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Abstract

Artificial immune systems are a class of nature-inspired algorithms based on the im-
mune system of vertebrates. They have been used in a large number of different areas
of application, most prominently learning, classification, pattern recognition, and (func-
tion) optimization. In the context of optimization, clonal selection algorithms are the
most popular and constitute an interesting and promising alternative to evolutionary al-
gorithms. While structurally similar, they offer very different features and capabilities.
Over the last decade, significant progress has been made in the theoretical foundations of
clonal selection algorithms. This chapter gives an overview of the state of the art in the
theory of artificial immune systems with a focus on optimization. It provides pointers to
corresponding articles where more details and proofs can be found.

1 Introduction
Artificial immune systems (AIS) are derived from various immunological theories, namely
the clonal selection principle [4], immune network theory [46], and the danger theory [22].
Besides the natural tasks of anomaly detection and classification, they are often applied
to function optimization. In the latter context, most immune-inspired randomized search
heuristics are based on the clonal selection principle [4], a theory which describes the basic
features of an adaptive immune response to invading pathogens (antigens). The most pop-
ular clonal selection algorithms to tackle optimization problems include CLONALG [23],
Opt-IA [18], the B-cell algorithm [47], and MISA [7]. All these algorithms are population-
based. The input is usually represented by a population of antigens; a population of
immune cells represents candidate solutions of the problem considered. Various aspects of
clonal selection are used in these immune-inspired algorithms, for example mutations of
different types of immune cells found in the immune system, resulting in a large number
of very different approaches that share a common biological inspiration. Many of these
algorithms resemble evolutionary algorithms from a structural point of view. However,
their concrete implementations are usually very different.

This chapter provides an overview of the state of the art in the theory of immune-
inspired randomized search heuristics in discrete search spaces. Most theoretical studies

∗This is a preliminary version of a chapter in the upcoming book “Theory of Evolutionary Computation:
Recent Developments in Discrete Optimization”, edited by Benjamin Doerr and Frank Neumann, to be published
by Springer.
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so far have concentrated on pseudo-Boolean optimization and classical example functions;
however, some initial work on combinatorial optimization (vertex cover, longest common
subsequence) exists. We discuss problem definitions, analytical frameworks, and common
algorithms and operators in the corresponding sections. However, note that we consider
bit strings of length n as the representation, x ∈ {0, 1}n, and that x[i] denotes the i-th
bit in x (with i ∈ {0, 1, . . . , n − 1}, denoting the leftmost position in x by x[0] and the
rightmost position by x[n− 1]).

The main part of this chapter will concentrate on performance analyses such as run-
time analysis (where we are interested in the number of function evaluations required
to locate an optimal solution, called the optimization time) and fixed-budget analysis
(where we analyze the expected solution quality for a given budget of function evalu-
ations). We therefore start with a brief overview of other related publications: early
theoretical work was particularly concerned with Markov chain models of clonal selection
algorithms and convergence analyses, i. e., the study of whether a given algorithm is guar-
anteed to converge to a global optimum for time t→∞. Based on Markov chain theory,
Villalobos-Arias et al. [56, 57] proved convergence of the multi-objective clonal selection
algorithm MISA [7] under the condition that the algorithm maintains an elitist memory
throughout the search process. Later, using a similar approach, convergence results for
the B-cell algorithm [47] based on a Markov model for contiguous hypermutations were
presented [5, 6]. Cutello et al. [17] considered a more general framework of immune al-
gorithms and examined conditions sufficient for their convergence. They provided some
problem-independent upper bounds for their class of immune algorithms, but pointed out
that such analyses should be related to some problem class and its characteristics in or-
der to give useful insights. More recently, Hong and Kamruzzaman [29] used martingale
theory to prove convergence for a class of elitist clonal selection algorithms. Timmis et
al. [55] provided a survey of early theoretical advances and pointed out that runtime anal-
ysis would be much more useful than convergence analysis. The remainder of this chapter
will therefore concentrate on these more advanced results.

The vast majority of work to date has concentrated on AIS for optimization. In this
context, two defining aspects of AIS have been particularly considered: hypermutation
operators (Section 2) and a diversity mechanism called aging (Section 3). However, more
recently, insights into the interplay between different operators have allowed the first
analyses of “complete” AIS as published in the literature (Section 4).

For the sake of completeness, we remark that theoretical studies in other subareas of
artificial immune systems exist. In the context of classification, we refer the reader to
the above-mentioned survey by Timmis et al. [55] and more recent work by Elberfeld and
Textor [24, 54] and Gu et al. [27]. Moreover, a relatively large number of surveys provide
a comprehensive view of the various application areas of artificial immune systems. They
include general overviews and introductions to the field [22, 19, 20, 53], as well as more
specialized surveys of, for example, optimization [1] and security [25].

2 Theoretical Analyses of Hypermutations
Mutation in AIS is very different from mutation in other randomized search heuristics, for
example evolutionary algorithms. While in evolutionary algorithms generally moderate
mutation probabilities are employed, AIS incorporates mutations at a high rate, so-called
hypermutations. Different types of immune-inspired mutation operators with roots in dif-
ferent (processes of the) immune systems can be found in the literature. Among the most
prominent classes are inversely fitness-proportional mutations (Section 2.1), contiguous
hypermutations (Section 2.2), and hypermutations with mutation potential (Section 2.3).
We will discuss different variants of these operators in the following.

All the results presented in this section consider immune-inspired mutation operators
in minimalistic algorithmic frameworks to study them in as much isolation as possible.
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These frameworks include in particular the (1+1) framework shown in Algorithm 1 and a
simple population-based (µ+1) framework as described in Algorithm 2. The performance
of hypermutation operators has particularly been compared with local search (flipping
exactly one random bit) and standard bit mutations (flipping each bit with probability
1/n).

Algorithm 1: (1+1) framework
1 Choose x ∈ {0, 1}n uniformly at random.
2 repeat
3 Create offspring y := mutate(x).
4 if f(y) ≥ f(x) then
5 Set x := y.

6 until some termination criterion is met

Algorithm 2: (µ+1) framework
Parameters : Population size µ

1 Choose x1, . . . , xµ ∈ {0, 1}n independently, uniformly at random.
2 Let P := {x1, . . . , xµ}.
3 repeat
4 Choose x ∈ P uniformly at random.
5 Create offspring y := mutate(x).
6 Choose z ∈ P with minimum fitness.
7 if f(y) ≥ f(z) then
8 Let P = P\{z} ∪ {y}.

9 until some termination criterion is met

2.1 Inversely Fitness-Proportional Mutations
The idea of inversely fitness-proportional mutations derives directly from the widely ac-
cepted clonal selection principle [4]. It aims to balance exploration and exploitation of
the search space by using an individual mutation rate for each search point (immune cell)
in the population, i. e., focusing on exploitation for good search points that are hopefully
close to a local or global optimum and focusing on exploration otherwise. As a result,
search points in “better” regions of the search space are only subject to small mutations,
while for search points located far away from optimal regions larger mutation rates are
used.

Inversely fitness-proportional mutation operators exist in both continuous and discrete
versions, but to the best of our knowledge theoretical studies so far have concentrated on
discrete settings or, more precisely, pseudo-Boolean optimization. Here, the mutation rate
is a function that depends on the (normalized) fitness of a search point and determines
the probability for each bit in a given bit string to be mutated (see Algorithm 3). The
relationship between mutation rate and fitness is not required to be inversely proportional
in a strict mathematical sense, but only needs to follow the rule that the higher the fitness
the smaller the mutation rate, and vice versa.

