling channelisation. The applicability and efficiency of these approaches were evaluated in detail during our European Space Agency (ESA) funded research project entitled "Efficient Techniques for On-Board Processing”, undertaken by Airbus Defence and Space and the Applied DSP and VLSI Research Group at the University of Westminster. The results demonstrated noteworthy improvements both in terms of power dissipation, and furthermore in the reduction of circuit complexity for future digital OBPs, which will be shown at the summary of results section

    Oxygen-isotope and trace element constraints on the origins of silica-rich melts in the subarc mantle

    Get PDF
    Peridotitic xenoliths in basaltic andesites from Batan island in the Luzon arc contain silica-rich (broadly dacitic) hydrous melt inclusions that were likely trapped when these rocks were within the upper mantle wedge underlying the arc. These melt inclusions have been previously interpreted to be slab-derived melts. We tested this hypothesis by analyzing the oxygen isotope compositions of these inclusions with an ion microprobe. The melt inclusions from Batan xenoliths have δ 18OVSMOW values of 6.45 ± 0.51‰. These values are consistent with the melts having been in oxygen isotope exchange equilibrium with average mantle peridotite at temperatures of ≥875°C. We suggest the δ 18O values of Batan inclusions, as well as their major and trace element compositions, can be explained if they are low-degree melts (or differentiation products of such melts) of peridotites in the mantle wedge that had previously undergone extensive melt extraction followed by metasomatism by small amounts (several percent or less) of slab-derived components. A model based on the trace element contents of Batan inclusions suggests that this metasomatic agent was an aqueous fluid extracted from subducted basalts and had many characteristics similar to slab-derived components of the sources of arc-related basalts at Batan and elsewhere. Batan inclusions bear similarities to “adakites,” a class of arc-related lava widely considered to be slab-derived melts. Our results suggest the alternative interpretation that at least some adakite-like liquids might be generated from low-degree melting of metasomatized peridotites

    Investigation of Doppler Effects on the Detection of Polyphase Coded Radar Waveforms

    Get PDF
    Special operations missions often depend on discrete insertion of highly trained soldiers into dangerous territory. To reduce the risk involved in this type of engagement, Low Probability of Detection radar waveforms have been designed specifically to defeat enemy passive radar detectors. These waveforms have been shown to perform well when the Doppler shift is minimal, but their performance degrades dramatically with increased frequency shifts due to Doppler effects. This research compares one known Low Probability of Detection waveform, based on Welti coding, with a radar waveform known to provide Doppler constancy, namely, one based on Frank coding. These waveforms are tested using a non-cooperative square-law passive detector as well as a cooperative matched filter detector for various Doppler shift values. Research conclusions address the question of whether or not the Frank coded waveforms provide better detection capability than Welti coded waveforms at high levels of Doppler shift. Conclusions from this research indicate that there is no advantage to using Frank coded waveforms over Welti coded waveforms. All waveforms behaved the same at increasing Doppler shift levels for each of the detectors
    corecore