24,029 research outputs found

    k-Tuple_Total_Domination_in_Inflated_Graphs

    Full text link
    The inflated graph GIG_{I} of a graph GG with n(G)n(G) vertices is obtained from GG by replacing every vertex of degree dd of GG by a clique, which is isomorph to the complete graph KdK_{d}, and each edge (xi,xj)(x_{i},x_{j}) of GG is replaced by an edge (u,v)(u,v) in such a way that uXiu\in X_{i}, vXjv\in X_{j}, and two different edges of GG are replaced by non-adjacent edges of GIG_{I}. For integer k1k\geq 1, the kk-tuple total domination number γ×k,t(G)\gamma_{\times k,t}(G) of GG is the minimum cardinality of a kk-tuple total dominating set of GG, which is a set of vertices in GG such that every vertex of GG is adjacent to at least kk vertices in it. For existing this number, must the minimum degree of GG is at least kk. Here, we study the kk-tuple total domination number in inflated graphs when k2k\geq 2. First we prove that n(G)kγ×k,t(GI)n(G)(k+1)1n(G)k\leq \gamma_{\times k,t}(G_{I})\leq n(G)(k+1)-1, and then we characterize graphs GG that the kk-tuple total domination number number of GIG_I is n(G)kn(G)k or n(G)k+1n(G)k+1. Then we find bounds for this number in the inflated graph GIG_I, when GG has a cut-edge ee or cut-vertex vv, in terms on the kk-tuple total domination number of the inflated graphs of the components of GeG-e or vv-components of GvG-v, respectively. Finally, we calculate this number in the inflated graphs that have obtained by some of the known graphs

    Edge Roman domination on graphs

    Full text link
    An edge Roman dominating function of a graph GG is a function f ⁣:E(G){0,1,2}f\colon E(G) \rightarrow \{0,1,2\} satisfying the condition that every edge ee with f(e)=0f(e)=0 is adjacent to some edge ee' with f(e)=2f(e')=2. The edge Roman domination number of GG, denoted by γR(G)\gamma'_R(G), is the minimum weight w(f)=eE(G)f(e)w(f) = \sum_{e\in E(G)} f(e) of an edge Roman dominating function ff of GG. This paper disproves a conjecture of Akbari, Ehsani, Ghajar, Jalaly Khalilabadi and Sadeghian Sadeghabad stating that if GG is a graph of maximum degree Δ\Delta on nn vertices, then γR(G)ΔΔ+1n\gamma_R'(G) \le \lceil \frac{\Delta}{\Delta+1} n \rceil. While the counterexamples having the edge Roman domination numbers 2Δ22Δ1n\frac{2\Delta-2}{2\Delta-1} n, we prove that 2Δ22Δ1n+22Δ1\frac{2\Delta-2}{2\Delta-1} n + \frac{2}{2\Delta-1} is an upper bound for connected graphs. Furthermore, we provide an upper bound for the edge Roman domination number of kk-degenerate graphs, which generalizes results of Akbari, Ehsani, Ghajar, Jalaly Khalilabadi and Sadeghian Sadeghabad. We also prove a sharp upper bound for subcubic graphs. In addition, we prove that the edge Roman domination numbers of planar graphs on nn vertices is at most 67n\frac{6}{7}n, which confirms a conjecture of Akbari and Qajar. We also show an upper bound for graphs of girth at least five that is 2-cell embeddable in surfaces of small genus. Finally, we prove an upper bound for graphs that do not contain K2,3K_{2,3} as a subdivision, which generalizes a result of Akbari and Qajar on outerplanar graphs

    The k-tuple domination number revisited

    Get PDF
    The following fundamental result for the domination number γ (G) of a graph G was proved by Alon and Spencer, Arnautov, Lovász and Payan: γ (G) ≤ frac(ln (δ + 1) + 1, δ + 1) n, where n is the order and δ is the minimum degree of vertices of G. A similar upper bound for the double domination number was found by Harant and Henning [J. Harant, M.A. Henning, On double domination in graphs, Discuss. Math. Graph Theory 25 (2005) 29-34], and for the triple domination number by Rautenbach and Volkmann [D. Rautenbach, L. Volkmann, New bounds on the k-domination number and the k-tuple domination number, Appl. Math. Lett. 20 (2007) 98-102], who also posed the interesting conjecture on the k-tuple domination number: for any graph G with δ ≥ k - 1, γ× k (G) ≤ frac(ln (δ - k + 2) + ln (over(d, ̂)k - 1 + over(d, ̂)k - 2) + 1, δ - k + 2) n, where over(d, ̂)m = ∑i = 1n ((di; m)) / n is the m-degree of G. This conjecture, if true, would generalize all the mentioned upper bounds and improve an upper bound proved in [A. Gagarin, V. Zverovich, A generalised upper bound for the k-tuple domination number, Discrete Math. (2007), in press (doi:10.1016/j.disc.2007.07.033)]. In this paper, we prove the Rautenbach-Volkmann conjecture. © 2007 Elsevier Ltd. All rights reserved

    DOWNHILL DOMINATION IN GRAPHS

    Get PDF
    A path π = (v1, v2, . . . , vk+1) iun a graph G = (V, E) is a downhill path if for every i, 1 ≤ i ≤ k, deg(vi) ≥ deg(vi+1), where deg(vi) denotes the degree of vertex vi ∈ V. The downhill domination number equals the minimum cardinality of a set S ⊆ V having the property that every vertex v ∈ V lies on a downhill path originating from some vertex in S. We investigate downhill domination numbers of graphs and give upper bounds. In particular, we show that the downhill domination number of a graph is at most half its order, and that the downhill domination number of a tree is at most one third its order. We characterize the graphs obtaining each of these bounds

    General Bounds on the Downhill Domination Number in Graphs.

    Get PDF
    A path π = (v1, v2,...vk+1) in a graph G = (V,E) is a downhill path if for every i, 1 \u3c i \u3c k, deg(vi) \u3e deg(vi+1), where deg(vi) denotes the degree of vertex vi ∊ V. The downhill domination number equals the minimum cardinality of a set S ⊂ V having the property that every vertex v ∊ V lies on a downhill path originating from some vertex in S. We investigate downhill domination numbers of graphs and give upper bounds. In particular, we show that the downhill domination number of a graph is at most half its order, and that the downhill domination number of a tree is at most one third its order. We characterize the graphs obtaining each of these bounds

    Uphill & Downhill Domination in Graphs and Related Graph Parameters.

    Get PDF
    Placing degree constraints on the vertices of a path allows the definitions of uphill and downhill paths. Specifically, we say that a path π = v1, v2,...vk+1 is a downhill path if for every i, 1 ≤ i ≤ k, deg(vi) ≥ deg(vi+1). Conversely, a path π = u1, u2,...uk+1 is an uphill path if for every i, 1 ≤ i ≤ k, deg(ui) ≤ deg(ui+1). We investigate graphical parameters related to downhill and uphill paths in graphs. For example, a downhill path set is a set P of vertex disjoint downhill paths such that every vertex v ∈ V belongs to at least one path in P, and the downhill path number is the minimum cardinality of a downhill path set of G. For another example, the downhill domination number of a graph G is defined to be the minimum cardinality of a set S of vertices such that every vertex in V lies on a downhill path from some vertex in S. The uphill domination number is defined as expected. We determine relationships among these invariants and other graphical parameters related to downhill and uphill paths. We also give a polynomial time algorithm to find a minimum downhill dominating set and a minimum uphill dominating set for any graph
    corecore