Algorithm 3: Inversely fitness-proportional mutations
Input: Search point x ∈ {0, 1}n; fitness-dependent mutation rate p(v)
Output: Mutated search point x ∈ {0, 1}n

1 Let v := normalize(f(x)) ∈ [0, 1].
2 Let y := x.
3 for i := 0 to n− 1 do
4 With probability p(v) set y[i] := 1− y[i].
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Inversely fitness-proportional mutations are a key ingredient of CLONALG [23]. For
the case of maximization, the operator uses the inverse of an exponential function to
establish a relationship between the mutation probability and the normalized fitness value
v:

pCLONALG(v) = exp(−ρ · v), (1)

where ρ is a so-called decay parameter that controls the smoothness of the exponential
function and needs to be set to a value appropriate for the problem considered. A similar
operator with a slightly different parameterization is used in Opt-AiNet [21], an immune-
inspired algorithm based on immune network theory [46]:

pOpt-AiNet(v) = exp(−v)/ρ. (2)

Here, the parameter ρ is not incorporated into the exponent of the exponential func-
tion but rather used to scale its result, leading to a very different impact of ρ on the
optimization process [61].

Zarges [59, 61] examined the role of the decay parameter ρ for these two operators
on the OneMax problem in a simple (1 + 1) framework (see Algorithm 1). Constant
decay values ρ as well as values logarithmic and linear in the length of the bit string
were considered. Using, among others, drift arguments, it was shown that both operators
are very sensitive to parameterization and, if parameterized inappropriately, very bad at
hill-climbing.

For maximization problems, the standard normalization method [23] is to divide the
fitness by the best fitness in the current population or by the best fitness seen so far. For a
single search point, Zarges [59, 61] used the optimal value of the fitness function considered
instead and argued that using an upper bound on the fitness would be appropriate if the
optimal value was not known. However, it was noted that using an upper bound leads to
generally larger mutation probabilities, while the use of the best current fitness reduces
them.

For CLONALG mutations, it was proven that, with overwhelming probability, the
algorithm using constant and linear settings of ρ is unable to locate the optimum of
OneMax within a polynomial number of iterations. For a constant ρ, this is because
the mutation probabilities grow much too large to be effective, while a linear ρ leads to
exponentially small mutation rates, rendering the algorithm unable to perform any search
at all. In addition to these two extreme cases, ρ = lnn was considered. It was noted
that this parameterization yields reasonable values for the mutation rate between 1/2 and
1/n. While one can still observe a large negative drift for this setting (and consequently
the algorithm is unable to optimize OneMax in polynomial time with high probability),
the algorithm demonstrates much better performance in practice, as the probability of
not finding the optimum within a polynomial number of iterations converges much more
slowly to 1 than it does for constant ρ. In fact, in experiments the performance was
comparable to that of standard bit mutations up to bit string lengths of about 105.

For Opt-AiNet mutations, a constant ρ results in roughly the same mutation rates as
already seen for the case of CLONALG, and thus the algorithm is also not efficient on
OneMax with this setting. However, using ρ = Θ(n) yields mutation rates of Θ(1/n)
for all possible fitness values. Thus, we get an optimization time of Θ(n logn) for this
case, which can easily be shown by using fitness-level arguments and adapting previous
analyses for standard bit mutations.

Later, the CLONALG hypermutation operator was analyzed in a (µ + 1) framework
(see Algorithm 2), using the current best fitness value for normalization [60]. Setting
ρ = lnn (as this leads to reasonable mutation rates for OneMax [59]) and using fitness-
level arguments, it was shown that even a population size of 2 considerably improves the
performance on the OneMax problem and, more generally, a class of smooth integer
functions of unitation, i. e., a class of functions where the function value depends only on
the number of 1-bits in the bit string and neighboring points in the search space have
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similar function values. A key insight for this result is that for this parameterization the
behavior of the current best search point in the population mimics that of standard bit
mutations.

A matching lower bound was proven by bounding the bandwidth of the fitness values
in the current population using inductive arguments and by employing the technique of
analyzing randomized family trees. Here, an important insight is that the rate of inversely
fitness-proportional mutations depends directly on the structure of the population or, more
precisely, the difference between the best and the worst fitness value. If this difference
is small enough, the expected number of flipping bits during a single iteration can be
bounded by a constant.

While fitness-dependent mutations are common in immune-inspired randomized search
heuristics, they have only recently emerged in the context of evolutionary computation.
For example, Oliveto et al. [51] analyzed a rank-based mutation operator, an alternative
to using normalized function values to reduce the effect of large differences in absolute
function values. Böttcher et al. [2] derived an optimal adaptive mutation rate for the
LeadingOnes problem that has the form of an inversely fitness-proportional mutation
rate, psimple(v) = 1/(v + 1) with v = f(x). The same mutation rate is efficient for the
OneMax problem [61]. However, a Hamming-distance-based mutation rate maximizing
the probability of finding the global optimum of OneMax in a single mutation step, i. e.,
pHamming(v) = v/n with v = n− f(x), yields exponential optimization time.

Jansen and Zarges [43] considered inversely fitness-proportional mutations in the con-
text of fixed-budget analysis, where, instead of the expected time needed for optimiza-
tion, the expected performance within a given time frame is analyzed. They showed that
CLONALG mutations outperform local search at the beginning of the run, but are even-
tually overtaken later in the run. This insight was used to devise a hybrid algorithm that
starts with CLONALG mutations and switches to local search when progress stagnates.
These results are discussed in more detail in Section 5.5 of this book.

2.2 Contiguous Hypermutations
Contiguous hypermutations were introduced as part of the B-cell algorithm [47]. They
were inspired by the observation that mutation of B-cell receptors (a type of immune cell)
often focuses on specific regions of the receptor. To mimic this behavior, the mutation
operator first selects a contiguous region of the search point’s representation and restricts
the mutation to this region. The use of contiguous hypermutations is limited to discrete
search spaces and employs a bit string representation. Mutation flips all bits within the
chosen region with a given probability r ∈ [0, 1] and does not change any bit that is
outside of this region. It has been noted that, depending on its parameterization, this
mutation operator can easily be trapped in local optima [6, 37]: if r = 1, there might
not exist a mutation leading from a local to a global optimum. However, the following
analyses consider this extreme case only.

Jansen and Zarges [34, 37] considered three different variants of this hypermutation
operator which differ in the way the contiguous mutation region is determined. The
original operator chooses a random starting position p and a random length l of an interval
to be mutated (see Algorithm 4). It does not wrap around, and thus has a strong positional
bias and strongly different mutation probabilities for mutations of single bits depending
on their location: bits towards the end of the bit string have a higher probability of being
mutated during a mutation. As such a bias is considered undesirable unless it suits known
problem characteristics, this observation motivates the definition of a variant that wraps
around and thus has no positional bias at all (see Algorithm 5). A third variant selects
random start and end points for the mutation region (see Algorithm 6). Similarly to
the original operator, this variant has a strong positional bias – here, bits towards the
middle of the bit string have a higher probability of being mutated. All three variants
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have in common that, in expectation, they flip a linear number of bits. The probability
of performing a single bit mutation is Θ(1/n2) in all three cases (with the exception of
the version that does not wrap around, where the probability of flipping only the last bit
is Θ(1/n)). This is considerably smaller than the corresponding probability for standard
bit mutations and explains why contiguous hypermutations are also bad at simple hill-
climbing.

Algorithm 4: Contiguous hypermutations, not wrapping
around [5]

Input: Search point x ∈ {0, 1}n; mutation probability r ∈ (0, 1]
Output: Mutated search point x ∈ {0, 1}n

1 Select p ∈ {0, 1, . . . , n− 1} uniformly at random.
2 Select l ∈ {0, 1, . . . , n} uniformly at random.
3 for k := 0 to min{l − 1, n− 1− p} do
4 With probability r, invert the bit x[p+ k].

