274 research outputs found

    Moving mesh finite difference solution of non-equilibrium radiation diffusion equations

    Get PDF
    A moving mesh finite difference method based on the moving mesh partial differential equation is proposed for the numerical solution of the 2T model for multi-material, non-equilibrium radiation diffusion equations. The model involves nonlinear diffusion coefficients and its solutions stay positive for all time when they are positive initially. Nonlinear diffusion and preservation of solution positivity pose challenges in the numerical solution of the model. A coefficient-freezing predictor-corrector method is used for nonlinear diffusion while a cutoff strategy with a positive threshold is used to keep the solutions positive. Furthermore, a two-level moving mesh strategy and a sparse matrix solver are used to improve the efficiency of the computation. Numerical results for a selection of examples of multi-material non-equilibrium radiation diffusion show that the method is capable of capturing the profiles and local structures of Marshak waves with adequate mesh concentration. The obtained numerical solutions are in good agreement with those in the existing literature. Comparison studies are also made between uniform and adaptive moving meshes and between one-level and two-level moving meshes.Comment: 29 page

    High Resolution Numerical Methods for Coupled Non-linear Multi-physics Simulations with Applications in Reactor Analysis

    Get PDF
    The modeling of nuclear reactors involves the solution of a multi-physics problem with widely varying time and length scales. This translates mathematically to solving a system of coupled, non-linear, and stiff partial differential equations (PDEs). Multi-physics applications possess the added complexity that most of the solution fields participate in various physics components, potentially yielding spatial and/or temporal coupling errors. This dissertation deals with the verification aspects associated with such a multi-physics code, i.e., the substantiation that the mathematical description of the multi-physics equations are solved correctly (both in time and space). Conventional paradigms used in reactor analysis problems employed to couple various physics components are often non-iterative and can be inconsistent in their treatment of the non-linear terms. This leads to the usage of smaller time steps to maintain stability and accuracy requirements, thereby increasing the overall computational time for simulation. The inconsistencies of these weakly coupled solution methods can be overcome using tighter coupling strategies and yield a better approximation to the coupled non-linear operator, by resolving the dominant spatial and temporal scales involved in the multi-physics simulation. A multi-physics framework, KARMA (K(c)ode for Analysis of Reactor and other Multi-physics Applications), is presented. KARMA uses tight coupling strategies for various physical models based on a Matrix-free Nonlinear-Krylov (MFNK) framework in order to attain high-order spatio-temporal accuracy for all solution fields in amenable wall clock times, for various test problems. The framework also utilizes traditional loosely coupled methods as lower-order solvers, which serve as efficient preconditioners for the tightly coupled solution. Since the software platform employs both lower and higher-order coupling strategies, it can easily be used to test and evaluate different coupling strategies and numerical methods and to compare their efficiency for problems of interest. Multi-physics code verification efforts pertaining to reactor applications are described and associated numerical results obtained using the developed multi-physics framework are provided. The versatility of numerical methods used here for coupled problems and feasibility of general non-linear solvers with appropriate physics-based preconditioners in the KARMA framework offer significantly efficient techniques to solve multi-physics problems in reactor analysis

    Coupling Schemes for Multiphysics Reactor Simulation

    Full text link

    Application of Rosenbrock Methods to Tightly Coupled Multiphysics Simulations in Nuclear Science and Engineering

    Get PDF
    Recently, researchers have investigated the implementation of accurate high order time discretization techniques in large-scale nonlinear multiphysics simulations using Implicit Runge-Kutta (IRK) methods. For a given time step, IRK methods require the iterative solution of a nonlinear system of equations using Newton’s method. Rosenbrock methods, a variant of IRK methods, avoid this issue by linearizing this system of equations, so only one Newton iteration is required at each stage. Because Rosenbrock methods may achieve this without loss of accuracy order or stability, Rosenbrock methods have the potential to generate accurate solutions more efficiently. This research investigates these claims by applying Rosenbrock methods to two representative multiphysics problems found in nuclear science and engineering: (1) the Point Reactor Kinetics Equations (PRKE) with temperature-induced reactivity feedback, and (2) non-equilibrium radiation diffusion. To assess the merits of Rosenbrock methods, a measure of accuracy per computational cost was compared between Rosenbrock methods and IRK methods, and Rosenbrock methods were found to achieve a smaller computational cost for a given level of accuracy than IRK methods of the same convergence order

    Moment-Based Accelerators for Kinetic Problems with Application to Inertial Confinement Fusion

    Get PDF
    In inertial confinement fusion (ICF), the kinetic ion and charge separation field effects may play a significant role in the difference between the measured neutron yield in experiments and the predicted yield from fluid codes. Two distinct of approaches exists in modeling plasma physics phenomena: fluid and kinetic approaches. While the fluid approach is computationally less expensive, robust closures are difficult to obtain for a wide separation in temperature and density. While the kinetic approach is a closed system, it resolves the full 6D phase space and classic explicit numerical schemes restrict both the spatial and time-step size to a point where the method becomes intractable. Classic implicit system require the storage and inversion of a very large linear system which also becomes intractable. This dissertation will develop a new implicit method based on an emerging moment-based accelerator which allows one to step over stiff kinetic time-scales. The new method converges the solution per time-step stably and efficiently compared to a standard Picard iteration. This new algorithm will be used to investigate mixing in Omega ICF fuel-pusher interface at early time of the implosion process, fully kinetically

    Physics of Solar Prominences: I - Spectral Diagnostics and Non-LTE Modelling

    Full text link
    This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (ie when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex non-LTE models become necessary. We thus present the basics of non-LTE radiative transfer theory and the associated multi-level radiative transfer problems. The main results of one- and two-dimensional models of the prominences and their fine-structures are presented. We then discuss the energy balance in various prominence models. Finally, we outline the outstanding observational and theoretical questions, and the directions for future progress in our understanding of solar prominences.Comment: 96 pages, 37 figures, Space Science Reviews. Some figures may have a better resolution in the published version. New version reflects minor changes brought after proof editin

    Multiphysics simulations: challenges and opportunities.

    Full text link
    corecore