60 research outputs found

    Packing and covering in combinatorics

    Get PDF

    Geometric Inhomogeneous Random Graphs for Algorithm Engineering

    Get PDF
    The design and analysis of graph algorithms is heavily based on the worst case. In practice, however, many algorithms perform much better than the worst case would suggest. Furthermore, various problems can be tackled more efficiently if one assumes the input to be, in a sense, realistic. The field of network science, which studies the structure and emergence of real-world networks, identifies locality and heterogeneity as two frequently occurring properties. A popular model that captures these properties are geometric inhomogeneous random graphs (GIRGs), which is a generalization of hyperbolic random graphs (HRGs). Aside from their importance to network science, GIRGs can be an immensely valuable tool in algorithm engineering. Since they convincingly mimic real-world networks, guarantees about quality and performance of an algorithm on instances of the model can be transferred to real-world applications. They have model parameters to control the amount of heterogeneity and locality, which allows to evaluate those properties in isolation while keeping the rest fixed. Moreover, they can be efficiently generated which allows for experimental analysis. While realistic instances are often rare, generated instances are readily available. Furthermore, the underlying geometry of GIRGs helps to visualize the network, e.g.,~for debugging or to improve understanding of its structure. The aim of this work is to demonstrate the capabilities of geometric inhomogeneous random graphs in algorithm engineering and establish them as routine tools to replace previous models like the Erd\H{o}s-R{\\u27e}nyi model, where each edge exists with equal probability. We utilize geometric inhomogeneous random graphs to design, evaluate, and optimize efficient algorithms for realistic inputs. In detail, we provide the currently fastest sequential generator for GIRGs and HRGs and describe algorithms for maximum flow, directed spanning arborescence, cluster editing, and hitting set. For all four problems, our implementations beat the state-of-the-art on realistic inputs. On top of providing crucial benchmark instances, GIRGs allow us to obtain valuable insights. Most notably, our efficient generator allows us to experimentally show sublinear running time of our flow algorithm, investigate the solution structure of cluster editing, complement our benchmark set of arborescence instances with a density for which there are no real-world networks available, and generate networks with adjustable locality and heterogeneity to reveal the effects of these properties on our algorithms

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    Ideal Clutters

    Get PDF
    Let E be a finite set of elements, and let C be a family of subsets of E called members. We say that C is a clutter over ground set E if no member is contained in another. The clutter C is ideal if every extreme point of the polyhedron { x>=0 : x(C) >= 1 for every member C } is integral. Ideal clutters are central objects in Combinatorial Optimization, and they have deep connections to several other areas. To integer programmers, they are the underlying structure of set covering integer programs that are easily solvable. To graph theorists, they are manifest in the famous theorems of Edmonds and Johnson on T-joins, of Lucchesi and Younger on dijoins, and of Guenin on the characterization of weakly bipartite graphs; not to mention they are also the set covering analogue of perfect graphs. To matroid theorists, they are abstractions of Seymour’s sums of circuits property as well as his f-flowing property. And finally, to combinatorial optimizers, ideal clutters host many minimax theorems and are extensions of totally unimodular and balanced matrices. This thesis embarks on a mission to develop the theory of general ideal clutters. In the first half of the thesis, we introduce and/or study tools for finding deltas, extended odd holes and their blockers as minors; identically self-blocking clutters; exclusive, coexclusive and opposite pairs; ideal minimally non-packing clutters and the τ = 2 Conjecture; cuboids; cube-idealness; strict polarity; resistance; the sums of circuits property; and minimally non-ideal binary clutters and the f-Flowing Conjecture. While the first half of the thesis includes many broad and high-level contributions that are accessible to a non-expert reader, the second half contains three deep and technical contributions, namely, a character- ization of an infinite family of ideal minimally non-packing clutters, a structure theorem for ±1-resistant sets, and a characterization of the minimally non-ideal binary clutters with a member of cardinality three. In addition to developing the theory of ideal clutters, a main goal of the thesis is to trigger further research on ideal clutters. We hope to have achieved this by introducing a handful of new and exciting conjectures on ideal clutters

