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Abstract. The Response Time Variability Problem (RTVP) is a combinatorial scheduling 
problem which has recently appeared in the literature. This problem has a wide range of real-
life applications in, for example, manufacturing, hard real-time systems, operating systems 
and network environment. Originally, the RTVP occurs whenever products, clients or jobs 
need to be sequenced in such a way that the variability in the time between the instants at 
which they receive the necessary resources is minimized. Since RTVP is hard to solve, 
heuristic techniques are needed for solving it. In a previous study, three metaheuristic 
algorithms (a multi-start, a GRASP and a PSO algorithm) were proposed to solve the RTVP. 
These three metaheuristic algorithms have been the most efficient to date in solving non-small 
instances of the RTVP. We propose solving the RTVP by means of a psychoclonal algorithm 
based approach. The psychoclonal algorithm inherits its attributes from the need hierarchy 
theory proposed by Maslow and the artificial immune system (AIS) approach, specifically the 
clonal selection principle. In this paper we compare the proposed psychoclonal algorithm with 
the other three metaheuristic algorithms previously mentioned and show that, on average, the 
psychoclonal algorithm strongly improves the obtained results. 

Keywords: response time variability, fair sequences, scheduling, psychoclonal algorithm, 
clonal selection, metaheuristics 

 
 
1. Introduction 
 
The concept of fair sequence has emerged independently from scheduling problems of 
diverse environments, principally from manufacturing, hard real-time systems, 
operating systems and networks environments. The common framework for these 
scheduling problems is defined by Kubiak (2004) as to build a fair sequence using n 
symbols, where symbol i = 1,...,n is to occur given number di of times in the sequence. 
The fair sequence will be that one that allocates a fair share of positions in any prefix of 
the sequence to each symbol i. This fair or ideal share of positions allocated to symbol i 
in a sequence prefix of length k is proportional to a relative importance (di) of symbol i 

with respect to the total copies of competing symbols (equal to 
1

n

i
i

d
=
∑ ). There is not a 

universally definition of fairness because several reasonable metrics of fairness can be 
defined according to the specific problem. 
 
The first problem in which seems to have appeared the idea of fair sequence is the 
sequencing on the mixed-model assembly production lines at Toyota Motor Corporation 
under the just-in-time (JIT) production system. One of the most important JIT 
objectives is to get rid of all kinds of waste and inefficiency and, according to Toyota, 

                                                 
† Sponsored by the Spanish Ministry of Education and Science’s project DPI2007-61905; co-funded by the FEDER. 
* Corresponding autor: Alberto García-Villoria, IOC – Institute of Industrial and Control Engineering, Av. Diagonal 647 (Edif. 
ETSEIB), 11th floor, 08028 Barcelona, Spain; e-mail: alberto.garcia-villoria@upc.edu 

 1



the main waste is due to the stocks. To reduce the stock, JIT production systems require 
to producing only the necessary models in the necessary quantities at the necessary 
time. To achieve this, one main goal, as Monden (1983) says, is scheduling the units to 
be produced to keep a constant consumption rates of the components involved in the 
production process. Miltenburg (1989) deals with this scheduling problem and he 
assumes that models require approximately the same number and mix of parts. Thus, he 
considers only the demand rates for the models. Miltenburg proposes four objective 
functions based on the fairness idea of scheduling the models so that the proportion of 
model i produced, over each time period, to the total production is as close to its ideal 
production as possible. That is, if the number of models is n (models i = 1,...,n) and the 
units of model i to be produced is di, then the total number of units to be produced (D) is 

equal to  (time periods k = 1,...,D) and the ideal production of model i at the 

period time  

1

n

i
i

d
=
∑

 k is id k
D

. This problem is known as Product Rate Variation (PRV) problem 

(Kubiak, 1993). Kubiak and Sethi (1991, 1994) reformulated the PRV problem as an 
assignment problem and, therefore, it can be solved with an algorithm whose 
complexity is polynomial in D. 
 
