
Geometric Inhomogeneous Random Graphs
for Algorithm Engineering

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der KIT-Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Christopher Weyand

Tag der mündlichen Prüfung: 21. April 2023

1. Referent: T.T. Prof. Dr. Thomas Bläsius

2. Referent: Prof. Dr. Ulrich Meyer

Summary

The design and analysis of graph algorithms is heavily based on the worst case. In
practice, however, many algorithms perform much better than the worst case would
suggest. Furthermore, various problems can be tackled more efficiently if one assumes
the input to be, in a sense, realistic. The field of network science, which studies the
structure and emergence of real-world networks, identifies locality and heterogeneity as
two frequently occurring properties.

A popular model that captures these properties are geometric inhomogeneous random
graphs (GIRGs), which is a generalization of hyperbolic random graphs (HRGs). Aside
from their importance to network science, GIRGs can be an immensely valuable tool in
algorithm engineering. Since they convincingly mimic real-world networks, guarantees
about quality and performance of an algorithm on instances of the model can be transferred
to real-world applications. They have model parameters to control the amount of
heterogeneity and locality, which allows to evaluate those properties in isolation while
keeping the rest fixed. Moreover, they can be efficiently generated which allows for
experimental analysis. While realistic instances are often rare, generated instances are
readily available. Furthermore, the underlying geometry of GIRGs helps to visualize the
network, e.g., for debugging or to improve understanding of its structure.
The aim of this work is to demonstrate the capabilities of geometric inhomogeneous

random graphs in algorithm engineering and establish them as routine tools to replace
previous models like the Erdős-Rényi model, where each edge exists with equal probability.
We utilize geometric inhomogeneous random graphs to design, evaluate, and optimize
efficient algorithms for realistic inputs. In detail, we provide the currently fastest sequential
generator for GIRGs and HRGs and describe algorithms for maximum flow, directed
spanning arborescence, cluster editing, and hitting set. For all four problems, our
implementations beat the state-of-the-art on realistic inputs.
On top of providing crucial benchmark instances, GIRGs allow us to obtain valuable

insights. Most notably, our efficient generator allows us to experimentally show sublinear
running time of our flow algorithm, investigate the solution structure of cluster editing,
complement our benchmark set of arborescence instances with a density for which there
are no real-world networks available, and generate networks with adjustable locality and
heterogeneity to reveal the effects of these properties on our algorithms.

3

Contents

1 Introduction 9
1.1 Contribution and Outline . 14
1.2 Network Models . 16

1.2.1 Erdős-Rényi Random Graphs . 16
1.2.2 (Soft) Configuration Model . 16
1.2.3 Chung-Lu Random Graphs . 17
1.2.4 Random Geometric Graphs . 17
1.2.5 Hyperbolic Random Graphs . 17
1.2.6 Geometric Inhomogeneous Random Graphs 18

2 Generating Geometric Inhomogeneous Random Graphs 21
2.1 Introduction . 21

2.1.1 Contribution & Outline . 22
2.1.2 Comparison with Existing Generators 24

2.2 Sampling Algorithm . 24
2.2.1 Inhomogeneous Weights . 25
2.2.2 Binomial Variant of the Model . 26
2.2.3 Efficiently Iterating Over Cell Pairs 26
2.2.4 Efficient Access to Vertices by Bucket and Cell 27
2.2.5 Adapting the Algorithm to HRGs 28

2.3 Implementation Details . 28
2.3.1 Avoiding Double Counting Buckets, Cells, and Vertices 29
2.3.2 Efficiently Encoding and Decoding Morton Codes 29
2.3.3 Estimating the Average Degree Parameter 31
2.3.4 Avoiding Expensive Mathematical Operations for HRGs 34
2.3.5 Parallelization . 36

2.4 Experimental Evaluation . 37
2.4.1 Scaling of the GIRG Generator . 37
2.4.2 HRG Run Time Comparison . 38
2.4.3 Difference Between HRGs and GIRGs 40

2.5 Conclusion . 40

3 Computing Maximum Flows in Scale-Free Networks 43
3.1 Introduction . 43
3.2 Network Flows and Dinitz’s Algorithm . 45

3.2.1 Network Flows . 45
3.2.2 Dinitz’s Algorithm . 45

5

Contents

3.2.3 Running Time Considerations . 46
3.3 Improving Dinitz on Scale-Free Networks 46

3.3.1 Bidirectional Search . 47
3.3.2 Time Stamps . 47
3.3.3 Skip Next Forward Layer . 47

3.4 Implementation . 48
3.4.1 Common Dinitz Implementations 48
3.4.2 Data Layout and Initialization . 49
3.4.3 Low-Level Optimizations . 49

3.5 Experimental Evaluation . 50
3.5.1 Runtime Comparison . 50
3.5.2 Optimizations in Detail . 52
3.5.3 Gomory-Hu Trees . 56
3.5.4 Performance on Homogeneous Networks 58
3.5.5 Data and Implementations . 59

3.6 Conclusion . 61

4 Computing Directed Minimum Spanning Trees 63
4.1 Introduction . 63
4.2 Edmonds’ Arborescence Algorithm . 64

4.2.1 Edmonds’ Original Version . 64
4.2.2 Tarjan’s Version . 65
4.2.3 GGST Version . 65
4.2.4 Arborescence Reconstruction . 69

4.3 Implementation . 70
4.3.1 Competition Codes . 71
4.3.2 Library Solvers . 71
4.3.3 Our Tarjan-based Solvers . 71
4.3.4 Our GGST Solver . 72
4.3.5 Alternative Reconstruction Method 73

4.4 Experiments . 73
4.4.1 Setup and Datasets . 73
4.4.2 External Solver Integration . 74
4.4.3 General Performance . 75
4.4.4 Scaling Analysis . 76
4.4.5 Time Per Operation . 78

4.5 Conclusion . 78

5 A Branch-and-Bound Algorithm for Hitting Set 81
5.1 Introduction . 81
5.2 Basic Building Blocks . 82

5.2.1 Problem Definition . 82
5.2.2 Upper Bounds . 83
5.2.3 Lower Bounds . 83

6

Contents

5.2.4 Reduction Rules . 86
5.3 The Branch-and-Bound Algorithm . 87

5.3.1 Operation Summary and Reduction Order 87
5.3.2 Branching Strategy . 88
5.3.3 Instance Representation . 88
5.3.4 Upper Bound Computation . 89
5.3.5 Packing Bound Computation . 89
5.3.6 Efficient Costly Discard Rule . 89
5.3.7 Efficient Domination Rules . 90

5.4 Evaluation on Public Hitting-Set Instances 91
5.4.1 Experimental Setup . 91
5.4.2 Runtime Performance and Search Space 92
5.4.3 Lower Bound Effectiveness . 95
5.4.4 Upper Bound Effectiveness . 97
5.4.5 Reduction Effectiveness . 99

5.5 Evaluation on Geometric Inhomogeneous Random Graphs 101
5.5.1 Degree Distributions . 102
5.5.2 Vertex to Edge Ratio . 102
5.5.3 Hyperedge Size . 103
5.5.4 Locality . 103

5.6 Conclusion . 104

6 A Branch-And-Bound Algorithm for Cluster Editing 105
6.1 Introduction . 105
6.2 Preliminaries . 106
6.3 The Branch-and-Bound Algorithm . 107

6.3.1 Upper Bounds . 107
6.3.2 Lower Bounds . 107
6.3.3 Reduction Rules . 110
6.3.4 Reduction Order . 115

6.4 Experiments . 116
6.4.1 PACE Instances . 116
6.4.2 Experiments on GIRGs . 121

6.5 Conclusion . 124

7 Conclusion and Outlook 125
7.1 Generating GIRGs . 125
7.2 Scale-Free Flow . 126
7.3 Minimum Spanning Arborescence . 126
7.4 Hitting Set . 127
7.5 Cluster Editing . 128
7.6 Summary . 128

Bibliography 129

7

1 Introduction

Networks are a very general concept and appear almost everywhere. From the friendships
that we form, the roads that we take, to the news that we read — almost everything
can be modelled as a network with entities and their relations; vertices connected by
edges. One of the most prominent examples are social networks like Twitter and Facebook
but also atoms connecting to form molecules or protein interactions can be seen as a
network. Even this very text is a network of pages and cross references between them. It
comes as no surprise that many real-world tasks can be boiled down to a concise problem
statement on a network: finding the shortest trip between two cities, separating students
into two groups, distributing assignments among coworkers, or tracking down the origin
of a disease. Depending on the exact circumstances, these problems could map to the
graph theoretic problems shortest path, minimum cut, bipartite matching, and directed
spanning tree. For decades now, researchers have been working on algorithms to solve
problems like these.
The performance of an algorithm is usually measured as a function of its input size.

To focus on the essentials, big-O notation is a formalization of time complexity that
ignores constant factors and classifies performance based on asymptotic scaling alone.
The implications of this runtime complexity cannot be overstated. Since networks tend to
be quite large — e.g., Wikipedia has millions of English articles — the asymptotic scaling
of the complexity makes the differences between practical and impractical algorithms. For
example, an algorithm that scales cubically in the input size would take decades to process
a million-node network whereas an algorithm with quadratic scaling finishes in under
an hour. Some problems are even harder to solve with all known algorithms running in
exponential time. For example vertex cover asks for the smallest set of vertices such that
each edge has at least one endpoint selected. Unless verification in polynomial time is
equal to solving in polynomial time (i.e., P = NP), a polynomial time algorithm for such
problems cannot exist. Those NP -hard problems are considered intractable, because the
time to solve an instance with just a hundred nodes would, at least in theory, surpass the
lifetime of the computer it runs on. These theoretical results stand in contrast to empirical
results for classical NP -hard problems like boolean satisfiability (SAT) which asks if a
given boolean formula in conjunctive normal form has a satisfying assignment. Many
problems can be reduced to SAT and the resulting instances, even if they have millions of
variables and clauses, are often solved by state-of-the-art SAT solvers in seconds.