    An extensive English language bibliography on graph theory and its applications, supplement 1

    Get PDF
    Graph theory and its applications - bibliography, supplement

    The 2nd Conference of PhD Students in Computer Science

    Get PDF

    Minimal Ramsey graphs, orthogonal Latin squares, and hyperplane coverings

    Get PDF
    This thesis consists of three independent parts. The first part of the thesis is concerned with Ramsey theory. Given an integer q≥2q\geq 2, a graph GG is said to be \emph{qq-Ramsey} for another graph HH if in any qq-edge-coloring of GG there exists a monochromatic copy of HH. The central line of research in this area investigates the smallest number of vertices in a qq-Ramsey graph for a given HH. In this thesis, we explore two different directions. First, we will be interested in the smallest possible minimum degree of a minimal (with respect to subgraph inclusion) qq-Ramsey graph for a given HH. This line of research was initiated by Burr, Erdős, and Lovász in the 1970s. We study the minimum degree of a minimal Ramsey graph for a random graph and investigate how many vertices of small degree a minimal Ramsey graph for a given HH can contain. We also consider the minimum degree problem in a more general asymmetric setting. Second, it is interesting to ask how small modifications to the graph HH affect the corresponding collection of qq-Ramsey graphs. Building upon the work of Fox, Grinshpun, Liebenau, Person, and Szabó and Rödl and Siggers, we prove that adding even a single pendent edge to the complete graph KtK_t changes the collection of 2-Ramsey graphs significantly. The second part of the thesis deals with orthogonal Latin squares. A {\em Latin square of order nn} is an n×nn\times n array with entries in [n][n] such that each integer appears exactly once in every row and every column. Two Latin squares LL and L′L' are said to be {\em orthogonal} if, for all x,y∈[n]x,y\in [n], there is a unique pair (i,j)∈[n]2(i,j)\in [n]^2 such that L(i,j)=xL(i,j) = x and L′(i,j)=yL'(i,j) = y; a system of {\em kk mutually orthogonal Latin squares}, or a {\em kk-MOLS}, is a set of kk pairwise orthogonal Latin squares. Motivated by a well-known result determining the number of different Latin squares of order nn log-asymptotically, we study the number of kk-MOLS of order nn. Earlier results on this problem were obtained by Donovan and Grannell and Keevash and Luria. We establish new upper bounds for a wide range of values of k=k(n)k = k(n). We also prove a new, log-asymptotically tight, bound on the maximum number of other squares a single Latin square can be orthogonal to. The third part of the thesis is concerned with grid coverings with multiplicities. In particular, we study the minimum number of hyperplanes necessary to cover all points but one of a given finite grid at least kk times, while covering the remaining point fewer times. We study this problem for the grid F2n\mathbb{F}_2^n, determining the number exactly when one of the parameters nn and kk is much larger than the other and asymptotically in all other cases. This generalizes a classic result of Jamison for k=1k=1. Additionally, motivated by the recent work of Clifton and Huang and Sauermann and Wigderson for the hypercube { 0,1 }n⊆Rn\set{0,1}^n\subseteq\mathbb{R}^n, we study hyperplane coverings for different grids over R\mathbb{R}, under the stricter condition that the remaining point is omitted completely. We focus on