Independently of assembly lines, the fair sequencing idea has appeared in computer 
multithreaded systems when Waldspurger and Weihl (1995) proposed the stride 
scheduling to resource allocation in these systems. Multithreaded systems (operating 
systems, network servers, media-based applications, etc.) need to manage the scarce 
resources in order to service requests of n clients. Resources are allocated in discrete 
time slices (authors refer to the duration of a standard time slice as a quantum). 
Resource rights are represented by tickets and each client i has a given number di of 
tickets. A fair scheduling is obtained when the resources that a client has received (i.e. 
the number of quanta in which has been assigned) during the first k allocations, k = 

1,...,D (where 
1

n

i
i

D
=

= d∑ ), are directly proportional to its ticket allocations. Thus, a 

client with twice as many tickets as another will receive twice as much of a resource in 
a given time interval. Waldspurger and Weihl suggest two metrics to evaluate the 
fairness of a sequence: the throughput error and the response time variability. The 
throughput error measures the maximum absolute deviation, for each client i and 

allocation k, between the resources received and the ideal resources id k
D

⎛
⎜
⎝ ⎠

⎞
⎟ . The 

problem of minimizing the throughput error can be efficiently solved using the Earliest 
Due Date rule defining fictitious earliest and latest due dates (see Kubiak, 2004). 
 
The problem of minimizing the response time variability is known as Response Time 
Variability Problem (RTVP). Waldspurger and Weihl define the response time as the 
elapsed time from a client’s completion of one quantum up to including its completion 
of next. Since the quantum duration is fixed, this definition is equivalent to the number 
of quanta between a client’s two consecutive quantum allocations plus one. Thus, the 
response time variability for a client is the variance of its response times.  
 
This metric is not exclusively useful on computer system environments. For example, in 
our experience with practitioners of manufacturing industries, we noticed that 
practitioners usually refer to a good mixed-model sequence not in terms of ideal 
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production as it is usual in the literature (Miltenburg, 1989), but in terms of having 
distances between the units for the same model as regular as possible (i.e. there should 
not be variance in the response times of the models). Herrmann (2007) found the RTVP 
while was working with a healthcare facility that needed to schedule the collection of 
waste from waste collection rooms throughout the building. Given data about how often 
a trash handler needs to visit each room, the facilities manager wanted these visits to 
occur as regularly as possible so that excessive waste would not collect in any room. 
For instance, if a room needs four visits per eight-hour shift, then, ideally, it would be 
visited every two hours. The problem is difficult because different rooms require a 
different number of visits per shift. Herrmann proposed a heuristic algorithm based on 
the stride scheduling for solving it. 
 
The RTVP is, unfortunately, NP-hard (Corominas et al., 2007). To solve the RTVP, 
Waldspurger and Weihl (1995) proposed the stride scheduling, which is a greedy 
heuristic algorithm. Corominas et al. (2007) proposed a mixed integer linear 
programming (MILP) model and five greedy heuristic algorithms. In Corominas et al. 
(2006), an improved MILP model is proposed (the practical limit to obtain optimal 
solutions is 40 units to be scheduled). Finally, García et al. (2006) proposed three 
metaheuristic algorithms to solve the problem. 
 
In this paper, a psychoclonal algorithm based approach is proposed to solve the RTVP. 
Psychoclonal is a very new population-based metaheuristic that was first proposed by 
Tiwari et al. (2005). This metaheuristic inherits its attributes from the need hierarchy 
theory of Maslow (1954) and the artificial immune system (AIS) approach, specifically 
the clonal selection principle (Gaspar and Collard, 2000; de Castro and von Zuben, 
2002). There are five levels of needs arranged in the Maslow’s hierarchy, named 
physiological needs, safety needs, social needs, growth needs and self-actualization 
needs. Clonal selection explains the response of immune systems to non-self antigens. 
The cells (lymphocytes) that produce antibodies that can recognize the intruding 
antigens are selected to proliferate by cloning and further are undergone to an affinity 
maturation process that consists in hypermutations in order to obtain cells that produce 
antibodies that can improve their affinities to the non-self antigens. The worst cells are 
undergone receptor editing: cells are deleted and replaced by new ones. The whole 
process continues until the self-actualization level is reached. 
 
The psychoclonal metaheuristic has yielded very good results when it has been used to 
solve several scheduling and combinatorial optimization problems (Prakash and Tiwari, 
2005; Tiwari et al., 2005; Kumar et al., 2006a; Kumar et al., 2006b; Singh et al., 2006). 
The proposed psychoclonal algorithm for solving the RTVP is compared with the more 
efficient procedures for solving non-small instances published to date: three 
metaheuristic procedures presented by García et al. (2006), which are a multi-start, a 
GRASP (Greedy Randomized Adaptive Search Procedure) and a PSO (Particle Swarm 
Optimization) algorithm. On average, the psychoclonal algorithm improves strongly on 
previous results. 
 