Algorithm 5: Contiguous hypermutations, wrapping around [34]
Input: Search point x ∈ {0, 1}n; mutation probability r ∈ (0, 1]
Output: Mutated search point x ∈ {0, 1}n

1 Select p ∈ {0, 1, . . . , n− 1} uniformly at random.
2 Select l ∈ {0, 1, . . . , n} uniformly at random.
3 for i := 0 to l − 1 do
4 With probability r set x [(p+ i) mod n] := 1− x [(p+ i) mod n].

Algorithm 6: Contiguous hypermutations, two hotspots [34]
Input: Search point x ∈ {0, 1}n; mutation probability r ∈ (0, 1]
Output: Mutated search point x ∈ {0, 1}n

1 Select p1 ∈ {0, 1, . . . , n− 1} uniformly at random.
2 Select p2 ∈ {0, 1, . . . , n− 1} uniformly at random.
3 for k := min{p1, p2} to max{p1, p2} do
4 With probability r, invert the bit x[k].

However, they can have advantages when large mutations are needed: standard bit
mutations perform specific b-bit mutations with probability Θ(1/nb), while all three vari-
ants of contiguous hypermutation achieve this with probability O(1/n2). Jansen and
Zarges [34, 37] investigated this in a rigorous way by presenting different examples for
functions where contiguous hypermutations are superior or inferior to the standard bit
mutations typically used in evolutionary algorithms in a simple (1+1) framework (see
Algorithm 1). Using fitness level and drift arguments, they showed that contiguous hy-
permutations can drastically outperform standard bit mutations for a previously know
family of example functions that require mutations of many bits simultaneously,

CLOBb,k(x) = n ·

 k∑
h=1

n/(bk)∑
i=1

i·b−1∏
j=0

x

[
(h− 1) · n

k
+ j

]−OneMax(x),

for b, k, n ∈ N with n/k ∈ N, n/(bk) ∈ N, and x ∈ {0, 1}n. Here, contiguous hypermu-
tations yield an optimization time of O(n2 logn), while standard bit mutations require
time Θ(nb(l/b+ ln k)). In addition, it was shown that contiguous hypermutations do not
necessarily lose a factor of Θ(n) on functions where mutations of single bits are responsible
for optimization: while this is the case for OneMax, contiguous hypermutations lose at
most a factor of logn on LeadingOnes.

Jansen and Zarges [34, 37] investigated the role of initialization for contiguous hy-
permutations and demonstrated that advantageous starting points with large blocks of
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contiguous 0s (e. g., the all-zero bit string 0n) can speed up optimization for this oper-
ator while having nearly no impact on standard bit mutations. However, whether this
advantage, which is big in the beginning where it is easy to make progress and decreases
towards the end where making progress is much harder, is sufficient to yield an asymp-
totically smaller expected optimization time depends on how long this advantage can
be preserved during the optimization process. It is important to note that all positive
results rely on the extreme choice r = 1. Thus, it can be concluded that contiguous
hypermutations can only play out their strength if r is set to some value at least close to
1.

Jansen and Zarges [43] later also considered contiguous hypermutations in the context
of fixed-budget analysis (see Section 5.5 of this book). Revisiting negative results for
immune-inspired hypermutations for the simple OneMax function and the observation
that careful initialization can speed up the optimization process [37], they demonstrated
that contiguous hypermutations can be much more efficient in the beginning of a run when
progress is still easy to achieve and, thus, given a limited budget of function evaluations,
such mutations can by far outperform a random local search operator. This is mainly due
to the fact that hypermutations are able to accumulate many small steps into a single
large one, while random local search needs to perform those steps one after each other
and thus needs time to catch up. This insight helps to explain the success of seemingly
inefficient mutation operators, as in practice the length of a run is usually limited.

The above theoretical results were put into practice by designing a more efficient
hybrid search heuristic that applies contiguous hypermutations in the beginning when
they can be expected to be more beneficial, and switches to local search when contiguous
hypermutations start to become slow. Two strategies to switch the mutation operator were
investigated, one directly based on the theoretical findings, the other using the expected
progress of the two operators adaptively in each iteration. Experiments showed that both
strategies yield noticeable improvements over simple local search if careful initialization is
performed, but that the more sophisticated adaptive strategy does not yield any significant
advantage. These results are discussed in more detail in Section 5.5 of this book.

Other work on the analysis of contiguous hypermutations includes a runtime and fixed-
budget analysis for the highly multimodal HIFF (hierarchical if and only if) problem by
Jansen and Zarges [44] and later by Xia and Zhou [58]. Jansen and Zarges [44] showed
that under certain conditions contiguous hypermutations can be successful hill-climbers.
Using fitness-level arguments, they showed that contiguous hypermutations in a simple
(1+1) framework (see Algorithm 1) solve HIFF in time O(n3 logn), while random local
search does not find an optimum with overwhelming probability. Moreover, they demon-
strated that contiguous hypermutations are not outperformed by random local search on
HIFF for any given budget by performing a fixed-budget analysis (see Section 5.5 of this
book): for small budgets both algorithms have roughly equal performance, but contiguous
hypermutations outperform random local search for moderately large budgets. This result
is somewhat counterintuitive as at the beginning, i. e., before reaching a local optimum,
HIFF can be optimized by simple hill-climbing – something contiguous hypermutations
are particularly bad at.

Xia and Zhou [58] additionally considered contiguous hypermutations on Trap func-
tions and the max-cut and minimum s-t-cut problems, again using the simple (1+1)
framework in Algorithm 1. They showed that Trap can be optimized in time O(n2 logn)
and considered a family of graphs for max-cut that can be efficiently optimized using
contiguous hypermutations but not using standard bit mutations and a problem-specific
local search operator. A similar result was shown for a family of graphs for the minimum
s-t-cut problem.

Very recently, Corus et al. [8, 9] derived an easiest function for contiguous hypermu-
tations. Again using the insight that contiguous hypermutations can have advantages
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on functions that require mutations of many bits simultaneously, they introduced the
following fitness function.

Definition 2.1. Let L0∪̇L1∪̇L2∪̇ · · · ∪̇Ll = {0, 1}n be a partition and let

MinBlocks(x) = l − i for x ∈ Li,

with l = bn/2c + 1, L0 = {1n}, L1 = {0n}, and Li = {x ∈ {0, 1}n | x contains i − 1
different 1-blocks} for each i ∈ {2, 3, . . . , l}.

MinBlocks has a unique global optimum, 1n, with fitness bn/2c + 1. The second
best bit string is 0n, with fitness l − 1. Corus et al. [8, 9] presented both runtime and
fixed-budget analyses of contiguous hypermutations on this function and showed that
MinBlocks is indeed an easiest function using a method introduced by He et al. [28]. The
runtime of contiguous hypermutations embedded in a (1+1) framework (see Algorithm 1)
on MinBlocks is Θ(n2).

MinBlocks turns out to be an asymptotically hardest function for standard bit mu-
tations. Owing to the symmetry of 0- and 1-bits, the (1 + 1) EA (Algorithm 1 using
standard bit mutations) will reach 0n (instead of 1n) with probability 1/2. In this situ-
ation, it needs to flip all bits in a single mutation, resulting in an expected optimization
time of at least nn/2. This is only smaller by a factor of at most 2 than the expected
optimization time of the (1 + 1) EA on its hardest function, Trap [28].

Finally, Corus et al. [8, 9] discussed a number of hybridizations of standard bit mu-
tations and contiguous hypermutations. These allow one to combine the advantages of
the two operators, and yield optimal asymptotic performance on both OneMax and
MinBlocks.

Some analyses of contiguous hypermutations consider the mutation operator within
the complete B-cell algorithm rather than a minimalistic framework. We discuss these
results later in Section 4.1.

