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Abstract
The following fundamental result for the domination number γ(G) of a graph G was proved

by Alon and Spencer, Arnautov, Lovász and Payan:

γ(G) ≤ ln(δ + 1) + 1
δ + 1

n,

where n is the order and δ is the minimum degree of vertices of G. A similar upper bound
for the double domination number was found by Harant and Henning [On double domination
in graphs. Discuss. Math. Graph Theory 25 (2005) 29–34], and for the triple domination
number by Rautenbach and Volkmann [New bounds on the k-domination number and the
k-tuple domination number. Applied Math. Letters 20 (2007) 98–102], who also posed the
interesting conjecture on the k-tuple domination number: for any graph G with δ ≥ k − 1,

γ×k(G) ≤ ln(δ − k + 2) + ln(d̂k−1 + d̂k−2) + 1
δ − k + 2

n,

where d̂m =
∑n

i=1

(
di

m

)
/n is the m-degree of G. This conjecture, if true, would generalise

all the mentioned upper bounds and improve an upper bound proved in [A. Gagarin and V.
Zverovich, A generalised upper bound for the k-tuple domination number. Discrete Math. (to
appear)].

In this paper, we prove Rautenbach–Volkmann’s conjecture.
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1 Notation

All graphs will be finite and undirected without loops and multiple edges. If G is a graph of
order n, then V (G) = {v1, v2, ..., vn} is the set of vertices in G, di denotes the degree of vi and
d =

∑n
i=1 di/n is the average degree of G. Let N(x) denote the neighbourhood of a vertex x.

Also let N(X) = ∪x∈XN(x) and N [X] = N(X) ∪ X. Denote by δ(G) and ∆(G) the minimum
and maximum degrees of vertices of G, respectively. Put δ = δ(G) and ∆ = ∆(G). A set X
is called a dominating set if every vertex not in X is adjacent to a vertex in X. The minimum
cardinality of a dominating set of G is the domination number γ(G). A set X is called a k-tuple
dominating set of G if for every vertex v ∈ V (G), |N [v] ∩X| ≥ k. The minimum cardinality of a
k-tuple dominating set of G is the k-tuple domination number γ×k(G). The k-tuple domination
number is only defined for graphs with δ ≥ k − 1. It is easy to see that γ(G) = γ×1(G) and
γ×k(G) ≤ γ×k′(G) for k ≤ k′. The 2-tuple domination number γ×2(G) is called the double
domination number and the 3-tuple domination number γ×3(G) is called the triple domination
number. A number of interesting results on the k-tuple domination number can be found in
[3]–[8] and [11].
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2 Introduction

The following fundamental result was proved by many authors:

Theorem 1 ([1, 2, 9, 10]) For any graph G,

γ(G) ≤ ln(δ + 1) + 1
δ + 1

n.

A similar upper bound for the double domination number was found by Harant and Henning
[4]:

Theorem 2 ([4]) For any graph G with δ ≥ 1,

γ×2(G) ≤ ln δ + ln(d + 1) + 1
δ

n.

Rautenbach and Volkmann posed the following interesting conjecture for the k-tuple domina-
tion number:

Conjecture 1 ([11]) For any graph G with δ ≥ k − 1,

γ×k(G) ≤
ln(δ − k + 2) + ln

(∑n
i=1

(
di + 1
k − 1

))
− ln(n) + 1

δ − k + 2
n.

For m ≤ δ, let us define the m-degree d̂m of a graph G as follows:

d̂m = d̂m(G) =
n∑

i=1

(
di

m

)
/n.

Note that d̂1 is the average degree d of a graph and d̂0 = 1. Also, we put d̂−1 = 0.
Since (

di + 1
k − 1

)
=
(

di

k − 1

)
+
(

di

k − 2

)
,

we see that the above conjecture can be re-formulated as follows:

Conjecture 1′ For any graph G with δ ≥ k − 1,

γ×k(G) ≤ ln(δ − k + 2) + ln(d̂k−1 + d̂k−2) + 1
δ − k + 2

n.

It may be pointed out that this conjecture, if true, would generalise Theorem 2 and also
Theorem 1 taking into account that d̂−1 = 0. Rautenbach and Volkmann proved the above
conjecture for the triple domination number:

Theorem 3 ([11]) For any graph G with δ ≥ 2,

γ×3(G) ≤ ln(δ − 1) + ln(d̂2 + d) + 1
δ − 1

n.

The next result generalises all the above theorems, but it is still far from Conjecture 1′.

Theorem 4 ([3]) For any graph G with δ ≥ k − 1,

γ×k(G) ≤
ln(δ − k + 2) + ln

(∑k−1
m=1(k −m)d̂m + ε

)
+ 1

δ − k + 2
n,

where ε = 1 if k = 1 or 2, and ε = −d if k ≥ 3.
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3 Proof of the Conjecture

The following theorem proves Rautenbach–Volkmann’s conjecture.