The rest of the paper is organized as follows. Section 2 presents a formal definition of 
the RTVP and briefly exposes the three metaheuristic procedures presented by García et 
al. (2006) for its solution. Section 3 describes the basic scheme of the psychoclonal 
metaheuristic. Section 4 proposes a psychoclonal algorithm based approach for solving 
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the RTVP. Section 5 provides the computational experiments and the comparison with 
the other metaheuristics. Finally, some conclusions are given in Section 6. 
 
 
2. The Response Time Variability Problem (RTVP) 
 
The aim of the Response Time Variability Problem (RTVP) is to minimize variability in 
the distances between any two consecutive copies of the same symbol. 
 
The RTVP is formulated as follows. Let n be the number of symbols,  the number of 
copies to be scheduled of the symbol i (i = 1,…,n) and D the total number of copies 

(

id

1

n

i
i

D d
=

=∑ ). Let s be a solution of an instance in the RTVP that consists of a circular 

sequence of copies ( ), where sj is the copy sequenced in position j of 
sequence s. For all symbol i in which , let  be the distance between the positions 
in which the copies k + 1 and k of the symbol i are found (i.e. the number of positions 
between them, where the distance between two consecutive positions is considered 
equal to 1). Since the sequence is circular, position 1 comes immediately after position 
D; therefore,  is the distance between the first copy of the symbol i in a cycle and the 

last copy of the same symbol in the preceding cycle. Let 

Dssss K21=
2id ≥ i

kt

i
di

t

it  be the average distance 
between two consecutive copies of the symbol i (

i
i d

Dt = ). For all symbol i in which 

,  is equal to 1=id it1 it . The objective is to minimize the metric Response Time 
Variability (RTV) which is defined by the following expression: 
 

 2

1 1

(
idn

i
k i

i k

RTV t t
= =

= −∑∑ )  (1) 

 
For example, let 3n = , , 2=Ad 2=Bd  and 4=Cd ; thus, 8=D , 4=At , 4=Bt  and 

2.Ct =  Any sequence is a feasible solution. For example, the sequence (C, A, C, B, C, 
B, A, C) is a solution, where ( ) )(( )2 23 4+ − ( ) ( )( )24 2 4 6 4+ − + −

8

25RTV = −

2 12+ =

 

. ( ) ( )2 2 2 2+ − + − +(2 2 3+ ) (22 1− + )( )22 2− =

 
As has been explained, the best procedures to date for solving the RTVP are three 
metaheuristic algorithms. Therefore, next these algorithms are briefly explained (for 
more details of the three algorithms, see García et al., 2006). 
 
The multi-start method is based on generating initial random solutions and on 
improving each of them to find a local optimum, which is usually done by means of a 
local search procedure (Martí, 2003). Random solutions are generated as follows. For 
each position, a symbol to be sequenced is chosen at random. The probability of each 
symbol is equal to the number of copies of this symbol that remain to be sequenced 
divided by the total number of copies that remain to be sequenced. The local search 
procedure used is applied as follows. A local search is performed iteratively in a 
neighborhood that is generated by interchanging each pair of two consecutive symbols 
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of the sequence that represents the current solution; the best solution in the 
neighborhood is chosen; the optimization ends when no neighboring solution is better 
than the current solution. 
 
GRASP, designed by Feo and Resende (1989), can be considered as a variant of the 
multi-start method in which the initial solutions are obtained using directed randomness. 
The solutions are generated by means of a greedy strategy in which random steps are 
added and the choice of elements to be included in the solution is adaptive. The random 
step in the GRASP proposed by García et al. (2006) consists of selecting the next 
symbol to be sequenced from a set called candidate list; the probability of each 
candidate symbol is proportional to the value of its Webster index, which is based on 
the parametric method of apportionment with parameter 1

2δ =  (Balinski and Young, 

1982). The Webster index for the symbol i (i = 1,…,n) is evaluated as 
( )

i

ik

d
x δ+

, where 

xik is the number of copies of the symbol i in the sequence of length k = 0,…,D (assume 
xi0 = 0). The candidate list is composed by the symbols with greater value of their 
Webster index. The local search procedure applied to the initial solutions is the same 
local search that is applied by the multi-start method. 
 