2.3 Hypermutations with Mutation Potential
Hypermutations with mutation potential were introduced as a mutation operator in
Opt-IA [18]. The main idea behind this kind of mutation is to determine the number
of local mutation steps by a given function, the so-called mutation potential. Mutation
potentials exist in different flavors, for example static, fitness-proportional, and inversely
fitness-proportional. Moreover, they can be restricted to certain regions of the bit string
(hypermacromutation).

Algorithm 7 provides pseudocode of four different variants of this mutation operator,
defined for minimization problems. For a number M of local mutation steps, the operator
sequentially draws M not necessarily distinct positions in the bit string and flips them
independently. We distinguish a TABU variant (where the operator is prevented from
choosing a specific position two or more times) and a non-TABU variant (where bits
can be flipped back in a later mutation step). Moreover, a mechanism often used in
conjunction with mutation potentials is the so-called “stop at first constructive mutation”
(FCM). Here, a fitness evaluation is performed after every single mutation step and the
mutation stops if an improvement has been found (a so-called constructive mutation). It
has been shown that the question of whether local mutation steps may undo each other
is far less important than the use of the FCM mechanism [10, 15, 40]. We provide more
detail in the following.

8



Algorithm 7: Mutation with mutation potential M (minimiza-
tion)

Input: Search point x ∈ {0, 1}n; flags TABU and FCM
Output: Mutated search point x ∈ {0, 1}n

1 Set y = x.
2 repeat
3 if TABU = 0 then
4 Select i ∈ {1, . . . , n} uniformly at random (u.a.r.).
5 else
6 Select i ∈ {1, . . . , n} u.a.r., i not previously chosen.
7 Invert the bit y[i].
8 if (FCM = 1) AND (f(y) < f(x)) then
9 BREAK

10 until M times

2.3.1 Inversely Fitness-Proportional Mutation Potentials

The first analysis of hypermutations with mutation potential was presented by Jansen
and Zarges [40]. They considered all four variants of this operator for an inversely fitness-
proportional mutation potential Mc(v), where c ∈]0, 1[ and fOPT is the minimum function
value for the fitness function considered, f : S → R+:

Mc(v) = d(1− fOPT/v) · c · ne. (3)

Using the simple (1+1) framework (see Algorithm 1), they showed that the FCM mecha-
nism is crucial for the performance of mutation potentials even on very simple optimization
problems such as ZeroMin, the minimization variant of OneMax. The main reason for
this is that hypermutations with mutation potential that do not make use of FCM basically
perform a random walk of length equal to the mutation potential – such a random walk
has hardly any chance of locating a specific search point (which can easily be proven by
using results for the gambler’s ruin problem). While adding FCM considerably improves
the optimization time, it loses a factor of n in comparison with standard bit mutations:
the expected optimization time of Algorithm 1 using hypermutations with mutation po-
tential on ZeroMin is 2Ω(n) without FCM and Θ(n2 logn) with FCM. The upper bounds
for the algorithms with FCM were derived using fitness-layer arguments, while the lower
bound was obtained by Chernoff bounds and arguments from the classical ballot theorem
for the non-TABU variant, and a careful analysis of the underlying random walk for the
TABU version.

Moreover, Jansen and Zarges [40] analyzed the ability of the original hypermutation
operator with FCM to locate optima precisely and at a large distance from other promising
regions of the search space by considering a previously introduced example function called
Sp-Target (short path with target). The main idea of this function is that the vast majority
of the search space guides the search heuristics towards a path with increasing function
values starting from the all-zero bit string 0n. The global optimum is a large area with a
minimum Hamming distance to the path.

A typical run of a search heuristic finds and climbs the path before finding the optimal
region. Thus, in order to be able to optimize this function, an algorithm requires the ability
to “jump” from the path into the global optimum. It is known that standard bit mutations
are unable to efficiently locate the global optimum if the distance is ω(logn/ log logn).
Jansen and Zarges [40] proved that hypermutations with mutation potential yield an
optimization time of O(n3) provided that c in Mc(v) is chosen large enough.

More recently, Corus et al. [14] compared different variants of inversely fitness-proportional
mutation potentials based on Hamming distance and fitness difference. They showed that

9



a potential that increases exponentially with the Hamming distance to the optimum (called
MexpoHD) is most promising and argued that using Hamming distance instead of fitness
difference also comes with the advantage of robustness to scaling of the fitness function.
In comparison with static mutation potentials, they showed a considerable speedup for all
inversely fitness-proportional variants on standard unimodal example functions, for which
the global optimum is known. In addition, MexpoHD was considered in situations, where
the global optimum is unknown. Using the best found solution to estimate the mutation
rate and combining MexpoHD with hybrid aging (see Section 3.2), it was demonstrated
that the algorithm might not be able to identify new local optima on slopes that lead
away from previous ones. As a consequence, a symmetric version of MexpoHD was intro-
duced and shown to be effective on two well-known bimodal example functions, Cliffd
and TwoMax.

2.3.2 Static Mutation Potentials

Corus et al. [10, 15] presented a first detailed study of static mutation potentials. They
proved for a static mutation potential (where the number of bits flipped is linear in the
problem size, c · n for constant c > 0) and the TABU variant that unless the FCM mech-
anism is applied, hypermutations with mutation potential require exponential expected
time to optimize any function with a polynomial number of optima. They argued that
the search point created by such hypermutations is uniformly distributed over all search
points with distance c ·n to the search point it was derived from. Since there are exponen-
tially many such search points, the probability of a specific outcome is exponentially small.
Corus et al. [10, 15] pointed out that this result could easily be extended to other types
of mutation potential such as inversely fitness-proportional [40] and fitness-proportional
mutation potentials [16]. In [15], the authors additionally suggested that it may be bene-
ficial to call a mutation “constructive” if the fitness is at least as good (instead of strictly
better) to improve the algorithm’s exploration capabilities.

Moreover, Corus et al. [10, 15] showed that the expected optimization time if FCM
is used is at most larger by a linear factor than the upper bound obtained for random
local search (with any neighborhood size) via fitness-level arguments. This demonstrates
that it is sufficient to analyze random local search instead of hypermutations with such a
mutation potential (which is often easier) to achieve a valid upper bound on the expected
optimization time. Corus et al. [10, 15] showed that these bounds are tight for easy
example functions such as OneMax and LeadingOnes.

Finally, Corus et al. [10, 15] compared hypermutations with mutation potential with
standard mutation- and crossover-based evolutionary algorithms on the Jumpk and Cliffd
functions. They proved that their hypermutations operator could exponentially speed up
the process of escaping from local optima, particularly in cases where the jump is hard
to perform. However, the upper bound on the expected optimization time was still expo-
nential in the distance between the local and the global optimum.

Very recently, Corus et al. [11, 13] presented an analysis for the NP-hard number
partitioning problem. They showed that, due to its ability to escape from local optima,
a simple artificial immune system using static hypermutations with mutation potential
is able to efficiently solve a class of problem instances that are known to be hard for
random local search and evolutionary algorithms using standard bit mutations. More im-
portantly, they proved that such an artificial immune system is a randomised polynomial
time approximation scheme (for ε = ω(n−1/2)), i. e., it guarantees an approximation ratio
of (1 + ε) for any problem instance in expected time polynomial in the problem size and
exponential in 1/ε. The authors pointed out that, to the best of their knowledge, this was
the first time performance guarantees were proven for an artificial immune system on a
classical combinatorial optimization problem.
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2.3.3 Variants of Mutation Potentials

Based on some of the above findings, novel variants of hypermutations with mutation
potential were introduced. Jansen and Zarges [40] proposed an improved version of the
mutation potential based on ranks that allows one to parameterize the trade-off between
efficiency in local search and the ability to perform huge changes in a single mutation:

M̂c,ρ(vi) = d(1− nρ/(nρ + i− 1)) · c · ne, (4)

where i is the rank of the fitness value considered among all fitness values in the search
space, and ρ controls the degree of mutation aversion the hypermutation operator has.
It was proven that for ρ > 1 the expected optimization time on ZeroMin with FCM
decreases to Θ(n logn+ n3−ρ).