Algorithm design and analysis focuses on the worst possible input (worst-case) to
provide a running time guarantee that holds for all inputs. But an algorithm does not
necessarily take the same amount of time on each network of the same size. For example,
if the network has no cycles, then vertex cover is rather easy and solvable in linear time.
Moreover, many algorithms perform much better in practice than the worst case would

9

1 Introduction

suggest. Realistic inputs are usually far easier than instances that are specifically crafted
to be difficult. To bridge the gap between theory and practice and to better formalize
algorithm performance and instance difficulty is an open problem and the focus of multiple
fields of research.
Parametrized complexity is an approach to better describe the time complexity of

algorithms. The idea is to find parameters of the input instance, most commonly solution
size, and then express the running time of an algorithm in terms of that parameter
in an attempt to extract the difficult core of a problem. A problem is called fixed
parameter tractable (FPT) if the complexity can be expressed as an arbitrary function
in the parameter but with a polynomial dependence on the input size. Instances with a
small parameter thus allow for efficient algorithms. Vertex cover, for example, is FPT in
the solution size, as well as in a parameter called treewidth which describes how similar
the instance is to a tree. This nicely generalizes the statement above that vertex cover
is fast on graphs without cycles. Unfortunately, most real-world networks have neither
a small solution size for vertex cover nor a small treewidth. Despite this, solvers were
able to solve vertex cover on instances with thousands of nodes in the Parameterized
Algorithms and Computational Experiments Challenge (PACE) in 2019. It is an ongoing
challenge of parametrized complexity to find parameters that are small in practice, allow
FPT algorithms for relevant problems, and can be computed efficiently.
Another early attempt to tackle the gap between theory and practice is average-case

analysis, that is, evaluating performance based on the average over all possible inputs
instead of the worst case. Equivalently, one considers the expected performance on inputs
drawn at random. Each edge has the same probability of existing and each graph with
a fixed number of vertices and edges is equally likely. Such a uniform distribution over
graphs of a fixed size is called the Erdős-Rényi random graph model, or ER-model for
short [ER59]. Although the ER-model has been analyzed extensively and is used in
theory and in practice to evaluate existing algorithms, average-case analysis is regarded
as unrealistic because real-world networks are, in addition to being far from the worst
case, also not entirely random. In fact, similar properties frequently appear in networks
from vastly different domains, which are absent (with high probability) in the ER-model.
These structures are exploitable and facilitate the design and creation of algorithms that
are efficient on real-world data. To obtain meaningful results with average-case analysis,
a realistic network model, i.e., a probability distribution over the input graphs, is key.

The scientific field that deals with the structure and emergence of real-world networks
is called network science. Since the beginnings of average-case analysis, network science
has made huge progress characterizing important properties and formulating network
models reflecting these properties. There are three properties that occur very frequently.
First, many networks have local structure or clustering, meaning that two vertices with a
common neighbor are more likely to be connected than two arbitrary vertices. We call
this locality. Locality is typically measured by the clustering coefficient, which counts
the number of closed triangles divided by the total number of triangles in a graph. In
other words, for two neighbors of a random vertex, the probability that they are joined
by an edge. Figure 1.1 shows a graph with random connections (ER model) beside a

10

(a) random (b) locality

Figure 1.1: Networks with 100 vertices and average degree eight. The left graph has
random connections, while the right graph connects vertices that are close.

graph with high locality (random geometric model). In real-world networks, locality
can emerge naturally due to an underlying geometry. Two people living in the same
neighborhood are certainly more probable to be friends on Facebook than two arbitrary
people on earth. Thus, in social networks, geographic proximity facilitates a community
structure. However, locality can appear for a variety of reasons. In actor-collaboration
networks, local structure arises due to the genres of the movies. Actors like Jim Carrey
are known for their roles in comedy movies and are more likely to appear in movies with
other comedy actors.
The second property is the small-world property. It states that the shortest path

between two vertices is very short on average. The urban legend six degrees of separation
claims that all people know each other over at most six “friend of a friend” relations.
In the late 60s, a popular study by social psychologist Stanley Milgram investigated
the average path length of social networks between people in the United States [Mil67].
Although the concept of six degrees of separation is not entirely true, it still captures the
astonishing connectedness of many real-world networks. A website called six degrees of
Wikipedia allows the user to enter two Wikipedia articles and then finds the shortest
path of hyperlinks between them. They published statistics of the first 500000 searches
and revealed an average path length of approximately 3 and the longest path, running
between Embleton and McCombie, with 11 degrees of separation1.
Finally, the third property is called heterogeneity and refers to the importance of

vertices in the network. There are many vertices with low degree (number of connections)

1www.sixdegreesofwikipedia.com/blog/search-results-analysis

11

www.sixdegreesofwikipedia.com/blog/search-results-analysis

1 Introduction

(a) heterogeneity (b) no border

Figure 1.2: Networks with 100 vertices and average degree eight. Both graphs have a
heterogeneous degree distribution. The left has a square as ground space and
the right graph uses a torus instead. Positions are the same as in Figure 1.1.

and few vertices with very high degree, often called hubs. This is typically described by a
scale-free degree distribution, which means that the degree sequence follows a power law.
Namely, the fraction of vertices with degree k is proportional to k−β for some constant β,
which we call the power-law exponent. Heterogeneity can be observed in social networks,
where celebrities have far more connections than the average person. In the Wikipedia
network, the article about the United States is the most linked-to article with almost half
a million direct references. Figure 1.2a adds a heterogeneous degree distribution to the
graph in Figure 1.1b. It still has high locality and roughly the same average degree but
the average path length goes down from 4.3 in Figure 1.1b to 3.1 in Figure 1.2a. Although
this is a very small example, a similar statement can be made in general. In fact, it was
shown that random scale-free networks already have the small-world property [CH03].
Locality, heterogeneity, and the small-world property were found in a great number

of networks from different domains [Ama+00; EG17; WS98a]. Popular examples reach
from the Internet’s Autonomous System topology [AJB99; MMO14; BPK10], protein
interaction networks [MS02a; Mil+07] and industrial SAT instances [ABL09; Ans+16;
WGS03] over connections in the brain [BB06; Spo+04; Yu+08], metabolic networks
[WF01] and social networks [Bar+02; Sco17; WF94] to the bitcoin transaction network
[BFL14; LF16], ecological networks [MS02b] and many others [SBT04; Teo17; VSH04].

Knowing these properties, a large body of work was dedicated to formalize a generation
mechanism that yields synthetic networks similar to real ones and to explain their
emergence. A notable example is the preferential attachment model [BA99]. There, the
network is grown by iteratively adding new nodes. As a new node joins, it gets connected

12

to a fixed number of existing nodes that are chosen with probabilities proportional to their
degree. This simple mechanism of preferential attachment [Pri76] already yields a scale-
free degree distribution, thereby providing a convincing explanation for the emergence
of such distributions in real-world networks. To mention another example, Watts and
Strogatz [WS98b] proposed a network model based on a regular ring lattice to create
very high locality. They observed that adding a few random long-range connections
suffices to guarantee a small diameter. Since the model is not heterogeneous, it provides
an alternative explanation for why many real-world networks exhibit the small-world
property despite heavily favoring local over long-range connections.
While the preferential attachment model and the Watts-Strogatz model excel at the

purpose they were designed for, i.e., explanatory power, they unfortunately are not very
suitable for average-case analysis or algorithm engineering in general, because they produce
highly artificial properties as a side product of the generation process. To investigate the
implications of, for example, heterogeneity, a network model is required that assumes
nothing beyond the heterogeneity itself. For this specific use case, the configuration
model or the soft configuration model are best suited [GL04; PN04], because the former
produces each graph with a fixed degree sequence with equal probability, while the latter
relaxes the constraint to match the given degree sequence in expectation. Both these
models have maximum entropy under the given constraints [HLK18].

Promising models that capture heterogeneity, locality as well as the small-world property
are geometric inhomogeneous random graphs (GIRGs) and their specialization called
hyperbolic random graphs (HRGs) [BKL19; Kri+10]. To incorporate heterogeneity, GIRGs
are based on the Chung-Lu model [CL02b; CL02a], which is asymptotically equivalent to
the soft configuration model [HLK18]. To produce locality, they assume an underlying
geometry where vertices that are close have a higher probability of being connected.
The small-world property arises naturally from the heterogeneous degree distribution
despite the preference of local over global connections [BKL16]. Assuming geometry as
a reasonable origin of locality, these models thus concisely capture all three properties
mentioned above without introducing an unnecessary bias. Recent work supports the
claim, that the validity of HRGs and GIRGs is sufficient to transfer insights — practical
as well as theoretical — gained on synthetic instances to real-world applications [BF22].
Aside from their importance to network science, GIRGs can be an immensely valu-

able tool in algorithm engineering. Since they convincingly mimic real-world networks,
guarantees about quality and performance of an algorithm on instances of the model can
be transferred to real-world applications. They have model parameters to control the
amount of heterogeneity and locality, which allows to evaluate those properties in isolation
while keeping the rest fixed. Moreover, they can be efficiently generated, which allows
for experimental analysis [Blä+19b]. While realistic instances are often rare, generated
instances are readily available. Furthermore, the underlying geometry of GIRGs and
HRGs helps to visualize the network, e.g., for debugging or to improve understanding of
its structure. Finally, GIRGs use the torus as a ground space, that is, a hypercube where
opposite sides are identified. Unlike a hypercube, the torus has no border and is therefore
easy to handle mathematically. The difference between a two dimensional torus and a

13

1 Introduction

square as a ground space is visualized in Figure 1.2.
The aim of this work is to demonstrate the capabilities of geometric random graphs

and hyperbolic random graphs in algorithm engineering and establish them as routine
tools to replace previous models like the ER-model. To this end, we utilize them to
design, evaluate, and optimize efficient algorithms for inputs with the above properties.
Specifically, we provide the currently fastest sequential generators for GIRGs and HRGs
and describe algorithms for maximum flow, directed spanning arborescence, cluster editing,
and hitting set. For all four problems, our implementations beat the state-of-the-art on
realistic inputs, that is, synthetic and real-world networks.