PSO is a population-based metaheuristic algorithm designed by Kennedy and Eberhart 
(1995), which is based on an analogy of the social behaviour of flocks of birds when 
they search for food. The population or swarm is composed of particles (birds), which 
have a multi dimensional real point (which represents a feasible solution) and a velocity 
(the movement of the point in the n-dimensional real space). The velocity of a particle is 
typically a linear combination of three types of velocity: 1) the inertia velocity; 2) the 
velocity to the best point found by the particle; and 3) the velocity to the best point 
found by the swarm. The PSO algorithm iteratively modifies the point and the velocity 
of each particle as it looks for the optimal solution. García et al. (2006) propose four 
PSO variations; the best of them is called PSO-M1F. Although the PSO algorithm was 
originally designed for working in a multi dimensional real space, PSO-M1F is adapted 
to work with a sequence of integer numbers that represents the solution. In this 
adaptation of the PSO algorithm, a point is now the sequence of integer numbers that 
represents a solution and the velocity is an ordered list of transformations that must be 
applied to the particle so it changes from its current point to another point; each 
transformation consists of a pair of positions of the point (sequence) to be swapped. In 
the case of the velocity to the best point found by the particle, this velocity is a list of 
transformations needed to obtain the best particle point from the current position; the 
case is analogous for the velocity to the best point found by the swarm. The initial 
points are generated as in the multi-start method. 
 
 
3. The psychoclonal metaheuristic 
 
The psychoclonal metaheuristic has been recently proposed by Tiwari et al. (2005) 
which has been successfully used for solving the following scheduling and 
combinatorial problems: the disassembly line balancing problem (Prakash and Tiwari, 
2005), the assembly configuration problem (Tiwari et al., 2005), the flow shop problem 
(Kumar et al., 2006a), the make-to-stock inventory deployment problem (Kumar et al., 
2006b) and the product mix decision problem (Singh et al., 2006). 
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This metaheuristic is inspired by the need hierarchy theory of Maslow (1954) and the 
clonal selection principle developed by Gaspar and Collard (2000). First, the Maslow’s 
theory is explained in Section 3.1. Next, the clonal selection principle is presented in 
Section 3.2. Finally, the psychoclonal metaheuristic scheme is described in Section 3.3. 
 
3.1. Maslow’s need hierarchy theory 
 
Psychologists have investigated the motivations of people behavior during their 
lifetime. Maslow proposed a theory, known as need hierarchy theory, which 
hypothesizes that the people behavior is motivated for satisfying their needs. These 
needs are grouped into five sets that are hierarchically arranged according to the degree 
of necessity. Therefore, there are five levels of needs which are represented by the 
Maslow’s pyramid (see Figure 1). These levels are: physiological needs, safety needs, 
social needs, growth needs and self-actualization needs. In order to satisfy the upper 
levels, first the lowest levels have to be satisfied. 
 

 
Figure 1. Maslow’s pyramid 

 
 
Tiwari et al. (2005) resume the five need levels as follows: 
 
A. Physiological needs. This refers to the most basic survival needs for food, water and 
shelter from the environment to permit continued existence. In optimization, this 
corresponds to the generation of possible sequences based upon the problem 
environment. 
 
B. Safety needs. The seconds set of needs has to do with physical and physiological 
safety from external threats to our well-beings. Constraints are inherent threats to our 
well-being. Constraints are inherent features of any optimization problem. Thus, 
external threats in the engineering perspective correspond to constraints imposed on the 
problem. This is where evaluation of a particular entity or candidate solution is carried 
out. 
 
C. Social needs. In both the physiological and the safety needs are fairly satisfied, there 
will emerge the love, affection and belongingness needs. This is the need to belong to 
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warm supportive associations of other people. In engineering, this refers to the selection 
of the candidate solution and the term social reflects the interaction between candidate 
solutions. 
 
D. Growth needs. Every individual desires to reproduce entity of its own kind. This 
adds to a high valuation of personal worth. Here, candidate solutions diversify to extend 
the search space. This movement toward a local optimum is the basic mechanism of 
every evolutionary technique, e.g., cross over and mutation in genetic algorithms. 
 
E. Self-actualization needs. The final and highest level in the hierarchy consists of needs 
for personal growth, for the development of one’s full potential and for the fulfillment 
associated with the realization of an individual’s capabilities. This is where the best 
solution is obtained. Self-actualization needs are unique and they can never be fully 
satisfied or fulfilled. This is very true for any optimization problem as the emphasis is 
always on finding the near-optimal solution rather than the global optimum. According 
to theory, the more self-actualization needs are fulfilled, the stronger they become. This 
is why a stop condition is required to decide the near-optimal solution. 
 