More recently, Corus et al. [12] proposed a “fast” variant of hypermutations with mu-
tation potential, where instead of deterministically performing a fitness evaluation after
each bitflip, the fitness after the i-th bitflip is only evaluated with probability roughly
pi ≈ γ/i. In doing so, fewer function evaluations are “wasted” during the hypermutation
process, particularly for easy problems, for which local search strategies are efficient. The
effectiveness of two variants of this operator coupled with and without FCM was demon-
strated by analyzing problems that had been considered previously for hypermutations
with mutation potential and Opt-IA (see Section 4.2) and recommendations for setting
the parameter γ were provided. Moreover, it was demonstrated how upper bounds for
“fast” hypermutations with mutation potential could be derived from upper bounds for
random local search that were obtained via fitness-level arguments.

3 Theoretical Analyses of Aging Operators
Aging operators require that each search point in the population is equipped with an
individual age that is increased by 1 in each iteration of the search heuristic. A maximum
lifespan τ is introduced, and each search point with an age exceeding τ is removed from
the current population, making room for new and perhaps more promising search points.
The mechanism of aging is thought of as increasing the diversity of the population and it
is hoped that it will be helpful for multimodal problems where simpler search heuristics
may get stuck in local optima.

Different variants exist, and static pure aging and stochastic aging have both been
used within Opt-IA [18]. Both strategies usually have in common that the initial age of
a new search point is set to 0 only if its function value is strictly larger than the function
value of the search point it was derived from (the parent); otherwise, it inherits the age of
this search point. This scheme is intended to give an equal opportunity to each improving
new search point to explore the landscape effectively. Alternatively, each new search point
can be assigned age 0; however, this is more common in evolutionary computation [38].

In static pure aging, search points exceeding a predefined maximum lifespan (maximum
number of iterations) τ are removed from the population. In stochastic aging, each search
point x survives aging at the end of the iteration with a probability pdie. In order to keep
the size of the population constant at a certain size µ, often new random search points
with age 0 are introduced, if necessary.

The publications reviewed in the following subsections consider different kinds of aging
in a minimal algorithmic framework by extending the (µ + 1) framework introduced in
Algorithm 2. The extended framework in Algorithm 8 again uses a population of size µ. It
works in rounds, where in each round all search points grow older, one new search point is
generated as a random variation of existing search points, its age is decided, search points
that are too old are removed, and new randomly generated search points are introduced
to keep the number of search points constant at µ.
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Algorithm 8: (µ+1) framework with aging
Parameters : Population size µ

1 Choose x1, . . . , xµ ∈ {0, 1}n independently, uniformly at random, and let
P := {x1, . . . , xµ}.

2 for all x ∈ P do
3 Set x.age = 0.
4 repeat
5 for all x ∈ P do
6 set x.age = x.age + 1. /* Growing older */

7 Choose x ∈ P uniformly at random.
8 Create offspring y := mutate(x). /* Variation */
9 Decide about the age of y. /* (see details) */

10 Remove search points due to age. /* (see details) */
11 if |P | > µ then
12 Remove one z ∈ P with minimum fitness. /* Removal */

13 else
14 Keep all search points in P .
15 Fill up P with random points until |P | = µ. /* Birth */

16 until some termination criterion is met

3.1 Static Pure Aging
In static pure aging, offspring inherit by default the age of their parent and are only
assigned age 0 if their function value is strictly larger than that of their parents (see
Algorithm 9). At the end of an iteration, search points that exceed the maximum age τ
are removed deterministically (see Algorithm 10).

Algorithm 9: Static pure aging: age of offspring
Input: Parent x; offspring y

1 if f(y) ≥ f(x) then
2 Set y.age := 0.
3 else
4 Set y.age := x.age.

Algorithm 10: Static pure aging: removal due to age
Input: Population P ; maximum lifespan τ

1 for all x ∈ P do
2 if x.age > τ then
3 Set P := P \ {x}.

Horoba et al. [30] were the first to present a rigorous runtime analysis of static pure
aging in artificial immune systems and consider its most important parameter: the max-
imum lifespan τ . They showed that the smaller the maximum age, the more the search
process resembles pure random search and, thus, becomes ineffective. To be more precise,
they demonstrated that τ needs to be large enough to allow the algorithm to create a
better offspring. Considering a Ridge-like function that includes a number of gaps of size
k, they made their arguments more precise. They proved that, for such a function, τ needs
to be sufficiently large in order for the algorithm to be successful, by presenting a proof
that considers a typical run of a simple algorithm using static pure aging (see Algorithm 8)
and standard bit mutations. Additionally, a common lower bound of τ = ω(µn logµ) was
derived – for smaller τ , the algorithm is unable to perform hill-climbing.
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However, a maximum age that is too large severely limits the influence of the operator,
as fewer search points are subject to removal by age. Moreover, there exist situations in
which a small τ can prevent the algorithm under consideration from getting trapped in
parts of the search space that keep it away from the global optimum. Again, this argument
was made more precise by constructing an example function and proving that it can only
be optimized efficiently using static pure aging if τ is sufficiently small.

Finally, it was shown that aging can be very sensitive to the maximum age of a search
point and that it may be difficult to set this appropriately, i. e., the appropriate age can
be within a very narrow range. Horoba et al. [30] demonstrated this by carefully devising
a new example function by combining the two previous functions.

Building upon this work, Jansen and Zarges [33, 38] compared static pure aging with
aging in evolutionary algorithms where new search points are always assigned age 0. It
was shown that new random search points that are introduced during the birth phase
typically have very low fitness and thus die out quickly. Using well-known example func-
tions, they demonstrated that static pure aging is able to escape from local optima by
recognizing stagnation and performing a kind of restart; however, when there are plateaus
of constant function value, it mistakes the absence of progress in function values for stag-
nation and thus is not able to perform a random walk on the plateau. The performance
of evolutionary aging is exactly opposite, i. e., it is not able to escape local optima but
it can perform a random walk on a plateau. Based on these insights, a modified aging
operator was introduced that provably shares the advantages of both aging mechanisms
(see Algorithm 11): while the function values do not increase in both situations, being
stuck in a local optimum additionally means that no new search points are created.

Algorithm 11: Genotypic aging: age of offspring
Input: Parent x; offspring y

1 if f(y) ≥ f(x) and y 6= x then
2 Set y.age := 0.
3 else
4 Set y.age := x.age.

Later, Jansen and Zarges [35, 36, 39] analyzed the interplay of static pure aging with
the replacement strategy used. It was demonstrated that static pure aging can achieve
performance improvements that go beyond what restarts can accomplish [35]. Since it is
often stated in the literature that aging increases the diversity within the population of
search points, this is an important step in understanding how and why aging can make an
algorithm more efficient. In this context, crossover plays an important role, as the main
effect shown is based on the recombination (k-point crossover) of a local optimum and
a randomly generated search point [35]. However, given the original definition of static
pure aging, it is unclear how the age of a new search point is set in the case of more
than one parent. Different strategies, including setting the age to the age of the older
parent and setting it to the age of the better/worse parent, were introduced and analyzed
in [36], where it was pointed out that even subtle differences can have a huge impact on
the performance of the algorithm.