Theorem 5 For any graph G with δ ≥ k − 1,

γ×k(G) ≤ ln(δ − k + 2) + ln(d̂k−1 + d̂k−2) + 1
δ − k + 2

n.

Proof: Let A be a set formed by an independent choice of vertices of G, where each vertex is
selected with the probability p, 0 ≤ p ≤ 1. For m = 0, 1, ..., k − 1, let us denote

Bm = {vi ∈ V (G)−A : |N(vi) ∩A| = m}.

Also, for m = 0, 1, ..., k − 2, we denote

Am = {vi ∈ A : |N(vi) ∩A| = m}.

For each set Am, we form a set A′
m in the following way. For every vertex in the set Am, we

take k −m− 1 neighbours not in A and add them to A′
m. Such neighbours always exist because

δ ≥ k − 1. It is obvious that |A′
m| ≤ (k − m − 1)|Am|. For each set Bm, we form a set B′

m by
taking k −m− 1 neighbours not in A for every vertex in Bm. We have |B′

m| ≤ (k −m− 1)|Bm|.
We construct the set D as follows:

D = A ∪
(

k−2⋃
m=0

A′
m

)
∪
(

k−1⋃
m=0

Bm ∪B′
m

)
.

The set D is a k-tuple dominating set. Indeed, if there is a vertex v which is not k-tuple dominated
by D, then v is not k-tuple dominated by A. Therefore, v would belong to Am or Bm for some
m, but all such vertices are k-tuple dominated by the set D by construction.

The expected value of |D| is

E(|D|) ≤ E

(
|A|+

k−2∑
m=0

|A′
m|+

k−1∑
m=0

|Bm|+
k−1∑
m=0

|B′
m|
)

≤ E

(
|A|+

k−2∑
m=0

(k −m− 1)|Am|+
k−1∑
m=0

(k −m)|Bm|
)

= E(|A|) +
k−2∑
m=0

(k −m− 1)E(|Am|) +
k−1∑
m=0

(k −m)E(|Bm|).

We have

E(|A|) =
n∑

i=1

P (vi ∈ A) = pn.

Also,

E(|Am|) =
n∑

i=1

P (vi ∈ Am)

=
n∑

i=1

p

(
di

m

)
pm(1− p)di−m

≤ pm+1(1− p)δ−m
n∑

i=1

(
di

m

)
= pm+1(1− p)δ−md̂mn
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and

E(|Bm|) =
n∑

i=1

P (vi ∈ Bm)

=
n∑

i=1

(1− p)
(

di

m

)
pm(1− p)di−m

≤ pm(1− p)δ−m+1
n∑

i=1

(
di

m

)
= pm(1− p)δ−m+1d̂mn.

Taking into account that d̂−1 = 0, we obtain

E(|D|) ≤ pn +
k−2∑
m=0

(k −m− 1)pm+1(1− p)δ−md̂mn +
k−1∑
m=0

(k −m)pm(1− p)δ−m+1d̂mn

= pn +
k−1∑
m=1

(k −m)pm(1− p)δ−m+1d̂m−1n +
k−1∑
m=0

(k −m)pm(1− p)δ−m+1d̂mn

= pn +
k−1∑
m=0

(k −m)pm(1− p)δ−m+1(d̂m−1 + d̂m)n

= pn + (1− p)δ−k+2n
k−1∑
m=0

(k −m)pm(1− p)k−m−1(d̂m−1 + d̂m).

Let us denote
µ = δ − k + 2.

Using the inequality 1− x ≤ e−x, we obtain

(1− p)δ−k+2 = (1− p)µ ≤ e−pµ.

Thus,
E(|D|) ≤ pn + e−pµnΘ,

where

Θ =
k−1∑
m=0

(k −m)pm(1− p)k−m−1(d̂m + d̂m−1). (1)

We will prove that
Θ ≤ d̂k−1 + d̂k−2.

We have

Θ =
k−1∑
m=0

(k −m)(d̂m + d̂m−1)
k−m−1∑

i=0

(−1)i

(
k −m− 1

i

)
pm+i

= k(d̂0 + d̂−1)
(

k − 1
0

)
p0 − k(d̂0 + d̂−1)

(
k − 1

1

)
p1 + ... + k(d̂0 + d̂−1)

(
k − 1
k − 1

)
(−1)k−1pk−1

+(k − 1)(d̂1 + d̂0)
(

k − 2
0

)
p1 + ... + (k − 1)(d̂1 + d̂0)

(
k − 2
k − 2

)
(−1)k−2pk−1

...

...