3.2. Clonal selection principle 
 
Artificial Immune Systems (AIS) are an emerging kind of computational intelligence 
paradigm inspired by the biological immune system of vertebrate animals. Their 
applications include optimization, anomaly detection, fault diagnosis and patter 
recognition (de Castro and Timmis, 2002). Wang et al. (2004) classify the methods 
based in AIS in three main categories: clonal selection principle-based, Genetic 
Algorithms (GA)-aided and immune networks-based approaches. 
 
The clonal selection explains the response of the immune system of the vertebrate 
animals when they are attacked by foreign antigens. Immune system has lymphocytes or 
white cells that secrete antibodies that neutralize the foreign antigens (since a given 
lymphocyte only produces a single type of antibodies, in AIS there is no distinction 
between a lymphocyte and its antibodies). The effectiveness of the immune response 
depends on the affinity that has the antibodies with the antigens. The first time that the 
body is exposed to a given antigen, immune system has low affinity antibodies, each 
one with different affinity. But immune system is able to learn how to produce high 
affinity antibodies (it is known as reinforcement learning). The antibodies are selected 
to proliferate according to their affinities (clonal selection). Next, antibody clones are 
diversified by two mechanisms: hypermutation and receptor editing. This phenomenon 
is referred as maturation of the immune response. The hypermutation introduces 
random changes into an antibody inversely proportional to its affinity with the antigen. 
A large proportion of the hypermuted clones becomes more dysfunctional but, however, 
occasionally an effective hypermutation improves their affinity. The receptor editing 
deletes the lowest affinity antibodies and develops new ones through genetic 
recombination; in AIS, the genetic recombination is modeled creating a new antibody at 
random. Figure 2 illustrates hypermutation guides the affinity to a local optimum 
whereas receptor editing escapes from the local optimum. 
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Figure 2. Representation of hypermutation and receptor editing 
 
The reinforcement learning strategy makes that immune system continuously improving 
its efficiency to block foreign antigens. Since the body would be expected a given 
antigen more times during its lifespan, immune system keeps clones of the highest 
affinity antibodies (immune memory). Therefore, immune system ensures speed and 
accuracy in its responses across the time. 
 
3.3. The psychoclonal metaheuristic scheme 
 
The aim of Tiwari et al. (2005) when they developed the psychoclonal metaheuristic 
was to obtain a generic scheme based on the need of explotation (i.e. the local search) 
and the exploration (i.e. the global search) of the search space. The need hierarchy 
theory of Maslow and the clonal selection principle were used by Tiwari et al. (2005) to 
develop the psychoclonal metaheuristic, which scheme is as follows: 
 
Need level A (physiological needs). Each antibody represents a solution. Thus, an 

affinity function has to be defined based on the objective function. It is also 
required an initial population of antibodies generated at random depending upon the 
environment of the problem. 

 
Need level B (safety needs). The antibodies are exposed to the antigen, i.e. the value of 

their affinity function is calculated. 
 
Need level C (social needs). An interaction is carried out between the antibodies to 

identify the best antibodies of the population. The best antibodies are selected and 
cloned proportionally to their affinity function value. 

 
Need level D (growth needs). The generated clones are submitted for hypermutation 

with a rate inversely proportional to their affinity function value. After satisfaction 
of need level D, it is necessary to check the needs of level B (i.e. to calculate the 
affinity function values of the clones after hypermutation). 

 
Need level E (self-actualization needs). The best clones are selected to be part of the 

new population generation. In addition, new antibodies generated at random are 
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added to the new generation (receptor editing). The process repeats until the self-
actualization is reached (e.g. a maximum number of generation or a maximum 
computing time). 

 
 
4. The psychoclonal algorithm based approach for solving the RTVP 
 
In Section 4.1 we design an algorithm based on the Pychoclonal metaheuristic for 
solving the RTVP. The algorithm has several parameters that influence in its efficiency. 
The selection of their values is discussed in Section 4.2. 
 
4.1. Design of the psychoclonal algorithm 
 
In this paper we propose an algorithm for solving the RTVP based on the psychoclonal 
metaheuristic. 
 
The first consideration is the choice of the antibody representation for a solution. For 
the RTVP, the more intuitive representation consists in a D-length sequence of the 

symbols (where 
1

n

i
i

D d
=

=∑ ). The design of algorithm is explained below: 

 
A1. The affinity function f for the antibody ab is defined as 1( ) ( )f ab RTV ab= , where 

RTV(ab) is the RTV value of the solution represented by ab. 
 
A2. The initial population is set by antibodies that are generated as in the multi-start 

algorithm. That is, for each position of the sequence (antibody), a symbol to be 
sequenced is chosen at random. The probability of each symbol is equal to the 
number of copies of this symbol that remain to be sequenced divided by the total 
number of copies that remain to be sequenced. The total number of antibodies that 
form the population is N. 