In [39], Jansen and Zarges argued that static pure aging can be subdivided into an
aging and a replacement strategy. While the aging strategy determines the age of a new
search point, the replacement strategy decides how it is introduced into the population.
Considering a number of different implementations for both strategies, their interplay
was analyzed. It was shown that not only the maximum age but also diversity with
respect to age plays a key role and can make a difference between efficient and inefficient
optimization. Different strategies that use the age to remove one of the search points with
the worst function value from the population were considered. To compare these aging
and replacement strategies, an example function was constructed and the performance for
all possible combinations of operators was analyzed. As age diversity is mainly determined
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by the interplay of the aging and the replacement strategies, a careful algorithm design
and description was considered crucial to obtaining meaningful results.

Very recently, Corus et al. [11, 13] considered an artificial immune system using stan-
dard bit mutations and static pure aging in the context of the NP-hard number partition-
ing problem. Similarly to their analysis for hypermutations with mutation potential (see
Section 2.3.2) they proved that their artificial immune system is also able to efficiently
solve the same “hard” problem instances and constitutes a randomised polynomial time
approximation scheme for the partitioning problem (for ε ≥ 4/n).

3.2 Stochastic Aging
Stochastic aging usually uses the same mechanism as static pure aging to decide the age
of an offspring (see Algorithm 9); however, search points are removed based on some
probability pdie (see Algorithm 12).

Algorithm 12: Stochastic aging: removal due to age
Input: Population P ; probability of dying pdie

1 for all x ∈ P do
2 Set P := P \ {x} with probability pdie.

Oliveto and Sudholt [52] presented the first theoretical analysis of stochastic aging.
They showed that, just like static pure aging, stochastic aging can implicitly perform
restarts but, more importantly, they also considered the question of what aging can achieve
beyond performing standard restarts. They presented a framework for the analysis of
stochastic aging using a given probability pdie and showed that stochastic aging can be
effective in a natural setting (i. e., without crossover, which is not usually found in artificial
immune systems) where restarts do not work.

Using the same classical example function that Jansen and Zarges [38] used for static
pure aging, they provided guidance for parameterization and showed that stochastic aging
as in Algorithm 12 is effective only for not too large population sizes, as the probability
of performing a restart (i. e., the probability that all search points die roughly at the
same time) is exponential in the population size µ. To tackle this problem, a hybrid
aging operator (see Algorithm 13) combining ideas from static pure aging and stochastic
aging was introduced. Like static pure aging, it protects a search point from dying for τ
generations, but search points with an age larger than τ are removed from the population
with probability pdie. The efficiency of this novel operator was demonstrated for example
functions from the literature in both dynamic and static environments. These results
hold for arbitrary population sizes. For the dynamic Balance function, it was shown
that hybrid pure aging enables the algorithm to escape from a local optimum if all but
one search point of the population die and, in the same iteration, the surviving search
point moves out of the local optimum – something that an evolutionary algorithm using
standard bit mutations is unable to achieve. Moreover, it was shown that static pure
aging is inefficient in the dynamic setting considered. As a by-product of their analysis,
Oliveto and Sudholt also remarked that the parameter setting for hybrid pure aging is at
the opposite side of the spectrum from that for stochastic aging: while stochastic aging
requires a high probability of surviving (close to 1), hybrid pure aging requires a low
survival probability (Θ(1/µ)).

Algorithm 13: Hybrid pure aging: removal due to age
Input: Population P ; lifespan τ ; probability of dying pdie

1 for all x ∈ P do
2 if x.age > τ then
3 Set P := P \ {x} with probability pdie
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More recently, Corus et al. [10, 15] extended the analysis of Oliveto and Sudholt [52] by
considering the more general example function Cliffd. They demonstrated that hybrid
aging can be very efficient when coupled with local as well as standard bit mutations.
For local mutations, they proved an expected optimization time of O(n logn) if the gap
has linear size, i. e., when the function is most difficult for evolutionary algorithms using
standard bit mutations. It is noted, that this asymptotically matches the lower bound for
all unbiased mutation-based randomised search heuristics to optimise any function with a
unique optimum [48]. For standard bit mutations, Corus et al. [10, 15] proved an expected
optimisation time of O(n1+ε), ε > 0 constant, if the gap has linear size. The study was
further expanded in [15] by adding a genotype diversity mechanism (as proposed in the
original Opt-IA). Here, it was shown that the algorithm can still escape from the local
optima provided that the population size is not too large.

4 Theoretical Analyses of Complete AIS
While most of the theoretical work so far has considered only specific ingredients of artifi-
cial immune systems from the literature, some work has analyzed complete AIS as used in
applications. Early examples examined the B-cell algorithm [47]. More recently, a study of
Opt-IA [18] was presented. These publications shed a more detailed light on the strengths
and weaknesses of immune-inspired approaches compared with other randomized search
heuristics such as evolutionary algorithms or random local search by examining the inter-
play between different mechanisms. The following sections present pseudocode for both
algorithms considered in this way, and an overview of the results obtained.

4.1 The B-Cell Algorithm
The B-cell algorithm (BCA; see Algorithm 14) uses a population of size µ, generates λ
clones for each member of the population, and applies standard bit mutations to one
random clone of each member and somatic contiguous hypermutations to all clones. It
applies plus-selection between each member of the population and its clones. Jansen et
al. [31] proposed a variant of the BCA where contiguous hypermutations are only applied
with some constant probability 0 < p < 1 to the search point undergoing standard bit
mutations. Thus, in this version, one of the offspring is subject to standard bit mutations
with only probability 1− p. We call this variant BCA∗.
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Algorithm 14: The B-cell algorithm (BCA)
Parameters : Population size µ; offspring population size λ;

mutation probability r ∈ (0, 1]
1 Choose x1, . . . , xµ ∈ {0, 1}n independently uniformly at random (u.a.r.)
2 repeat
3 for i ∈ {1, . . . , µ} do /* Clonal expansion */
4 for j ∈ {1, . . . , λ} do
5 Set yi,j := xi.

6 for i ∈ {1, . . . , µ} do /* Standard bit mutations */
7 Select j ∈ {1, . . . , λ} u.a.r.
8 Perform SBM(yi,j).
9 for i ∈ {1, 2, . . . , µ} do /* Contiguous hypermutations */

10 for j ∈ {1, 2, . . . , λ} do
11 Perform CHM(yi,j). // see Algorithm 5

12 for i ∈ {1, 2, . . . , µ} do /* Selection */
13 if f(xi) ≤ max{f(yi,1), . . . , f(yi,λ)} then
14 Set xi := yi,j , where f(yi,j) = max{f(yi,1), . . . , f(yi,λ)},

break ties u.a.r.

15 until some termination criterion is met

4.1.1 Vertex Cover

The work of Jansen et al. [31] constitutes the first runtime analysis of a clonal selection
algorithm from the literature without any simplifications. It considers the performance
of the BCA and BCA∗ on the vertex cover problem and compares it with known results
for evolutionary algorithms.

In the vertex cover problem, we are given an undirected graph G = (V,E) with a set
V of n = |V | vertices and a set E of m = |E| edges. A cover is a subset of nodes, V ′ ⊆ V ,
such that each edge e ∈ E is covered by at least one node in V ′, i. e., e ∩ V ′ 6= ∅. One is
interested in finding a small cover, i. e., a cover V ∗ ⊆ V such that no smaller subset of V
can be a cover, i. e., ∀V ′ ⊆ V : (|V ′| < |V ∗|)⇒ (∃e ∈ E : e ∩ V ∗ = ∅).

In their work, Jansen et al. [31] used the standard node-based representation for vertex
cover that assumes that each x ∈ {0, 1}n encodes the node selection V (x) = {vi ∈ V |
x[i] = 1}. For a bit string x that encodes a cover V (x), we use its size |V (x)| as its fitness;
otherwise, the number of edges that are not covered is used as a penalty term, yielding
the following fitness function that is to be minimized:

f(x) =
{
|V (x)| if ∀e ∈ E : V (x) ∩ e 6= ∅,
(|V |+ 1) · |{e ∈ E | V (x) ∩ e = ∅}| otherwise.