1.1 Contribution and Outline

The general contribution of this work is to establish GIRGs as a tool in algorithm
engineering. Beyond our main goal, we develop and implement multiple algorithms for
different problems that are, on their own, valuable contributions in their respective fields.

Chapter 2 deals with the efficient generation of GIRGs. To enable large scale benchmarks
and analyses using GIRGs one has to draw instances of the model. Since real-world
networks tend to be very large, a generator has to be efficient to match the size of these
networks. The naive way to sample an instance takes quadratic time [AOK15], which
quickly becomes infeasible for networks with millions of vertices. There exist multiple
generators for the HRG model with subquadratic running time [LMP15; LM16; Loo+16;
Blä+18b; Pen17; Fun+18; Fun+19; Loo19], but, although an efficient GIRG sampling
algorithm is known in theory [BKL19], there is no implementation available. We provide
the first efficient GIRG implementation by adapting the algorithm of Bringmann, Keusch,
and Lengler [BKL19]. Our special-case implementation for HRGs beats all other HRG
generators in a sequential setting while allowing a wider range of parameters than most
existing implementations. Specifically, we support non-zero temperature T , which means
our generator is able to vary the amount of locality and thereby provides more diverse and
more challenging benchmark instances. Besides the generators themselves, we also provide
an efficient algorithm to determine the non-trivial dependency between the average degree
of the resulting graph and the input parameters of the GIRG model. This makes it possible
to specify the desired expected average degree as input. Additionally, we investigate the
relation between GIRGs and HRGs using our generators. Although HRGs represent, in a
certain sense, a special case of the GIRG model, we find that a straight-forward inclusion
does not hold in practice. However, the difference is negligible for most use cases.
In Chapter 3, we design and evaluate an efficient algorithm for solving the maximum

flow problem on scale-free networks. The algorithm is based on the well-known algorithm
by Dinitz [Din70]. Motivated by recent results, which show sublinear running time
for bidirectional breadth-first search on Erdős-Rényi random graphs and hyperbolic
random graphs [BN16; Blä+18a], we adapt the algorithm by Dinitz with a bidirectional
breadth-first search. Our experiments on GIRGs indicate sublinear run time. On scale-
free real-world networks, we outperform the commonly used highest-label Push-Relabel
implementation [CG97] by up to two orders of magnitude. Compared to Dinitz’s original

14

1.1 Contribution and Outline

algorithm, our modifications reduce the search space, e.g., by a factor of 275 on an
autonomous systems graph. Since the network has to be read into memory and a residual
network has to be constructed before computation, our sublinear running time on scale-
free networks becomes relevant if multiple flow computations are performed on the same
network. This is the case, for example, when computing a Gomory-Hu tree [GH61], which
is a compact representation of the minimum s-t cuts for all vertex pairs. On a social
network with 70 000 nodes, our algorithm computes the Gomory-Hu tree in 3 seconds
compared to 12 minutes when using Push-Relabel. While our code is faster on scale-free
networks, other solvers perform better on different kinds of networks.

Chapter 4 contains an experimental evaluation of the minimum spanning arborescence
problem, which is the directed version of the well-studied minimum spanning tree problem.
For a given root r, the goal is to find a directed spanning tree of minimum weight rooted
at r. There is a general strategy for solving the problem [Edm67; Chu65; Boc71], which
was refined into two algorithms. Tarjan’s algorithm running in O(min(n2,m log n)) [Tar77;
CFM79] and the GGST algorithm running in O(n log n+m) [Gab+86]. Although different
versions and generalizations of the problem were studied [Geo03; KKT09; Kam14], there
exists no experimental evaluation of either Tarjan’s algorithm or the GGST algorithm. In
fact, the GGST algorithm has, to the best of our knowledge, never been implemented due
to its intricate design and the presence of the much simpler version by Tarjan. However,
the GGST algorithm theoretically beats Tarjan’s algorithm by a log factor if the graph is
neither too sparse nor too dense. We simplify and implement the GGST algorithm to
perform a study on a wide range of real-world networks. We compare it against our own
as well as publicly available Tarjan implementations. Unfortunately, the GGST algorithm
shows a higher constant factor overhead and is outperformed by Tarjan implementations
on real-world networks. Nevertheless, we use GIRGs to supply instances in the density
regime where the GGST algorithm beats Tarjan’s algorithm and indeed find a niche where
it consistently outperforms all other solvers. Our solvers are faster than the publicly
available solvers for most density ranges.
In Chapter 5 we discuss the hitting set problem. The hitting set problem asks for a

collection of sets over a universe U to find a minimum subset of U that intersects each
of the given sets. It is NP-hard and equivalent to the problem set cover. We give a
branch-and-bound algorithm to solve hitting set. Though it requires exponential time in
the worst case, it can solve many practical instances from different domains in reasonable
time. Our algorithm outperforms a modern ILP solver, the state-of-the-art for hitting
set, by at least an order of magnitude on most instances. We use GIRGs to evaluate the
effect of locality and heterogeneity on our algorithm. To this end, we modify the GIRG
generator to create bipartite graphs, which we interpret as hitting set instances. The
results indicate that both properties drastically reduce the search space of our solver.
In Chapter 6, we describe and evaluate an exact branch-and-bound algorithm for the

NP -hard cluster editing problem [KM86]. The cluster editing problem asks to transform
a given graph into a disjoint union of cliques by inserting and deleting as few edges
as possible. We introduce new reduction rules and adapt existing ones. Moreover, we
generalize a known packing technique to obtain lower bounds and experimentally show

15

1 Introduction

that it contributes significantly to the performance of the solver. Our experiments further
evaluate the effectiveness of the different reduction rules and examine the effects of locality
and average degree of the input graph on solver performance using GIRGs. Our solver
won the exact track of the 2021 PACE challenge [Kel+21].

We conclude our findings in Chapter 7.

1.2 Network Models

In this section, we introduce the most important network models that led up to the
creation of geometric inhomogeneous random graphs. Erdős-Rényi random graphs are the
oldest and simplest model. Random geometric graphs and Chung-Lu random graphs are
the two models which combine into the GIRG model. The configuration model is strongly
related to Chung-Lu graphs and hyperbolic random graphs can be seen as a special case
of GIRGs.

1.2.1 Erdős-Rényi Random Graphs

The introduction of this random graph model forms the basis of modern network science.
Instead of the G(n,L) model by Erdős and Rényi [ER59], we describe the G(n, p) model
independently introduced by Gilbert [Gil59]. Both models are commonly referred to as
the Erdős–Rényi Random Graph model. In the model, each vertex pair is connected with
probability p. Therefore, all graphs on a fixed vertex set with a fixed number of edges are
equally likely. The Erdős–Rényi model has an expected pn(n − 1)/2 number of edges,
an average degree of p(n− 1), and the degree sequence follows a binomial distribution.
Unlike in real networks, in large random networks the degree of all nodes, the maximum
degree, and the minimum degree are very close to the average degree. A major drawback
of the ER model is that there is no locality or heterogeneity since all edges are equally
likely. On the other hand, the diameter is logarithmic for sparse random graphs, which
means the ER model has the small-world property.

1.2.2 (Soft) Configuration Model

The (soft) configuration model is a network model that is tailored towards providing
maximum entropy under the constrains of a given degree sequence [GL04; Bia07; PN04;
SG11; GL08]. The configuration model produces each graph with the given degree
sequence with the same probability. In the soft version of the model, the given degree
sequence is met in expectation. Furthermore, all networks with the same degree sequence
have the same probability. The soft configuration model has the additional advantage
that each network has a non-zero probability of appearing. An edge between vertices u
and v exists with probability

puv =
wuwv

1 + wuwv
,

where wu and wv are the weights of the two vertices which are proportional to their
expected degree in the network. The model was used, for example, to approximate the

16

1.2 Network Models

topology of the World Trade Web, the network formed by the trade relationships between
all world countries [GL04].

1.2.3 Chung-Lu Random Graphs

The Chung-Lu random graph model receives as input a weight sequence with vertex v
having weight wv and W =

∑
wi being the sum of all weights [CL02a; CL02b]. Two

vertices are connected by an edge independently at random with probability proportional
to the product of their weights. In detail,

puv = min(1, wuwv/W).

The expected degree of a vertex is proportional to its weight, thus the degree sequence
follows the given weight sequence in expectation. The Erdős-Rényi model with connection
probability p is a special case of this model if the weight of all vertices is set to pn.

1.2.4 Random Geometric Graphs

The random geometric graph model [Gil61; Pen03] distributes the vertices uniformly
at random in the unit hypercube. Two vertices are then connected by an edge if their
distance is below a certain threshold. The degree distribution in random geometric graphs
is homogeneous. The clustering coefficient is non-vanishing with increasing graph size and
only depends on the dimension of the ground space. However, the model does not have
the small world property as the diameter is, due to the construction, at least R−1 where
R is the connectivity threshold. Figure 1.1b shows an example of a random geometric
graph in a two dimensional space, that is, vertices have positions in the unit square [0, 1]2.