 
B.  For each antibody ab of the current population, f(ab) is evaluated. 
 
C.  The best n antibodies according to their affinity value are selected to be cloned. The 

number of clones (NC) that are generated for each selected antibody is calculated 
with the following expression: 

  .( ) round ,  1, ,i
NNC ab i n
i

β⎛ ⎞= ⎜ ⎟
⎝ ⎠

K=  (2) 

 where abi is the ith best antibody of the current population, round is an operator 
that rounds its argument toward the closest integer and β is a multiplying factor. 

 
D1. The clones are submitted for hypermutation with a rate inversely proportional to 

their affinity value. The hypermutation rate (σ) for a clone ab is calculated with the 
following expression: 

  
*

( )

( ) max 1, round .
f abK

fab D eσ
−⎛ ⎞⎛ ⎞

⎜= ⎜⎜⎜ ⎝ ⎠⎝ ⎠
⎟⎟⎟⎟

 (3) 
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where K is the control factor of decay and f* is the affinity value of the best 
antibody of the current population. The hypermutation rate indicates how many 
simple mutations are applied to the cloned antibodies. A simple mutation consists 
in choosing randomly two positions of the sequence that represents the antibody 
and swapping them. In order to maintain the best antibodies, we keep one original 
(parent) antibody unhypermutated. 

 
D2. For each cloned antibody ab, f(ab) is evaluated. 
 
E1. The current population is set with the (N - d)th best cloned antibodies. 
 
E2. The current population is completed adding d new antibodies generated at ramdon 

as explained in step A2. 
 
E3. Until the computing time of the algorithm does not reach a preset time go to step B. 
 
The way that the number of clones (Equation 2) and the hypermutation rate (Equation 3) 
are evaluated is based on the CLONALG algorithm (de Castro and von Zuben, 2002), 
which is one of the most widely applied method based on AIS (Wang et al., 2004). 
 
The algorithm that we propose has 5 parameters: N (size of the population), n (number 
of the best antibodies to be cloned), β (multiplying factor to calculate the number of 
clones of a given antibody), K (control factor of decay of the hypermutation rate) and d 
(the number of new generated antibodies to be added into the population). Their suitable 
values are discussed in the next section. 
 
4.2. Fine-tuning of the psychoclonal algorithm parameters 
 
Fine-tuning the parameters of a metaheuristic algorithm is almost always a difficult 
task. Although the parameter values are extremely important because the results of the 
metaheuristic for each problem are very sensitive to them, the selection of parameter 
values is commonly justified in one of the following ways (Eiben et al., 1999; Adenso-
Díaz and Laguna, 2006): 1) “by hand” on the basis of a small number of experiments 
that are not specifically referenced; 2) by using the general values recommended for a 
wide range of problems; 3) by using the values reported to be effective in other similar 
problems; or 4) by choosing values without any explanation. 
 
Adenso-Díaz and Laguna (2006) proposed a new technique called CALIBRA for fine-
tuning the parameters of heuristic and metaheuristic algorithms. CALIBRA is based on 
Taguchi’s fractional factorial experimental designs coupled with a local search 
procedure. 
 
CALIBRA has been chosen for fine-tuning the psychoclonal algorithm parameters 
using a set of 60 representative training instances (generated as explained in Section 5). 
The following parameter values are obtained: N = 25, n = 3, β = 1.3, K = 7.6 and d = 3. 
 
The GRASP and PSO algorithms (the multi-start algorithm has not parameters) are also 
fine-tuned with CALIBRA and the same 60 training instances. GRASP has only one 
parameter, which is the size of the candidate list; the obtained value is 3. PSO-M1F has 
four parameters and the following values are obtained: size of the population = 24, 
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coefficient that weights the inertia velocity (ω) = 0.87, coefficient that weights the 
velocity to the best particle point (c1) = 0.87 and the coefficient that weights the velocity 
to the best swarm point (c2) = 0.37. 
 
 
5. Computational experiment 
 
The multi-start, GRASP and PSO algorithms developed by Garcia et al. (2006) are the 
most efficient algorithms published to date for solving non-small instances. Therefore, 
we compare our proposed psychoclonal algorithm with them. 
 
