The k-Tuple Domination Number Revisited

Vadim Zverovich
Faculty of Computing, Engineering and Mathematical Sciences
University of the West of England
Bristol, BS16 1QY
UK
vadim.zverovich@uwe.ac.uk

Abstract

The following fundamental result for the domination number $\gamma(G)$ of a graph G was proved by Alon and Spencer, Arnautov, Lovász and Payan: $$
\gamma(G) \leq \frac{\ln (\delta+1)+1}{\delta+1} n
$$ where n is the order and δ is the minimum degree of vertices of G. A similar upper bound for the double domination number was found by Harant and Henning [On double domination in graphs. Discuss. Math. Graph Theory 25 (2005) 29-34], and for the triple domination number by Rautenbach and Volkmann [New bounds on the k-domination number and the k-tuple domination number. Applied Math. Letters 20 (2007) 98-102], who also posed the interesting conjecture on the k-tuple domination number: for any graph G with $\delta \geq k-1$,

$$
\gamma_{\times k}(G) \leq \frac{\ln (\delta-k+2)+\ln \left(\widehat{d}_{k-1}+\widehat{d}_{k-2}\right)+1}{\delta-k+2} n
$$

where $\widehat{d}_{m}=\sum_{i=1}^{n}\binom{d_{i}}{m} / n$ is the m-degree of G. This conjecture, if true, would generalise all the mentioned upper bounds and improve an upper bound proved in [A. Gagarin and V. Zverovich, A generalised upper bound for the k-tuple domination number. Discrete Math. (to appear)].

In this paper, we prove Rautenbach-Volkmann's conjecture.
Keywords: graphs, domination number, double domination, triple domination, k-tuple domination.

1 Notation

All graphs will be finite and undirected without loops and multiple edges. If G is a graph of order n, then $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is the set of vertices in G, d_{i} denotes the degree of v_{i} and $d=\sum_{i=1}^{n} d_{i} / n$ is the average degree of G. Let $N(x)$ denote the neighbourhood of a vertex x. Also let $N(X)=\cup_{x \in X} N(x)$ and $N[X]=N(X) \cup X$. Denote by $\delta(G)$ and $\Delta(G)$ the minimum and maximum degrees of vertices of G, respectively. Put $\delta=\delta(G)$ and $\Delta=\Delta(G)$. A set X is called a dominating set if every vertex not in X is adjacent to a vertex in X. The minimum cardinality of a dominating set of G is the domination number $\gamma(G)$. A set X is called a k-tuple dominating set of G if for every vertex $v \in V(G),|N[v] \cap X| \geq k$. The minimum cardinality of a k-tuple dominating set of G is the k-tuple domination number $\gamma_{\times k}(G)$. The k-tuple domination number is only defined for graphs with $\delta \geq k-1$. It is easy to see that $\gamma(G)=\gamma_{\times 1}(G)$ and $\gamma_{\times k}(G) \leq \gamma_{\times k^{\prime}}(G)$ for $k \leq k^{\prime}$. The 2-tuple domination number $\gamma_{\times 2}(G)$ is called the double domination number and the 3 -tuple domination number $\gamma_{\times 3}(G)$ is called the triple domination number. A number of interesting results on the k-tuple domination number can be found in [3]-[8] and [11].

2 Introduction

The following fundamental result was proved by many authors:
Theorem $1([\mathbf{1}, \mathbf{2}, \mathbf{9}, \mathbf{1 0}])$ For any graph G,

$$
\gamma(G) \leq \frac{\ln (\delta+1)+1}{\delta+1} n
$$

A similar upper bound for the double domination number was found by Harant and Henning [4]:

Theorem 2 ([4]) For any graph G with $\delta \geq 1$,

$$
\gamma_{\times 2}(G) \leq \frac{\ln \delta+\ln (d+1)+1}{\delta} n
$$

Rautenbach and Volkmann posed the following interesting conjecture for the k-tuple domination number:

Conjecture 1 ([11]) For any graph G with $\delta \geq k-1$,

$$
\gamma_{\times k}(G) \leq \frac{\ln (\delta-k+2)+\ln \left(\sum_{i=1}^{n}\binom{d_{i}+1}{k-1}\right)-\ln (n)+1}{\delta-k+2} n
$$