1.2.5 Hyperbolic Random Graphs

Hyperbolic random graphs are generated by sampling random positions in the hyperbolic
plane and connecting vertices that are close [Kri+10]. More formally, let V = {1, . . . , n}
be a set of vertices. Let α > 1/2 and C ∈ R be two constants, where α controls the
power-law degree distribution with exponent β = 2α+1 > 2, and C determines the
average degree. For each vertex v ∈ V , we sample a random point pv = (rv, θv) in the
hyperbolic plane, using polar coordinates. Its angular coordinate θv is chosen uniformly
from [0, 2π) while its radius 0 ≤ rv < R with R = 2 log(n) + C is drawn according to the
density function

f(r) =
α sinh(αr)

cosh(αR)− 1
. (1.1)

In the threshold case of HRGs two vertices u 6= v are connected if and only if their
distance is below R. The hyperbolic distance d(pu, pv) is defined as

cosh(d(pu, pv)) = cosh(ru) cosh(rv)− sinh(ru) sinh(rv) cos(θu − θv), (1.2)

where the angle difference θu − θv is modulo π.

17

1 Introduction

(a) T = 0 (b) T = 0.3

Figure 1.3: HRGs with 100 vertices, average degree eight, and different temperature.

The binomial variant adds a temperature T ∈ [0, 1] to control the clustering, with lower
temperatures leading to higher clustering as shown in Figure 1.3. Two nodes u, v ∈ V are
then connected with probability pT (d(pu, pv)) where

pT (x) =
1

e(x−R)/(2T) + 1
. (1.3)

For T → 0, the two definitions (threshold and binomial) coincide.

1.2.6 Geometric Inhomogeneous Random Graphs

Geometric inhomogeneous random graphs [BKL19] combine elements from random geo-
metric graphs [Gil61] and Chung-Lu graphs [CL02b; CL02a]. Each vertex v has a weight
wv and a position xv. Vertices are connected independently based on their weight and
distance. The model is defined as follows.
Let V = {1, . . . , n} be a set of vertices with positive weights w1, . . . , wn following a

power law with exponent β > 2 and let W be their sum. Let Td be the d-dimensional
torus for a fixed dimension d ≥ 1 represented by the d-dimensional cube [0, 1]d where
opposite boundaries are identified. For each vertex v ∈ V , let xv ∈ Td be a point drawn
uniformly and independently at random. For x, y ∈ Td let ||x− y|| denote the L∞-norm
on the torus, i.e. ||x − y|| = max1≤i≤d min{|xi − yi|, 1 − |xi − yi|}. Two vertices u 6= v
are independently connected with probability puv. For a positive temperature 0 < T < 1,

puv = min

1, c

(
wuwv/W

||xu − xv||d

)1/T
 (1.4)

18

1.2 Network Models

while for T = 0 a threshold variant of the model is obtained with

puv =

{
1 if ||xu − xv|| ≤ c(wuwv/W)1/d,

0 else.

The constant c > 0 controls the expected average degree.
Bringmann, Keusch, and Lengler [BKL19] show that the HRG model can be seen

as a special case of the GIRG model in the following sense. Let dHRG be the average
degree of a HRG. Then there exist GIRGs with average degree dGIRG and DGIRG with
dGIRG ≤ dHRG ≤ DGIRG such that they are sub- and supergraphs of the HRG, respectively.
Moreover, dGIRG and DGIRG differ only by a constant factor. Formally, this is achieved
by using the big-O notation instead of a single constant c for the connection probability.
In that sense, the above formulation of GIRGs deviates from the original definition,
which we call the generic GIRG framework. It basically captures any specific model
whose connection probabilities differ from Equation (1.4) by only a constant factor. From
a theoretical point of view this is useful as proving something for the generic GIRG
framework also proves it for any manifestation, including HRGs.
To see how HRGs fit into the generic GIRG framework, consider the following map-

ping [BKL19]. Radii are mapped to weights wv = e(R−rv)/2, and angles are scaled to fit
on a 1-dimensional torus xv = θv/(2π). One can then see that the hyperbolic connection
probability pT (d) under the provided mapping deviates from Equation (1.4) by only a
constant. Thus, c in Equation (1.4) can be chosen such that all GIRG probabilities are
larger or smaller than the corresponding HRG probabilities, leading to the two average
degrees dGIRG and DGIRG mentioned above. Bringmann, Keusch, and Lengler [BKL19]
note that the two constants, which they hide in the big-O notation, do not have to match.
They leave it open if they match, converge asymptotically, or how large the interval
between them is in practice. We investigate this empirically in Section 2.4.3.

19

2 Generating Geometric Inhomogeneous
Random Graphs

This chapter is based on joint work with Thomas Bläsius, Tobias Friedrich, Maximilian
Katzmann, Ulrich Meyer and Manuel Penschuck [Blä+19b; Blä+22b]. The paper won the
best paper award at ESA 2019. It was preceeded by a master thesis by Marianne Thieffry.

2.1 Introduction

Network models play an important role in different scientific fields [CF06]. From the
perspective of network science, models can be used to explain observed behavior in the real
world. From the perspective of computer science, and specifically algorithmics, realistic
random networks can provide input instances for graph algorithms. This facilitates theo-
retical approaches (e.g., average-case analysis), as well as extensive empirical evaluations
by providing an abundance of benchmark instances, solving the pervasive scarcity of
real-world instances.
There are some crucial features that make a network model useful. The generated

instances have to resemble real-world networks. The model should be as simple and
natural as possible to facilitate theoretical analysis, and to prevent untypical artifacts.
And it should be possible to efficiently draw networks from the model. This is particularly
important for the empirical analysis of model properties and for generating benchmark
instances.
A model that has proven itself useful in recent years is the hyperbolic random graph

(HRG) model [Kri+10] we described in Section 1.2.5. HRGs are generated by drawing
vertex positions uniformly at random from a disk in the hyperbolic plane. Two vertices
are joined by an edge if and only if their distance lies below a certain threshold. HRGs
resemble real-world networks with respect to crucial properties. Most notable are the
power-law degree distribution [GPP12] (i.e., the number of vertices of degree k is roughly
proportional to k−β with β ∈ (2, 3)), the high clustering coefficient [GPP12] (i.e., two
vertices are more likely to be connected if they have a common neighbor), and the small
diameter [FK18; MS17]. Moreover, HRGs are accessible for theoretical analysis (see,
e.g., [GPP12; FK18; MS17; Blä+18a]). Finally there is a multitude of efficient generators
with different emphases [AOK15; LMP15; LM16; Loo+16; Pen17; Fun+18; Fun+19]; see
Section 2.1.2 for a discussion.
As mentioned in Section 1.2, HRGs are generalized by the geometric inhomogeneous

random graph (GIRG) model [BKL19]. Here every vertex has a position on the d-
dimensional torus and a weight following a power law. Two vertices are then connected if

21

2 Generating Geometric Inhomogeneous Random Graphs

and only if their distance on the torus is smaller than a threshold based on the product of
their weights. When using positions on the circle (d = 1), GIRGs approximate HRGs in
the following sense: the processes of generating a HRG and a GIRG can be coupled such
that it suffices to decrease and increase the average degree of the GIRG by only a constant
factor to obtain a subgraph and a supergraph of the corresponding HRG, respectively.
Compared to HRGs, GIRGs are potentially easier to analyze, generalize nicely to higher
dimensions, and the weights allow to directly adjust the degree distribution.

Above, we described the idealized threshold variants of the models, where two vertices
are connected if an only if their distance is small enough. Arguably more realistic are the
binomial variants, which allow longer edges and shorter non-edges with a small probability.
This is achieved with an additional parameter T , called temperature. For T → 0, the
binomial and threshold variants coincide. Many publications focus on the threshold case,
as it is typically simpler. This is particularly true for generation algorithms: in the
threshold variants, one can ignore all vertex pairs with sufficient distance, which can be
done using geometric data structures. In the binomial case, any pair of vertices could
be adjacent, and the search space cannot be reduced as easily. For practical purposes,
however, a non-zero temperature is crucial as real-world networks are generally assumed
to have positive temperature allowing so called weak ties [Gra73]. That is, edges between
nodes that have no strong reason to be connected and where the endpoints don’t have
many common neighbours. Moreover, from an algorithmic perspective, the threshold
variants typically produce particularly well-behaved instances, while a higher temperature
leads to more difficult problem inputs. Thus, to obtain benchmark instances of varying
difficulty, generators for the binomial variants are key.

2.1.1 Contribution & Outline

Based on the algorithm by Bringmann, Keusch, and Lengler [BKL19], we provide an
efficient and flexible GIRG generator. It includes the binomial case and allows higher
dimensions. Its expected running time is linear in the graph size. To the best of our
knowledge, this is the first efficient generator for the GIRG model. Moreover, we adapt
the algorithm to the HRG model, including the binomial variant. Compared to existing
HRG generators (most of which only support the threshold variant), our implementation
is the fastest sequential HRG generator.
A refactoring of the original GIRG algorithm [BKL19] allows us to parallelize our

generators. They do not use multiple processors as effectively as the threshold-HRG
generator by Penschuck [Pen17], which was specifically tailored towards parallelism.
However, in a setting realistic for commodity hardware (8 cores, 16 threads), we still
achieve comparable run times.

Our generators come as an open-source C++ library1 with documentation, command-
line interface, unit tests, micro benchmarks, and OpenMP [Boa18] parallelization using
shared memory.

Besides the efficient generators, we have three secondary contributions. (I) We provide

1https://github.com/chistopher/girgs

22

https://github.com/chistopher/girgs

2.1 Introduction

Table 2.1: Existing hyperbolic random graph generators. The columns show the names
used throughout the paper; the conference appearance; a reference (journal
if available); whether the generator supports the binomial model; and the
asymptotic running time. The time bounds hold in the worst case (wc), with
high probability (whp), in expectation (exp), or empirically (emp).

