44 research outputs found

    Model Checking One-clock Priced Timed Automata

    Full text link
    We consider the model of priced (a.k.a. weighted) timed automata, an extension of timed automata with cost information on both locations and transitions, and we study various model-checking problems for that model based on extensions of classical temporal logics with cost constraints on modalities. We prove that, under the assumption that the model has only one clock, model-checking this class of models against the logic WCTL, CTL with cost-constrained modalities, is PSPACE-complete (while it has been shown undecidable as soon as the model has three clocks). We also prove that model-checking WMTL, LTL with cost-constrained modalities, is decidable only if there is a single clock in the model and a single stopwatch cost variable (i.e., whose slopes lie in {0,1}).Comment: 28 page

    Interrupt Timed Automata: verification and expressiveness

    Get PDF
    We introduce the class of Interrupt Timed Automata (ITA), a subclass of hybrid automata well suited to the description of timed multi-task systems with interruptions in a single processor environment. While the reachability problem is undecidable for hybrid automata we show that it is decidable for ITA. More precisely we prove that the untimed language of an ITA is regular, by building a finite automaton as a generalized class graph. We then establish that the reachability problem for ITA is in NEXPTIME and in PTIME when the number of clocks is fixed. To prove the first result, we define a subclass ITA- of ITA, and show that (1) any ITA can be reduced to a language-equivalent automaton in ITA- and (2) the reachability problem in this subclass is in NEXPTIME (without any class graph). In the next step, we investigate the verification of real time properties over ITA. We prove that model checking SCL, a fragment of a timed linear time logic, is undecidable. On the other hand, we give model checking procedures for two fragments of timed branching time logic. We also compare the expressive power of classical timed automata and ITA and prove that the corresponding families of accepted languages are incomparable. The result also holds for languages accepted by controlled real-time automata (CRTA), that extend timed automata. We finally combine ITA with CRTA, in a model which encompasses both classes and show that the reachability problem is still decidable. Additionally we show that the languages of ITA are neither closed under complementation nor under intersection

    Formal Verification of Real-time Systems with Preemptive Scheduling

    Get PDF
    International audienceIn this paper, we propose a method for the verification of timed properties for real-time systems featuring a preemptive scheduling policy: the system, modeled as a scheduling time Petri net, is first translated into a linear hybrid automaton to which it is time-bisimilar. Timed properties can then be verified using HyTech. The efficiency of this approach leans on two major points: first, the translation features a minimization of the number of variables (clocks) of the resulting automaton, which is a critical parameter for the efficiency of the ensuing verification. Second, the translation is performed by an over-approximating algorithm, which is based on Difference Bound Matrix and therefore efficient, that nonetheless produces a time-bisimilar automaton despite the over-approximation. The proposed modeling and verification method are generic enough to account for many scheduling policies. In this paper, we specifically show how to deal with Fixed Priority and Earliest Deadline First policies, with the possibility of using Round-Robin for tasks with the same priority. We have implemented the method and give some experimental results illustrating its efficiency

    Efficient Analysis and Synthesis of Complex Quantitative Systems

    Get PDF

    28th International Symposium on Temporal Representation and Reasoning (TIME 2021)

    Get PDF
    The 28th International Symposium on Temporal Representation and Reasoning (TIME 2021) was planned to take place in Klagenfurt, Austria, but had to move to an online conference due to the insecurities and restrictions caused by the pandemic. Since its frst edition in 1994, TIME Symposium is quite unique in the panorama of the scientifc conferences as its main goal is to bring together researchers from distinct research areas involving the management and representation of temporal data as well as the reasoning about temporal aspects of information. Moreover, TIME Symposium aims to bridge theoretical and applied research, as well as to serve as an interdisciplinary forum for exchange among researchers from the areas of artifcial intelligence, database management, logic and verifcation, and beyond

    Kleene-SchĂĽtzenberger and BĂĽchi Theorems for Weighted Timed Automata

    Get PDF
    In 1994, Alur and Dill introduced timed automata as a simple mathematical model for modelling the behaviour of real-time systems. In this thesis, we extend timed automata with weights. More detailed, we equip both the states and transitions of a timed automaton with weights taken from an appropriate mathematical structure. The weight of a transition determines the weight for taking this transition, and the weight of a state determines the weight for letting time elapse in this state. Since the weight for staying in a state depends on time, this model, called weighted timed automata, has many interesting applications, for instance, in operations research and scheduling. We give characterizations for the behaviours of weighted timed automata in terms of rational expressions and logical formulas. These formalisms are useful for the specification of real-time systems with continuous resource consumption. We further investigate the relation between the behaviours of weighted timed automata and timed automata. Finally, we present important decidability results for weighted timed automata

    A user guide to HyTech

    Full text link
    corecore