For $m \leq \delta$, let us define the m-degree \widehat{d}_{m} of a graph G as follows:

$$
\widehat{d}_{m}=\widehat{d}_{m}(G)=\sum_{i=1}^{n}\binom{d_{i}}{m} / n
$$

Note that \widehat{d}_{1} is the average degree d of a graph and $\widehat{d}_{0}=1$. Also, we put $\widehat{d}_{-1}=0$.
Since

$$
\binom{d_{i}+1}{k-1}=\binom{d_{i}}{k-1}+\binom{d_{i}}{k-2}
$$

we see that the above conjecture can be re-formulated as follows:
Conjecture $\mathbf{1}^{\prime}$ For any graph G with $\delta \geq k-1$,

$$
\gamma_{\times k}(G) \leq \frac{\ln (\delta-k+2)+\ln \left(\widehat{d}_{k-1}+\widehat{d}_{k-2}\right)+1}{\delta-k+2} n
$$

It may be pointed out that this conjecture, if true, would generalise Theorem 2 and also Theorem 1 taking into account that $\widehat{d}_{-1}=0$. Rautenbach and Volkmann proved the above conjecture for the triple domination number:

Theorem 3 ([11]) For any graph G with $\delta \geq 2$,

$$
\gamma_{\times 3}(G) \leq \frac{\ln (\delta-1)+\ln \left(\widehat{d}_{2}+d\right)+1}{\delta-1} n
$$

The next result generalises all the above theorems, but it is still far from Conjecture 1^{\prime}.
Theorem 4 ([3]) For any graph G with $\delta \geq k-1$,

$$
\gamma_{\times k}(G) \leq \frac{\ln (\delta-k+2)+\ln \left(\sum_{m=1}^{k-1}(k-m) \widehat{d}_{m}+\epsilon\right)+1}{\delta-k+2} n
$$

where $\epsilon=1$ if $k=1$ or 2 , and $\epsilon=-d$ if $k \geq 3$.

3 Proof of the Conjecture

The following theorem proves Rautenbach-Volkmann's conjecture.
Theorem 5 For any graph G with $\delta \geq k-1$,

$$
\gamma_{\times k}(G) \leq \frac{\ln (\delta-k+2)+\ln \left(\widehat{d}_{k-1}+\widehat{d}_{k-2}\right)+1}{\delta-k+2} n .
$$

Proof: Let A be a set formed by an independent choice of vertices of G, where each vertex is selected with the probability $p, 0 \leq p \leq 1$. For $m=0,1, \ldots, k-1$, let us denote

$$
B_{m}=\left\{v_{i} \in V(G)-A:\left|N\left(v_{i}\right) \cap A\right|=m\right\}
$$

Also, for $m=0,1, \ldots, k-2$, we denote

$$
A_{m}=\left\{v_{i} \in A:\left|N\left(v_{i}\right) \cap A\right|=m\right\}
$$

For each set A_{m}, we form a set A_{m}^{\prime} in the following way. For every vertex in the set A_{m}, we take $k-m-1$ neighbours not in A and add them to A_{m}^{\prime}. Such neighbours always exist because $\delta \geq k-1$. It is obvious that $\left|A_{m}^{\prime}\right| \leq(k-m-1)\left|A_{m}\right|$. For each set B_{m}, we form a set B_{m}^{\prime} by taking $k-m-1$ neighbours not in A for every vertex in B_{m}. We have $\left|B_{m}^{\prime}\right| \leq(k-m-1)\left|B_{m}\right|$.

We construct the set D as follows:

$$
D=A \cup\left(\bigcup_{m=0}^{k-2} A_{m}^{\prime}\right) \cup\left(\bigcup_{m=0}^{k-1} B_{m} \cup B_{m}^{\prime}\right)
$$

The set D is a k-tuple dominating set. Indeed, if there is a vertex v which is not k-tuple dominated by D, then v is not k-tuple dominated by A. Therefore, v would belong to A_{m} or B_{m} for some m, but all such vertices are k-tuple dominated by the set D by construction.