Name First Published Ref. Bin. Running Time

Pairwise CPC’15 [AOK15] X Θ(n2) (wc)
QuadTree ISAAC’15 [LMP15] O((n3/2 +m) log n) (wc)
NkQuad IWOCA’16 [LM16] X O((n3/2 +m) log n) (wc)
NkGen, NkOpt HPEC’16 [Loo+16] O(n log n+m) (emp)
Embedder ESA’16 [Blä+18b] X Θ(n+m) (exp)
HyperGen SEA’17 [Pen17] O(n log log n+m) (whp)
RHG IPDPS’18 [Fun+18] Θ(n+m) (exp)
sRHG JPDC’19 [Fun+19] Θ(n+m) (exp)
NkGenBin KIT’19 [Loo19] X O(n log2 n+m) (exp)
HyperGIRGs (ours) ESA’19 [Blä+22b] X Θ(n+m) (exp)

a comprehensible description of the sampling algorithm that should make it easy to
understand how the algorithm works, why it works, and how it can be implemented.
Although the core idea of the algorithm is not new [BKL19], the previous description is
somewhat technical. (II) The expected average degree can be controlled via an input
parameter. However, the dependence of the average degree on the actual parameter is
non-trivial. In fact, given the average degree, there is no closed formula to determine the
parameter. We provide a linear-time algorithm to estimate it. (III) We investigate how
GIRGs and HRGs actually relate to each other by measuring how much the average degree
of the GIRG has to be decreased and increased to obtain a subgraph and supergraph
of the HRG, respectively. We find that a GIRG with only slightly lower average degree
already yields a subgraph. In fact, our experiments indicate that the gap between average
degrees vanishes for growing n, i.e., the GIRG subgraph is lacking only a sublinear fraction
of edges. On the other hand, one has to increase the average degree significantly to obtain
a GIRG supergraph.

In the following we first discuss our main contribution in the context of existing HRG
generators. Afterwards we describe the sampling algorithm in Section 2.2. In Section 2.3
we discuss implementation details, including the parameter estimation for the average
degree (Section 2.3.3) as well as multiple performance improvements. Section 2.4 contains
our experiments: we investigate the scaling behavior of our generator in Section 2.4.1,
compare our HRG generator to existing ones in Section 2.4.2, and compare GIRGs to
HRGs in Section 2.4.3.

23

2 Generating Geometric Inhomogeneous Random Graphs

2.1.2 Comparison with Existing Generators

Concerning HRGs, most previous algorithms only support the threshold case; see Ta-
ble 2.1. A quad-tree data structure was used to achieve the first subquadratic threshold
generator (QuadTree) [LMP15]. It was later improved leading to the algorithm cur-
rently implemented in NetworKit (NkGen) [Loo+16]. A later re-implementation by
Penschuck [Pen17] improves it by about a factor of 2 (NkOpt). However, the main
contribution of Penschuck [Pen17] was a new generator that features sublinear memory
and near optimal parallelization (HyperGen). Up to date, HyperGen was the fastest
threshold-HRG generator on a single processor. Our generator, HyperGIRGs, improves
by a factor of 1.3 – 2 (depending on the parameters) but scales worse for more processors.
Finally, Funke et al. [Fun+18] provide a generator designed for a distributed setting
(RHG) and later combine it with the streaming technique of HyperGen to generate
enormous instances (sRHG) [Fun+19].
The published generators for the binomial model are the trivial quadratic algo-

rithm [AOK15], and an O((n3/2 + m) log n) algorithm [LM16] based on the above
mentioned quad-tree data structure [LMP15]. The latter is part of NetworkKit; we
call it NkQuad. In his thesis, v. Looz adapted NkGen for the binomial model resulting
in the NkGenBin algorithm [Loo19]. Moreover, the code for a hyperbolic embedding
algorithm [Blä+18b] includes an HRG generator implemented by Bringmann based on
the GIRG algorithm [BKL19]; we call it Embedder in the following. Embedder has
been widely ignored as a high performance generator. This is because it was somewhat
hidden, and it is heavily outperformed by other threshold generators. Experiments
show that our generator HyperGIRGs is much faster than NkQuad, which is to be
expected considering the asymptotic running time. Moreover, on a single processor, we
outperform Embedder by an order of magnitude for T = 0 and by a factor of 4 for higher
temperatures. As Embedder does not support parallelization, this speed-up increases
for multiple processors. Finally, we are two to three times faster than NkGenBin, which
was shown to perform slightly better than Embedder for T > 0 [Loo19].

We are not aware of a previous GIRG generator.

2.2 Sampling Algorithm

As mentioned in the introduction, the core of our sampling algorithm is based on the
algorithm by Bringmann et al. [BKL19]. In the following, we first give a description of
the core ideas and then work out the details that lead to an efficient implementation.

To explain the idea, we make two temporary assumptions and relax them in Section 2.2.1
and Section 2.2.2, respectively. For now, assume that all weights are equal and consider
only the threshold variant T = 0. The task is to find all vertex pairs that form an edge,
i.e., their distance is below the threshold c(wuwv/W)1/d. Since all weights are equal, the
threshold in this restricted scenario is the same for all vertex pairs. One approach to
quickly identify adjacent vertices is to partition the ground space into a grid of cells. The
size of the cells should be chosen, such that (I) the cells are as small as possible and

24

2.2 Sampling Algorithm

(a) (b)

15

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14

0 1

2 3

x
y

0 1

0

1

x
y

0 1 2 3

0

1

2

3

(c)

Figure 2.1: (a),(b) The grid used by weight bucket pairs with a connection probability
threshold between 2−3 and 2−4 in two dimensions. (a) Each pair of colored
cells represent neighbors. Note that the ground space is a torus and a cell is
also a neighbor to itself. (b) The eight gray cells represent multiple distant
cell pairs, which are replaced by one pair consisting of the red outlined parent
cell pair. (c) Linearization of the cells on level 1 (left) and 2 (right) for d = 2.

(II) the diameter of cells is larger than the threshold c(wuwv/W)1/d. The latter implies
that only vertices in neighboring cells can be connected thus narrowing down the search
space. The former ensures that neighboring cells contain as few vertex pairs as possible
reducing the number of comparisons. Figure 2.1a shows an example of such a grid for a
2-dimensional ground space.

2.2.1 Inhomogeneous Weights

Assume that we have vertices with two different weights w1, w2, rather than one. As
before, the cells should still be as small as possible while having a diameter larger than
the connection threshold. However, there are three different thresholds now, one for each
combination of weights. To resolve this, we can group the vertices by weight and use
three differently sized grids to find the edges between them.

As GIRGs require not only two but many weights, considering one grid for every weight
pair is infeasible. The solution is to discretize the weights by grouping ranges of weights
into weight buckets. When searching for edges between vertices in two weight buckets, the
pair of largest weights in these buckets provides the threshold for the cell diameter. This
choice of the cell diameter satisfies property (II). Property (I) is violated only slightly,
if the weight range within the bucket is not too large. Thus, each combination of two
weight buckets uses a grid of cells, whose granularity is based on the maximum weight in
the respective buckets.
As a tradeoff, we choose dlog2 ne many buckets which yields a sublinear number of

grids. Moreover, the largest and smallest weight in a bucket are at most a factor two
apart. Thus, the diameter of a cell is too large by at most a factor of four.
With this approach, a single vertex has to appear in grids of different granularity. To

do this in an efficient manner, we recursively divide the space into ever smaller grid cells,
leading to a hierarchical subdivision of the space. This hierarchy is naturally described
by a tree. For a 2-dimensional ground space, each node has four children, which is why

25

2 Generating Geometric Inhomogeneous Random Graphs

we call it quadtree. Note that each level of the quadtree represents a grid of different
granularity. Moreover, the side length of a grid cell on level ` is 2−`. For a pair (i, j)
of weight buckets, we then choose the level that fits best for the corresponding weights,
i.e., the deepest level such that the diameter of each grid cell is above the connection
threshold for the largest weights in bucket i and j, respectively. We call this level the
comparison level, denoted by CL(i, j). It suffices to insert vertices of a bucket into the
deepest level among all its comparison levels. This level is called the insertion level and
we denote it by I(i). In Section 2.2.4, we discuss in detail how to efficiently access all
vertices in a given grid cell belonging to a given weight bucket.

2.2.2 Binomial Variant of the Model

For T > 0, neighboring cell pairs are still easy to handle: a constant fraction of vertex
pairs will have an edge and one can sample them by explicitly checking every pair. For
distant cell pairs and a fixed pair of weight buckets, the distance between the cells yields
an upper bound on the connection probability of included vertices; see Equation (1.4).
The probability bound depends on both, the weight buckets and the cell pair distance,
using the maximum weight within the buckets and the minimum distance between points
in the cells. We note that the individual connection probabilities are only a constant
factor smaller than the upper bound.
Knowing this, we can use geometric jumps to skip most vertex pairs [AD85]. The

approach works as follows. Assume that we want to create an edge with probability p for
each vertex pair. For this process, we define the random variable X to be the number of
vertex pairs we see until we add the next edge. Then X follows a geometric distribution.
Thus, instead of throwing a coin for each vertex pair, we can do a single experiment that
samples X from the geometric distribution and then skip X vertex pairs ahead. Since not
all vertex pairs reach the upper bound p, we accept encountered pairs with probability
puv/p to get correct results.

Although distant cell pairs are handled efficiently, their number is still quadratic, most
of which yield no edges. To circumvent this problem, the sampling algorithm, yet again,
uses a quadtree. In the quadratic set of cell pairs to compare for one weight bucket
pair, non-neighboring cells are grouped together along the quadtree hierarchy. They are
replaced by their parents as shown in Figure 2.1b until their parents become neighbors.

In conclusion, for each pair of weight buckets (i, j) the following two types of cell pairs
have to be processed: any two neighboring cell pairs on the comparison level CL(i, j);
and any distant cell pair with level larger or equal CL(i, j) that has neighboring parents.
The resulting set of distant and neighboring cell pairs for a fixed bucket pair partitions
Td × Td.

