137 research outputs found

    On inversely proportional hypermutations with mutation potential

    Get PDF
    Artificial Immune Systems (AIS) employing hypermutations with linear static mutation potential have recently been shown to be very effective at escaping local optima of combinatorial optimisation problems at the expense of being slower during the exploitation phase compared to standard evolutionary algorithms. In this paper we prove that considerable speed-ups in the exploitation phase may be achieved with dynamic inversely proportional mutation potentials (IPM) and argue that the potential should decrease inversely to the distance to the optimum rather than to the difference in fitness. Afterwards we define a simple (1+1)~Opt-IA, that uses IPM hypermutations and ageing, for realistic applications where optimal solutions are unknown. The aim of the AIS is to approximate the ideal behaviour of the inversely proportional hypermutations better and better as the search space is explored. We prove that such desired behaviour, and related speed-ups, occur for a well-studied bimodal benchmark function called \textsc{TwoMax}. Furthermore, we prove that the (1+1)~Opt-IA with IPM efficiently optimises a third bimodal function, \textsc{Cliff}, by escaping its local optima while Opt-IA with static potential cannot, thus requires exponential expected runtime in the distance between the cliff and the optimum

    Artificial Immune Systems for Combinatorial Optimisation: A Theoretical Investigation

    Get PDF
    We focus on the clonal selection inspired computational models of the immune system developed for general-purpose optimisation. Our aim is to highlight when these artificial immune systems (AIS) are more efficient than evolutionary algorithms (EAs). Compared to traditional EAs, AIS use considerably higher mutation rates (hypermutations) for variation, give higher selection probabilities to more recent solutions and lower selection probabilities to older ones (ageing). We consider the standard Opt-IA that includes both of the AIS distinguishing features and argue why it is of greater applicability than other popular AIS. Our first result is the proof that the stop at first constructive mutation version of its hypermutation operator is essential. Without it, the hypermutations cannot optimise any function with an arbitrary polynomial number of optima. Afterwards we show that the hypermutations are exponentially faster than the standard bit mutation operator used in traditional EAs at escaping from local optima of standard benchmark function classes and of the NP-hard Partition problem. If the basin of attraction of the local optima is not too large, then ageing allows even greater speed-ups. For the Cliff benchmark function this can make the difference between exponential and quasi-linear expected time. If the basin of attraction is too large, then ageing can implicitly detect the local optimum and escape it by automatically restarting the search process. The described power of hypermutations and ageing allows us to prove that they guarantee (1+epsilon) approximations for Partition in expected polynomial time for any constant epsilon. These features come at the expense of the hypermutations being a linear factor slower than EAs for standard unimodal benchmark functions and of eliminating the power of ageing at escaping local optima in the complete Opt-IA. We show that hypermutating with inversely proportional rates mitigates such drawbacks at the expense of losing the explorative advantages of the standard operator. We conclude the thesis by designing fast hypermutation operators that are provably a linear factor faster than the traditional ones for the unimodal benchmark functions and Partition, while maintaining explorative power and working in harmony together with ageing

    When hypermutations and ageing enable artificial immune systems to outperform evolutionary algorithms

    Get PDF
    We present a time complexity analysis of the Opt-IA artificial immune system (AIS). We first highlight the power and limitations of its distinguishing operators (i.e., hypermutations with mutation potential and ageing) by analysing them in isolation. Recent work has shown that ageing combined with local mutations can help escape local optima on a dynamic optimisation benchmark function. We generalise this result by rigorously proving that, compared to evolutionary algorithms (EAs), ageing leads to impressive speed-ups on the standard Image 1 benchmark function both when using local and global mutations. Unless the stop at first constructive mutation (FCM) mechanism is applied, we show that hypermutations require exponential expected runtime to optimise any function with a polynomial number of optima. If instead FCM is used, the expected runtime is at most a linear factor larger than the upper bound achieved for any random local search algorithm using the artificial fitness levels method. Nevertheless, we prove that algorithms using hypermutations can be considerably faster than EAs at escaping local optima. An analysis of the complete Opt-IA reveals that it is efficient on the previously considered functions and highlights problems where the use of the full algorithm is crucial. We complete the picture by presenting a class of functions for which Opt-IA fails with overwhelming probability while standard EAs are efficient