The expected value of $|D|$ is

$$
\begin{aligned}
E(|D|) & \leq E\left(|A|+\sum_{m=0}^{k-2}\left|A_{m}^{\prime}\right|+\sum_{m=0}^{k-1}\left|B_{m}\right|+\sum_{m=0}^{k-1}\left|B_{m}^{\prime}\right|\right) \\
& \leq E\left(|A|+\sum_{m=0}^{k-2}(k-m-1)\left|A_{m}\right|+\sum_{m=0}^{k-1}(k-m)\left|B_{m}\right|\right) \\
& =E(|A|)+\sum_{m=0}^{k-2}(k-m-1) E\left(\left|A_{m}\right|\right)+\sum_{m=0}^{k-1}(k-m) E\left(\left|B_{m}\right|\right)
\end{aligned}
$$

We have

$$
E(|A|)=\sum_{i=1}^{n} P\left(v_{i} \in A\right)=p n
$$

Also,

$$
\begin{aligned}
E\left(\left|A_{m}\right|\right) & =\sum_{i=1}^{n} P\left(v_{i} \in A_{m}\right) \\
& =\sum_{i=1}^{n} p\binom{d_{i}}{m} p^{m}(1-p)^{d_{i}-m} \\
& \leq p^{m+1}(1-p)^{\delta-m} \sum_{i=1}^{n}\binom{d_{i}}{m} \\
& =p^{m+1}(1-p)^{\delta-m} \widehat{d}_{m} n
\end{aligned}
$$

and

$$
\begin{aligned}
E\left(\left|B_{m}\right|\right) & =\sum_{i=1}^{n} P\left(v_{i} \in B_{m}\right) \\
& =\sum_{i=1}^{n}(1-p)\binom{d_{i}}{m} p^{m}(1-p)^{d_{i}-m} \\
& \leq p^{m}(1-p)^{\delta-m+1} \sum_{i=1}^{n}\binom{d_{i}}{m} \\
& =p^{m}(1-p)^{\delta-m+1} \widehat{d}_{m} n .
\end{aligned}
$$

Taking into account that $\widehat{d}_{-1}=0$, we obtain

$$
\begin{aligned}
E(|D|) & \leq p n+\sum_{m=0}^{k-2}(k-m-1) p^{m+1}(1-p)^{\delta-m} \widehat{d}_{m} n+\sum_{m=0}^{k-1}(k-m) p^{m}(1-p)^{\delta-m+1} \widehat{d}_{m} n \\
& =p n+\sum_{m=1}^{k-1}(k-m) p^{m}(1-p)^{\delta-m+1} \widehat{d}_{m-1} n+\sum_{m=0}^{k-1}(k-m) p^{m}(1-p)^{\delta-m+1} \widehat{d}_{m} n \\
& =p n+\sum_{m=0}^{k-1}(k-m) p^{m}(1-p)^{\delta-m+1}\left(\widehat{d}_{m-1}+\widehat{d}_{m}\right) n \\
& =p n+(1-p)^{\delta-k+2} n \sum_{m=0}^{k-1}(k-m) p^{m}(1-p)^{k-m-1}\left(\widehat{d}_{m-1}+\widehat{d}_{m}\right) .
\end{aligned}
$$

Let us denote

$$
\mu=\delta-k+2
$$

Using the inequality $1-x \leq e^{-x}$, we obtain

$$
(1-p)^{\delta-k+2}=(1-p)^{\mu} \leq e^{-p \mu} .
$$

Thus,

$$
E(|D|) \leq p n+e^{-p \mu} n \Theta
$$

where

$$
\begin{equation*}
\Theta=\sum_{m=0}^{k-1}(k-m) p^{m}(1-p)^{k-m-1}\left(\widehat{d}_{m}+\widehat{d}_{m-1}\right) . \tag{1}
\end{equation*}
$$

We will prove that

$$
\Theta \leq \widehat{d}_{k-1}+\widehat{d}_{k-2}
$$

We have

$$
\begin{aligned}
& \Theta= \sum_{m=0}^{k-1}(k-m)\left(\widehat{d}_{m}+\widehat{d}_{m-1}\right) \sum_{i=0}^{k-m-1}(-1)^{i}\binom{k-m-1}{i} p^{m+i} \\
&= k\left(\widehat{d}_{0}+\widehat{d}_{-1}\right)\binom{k-1}{0} p^{0}-k\left(\widehat{d}_{0}+\widehat{d}_{-1}\right)\binom{k-1}{1} p^{1}+\ldots+k\left(\widehat{d}_{0}+\widehat{d}_{-1}\right)\binom{k-1}{k-1}(-1)^{k-1} p^{k-1} \\
& \quad+(k-1)\left(\widehat{d}_{1}+\widehat{d}_{0}\right)\binom{k-2}{0} p^{1}+\ldots+(k-1)\left(\widehat{d}_{1}+\widehat{d}_{0}\right)\binom{k-2}{k-2}(-1)^{k-2} p^{k-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j=0}^{k-1}\left(\sum_{i=0}^{k-j-1}(-1)^{i}\binom{i+j}{i}(i+j+1)\left(\widehat{d}_{k-1}+\widehat{d}_{k-2}\right)\binom{0}{0}(-1)^{0} p^{k-1}\right. \\
& =\sum_{j=0}^{k-1} s_{j} p^{k-j-1}
\end{aligned}
$$