2.2.3 Efficiently Iterating Over Cell Pairs

The previous description sketches the algorithm as originally published. Here, we propose
a refactoring that greatly simplifies the implementation and enables parallelization. We
attribute a significant amount of HyperGIRGs’ speed up over Embedder to this change.

26

2.2 Sampling Algorithm

Instead of first iterating over all bucket pairs and then over all corresponding cell pairs,
we reverse this order. This removes the need to repeatedly determine the cell pairs to
process for a given bucket pair. Instead it suffices to find the bucket pairs that process a
given cell pair. This only depends on the level of the two cells and their type (neighboring
or distant). Inverting the mapping from bucket pairs to cell pairs in the previous section
yields the following. A neighboring cell pair on level ` is processed for bucket pairs with a
comparison level of exactly `. A distant cell pair on level ` (with neighboring parents) is
processed for bucket pairs with a comparison level larger than or equal to `. Thus, for
each level of the quadtree we must enumerate all neighboring cell pairs, as well as distant
cell pairs with neighboring parents. Algorithm 2.1 recursively enumerates exactly these
cell pairs.

Algorithm 2.1: Sample GIRG by Recursive Iteration of Cell Pairs
Input: cell pair (A,B); initially called with A,B set to the root of the quadtree

1 forall bucket pairs (i, j) that process the cell pair (A,B) do
2 if A and B are neighbors then
3 emit each edge (u, v) ∈ V A

i × V B
j with probability puv

4 else
5 choose candidates S ⊆ V A

i × V B
j using geometric jumps and p

6 emit each edge (u, v) ∈ S with probability puv/p

7 if A and B are neighbors and not maximum depth reached then
8 forall children X of A do
9 forall children Y of B do

10 recur(X,Y)

2.2.4 Efficient Access to Vertices by Bucket and Cell

A crucial part of the algorithm is to quickly access the set of vertices restricted to a
weight bucket i and a cell A, which we denote by V A

i . To this end, we linearize the cells
of each level as illustrated in Figure 2.1c. This linearization is called Morton code [Mor66]
or z-order curve [OM84]. It has the nice properties that (I) for each cell in level `, its
descendants in level `′ > ` in the quadtree appear consecutively; and (II) it is easy to
convert between a cells position in the linear order and its d-dimensional coordinates (see
Section 2.3.2).

We sort the vertices of a fixed weight bucket i by the Morton code of their containing
cell on the insertion level I(i), using arbitrary tie-breaking for vertices in the same cell.
This has the effect that for any cell A with level(A) ≤ I(i), the vertices of V A

i appear
consecutive. Thus, to efficiently enumerate them, it suffices to know for each cell A the
index of the first vertex in V A

i . This can be precomputed using prefix sums leading to
the following lemma.

27

2 Generating Geometric Inhomogeneous Random Graphs

Lemma 1. After linear preprocessing, for all cells A and weight buckets i with level(A) ≤
I(i), vertices in the set V A

i can be enumerated in O(|V A
i |).

Proof. As mentioned above, we have to sort the vertices Vi of each weight bucket i
according to the index (Morton code) of the containing cell. Clearly, the d-dimensional
coordinates of the cell containing a given vertex is obtained in constant time by rounding.
From this one can obtain the index in constant time (also see Section 2.3.2). This can
be done using, e.g., bucket sort with respect to this index to sort the vertices. In the
following, we refer to this sorted array with Vi.
Besides these sorted arrays Vi of vertices, one for each weight bucket i, we store for

each cell C at level I(i) the number of vertices preceding the vertices in cell C. Note that
this is simply the prefix sum of the number of vertices in all cells that come before cell C.
Denote this prefix sum of cell C with PC .
Now let i be a weight bucket and let A be a cell identifying the requested set of

vertices V A
i (with level(A) ≤ I(i)). Let C1, . . . , Cj be the descendants of cell A at level

I(i), appearing in this order according to the Morton code. Recall that the vertices in
C1, . . . , Cj appear consecutive in the sorted array Vi. Thus, V A

i is given by the range
[PC1 , . . . , PCj+1) in Vi.

In terms of running time, each weight bucket requires O(|Vi|+ 2d·I(i)) time for bucket
sort and O(2d·I(i)) time for the prefix sums, where 2d·I(i) is the number of cells in the
insertion level I(i). Over all weight buckets, the term |Vi| sums up to |V | and Bringmann
et al. [BKL19] show that the same holds for 2d·I(i).

2.2.5 Adapting the Algorithm to HRGs

One possibility to generate HRGs with this algorithm would be to convert hyperbolic points
to GIRG coordinates according to Section 1.2.6 and use the algorithm as is. However,
the generic GIRG framework captures HRGs only up to constant factor deviations in
connection probabilities. In fact, we find that using only one scaling constant as in
Equation (1.4) is insufficient to exactly represent the corresponding HRG probabilities
(see Section 2.4.3).

To generate exact HRGs, we adapt the algorithm to work with hyperbolic data in the
first place, as was done in [Blä+18b]. Concretely, we sample and store only hyperbolic
coordinates instead of mapping them to GIRG data, use the hyperbolic distance function
to determine distance between vertices and cells, control the expected average degree with
an estimate for the radius R of the hyperbolic disc, use the exact hyperbolic connection
probability pT , and trivially find the comparison- and insertion levels instead of using the
closed form for canonical GIRGs. The resulting implementation is called HyperGIRGs.

2.3 Implementation Details

The description in the previous section is an idealized version of the algorithm. For an
actual implementation, there are some gaps to fill in. Omitting many minor tweaks, we

28

2.3 Implementation Details

want to mention implementation details and optimizations that are crucial to achieve a
good practical run time in the following.

2.3.1 Avoiding Double Counting Buckets, Cells, and Vertices

The algorithm as described in Section 2.2 iterates over pairs of buckets, cells, and vertices.
All three entities need to be handled correctly to avoid visiting vertex or cell pairs multiple
times. Consider the cell pairs (A,B) and (B,A) as well as two bucket pairs (i, j) and
(j, i) that process them. When the bucket pair (i, j) processes (A,B) it samples edges
between V A

i and V B
j while the bucket pair (j, i) processes (B,A) to sample edges between

V B
j and V A

i . Meaning these edges are sampled twice; once in each direction. Since we
want undirected edges this introduces double counting. To solve this, one can restrict
the algorithm to cell pairs A ≤ B (or to bucket pairs i ≤ j). In any case, bucket pairs
(i, i) require special treatment for cell pairs of the form (A,A). Then, only edges between
vertices u < v should be checked, because this call samples edges within a set of vertices
instead of between two disjoined vertex sets. If self loops are desired, the constraint can
be relaxed to u ≤ v.

2.3.2 Efficiently Encoding and Decoding Morton Codes

Recall from Section 2.2.4 that we linearize the d-dimensional grid of cells using Morton
code. As vertex positions are given as d-dimensional coordinates, we have to convert the
coordinates to Morton codes (i.e., the index in the linearization) and vice versa. This is
done by bitwise interleaving of the coordinates. For example, the 2-dimensional Morton
code of the four-bit coordinates a = a3a2a1a0 and b = b3b2b1b0 is a3b3a2b2a1b1a0b0.
Implementation-wise, there are the following encoding approaches.

FOR, FOR OPT Set each bit of the result with shifts and bitwise operations (FOR).
Since we know the level of a cell, we know the number of relevant bits in each
coordinate. Considering only relevant bits improves performance significantly (FOR
OPT).

MASKS For details on this method, we refer to the open-source library libmorton [Bae18]
and the authors related blog posts2.

LUT A lookup table computed at compile time3 can be used. The input is divided into
chunks; a precomputed result for each chunk is obtained and shifted into place.

BMI2 The Parallel Bits Deposit/Extract assembler instructions from Intels Bit Manipu-
lation Instruction Set 2 [Int19] provide a solution with one assembler instruction
per input coordinate. BMI2 is available on Intel CPUs since 2013 and supported by
recent AMD CPUs (Zen).

2https://www.forceflow.be
3https://github.com/kevinhartman/morton-nd

29

https://www.forceflow.be
https://github.com/kevinhartman/morton-nd

2 Generating Geometric Inhomogeneous Random Graphs

5 10 15
Bits per Coordinate

100

101

Ru
nt

im
e

[n
s]

d = 2
FOR
FOR OPT
MASKS
BMI2

2 4 6 8 10
Bits per Coordinate

d = 3

2 4 6 8
Bits per Coordinate

d = 4

2 4 6
Bits per Coordinate

d = 5

Figure 2.2: Performance of Morton code generation in dimensions 2 to 5 on an Intel
processor. Input coordinates are limited to b32/dc bits each, because the
result is saved as a 32 bit integer.

5 10 15
Bits per Coordinate

101

102

Ru
nt

im
e

[n
s]

d = 2
FOR
FOR OPT
MASKS
BMI2

2 4 6 8 10
Bits per Coordinate

d = 3

2 4 6 8
Bits per Coordinate

d = 4

2 4 6
Bits per Coordinate

d = 5

Figure 2.3: Performance of Morton code generation in dimensions 2 to 5 on an AMD
processor. Input coordinates are limited to b32/dc bits each, because the
result is saved as a 32 bit integer.

30

2.3 Implementation Details

All approaches except LUT support a complementary decoding operation. We measured
the approaches, excluding LUT, on an Intel i7-8550U processor (see Figure 2.2) and an
AMD Ryzen7-2700X (see Figure 2.3). On Intel, BMI2 is consistently the fastest and at
least an order of magnitude faster than FOR. Surprisingly, FOR OPT is not monotone
in the number of bits per coordinate for dimensions below 5. Inspection of the generated
assembly4 reveals that the compiler employed SIMD instructions. On AMD, BMI2 is the
slowest. Our GIRG generator uses BMI2 if enabled and the loop with early termination
(FOR OPT) otherwise.