Since, for the BCA, it is easy to flip contiguous bits but difficult to simultaneously
flip a few bits which are far apart, the mapping between a bit in x and a node in V can
have a significant influence on the performance of the algorithm. Thus, Jansen et al. [31]
suggested an ordering heuristic to determine a suitable mapping instead of making an
arbitrary choice. The main idea behind this heuristic is that nodes that are close to each
other and share many neighbors are likely to be ordered together (see [31] for a formal
definition and illustrative examples).

Using this encoding, Jansen et al. [31] considered a sequence of increasingly complex
instances of the vertex cover problem that have been studied as example instances for
different kinds of randomized search heuristics to explore their limits. The simplest ex-
ample (introduced by Friedrich et al. [26]) is a bipartite graph where a small set of nodes
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V1 (with size |V1| = εn) is completely connected to a larger set of nodes V2 (with size
|V2| = (1− ε)n). The number of nodes n and the parameter ε that defines the imbalance
in the sizes of the two sets are parameters. Friedrich et al. [26] proved that the (1+1) EA
is easily caught in the local optimum and therefore is very inefficient with respect to
expected optimization time. The same holds for random local search. Both heuristics
require the introduction of restarts when stuck in a local optimum to become efficient on
this problem instance [49]. The BCA, with any polynomial population size µ and any not
too large number of clones (λ = O(1)), has expected optimization time O(µn2 logn) and
does not require restarts.

To make the difference between the (1 + 1) EA and the BCA more pronounced, one
can “amplify” the result by considering a number of copies of the bipartite graph and
adding a small number of additional edges to make the graph connected. For this graph,
the (1 + 1) EA has an exponential expected optimization time even if it is equipped with
an optimal restart strategy [50]. For a number l of copies of the bipartite graph, where
each copy has h nodes (so that the total graph has n = h · l nodes), the BCA has expected
optimization time O(µn2 (l + log(n))), again for any polynomial population size µ and
any not too large number of clones (λ = O(1)).

The (1 + 1) EA is not a very typical evolutionary algorithm, since it employs neither
a proper population of solutions nor crossover. For evolutionary algorithms making use
of both, more complex vertex cover instances become solvable. Oliveto et al. [49] proved
that an evolutionary algorithm with a population size of µ that applies crossover with a
small probability pc is able to find an optimal solution for a more complex vertex cover
instance in polynomial time with very high probability, namely in time O(µ2n/pc), where
the population size is at least µ ≥ n1+ε and the probability of applying crossover is at
most pc ≤ 1/ (µ

√
n logn). Note that the upper bound is ω(n4.5 logn), which is far from

being efficient from a practical point of view. The (1+1) EA is provably very inefficient on
this problem instance. The BCA, on the other hand, finds an optimum for this instance
in expected time O(µn3), which can be as small as O(n3) if the population size µ is small
(µ = O(1)).

As seen in Section 2.2, contiguous hypermutations are a rather inefficient hill-climber,
and thus so is the “pure” BCA. Using BCA∗ instead of the BCA reduces the upper
bound to O(µn2 logn), which becomes O(n2 logn) for small population sizes (µ = O(1)).
This modification improves the hill-climbing abilities of the BCA considerably without
compromising its search capabilities in a significant way. We remark that for µ = O(1)
and λ = O(1), BCA∗ also improves the expected optimization times for OneMax and
LeadingOnes to Θ(n logn) and Θ(n2), respectively.

4.1.2 Longest Common Subsequence

A comparison similar to the one presented by Jansen et al. [31] for the vertex cover problem
has been performed for the longest common subsequence problem [41]. Here, Jansen and
Zarges showed that the BCA outperforms a large class of evolutionary algorithms using
mutation and crossover on previously introduced hard problem instances.

In the longest common subsequence problem, we are given a set of m sequences of
potentially different lengths over a common finite alphabet Σ, i. e., X1, X2, . . . , Xm ⊆ Σ∗.
By |Y | we denote the length of a sequence Y , i. e., |Y | = l for Y = y[1]y[2] · · · y[l] ∈
Σl. A sequence Y = y[1]y[2] . . . y[l] ∈ Σl is called a subsequence of a sequence X =
x[1]x[2] · · ·x[n] ∈ Σn if there are indices 0 < i1 < i2 < · · · < il ≤ n such that y[j] = x[ij ]
holds for all j ∈ {1, 2, . . . , l}. The sequence of indices proving that Y is a subsequence of
X need not be unique. A sequence Y is a common subsequence of X1, X2, . . . , Xm if it
is a subsequence of Xi for all i ∈ {1, 2, . . . ,m}. It is a longest common subsequence if all
common subsequences of X1, X2, . . . , Xm do not have greater length.

Jansen and Zarges [41] used S = {0, 1}n, where n is the length of a shortest sequence
in the input, as the search space. Let X1 = x[1]x[2] · · ·x[n] ∈ Σn denote the letters in the
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sequence X1. For a search point s = s[1]s[2] · · · s[n] ∈ {0, 1}n, let I1 = {i1, i2, . . . , il} ⊆
{1, 2, . . . , n} (with i1 < i2 < · · · < il) denote the positions of 1-bits in s, i. e., s[i] = 1
for all i ∈ I1 and s[i] = 0 for all i ∈ {1, 2, . . . , n} \ I1. The search point s encodes the
sequence x[i1]x[i2] · · ·x[il], a subsequence of X1. Let c(s) denote the sequence encoded by
s. If c(s) is a subsequence of all X1, X2, . . . , Xm, it encodes a feasible solution, otherwise
c(s) is infeasible. The all-zero bit string encodes a trivial empty solution.

We discuss only one of the three fitness functions considered in [41], as the other two are
either very complicated or merely of theoretical interest. The function fMAX determines
the maximum length k of a prefix of c(s) such that c(s)(k) is a common subsequence
of X1, X2, . . . , Xm. This length minus the length of the remaining suffix of c(s) is the
function value:

MAX(c(s), X1, X2, . . . , Xm)
= min{max{k | c(s)(k) is subsequence of Xi} | i ∈ {1, . . . ,m}},

fMAX(s)
= MAX(c(s), X1, X2, . . . , Xm)− (|c(s)| −MAX(c(s), X1, X2, . . . , Xm)).

Jansen and Zarges [41] considered four hard instances from the literature [32], two for the
theoretically motivated fitness function omitted here and two for the other two (including
the one defined above):
• EMAX:

X1 = 0(8/32)n1(24/32)n and X2 = 1(24/32)n0(5/32)n1(13/32)n,

where n is a multiple of 32;
• AMAX:

X1 = 0(1/l)n1((l−1)/l)n and X2 = 1((l−1)/l)n0(5/(8l))n1((4l−3)/(8l))n,

where l := d(3/ε)− (1/2)e for some ε > 0 constant and n a multiple of 8l.
It is known that a large class of evolutionary algorithms fails to locate an optimal solution
of EMAX efficiently; for AMAX, this class even fails to approximate an optimal solution up
to a factor of 2− ε for any constant ε > 0 [32].

Jansen and Zarges [41] proved that the BCA is not efficient if random initialization
of the population is used; for AMAX, it also fails to find a good approximation – just
like evolutionary algorithms. However, they showed that the BCA is very efficient if
started with trivial empty candidate solutions. For both EMAX and AMAX, the expected
optimization time of the BCA is O(µλn2 logn) for all settings of µ = nO(1), λ = nO(1)

with µλ = ω(n logn). The algorithm benefits from deterministic initialization because
contiguous hypermutations are able to introduce a linear number of 1-bits into a region
where they are needed in a single step. As a by-product of their analyses, Jansen and
Zarges [41] noted that the concrete choices of µ and λ make no difference as long as
µ · λ remains unchanged – in evolutionary computation, these choices usually have a very
different effect.