where

$$
\begin{aligned}
& s_{j}=\sum_{i=0}^{k-j-1}(-1)^{i}\binom{i+j}{i}(i+j+1)\left(\widehat{d}_{k-i-j-1}+\widehat{d}_{k-i-j-2}\right) \\
& \text { (taking into account that } \widehat{d}_{-1}=0 \text {) } \\
& =\sum_{i=0}^{k-j-1}(-1)^{i}\binom{i+j}{i}(i+j+1) \widehat{d}_{k-i-j-1}+\sum_{i=0}^{k-j-2}(-1)^{i}\binom{i+j}{i}(i+j+1) \widehat{d}_{k-i-j-2} \\
& =\binom{j}{0}(j+1) \widehat{d}_{k-j-1}+\sum_{i=1}^{k-j-1}(-1)^{i}\binom{i+j}{i}(i+j+1) \widehat{d}_{k-i-j-1} \\
& +\sum_{i=1}^{k-j-1}(-1)^{i-1}\binom{i+j-1}{i-1}(i+j) \widehat{d}_{k-i-j-1} \\
& =(j+1) \widehat{d}_{k-j-1}+\sum_{i=1}^{k-j-1}(-1)^{i}(j+1)\binom{i+j}{i} \widehat{d}_{k-i-j-1} \\
& =(j+1) \sum_{i=0}^{k-j-1}(-1)^{i}\binom{i+j}{i} \widehat{d}_{k-i-j-1} \\
& =(j+1) \sum_{i=0}^{k-j-1}(-1)^{i}\binom{i+j}{i} \sum_{l=1}^{n}\binom{d_{l}}{k-i-j-1} / n \\
& =(j+1) \sum_{l=1}^{n} \sum_{i=0}^{k-j-1}(-1)^{i}\binom{i+j}{i}\binom{d_{l}}{k-i-j-1} / n \\
& =(j+1) \sum_{l=1}^{n}\binom{d_{l}-j-1}{k-j-1} / n \\
& \geq 0 \text {. }
\end{aligned}
$$

Thus, the function $\Theta(p)=s_{0} p^{k-1}+s_{1} p^{k-2}+\ldots+s_{k-1}$ is monotonously increasing in $0 \leq p \leq 1$.
Therefore, (1) implies

$$
\Theta \leq \widehat{d}_{k-1}+\widehat{d}_{k-2}
$$

We obtain

$$
E(|D|) \leq p n+e^{-p \mu} n \Theta \leq p n+e^{-p \mu} n\left(\widehat{d}_{k-1}+\widehat{d}_{k-2}\right) .
$$

Let us denote

$$
f(p)=p n+e^{-p \mu} n\left(\widehat{d}_{k-1}+\widehat{d}_{k-2}\right) .
$$

For $p \in[0,1]$, the function $f(p)$ is minimised at the point $\min \{1, z\}$, where

$$
z=\frac{\ln \mu+\ln \left(\widehat{d}_{k-1}+\widehat{d}_{k-2}\right)}{\mu} .
$$

There are two cases to consider.
If $z \leq 1$, then

$$
E(|D|) \leq f(z)=\left(z+\frac{1}{\mu}\right) n=\frac{\ln \mu+\ln \left(\widehat{d}_{k-1}+\widehat{d}_{k-2}\right)+1}{\mu} n .
$$

Since the expected value is an average value, there exists a particular k-tuple dominating set of order at most $f(z)$, as required.