2.3.3 Estimating the Average Degree Parameter

Here, we describe how to estimate the parameter c in Eq. (1.4) to achieve a given expected
average degree5. This section covers the estimation for the binomial version of the model
T > 0. The calculations for the threshold case T = 0 are analogous (and simpler). We
estimate the constant based on the actual weights, not on their probability distribution.
This leads to lower variance and allows user-defined weights.

We start with an arbitrary constant c, calculate the resulting expected average degree
E[d̄] and adjust c accordingly, using a modified binary search. This is possible, as E[d̄]
is monotone in c. We derive an exact formula for E[d̄], depending on c and the weights.
It cannot simply be solved for c, which is why we use binary search instead of a closed
expression.

For the binary search, we need to efficiently evaluate E[d̄] for different values of c. Let
Xuv be a random indicator variable for the existence of the edge uv with fixed weights
but unknown positions. The expected average degree can be expressed as

E[d̄] =
1

n
· E

∑
u∈V

∑
v 6=u

Xuv

 =
1

n

∑
u∈V

∑
v 6=u

E[Xuv] (2.1)

with the expectation of a single edge being

E[Xuv] = E

min

1, c ·
(

wuwv/W

||xu − xv||d

)1/T

 = E

min

1,

cT
d

(
wuwv
W

) 1
d

||xu − xv||

d/T

 .

This is potentially problematic, as the formula for E[d̄] sums over all vertex pairs.
The issue preventing us from simplifying this formula is the minimum in the connection
probability. We split it into short edges and long edges based on whether the minimum
takes effect or not, that is, whether the numerator of the connection probability, call
it k = c

T
d

(
wuwv
W

)1/d, is bigger than the distance in the denominator. If ||xu − xv|| ≤ k
we have a short edge and the vertices are so close together that they will definitely be

4g++8 -std=c++14 -O3 -march=skylake
5Actually, we implement GIRGs without explicitly modeling the parameter c because scaling all weights
by cT emulates the same behaviour.

31

2 Generating Geometric Inhomogeneous Random Graphs

connected. Else, we have a long edge with k < ||xu−xv||, thus we can drop the minimum.
We get

E[Xuv] = Pr(||xu−xv|| ≤ k)+Pr(k < ||xu−xv||)·E

c ·(wuwv/W

||xu − xv||d

)1/T

| k < ||xu − xv||

 .
For any constant t ≤ 0.5, Pr(||xu−xv|| ≤ t) = (2t)d, which is the fraction of the ground

space which is covered by a hypercube with radius t. The probability for a short edge
becomes

Pr(||xu − xv|| ≤ k) =

{
(2k)d = 2dcT

(
wuwv
W

)
if k ≤ 0.5

1 else
(2.2)

For long edges, one must also distinguish between k > 0.5 and k ≤ 0.5 because the
distance on a unit torus with the L∞-norm is at most 0.5. Thus for k > 0.5, the
probability for a long edge Pr(k < ||xu − xv||) becomes zero independent of the distance.
For k ≤ 0.5, we can simplify the formula for long edges by integrating over all possible
values of ||xu − xv||. The probability density function of ||xu − xv|| between 0 and 0.5 is
the derivative of (2x)d, namely d2dxd−1. Using this we get

Pr(k < ||xu − xv||) · E

c ·(wuwv/W

||xu − xv||d

)1/T

| k < ||xu − xv||

= Pr(k < ||xu − xv||) ·

∫ 0.5
k c ·

(
wuwv/W

xd

)1/T
· d2dxd−1 dx

Pr(k < ||xu − xv||)

= c
(wuwv

W

)1/T
d2d

∫ 0.5

k
xd−1−d/T dx

= c
(wuwv

W

)1/T
d2d

[
1

d(1− 1/T)
· xd−d/T

]0.5

k

= c
(wuwv

W

)1/T d2d

d(1− 1/T)

((
1

2

)d−d/T
− kd(1−1/T)

)

= c
(wuwv

W

)1/T 2d

1− 1/T

(
2d/T

2d
−
(
c
T
d

(wuwv
W

)1/d
)d(1−1/T)

)

= c
(wuwv

W

)1/T 2d/T

1− 1/T
− c

(wuwv
W

)1/T 2d

1− 1/T
cT−1

(wuwv
W

)1−1/T

= c
(wuwv

W

)1/T 2d/T

1− 1/T
− cT

(wuwv
W

) 2d

1− 1/T
.

(2.3)

32

2.3 Implementation Details

We add the k ≤ 0.5 cases of short and long edges (Eq. 2.2 and Eq. 2.3), that is

2dcT
(wuwv

W

)
+ c

(wuwv
W

)1/T 2d/T

1− 1/T
− cT

(wuwv
W

) 2d

1− 1/T

= 2dcT
(wuwv

W

)(
1 +

1

1/T − 1

)
− c

(wuwv
W

)1/T 2d/T

1/T − 1

= cT
2d

1− T
(wuwv

W

)
− c 2d/T

1/T − 1

(wuwv
W

)1/T
,

(2.4)

to concisely express the expectation for Xuv as

E[Xuv] =

{
cT 2d

1−T
(
wuwv
W

)
− c 2d/T

1/T−1

(
wuwv
W

)1/T if k ≤ 0.5

1 if k > 0.5
(2.5)

Unfortunately, we still cannot simplify the expected average degree into a form that
can be computed in subquadratic time because of the case distinction in Eq. 2.5. To
circumvent this, we compute E[d̄] for all vertex pairs as if k ≤ 0.5 (call it Qover), then
add an error term Qerror to cancel out the pairs we treated wrongly, and add the correct
value for those pairs. This results in E[d̄] = Qover +Qerror.

Plugging the k ≤ 0.5 case of Eq. 2.5 into Eq. 2.1 and pulling constants out of the sum
yields

Qover · n = cT
2d

1− T
∑
u∈V

∑
v 6=u

(wuwv
W

)
− c 2d/T

1/T − 1

∑
u∈V

∑
v 6=u

(wuwv
W

)1/T
(2.6)

There are still quadratic sums in Eq. 2.6, but those can be simplified to∑
u∈V

∑
v 6=u

(wuwv
W

)
=
∑
u∈V

∑
v∈V

wuwv
W

−
∑
v∈V

w2
v

W
= W −

∑
v∈V

w2
v

W

and ∑
u∈V

∑
v 6=u

(wuwv
W

)1/T
=
∑
u∈V

∑
v∈V

(wuwv
W

)1/T
−
∑
v∈V

(
w2
v

W

)1/T

=
1

W 1/T

(∑
u∈V

∑
v∈V

(wuwv)
1/T −

∑
v∈V

w2/T
v

)

=
1

W 1/T

(∑
v∈V

w1/T
v

)2

−
∑
v∈V

w2/T
v

 .

To obtain the error term Qerror, let ES be the set of vertex pairs (u, v) with 0.5 < k.
So Qerror subtracts the k ≤ 0.5 case and adds the k > 0.5 case given in Eq. 2.5 for all
vertex pairs in ES , thus

Qerror · n = |ES | −
∑

(u,v)∈ES

(
cT

2d

1− T
(wuwv

W

)
− c 2d/T

1/T − 1

(wuwv
W

)1/T
)
. (2.7)

33

2 Generating Geometric Inhomogeneous Random Graphs

Now we are ready to find the constant c for a desired average degree using binary
search over the monotone function f(c) = E[d̄] = Qover +Qerror. The function f is given
by Eq. 2.6 (using simplified sums) and adding the error Qerror from Eq. 2.7 for vertex
pairs with k > 0.5.

f(c) = cT · 2d

n(1− T)

(
W −

∑
v∈V

w2
v

W

)

− c · 2d/T

n(1/T − 1)
· 1

W 1/T

(∑
v∈V

w1/T
v

)2

−
∑
v∈V

w2/T
v

− 1

n

∑
(u,v)∈ES

(
cT

2d

1− T
(wuwv

W

)
− c 2d/T

1/T − 1

(wuwv
W

)1/T
− 1

)
The binary search would now take O(n) time to compute the sums that are independent

of c and O(1 + |ES |) per evaluation of f(c). This assumes that ES can be found efficiently,
which may add additionaly overhead to the precomputation, e.g. by sorting. In the
following, we further reduce the time to evaluate f(c) from O(|ES |) to O(|S|) with S
being the set of vertices with at least one occurrence in ES .
For a vertex v ∈ V , let ES(v) = {u ∈ V | uv ∈ ES} be the set of partners in ES . We

rewrite the sum in the Qerror part of f(c) as follows∑
(u,v)∈ES

(
cT

2d

1− T
(wuwv

W

)
− c 2d/T

1/T − 1

(wuwv
W

)1/T
− 1

)

=
∑
v∈S

∑
u∈ES(v)

(
cT

2d

1− T
(wuwv

W

)
− c 2d/T

1/T − 1

(wuwv
W

)1/T
− 1

)

=
∑
v∈S

cT 2d

1− T
(wv
W

) ∑
u∈ES(v)

(wu)− c 2d/T

1/T − 1

(wv
W

)1/T ∑
u∈ES(v)

(w1/T
u)−

∑
u∈ES(v)

1

We reduce the running time by exploiting that for any two vertices u, v ∈ S, wu ≤ wv

implies ES(u) ⊆ ES(v). Thus, if we iterate the vertices in S by increasing weight, we can
reuse the computations for the last vertex by maintaining ES(v) and the associated sums
incrementally. Therefore, we partially sort the weights for all vertices in S. Since the
upper and lower bound for the binary search are found with an exponential search, the
size of S might grow until the upper bound is found. We lazily extend a sorted prefix of
the weight array while raising the upper bound. We assume S to be very small compared
to n and thus consider this overhead dominated by the other precomputations.