While empirical observations for the longest common subsequence problem indicate
that evolutionary algorithms perform better if started with trivial empty candidate so-
lutions, this is not the case for the instances considered, and deterministic initialization
does not lead to an improved behavior.

4.1.3 Dynamic Optimization

The BCA and its variant BCA∗ have also been considered in the context of dynamic
optimization [42, 45]. Here, Jansen and Zarges particularly discussed why fixed-budget
analysis is more appropriate for dynamic environments, where the limited time budget
refers to the generations directly after a change in the fitness landscape. They introduced
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a novel dynamic bistable example function that exhibits phases of stability and rapid
change. Motivated by earlier results, they investigated whether artificial immune systems
have an advantage in situations of rapid change. A large number of concrete theoretical
results for different combinations of execution platforms and parameters of the fitness
function were presented. The specific way the optimum moves in the nonstable phases
tends to be helpful for contiguous hypermutations, but within the analytical framework
no clear advantage could be observed. The concrete contributions of [42, 45] are discussed
in more detail in Section 5.5 of this book.

4.2 Opt-IA
The name Opt-IA [18] encompasses several clonal selection algorithms following similar
ideas and using roughly the same operators. Just like the B-cell algorithm, Opt-IA is
mostly used in the context of optimization and uses a bit string representation. We give
a description of the algorithm’s bare bones in Algorithm 15. For each search point in
the population, a large number of clones are created that are then subject to mutation.
Usually a static cloning operator is used, i. e., the number of clones is independent of the
fitness; however, some versions of Opt-IA employ some form of fitness-dependent cloning,
where a search point is selected for cloning with a probability that is proportional to its
fitness (see [3] for an overview). Depending on the specific variant used, Opt-IA uses two
different types of mutation operator: hypermutations with mutation potential and a form
of contiguous hypermutations (often called hypermacromutation). Usually, both mutation
operators are applied independently and separately to the clones. Opt-IA additionally in-
troduces the concept of aging to clonal selection algorithms, as discussed in Section 3.
Aging operators aim at increasing the diversity within the population by removing “too
old” search points. If aging results in too few search points in the population, the pop-
ulation is filled up with new random search points. Moreover, usually no duplicates are
allowed in the population.
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Algorithm 15: Opt-IA
Parameters : Population size µ; offspring population size λ;

mutation flags H,M
1 Choose P = {x1, . . . , xµ} independently, uniformly at random (u.a.r.).
2 repeat
3 for i ∈ {1, . . . , µ} do /* Clonal selection and expansion */
4 Generate λ clones of xi.
5 Place the clones in a clonal pool Ci = {yi,1, . . . , yi,λ}.
6 CHi = ∅. CMi = ∅.
7 for j ∈ {1, . . . , λ} do /* Affinity maturation */
8 if H then
9 ŷi,j ← Apply hypermutations with mutation potential to

yi,j .
10 Add ŷi,j to CHi .
11 if M then
12 ỹi,j ← Apply contiguous hypermutations to yi,j .
13 Add ỹi,j to CMi .

14 Apply aging to P , CHi , and CMi . /* Metadynamics */
15 Set P = P ∪ CH1 ∪ . . . ∪ CHµ ∪ CM1 ∪ . . . ∪ CMµ . /* Selection */
16 if |P | > µ then
17 Keep the µ best search points from P , breaking ties u.a.r. and

removing duplicates.
18 else
19 Keep all search points in P .
20 Fill up P with random points until |P | = µ.

21 until some termination criterion is met

Corus et al. [10, 15] considered the first runtime analysis of Opt-IA using only hyper-
mutations with a static mutation potential (where the number of bits flipped is linear in
the problem size, c · n for constant c > 0), including the FCM mechanism and ensuring
that only distinct bits are flipped (TABU variant). Moreover, they replaced the standard
static pure aging operator by hybrid aging, as introduced by Oliveto and Sudholt [52] (see
Algorithm 13).

After considering standard example functions such as OneMax, LeadingOnes, Cliffd,
and Jumpk for this variant of Opt-IA (with and without genotype diversity), the study
highlights problems where the use of the complete Opt-IA variant is crucial. For a carefully
constructed novel example function called HiddenPath, it was shown that Opt-IA with
appropriate parameterization has an expected polynomial optimization time, while the
algorithm missing either aging or hypermutations requires at least superpolynomial time.
To give a complete picture, the extension in [15] introduced another class of functions
(called HyperTrapy), for which, with overwhelming probability, Opt-IA is inefficient,
while the simple (1+1) EA using standard bit mutations is efficient.

Corus et al. [10, 15] also considered a simple trap function, as such a function was used
when Opt-IA was originally introduced. They proved an expected optimization time of
O(µn2 logn) for τ = Ω(n2), c = 1, and λ = 1 and pointed out that this does not match
the empirical results reported in [16], where Opt-IA was unable to optimize trap functions
for n > 50. It was conjectured that this was due either to not using FCM or too small a
time budget.

In [12], Corus et al. analyzed Opt-IA using “fast” hypermutations with mutation
potential (see Section 2.3.3) on previously considered example functions such as Hidden-
Path and Cliffd. The authors particularly pointed out that, in order to effectively work
with aging on Cliffd, it was crucial not to use hypermutations with FCM as the FCM
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mechanism does not allow worsening of the fitness value1. Thus, the operator performed
all n mutation steps and returned the best sampled search point instead of the first im-
proved one. Later, Corus et al. [14] demonstrated that their inversely fitness-proportional
mutation potential (see Section 2.3.1) together with aging was able to optimize Cliffd
with d = Θ(n) in expected polynomial time even if FCM is used.

5 Summary
In this chapter, we have provided an overview of the state of the art in the theory of
immune-inspired randomized search heuristics for optimization. In this context, most al-
gorithms are inspired by the so-called clonal selection principle, which describes the basic
features of the adaptive immune response. A large variety of different clonal selection
algorithms have been introduced, and over the last decade some significant progress has
been made on the theoretical foundations of such algorithms. Initially, most theoretical
studies concentrated on two defining aspects of artificial immune systems: hypermuta-
tion operators (inversely fitness-proportional mutations, contiguous hypermutations, and
hypermutations with mutation potential) and a diversity mechanism called aging (static
pure aging and stochastic aging). More recently, insights into the interplay between dif-
ferent operators have allowed the first analyses of “complete” artificial immune systems
as published in the literature – this particularly includes analyses of the B-cell algorithm
and Opt-IA.

Theoretical analyses have contributed to significant insights into the working princi-
ples of immune-inspired operators and algorithms. For example, a common observation
in the literature is that typical immune-inspired operators such as hypermutations and
aging allow us to efficiently escape from local optima – particularly when compared to
evolutionary algorithms – but may have difficulties during the exploitation phase. The
introduction of fixed-budget analysis (discussed in more detail in Chapter 5 of this book)
has particularly contributed to our understanding of their strengths and weaknesses. In
many cases, these insights have contributed to the development of improved versions of
the operators or hybrid variants that combine immune-inspired mechanisms with tech-
niques used in evolutionary computation and other randomized search heuristics. How-
ever, more research into the strengths and weaknesses of immune-inspired algorithms is
needed, particularly in the context of combinatorial optimization. It would be interesting
to see on what kind of problems these algorithms excel over other nature-inspired ran-
domized search heuristics such as evolutionary algorithms. It is also often argued that
immune-inspired algorithms are especially suited for multimodal or dynamic optimization
problems. Further investigations in these directions are promising directions for future
research.
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