Suppose now that $z>1$. Taking into account that $\mu>0$, we obtain

$$
\gamma_{\times k}(G) \leq n<\left(z+\frac{1}{\mu}\right) n=\frac{\ln \mu+\ln \left(\widehat{d}_{k-1}+\widehat{d}_{k-2}\right)+1}{\mu} n,
$$

as required. The proof of Theorem 5 is complete.
For $s \geq 1$, let us denote

$$
T_{t}^{s}=\binom{s}{t}-\binom{s}{t-1}+\ldots+(-1)^{t}\binom{s}{0} .
$$

Lemma 1

$$
T_{t}^{s}=\binom{s-1}{t}
$$

Proof: Induction on t :

$$
T_{t}^{s}=\binom{s}{t}-T_{t-1}^{s}=\binom{s}{t}-\binom{s-1}{t-1}=\binom{s-1}{t} .
$$

Lemma 2 For $j \geq 1$,

$$
\binom{j-1}{0}+\binom{j}{1}+\ldots+\binom{j+i-1}{i}=\binom{j+i}{i}
$$

Proof: Induction on i :

$$
\binom{j-1}{0}+\binom{j}{1}+\ldots+\binom{j+i-1}{i}=\binom{j+i-1}{i-1}+\binom{j+i-1}{i}=\binom{j+i}{i} .
$$

Lemma 3

$$
\sum_{i=0}^{l}(-1)^{i}\binom{i+j}{i}\binom{r}{l-i}=\binom{r-j-1}{l} .
$$

Proof: Induction on j. If $j=0$, then

$$
\sum_{i=0}^{l}(-1)^{i}\binom{i+j}{i}\binom{r}{l-i}=\sum_{i=0}^{l}(-1)^{i}\binom{r}{l-i}=T_{l}^{r}=\binom{r-1}{l}
$$

as required.
Suppose that $j \geq 1$ and the equation of Lemma 3 is true for any $j^{\prime} \leq j-1$. Applying Lemmas 1 and 2 , we obtain:

$$
\begin{aligned}
& \sum_{i=0}^{l}(-1)^{i}\binom{i+j}{i}\binom{r}{l-i}=\sum_{i=0}^{l}(-1)^{i}\left(\binom{j-1}{0}+\binom{j}{1}+\ldots+\binom{j+i-1}{i}\right)\binom{r}{l-i} \\
& =\binom{j-1}{0} \sum_{i=0}^{l}(-1)^{i}\binom{r}{l-i}+\binom{j}{1} \sum_{i=1}^{l}(-1)^{i}\binom{r}{l-i}+\ldots \\
& +\binom{j+l-1}{l} \sum_{i=l}^{l}(-1)^{l}\binom{r}{0} \\
& =\binom{j-1}{0} T_{l}^{r}-\binom{j}{1} T_{l-1}^{r}+\ldots+\binom{j+l-1}{l}(-1)^{l} T_{0}^{r} \\
& =\sum_{i=0}^{l}(-1)^{i}\binom{j+i-1}{i} T_{l-i}^{r} \\
& =\sum_{i=0}^{l}(-1)^{i}\binom{j+i-1}{i}\binom{r-1}{l-i} \\
& =\binom{r-j-1}{l} . \quad \text { (by hypothesis) }
\end{aligned}
$$

References

[1] N. Alon and J.H. Spencer, The Probabilistic Method, John Wiley and Sons, Inc., 1992.
[2] V.I. Arnautov, Estimation of the exterior stability number of a graph by means of the minimal degree of the vertices. Prikl. Mat. i Programmirovanie (11)(1974) 3-8.
[3] A. Gagarin and V. Zverovich, A generalised upper bound for the k-tuple domination number. Discrete Math. (to appear)
[4] J. Harant and M.A. Henning, On double domination in graphs. Discuss. Math. Graph Theory 25 (2005) 29-34.
[5] F. Harary and T.W. Haynes, Double domination in graphs. Ars Combin. 55 (2000) 201-213.
[6] F. Harary and T.W. Haynes, Nordhaus-Gaddum inequalities for domination in graphs. Discrete Math. 155 (1996) 99-105.
[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[8] R. Klasing and C. Laforest, Hardness results and approximation algorithms of k-tuple domination in graphs. Inform. Processing Letters 89 (2)(2004) 75-83.
[9] L. Lovász, On the ratio of optimal integral and fractional covers. Discrete Math. 13 (1975) 383-390.
[10] C. Payan, Sur le nombre d'absorption d'un graphe simple. Cahiers Centre Études Recherche Opér. 17 (1975) 307-317.
[11] D. Rautenbach and L. Volkmann, New bounds on the k-domination number and the k-tuple domination number. Applied Math. Letters 20 (2007) 98-102.