The computational experiment for the four metaheuristic algorithms was carried out for 
the same instances and conditions used in García et al. (2006). That is, the algorithms 
ran 740 instances which were grouped into four classes (185 instances in each class) 
according to their size. The instances in the first class (CAT1) were generated using a 
random value of D (number of copies) uniformly distributed between 25 and 50, and a 
random value of p (number of symbols) uniformly distributed between 3 and 15; for the 
second class (CAT2), D was between 50 and 100 and p between 3 and 30; for the third 
class (CAT3), D was between 100 and 200 and p between 3 and 65; and for the fourth 
class (CAT4), D was between 200 and 500 and p between 3 and 150. For all instances 
and for each type of symbol i = 1,…,p, a random value of di (number of copies of the 

symbol i) was between 1 and 1
2.5

D p− +  such that 
1

p

i
i

d D
=

=∑ . All algorithms were 

coded in Java and the computational experiment was carried out using a 3.4 GHz 
Pentium IV with 512 Mb of RAM. 
 
For each instance, the four metaheuristics were run for 50 seconds. Table 1 shows the 
averages of the RTV values to be minimized for the global of 740 instances and for each 
class of instances (CAT1 to CAT4). 
 

 Psychoclonal Multi-start GRASP PSO-M1F 
Global 235.68 21,390.39 14,168.83 8,502.83 
CAT1 14.92 12.08 15.47 66.44 
CAT2 44.25 44.36 88.48 424.60 
CAT3 137.07 226.90 510.44 3,000.52 
CAT4 746.48 85,278.25 56,060.92 30,519.76 

Table 1. Averages of the RTV values for 50 seconds 
 
For the global of all instances, the psychoclonal algorithm is 97.23% better than PSO-
M1F (which is the best metaheuristic algorithm proposed by García et al., 2006), 
98.34% better than the GRASP algorithm and 98.90% better than the multi-start 
algorithm. Observing the results in Table 1 by class, we can see that a simple algorithm 
such as the multi-start algorithm obtains good averages for small instances (CAT1 and 
CAT2) but a very poor average for large instances (CAT4). On the other hand, PSO-
M1F produces bad results for small and medium instances (CAT1, CAT2 and CAT3) and 
better results for large ones. Finally, the psychoclonal algorithm works very well for all 
class of instances. For the smallest instances (CAT1) it is the second best shortly 
overcome by the multi-start algorithm. For the remaining classes, the psychoclonal 
algorithm obtains the best RTV averages. For CAT2 instances, it is 0.25%, 49.99% and 
89.58% better than the multi-start, GRASP and PSO algorithms, respectively. For CAT3 
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instances, it is 39.59%, 73.15% and 95.43% better than the multi-start, GRASP and 
PSO algorithms, respectively. Finally, for CAT3 instances, it is 99.12%, 98.67% and 
97.55% better than the multi-start, GRASP and PSO algorithms, respectively. 
 
In Table 2 we compare the number of times that each algorithm reaches the best RTV 
value obtained with all four algorithms. The results are shown for the 740 instances 
overall and for each class of instances. 
 

 Psychoclonal Multi-start GRASP PSO-M1F 
Global 456 242 196 0 
CAT1 61 148 102 0 
CAT2 80 80 50 0 
CAT3 149 14 25 0 
CAT4 166 0 19 0 

Table 2. Number of times that the best solution is reached 
 
As we expect from the results in Table 1, Table 2 shows that the psychoclonal algorithm 
reaches the best solution the greatest number of times (in 61.62% for the global of all 
instances). Observing the results by class, we can see that for CAT3 instances, although 
the multi-start algorithm obtains a better RTV average than the GRASP, the GRASP 
algorithm reaches mores times the best solution. And for CAT4 instances the GRASP 
algorithm reaches more times the best solution than PSO-M1F, although PSO-M1F is 
better according to the RTV value average. 
 
To complete the analysis of the results, their dispersion is observed. A measure of the 
dispersion (let it be called σ) of the RTV values obtained by each algorithm alg = 
{psychoclonal, multi-start, GRASP, PSO-M1F} for a given instance, ins, is defined as 
follows: 
 

 
2( ) ( )

( )

RTV RTV( , )
RTV

alg best
ins ins

best
ins

alg insσ
⎛ ⎞−

= ⎜
⎝ ⎠

⎟  (5) 

 
where  is the RTV value of the solution obtained with the algorithm alg for the 
instance ins, and  is, for the instance ins, the best RTV value of the solutions 
obtained with the four metaheuristics. Table 2 shows the average σ dispersion for the 
global of 740 instances and for each class of instances. 