    Theoretical foundations of artificial immune systems

    Get PDF
    Artificial immune systems (AIS) are a special class of biologically inspired algorithms, which are based on the immune system of vertebrates. The field constitutes a relatively new and emerging area of research in Computational Intelligence that has achieved various promising results in different areas of application, e.g., learning, classification, anomaly detection, and (function) optimization. An increasing and often stated problem of the field is the lack of a theoretical basis for AIS as most work so far only concentrated on the direct application of immune principles. In this thesis, we concentrate on optimization applications of AIS. It can easily be recognized that with respect to this application area, the work done previously mainly covers convergence analysis. To the best of our knowledge this thesis constitutes the first rigorous runtime analyses of immune-inspired operators and thus adds substantially to the demanded theoretical foundation of AIS. We consider two very common aspects of AIS. On one hand, we provide a theoretical analysis for different hypermutation operators frequently employed in AIS. On the other hand, we examine a popular diversity mechanism named aging. We compare our findings with corresponding results from the analysis of other nature-inspired randomized search heuristics, in particular evolutionary algorithms. Moreover, we focus on the practical implications of our theoretical results in order to bridge the gap between theory and practice. Therefore, we derive guidelines for parameter settings and point out typical situations where certain concepts seem promising. These analyses contribute to the understanding of how AIS actually work and in which applications they excel other randomized search heuristics

    Artificial immune systems can find arbitrarily good approximations for the NP-hard number partitioning problem

    Get PDF
    Typical artificial immune system (AIS) operators such as hypermutations with mutation potential and ageing allow to efficiently overcome local optima from which evolutionary algorithms (EAs) struggle to escape. Such behaviour has been shown for artificial example functions constructed especially to show difficulties that EAs may encounter during the optimisation process. However, no evidence is available indicating that these two operators have similar behaviour also in more realistic problems. In this paper we perform an analysis for the standard NP-hard Partition problem from combinatorial optimisation and rigorously show that hypermutations and ageing allow AISs to efficiently escape from local optima where standard EAs require exponential time. As a result we prove that while EAs and random local search (RLS) may get trapped on 4/3 approximations, AISs find arbitrarily good approximate solutions of ratio (1+) within n(−(2/)−1)(1 − )−2e322/ + 2n322/ + 2n3 function evaluations in expectation. This expectation is polynomial in the problem size and exponential only in 1/

    Solving the Response Time Variability Problem by means of a psychoclonal approach

    Get PDF
    The Response Time Variability Problem (RTVP) is a combinatorial scheduling problem which has recently appeared in the literature. This problem has a wide range of reallife applications in, for example, manufacturing, hard real-time systems, operating systems and network environment. Originally, the RTVP occurs whenever products, clients or jobs need to be sequenced in such a way that the variability in the time between the instants at which they receive the necessary resources is minimized. Since RTVP is hard to solve, heuristic techniques are needed for solving it. In a previous study, three metaheuristic algorithms (a multi-start, a GRASP and a PSO algorithm) were proposed to solve the RTVP. These three metaheuristic algorithms have been the most efficient to date in solving non-small instances of the RTVP. We propose solving the RTVP by means of a psychoclonal algorithm based approach. The psychoclonal algorithm inherits its attributes from the need hierarchy theory proposed by Maslow and the artificial immune system (AIS) approach, specifically the clonal selection principle. In this paper we compare the proposed psychoclonal algorithm with the other three metaheuristic algorithms previously mentioned and show that, on average, the psychoclonal algorithm strongly improves the obtained results
    • …
    corecore