two-dimensional real grids, showing a variety of results and demonstrating that already this setting offers a range of possible behaviors.Diese Dissertation besteht aus drei unabh\"angigen Teilen. Der erste Teil beschäftigt sich mit Ramseytheorie. Für eine ganze Zahl q≥2q\geq 2 nennt man einen Graphen \emph{qq-Ramsey} f\"ur einen anderen Graphen HH, wenn jede Kantenf\"arbung mit qq Farben einen einfarbigen Teilgraphen enthält, der isomorph zu HH ist. Das zentrale Problem in diesem Gebiet ist die minimale Anzahl von Knoten in einem solchen Graphen zu bestimmen. In dieser Dissertation betrachten wir zwei verschiedene Varianten. Als erstes, beschäftigen wir uns mit dem kleinstm\"oglichen Minimalgrad eines minimalen (bezüglich Teilgraphen) qq-Ramsey-Graphen f\"ur einen gegebenen Graphen HH. Diese Frage wurde zuerst von Burr, Erd\H{o}s und Lov\'asz in den 1970er-Jahren studiert. Wir betrachten dieses Problem f\"ur einen Zufallsgraphen und untersuchen, wie viele Knoten kleinen Grades ein Ramsey-Graph f\"ur gegebenes HH enthalten kann. Wir untersuchen auch eine asymmetrische Verallgemeinerung des Minimalgradproblems. Als zweites betrachten wir die Frage, wie sich die Menge aller qq-Ramsey-Graphen f\"ur HH verändert, wenn wir den Graphen HH modifizieren. Aufbauend auf den Arbeiten von Fox, Grinshpun, Liebenau, Person und Szabó und Rödl und Siggers beweisen wir, dass bereits der Graph, der aus KtK_t mit einer h\"angenden Kante besteht, eine sehr unterschiedliche Menge von 2-Ramsey-Graphen besitzt im Vergleich zu KtK_t. Im zweiten Teil geht es um orthogonale lateinische Quadrate. Ein \emph{lateinisches Quadrat der Ordnung nn} ist eine n×nn\times n-Matrix, gef\"ullt mit den Zahlen aus [n][n], in der jede Zahl genau einmal pro Zeile und einmal pro Spalte auftritt. Zwei lateinische Quadrate sind \emph{orthogonal} zueinander, wenn f\"ur alle x,y∈[n]x,y\in[n] genau ein Paar (i,j)∈[n]2(i,j)\in [n]^2 existiert, sodass es L(i,j)=xL(i,j) = x und L′(i,j)=yL'(i,j) = y gilt. Ein \emph{k-MOLS der Ordnung nn} ist eine Menge von kk lateinischen Quadraten, die paarweise orthogonal sind. Motiviert von einem bekannten Resultat, welches die Anzahl von lateinischen Quadraten der Ordnung nn log-asymptotisch bestimmt, untersuchen wir die Frage, wie viele kk-MOLS der Ordnung nn es gibt. Dies wurde bereits von Donovan und Grannell und Keevash und Luria studiert. Wir verbessern die beste obere Schranke f\"ur einen breiten Bereich von Parametern k=k(n)k=k(n). Zusätzlich bestimmen wir log-asymptotisch zu wie viele anderen lateinischen Quadraten ein lateinisches Quadrat orthogonal sein kann. Im dritten Teil studieren wir, wie viele Hyperebenen notwendig sind, um die Punkte eines endlichen Gitters zu überdecken, sodass ein bestimmter Punkt maximal (k−1)(k-1)-mal bedeckt ist und alle andere mindestens kk-mal. Wir untersuchen diese Anzahl f\"ur das Gitter F2n\mathbb{F}_2^n asymptotisch und sogar genau, wenn eins von nn und kk viel größer als das andere ist. Dies verallgemeinert ein Ergebnis von Jamison für den Fall k=1k=1. Au{\ss}erdem betrachten wir dieses Problem f\"ur Gitter im reellen Vektorraum, wenn der spezielle Punkt überhaupt nicht bedeckt ist. Dies ist durch die Arbeiten von Clifton und Huang und Sauermann und Wigderson motiviert, die den Hyperwürfel { 0,1 }n⊆Rn\set{0,1}^n\subseteq \mathbb{R}^n untersucht haben. Wir konzentrieren uns auf zwei-dimensionale Gitter und zeigen, dass schon diese sich sehr unterschiedlich verhalten können
    • …
    corecore