( )RTV alg
ins

)(RTV best
ins

 
 Psychoclonal Multi-start GRASP PSO-M1F 
Global 0.23 12,562.53 27,928.91 1,433.77 
CAT1 0.79 0.05 0.71 74.30 
CAT2 0.10 0.08 5.59 227.79 
CAT3 0.02 0.75 17.74 903.40 
CAT4 0.01 50,249.23 111,691.60 4,529.60 

Table 3. Average σ dispersion regarding the best solution found 
 
For the global of all instances, the psychoclonal algorithm has the least average σ 
dispersion very far from the dispersion of the other algorithms. Observing the results in 
Table 3 by class, we see that the behavior of the dispersions is almost analogous to the 
behavior of the RTV values. For the smallest instances (CAT1 and CAT2), the multi-
start algorithm gives the smallest average dispersion and it is near followed by the 
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psychoclonal algorithm. For the medium and big instances (CAT3 and CAT4), the 
psychconal algorithm shows clearly the least dispersion, followed by the multi-start 
algorithm for the medium instances. Although the multi-start algorithm gives the worst 
RTV solutions for the CAT4 instances, it has less dispersion than the GRASP algorithm; 
this indicates that multi-start algorithm is more stable than the GRASP algorithm in this 
case. To summarize, the results in Tables 1-3 show that the psychoclonal algorithms has 
a very good performance in terms of the RTV values and also has a very stable behavior 
for all classes of instances. 
 
The bad results for the larger instances (CAT4) obtained by the multi-start, GRASP and 
PSO algorithms may occur because 50 seconds might not be enough time for them to 
converge. Table 4 shows the averages of the RTV values for the global of all instances 
and for each class of instances (CAT1 to CAT4) obtained with the four algorithms when 
they are run for 1,000 seconds. 
 
 

 Psychoclonal Multi-start GRASP PSO-M1F 
Global 161.60 1,378.58 1,495.12 6,619.34 
CAT1 14.90 10.93 13.59 66.44 
CAT2 39.90 35.48 75.08 424.54 
CAT3 122.38 160.67 428.86 3,000.52 
CAT4 469.23 5,307.25 5,462.95 22,985.85 

Table 4. Averages of the RTV values for 1000 seconds 
 
With 1000 seconds of execution time, which seems time enough for the convergence of 
the four algorithms (see Figure 3), the psychoclonal algorithm is for the global of all 
instances 88.28%, 88.19% and 99.30% better than the multi-start, GRASP and PSO 
algorithms, respectively. PSO-M1F converges and remains trapped in a bad local 
optimum at the second 140 whereas the psychoclonal, multi-start and GRASP 
algorithms improves their RTV average during all the computing time. Although the 
multi-start and GRASP algorithms improve a lot their average results, the psychoclonal 
algorithm is clearly better. Indead, the results obtained with the psychoclonal algorithm 
for 50 computing seconds are much better than the results obtained with the other 
algorithms for 1000 computing seconds. 
 

 
Figure 3. Average of the RTV values obtained over the computing time 
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6. Conclusions 
 
In this paper, the Response Time Variability Problem (RTVP) is solved. This problem is 
an NP-hard scheduling problem that proposes a new metric to measure the fairness of a 
solution according to the relative importance of the different symbols to be sequenced. 
In the RTVP, the aim is to minimize variability in the distances between any two 
consecutive copies of the same symbol, i.e. to distribute the symbols the more regular 
as possible. 
 
The RTVP occurs in diverse environments as manufacturing, hard real-time systems, 
operating systems and networks environments. Since it is a NP-hard problem, 
metaheuristic methods are needed for solving non-small instances. García et al. (2006) 
have proposed three metaheuristic algorithms for solving the RTVP (a multi-start, a 
GRASP and a PSO algorithm), which are the most efficient algorithms published to 
date. In order to improve the published results, a psychoclonal algorithm based 
approach is proposed for solving the RTVP. 
 
The psychoclonal metaheuristic inherits its attributes from the need hierarchy theory of 
Maslow (1954) and the artificial immune system (AIS) approach, specifically the clonal 
selection principle (Gaspar and Collard, 2000). The main features of this metaheuristic 
are various levels of needs, affinity maturation to guide the solution to a local optimum 
and receptor editing to escape from local optima and to explore new regions of the 
solution search space. 
 
A computation experiment was carried out and its results show that the psychoclonal 
algorithm that we propose improves strongly the previous results obtained with the 
other three algorithms on average. In addition, the psychoclonal algorithm has a very 
stable behavior for small, medium and large instances. 
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