...
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+(1)(d̂k−1 + d̂k−2)
(

0
0

)
(−1)0pk−1

=
k−1∑
j=0

( k−j−1∑
i=0

(−1)i

(
i + j

i

)
(i + j + 1)(d̂k−i−j−1 + d̂k−i−j−2)

)
pk−j−1

=
k−1∑
j=0

sjp
k−j−1,

where

sj =
k−j−1∑

i=0

(−1)i
(

i + j
i

)
(i + j + 1)(d̂k−i−j−1 + d̂k−i−j−2)

(taking into account that d̂−1 = 0)

=
k−j−1∑

i=0

(−1)i
(

i + j
i

)
(i + j + 1)d̂k−i−j−1 +

k−j−2∑
i=0

(−1)i
(

i + j
i

)
(i + j + 1)d̂k−i−j−2

=
(

j
0

)
(j + 1)d̂k−j−1 +

k−j−1∑
i=1

(−1)i
(

i + j
i

)
(i + j + 1)d̂k−i−j−1

+
k−j−1∑

i=1

(−1)i−1
(

i + j − 1
i− 1

)
(i + j)d̂k−i−j−1

= (j + 1)d̂k−j−1 +
k−j−1∑

i=1

(−1)i(j + 1)
(

i + j
i

)
d̂k−i−j−1

= (j + 1)
k−j−1∑

i=0

(−1)i
(

i + j
i

)
d̂k−i−j−1

= (j + 1)
k−j−1∑

i=0

(−1)i
(

i + j
i

) n∑
l=1

(
dl

k − i− j − 1

)
/n

= (j + 1)
n∑

l=1

k−j−1∑
i=0

(−1)i
(

i + j
i

)(
dl

k − i− j − 1

)
/n

= (j + 1)
n∑

l=1

(
dl − j − 1
k − j − 1

)
/n (by Lemma 3)

≥ 0.

Thus, the function Θ(p) = s0p
k−1 + s1p

k−2 + ... + sk−1 is monotonously increasing in 0 ≤ p ≤ 1.
Therefore, (1) implies

Θ ≤ d̂k−1 + d̂k−2.

We obtain
E(|D|) ≤ pn + e−pµnΘ ≤ pn + e−pµn(d̂k−1 + d̂k−2).

Let us denote
f(p) = pn + e−pµn(d̂k−1 + d̂k−2).

For p ∈ [0, 1], the function f(p) is minimised at the point min{1, z}, where

z =
lnµ + ln(d̂k−1 + d̂k−2)

µ
.
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There are two cases to consider.
If z ≤ 1, then

E(|D|) ≤ f(z) =
(

z +
1
µ

)
n =

lnµ + ln(d̂k−1 + d̂k−2) + 1
µ

n.

Since the expected value is an average value, there exists a particular k-tuple dominating set of
order at most f(z), as required.

Suppose now that z > 1. Taking into account that µ > 0, we obtain

γ×k(G) ≤ n <

(
z +

1
µ

)
n =

lnµ + ln(d̂k−1 + d̂k−2) + 1
µ

n,

as required. The proof of Theorem 5 is complete.

For s ≥ 1, let us denote

T s
t =

(
s
t

)
−
(

s
t− 1

)
+ ... + (−1)t

(
s
0

)
.

Lemma 1
T s

t =
(

s− 1
t

)
.

Proof: Induction on t:

T s
t =

(
s
t

)
− T s

t−1 =
(

s
t

)
−
(

s− 1
t− 1

)
=
(

s− 1
t

)
.

Lemma 2 For j ≥ 1, (
j − 1

0

)
+
(

j
1

)
+ ... +

(
j + i− 1

i

)
=
(

j + i
i

)
.

Proof: Induction on i:(
j − 1

0

)
+
(

j
1

)
+ ... +

(
j + i− 1

i

)
=
(

j + i− 1
i− 1

)
+
(

j + i− 1
i

)
=
(

j + i
i

)
.

Lemma 3
l∑

i=0

(−1)i
(

i + j
i

)(
r

l − i

)
=
(

r − j − 1
l

)
.

Proof: Induction on j. If j = 0, then

l∑
i=0

(−1)i
(

i + j
i

)(
r

l − i

)
=

l∑
i=0

(−1)i
(

r
l − i

)
= T r

l =
(

r − 1
l

)
,

as required.
Suppose that j ≥ 1 and the equation of Lemma 3 is true for any j′ ≤ j−1. Applying Lemmas

1 and 2, we obtain:
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l∑
i=0

(−1)i
(

i + j
i

)(
r

l − i

)
=

l∑
i=0

(−1)i

((
j − 1

0

)
+
(

j
1

)
+ ... +

(
j + i− 1

i

))(
r

l − i

)

=
(

j − 1
0

) l∑
i=0

(−1)i
(

r
l − i

)
+
(

j
1

) l∑
i=1

(−1)i
(

r
l − i

)
+ ...

+
(

j + l − 1
l

) l∑
i=l

(−1)l
(

r
0

)

=
(

j − 1
0

)
T r

l −
(

j
1

)
T r

l−1 + ... +
(

j + l − 1
l

)
(−1)lT r

0

=
l∑

i=0

(−1)i
(

j + i− 1
i

)
T r

l−i

=
l∑

i=0

(−1)i
(

j + i− 1
i

)(
r − 1
l − i

)
=

(
r − j − 1

l

)
. (by hypothesis)
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