2.3.4 Avoiding Expensive Mathematical Operations for HRGs

HRGs introduce many computationally expensive mathematical operations like the
hyperbolic cosine. We significantly improve the performance of the generator by avoiding
or reusing the results of those operations.

34

2.3 Implementation Details

d

pT (d)

1.0

0.5

0.0

.75

.25

h

`

p−1
T (`)p−1

T (h)

u

edge no edge

compute pT (u)

(a) Sketch of the distance filter optimiza-
tion to avoid computationally expensive
mathematical operations, providing a
speedup of 2.

0 2πππ/2 3π/2

start of recursion
level 0

level 1

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

(b) Visited cell pairs up to level 3. The
arrows represent the 8 neighboring cell
pairs in level 2 and 12 distant cell pairs
in level 3.

Figure 2.4: Distance Filter (left) and tasks for parallelization in the 1-dimensional case
(right).

For the threshold model, an edge exists if the distance d is smaller than R. Considering
how the hyperbolic distance is defined (Section 1.2.5), reformulating it to cosh(d) <
cosh(R) avoids the expensive arccosh, while cosh(R) remains constant during execution
and can thus be precomputed. Similar to recent threshold HRG generators, we compute
intermediate values per vertex such that cosh(d) can be computed using only multiplication
and addition [Fun+19; Pen17].

For the binomial model, evaluating the connection probability pT (d) from the optimized
cosh(d) is a performance bottleneck and made up half of the total run time. Evaluating
pT (d) includes an expensive exponential function and cannot avoid the arccosh like in the
threshold model. We use a technique that we call a distance filter to reduce the frequency
of the operation resulting in a speedup of approximately factor two.
To explain how the distance filter works (also see Figure 2.4a), consider the straight-

forward way to sample an edge. That is, one samples a uniform random value u ∈ [0, 1]
and creates the edge if and only if u < pT (d). Since pT is monotonically decreasing, an
alternative check would be p−1

T (u) > d. The distance filter improves this by precomputing
the inverse p−1

T (u) for equidistant values in [0, 1]. This lets us, for small ranges in [0, 1],
quickly access the corresponding range of distances. Then, the process of sampling an
edge becomes the following. We first sample u ∈ [0, 1], which falls in a range between two
precomputed values, which in turn yields a range of distances. If the actual distance lies
below that range, there has to be an edge and if it lies above, there is no edge. Only if it
lies in the range, we actually have to compute the probability pT (d) and do the check the
straightforward way. Since u is uniformly distributed, the probability to hit the interval
where pT (d) has to be evaluated is 1/k, where k is the number of precomputed entries.

35

2 Generating Geometric Inhomogeneous Random Graphs

Our generator uses k = 100 which is large enough to amortize the few times we have to
compute pT (d) but still small enough to avoid cache misses. Additionally, we avoid the
arccosh by directly storing cosh[p−1

T (x)] in the filter.

2.3.5 Parallelization

This section describes how the sampling algorithm can be parallelized. The presented
approach applies to the GIRG and HRG implementations. The algorithm has five steps:
generate weights, generate positions, estimate the average degree constant, precompute
the geometric data structure, and sample edges. The first two are trivial to parallelize. For
estimating the constants, we parallelize the dominant computations with linear running
time.
For the preprocessing we have to do three subtasks: compute for each vertex its

containing cells on its insertion level, sort the vertices according to their Morton code
index, and compute the prefix sum for all cells. We parallelize all three tasks and optimize
them by handling all weight buckets together, sorting by weight bucket first and Morton
code second. This is done by encoding this criterion into integers that are sorted with
parallel radix sort. Then, the vertices of a weight bucket form a contiguous subsequence
in the sorted array. Moreover, they are sorted by cell, allowing parallel computation of
the prefix sums for all cells in the insertion level of the weight bucket.

To sample the edges, we make use of the fact that we iterate over cell pairs in a recursive
manner. This can be parallelized by cutting the recursion tree at a certain level and
distributing the loose ends among multiple processors. This works well, as the recursion
tree is symmetric, leading to multiple tasks of similar load. As the number of run time
intensive tasks is a power of 2, it works particularly well if the number of processors is
also a power of 2 and experiments suggest a near optimal scaling in this case.

In detail, we parallelize the edge sampling as follows. Each thread has a local random
generator. We use static scheduling to produce deterministic results even for the binomial
model. However, the ordering of edges in the edge list varies, because each thread locally
buffers generated edges before writing them while locking a mutex. We distinguish
two stages of execution. The first stage is to “saw off” the recursion tree at a certain
level and collect the omitted recursive calls as tasks to execute in stage two. A task is
represented by a cell pair from which to pick up the execution later. One thread collects
the tasks by traversing the recursion tree without sampling any edges (omitting lines
1-6 in Algorithm 2.1). Meanwhile, the other threads process the pairs that the main
thread passed through, i.e., the work in the top of the recursion tree before the saw-off
point. When all tasks are collected stage two begins. In stage two, the threads pick up
the “loose ends” of the cut recursion tree. There are three different types of tasks with
varying load. For 1-dimensional geometry, level ` > 2, and assuming a number of threads
that is constant in n, the types of tasks are the following. There are 2` heavy tasks given
by a neighboring cell pair of the form (A,A). Their number of recursive calls grows
exponentially with each subsequent level implying a load of O(n). There are 2` light tasks
given by a neighboring cell pair of the form (A,A+ 1). They produce four recursive calls
per subsequent level implying a load of O(log n). Finally, there are 3 · 2`−1 constant tasks

36

2.4 Experimental Evaluation

given by a distant cell pair. They invoke no recursive calls at all. The number of distant
cell pairs in a level is explained by Figure 2.4b. For each cell B in level `− 1 with children
A and A+ 1, the distant cell pairs in level ` are (A,A+ 2), (A,A+ 3), (A+ 1, A+ 3).
Since heavy tasks dominate the run time during stage two, we distribute heavy tasks

evenly among all threads. This is why the approach scales best when the number of
threads is a power of two. The level where we saw off the recursion tree is a tuning
parameter of the generator. We choose it, such that there are two heavy tasks per thread
to reduce load imbalance if one thread stalls. To apply the same scheduling approach
to higher dimensions it suffices to know that the load of tasks remains similar and the
number of heavy tasks is 2`d.

2.4 Experimental Evaluation

We perform three types of experiments. In Section 2.4.1 we investigate the scaling behavior
of our GIRG generator, broken down into the different tasks performed by the algorithm.
In Section 2.4.2 we compare our HRG generator with existing generators. In Section 2.4.3
we experimentally investigate the difference between HRGs and their GIRG counterpart.
Whenever a data point represents the mean over multiple iterations, our plots include
error-bars that indicate the standard deviation. Besides the implementation itself, all
benchmarks and analysis scripts are also accessible in our source repository.

2.4.1 Scaling of the GIRG Generator

We investigate the scaling of the generator, broken down into five steps. 1. (Weights) Gen-
erate power-law weights. 2. (Positions) Generate points on Td. 3. (Binary) Estimate
the constant controlling the average degree. 4. (Pre) Preprocess the geometric data
structure (Section 2.2.4). 5. (Edges) Sample edges between all vertex pairs as described
in Algorithm 2.1.

Figure 2.5 shows the sequential run time over the number of nodes n (top left), number
of edges m (top right), temperature T (bottom right), and dimension d (bottom right).
The performance is measured in nanoseconds per edge. Each data point represents
the mean over 10 iterations. To make the measurements independent of the graph
representation, we do not save the edges into RAM, but accumulate a checksum instead.
Note that the top right plot increases the average degree, resulting in a decreased time
per edge.
The empirical run times match the theoretical bounds: it is linear in n and m, grows

exponentially in the dimension d, and is unaffected by the temperature T . The overall
time is dominated by the edge sampling. Generating the weights includes expensive
exponential functions, making it the slowest step after edge sampling. Generating the
positions is significantly faster even for higher dimensions. For the parameter estimation
using binary search, one can see that the run time never exceeds the time to generate the
weights. For non-zero temperature T the performance of the binary search is similar to
the generation of the weights, as it also requires exponential functions. The lower run

37

2 Generating Geometric Inhomogeneous Random Graphs

103 104 105 106

Number of Nodes n

10 1

100

101

102

W
al

lti
m

e
[n

s]
 p

er
 E

dg
e

Weights
Positions
Binary
Pre
Edges
Total

105 106 107 108

Number of Edges m

10 2

10 1

100

101

102

W
al

lti
m

e
[n

s]
 p

er
 E

dg
e

2.0 2.5 3.0 3.5 4.0 4.5 5.0
1/T

101

102

W
al

lti
m

e
[n

s]
 p

er
 E

dg
e

1 2 3 4 5
Dimension d

100

101

102

103

104

W
al

lti
m

e
[n

s]
 p

er
 E

dg
e

Figure 2.5: Sequential run time for the steps of the GIRG sampling algorithm averaged
over 10 iterations. Each plot varies a different model parameter deviating
from a base configuration d = 1, n = 215, T = 0, β = 2.5, and d̄ = 10. The
base configuration is indicated by a dashed vertical line.

times per edge for the increasing number of edges (top right) show that the run time is
dominated by the number of nodes n. Only for very high average degrees, the cost per
edge outgrows the cost per vertex.

2.4.2 HRG Run Time Comparison

We evaluate the run time performance of HyperGIRGs compared to the generators
in Table 2.1, excluding the generators with high asymptotic run time as well as RHG
and sRHG, which are designed for distributed machines. Executed on a single compute
node, the performance of the faster sRHG is comparable to HyperGen [Fun+19]. To
avoid systematic biases between different graph representations, the implementations are
modified6 not to store the resulting graph. Instead, only the number of edges produced is
counted and we ensure that the computation of incident nodes is not optimized away by
the compiler.

We used different machines for our sequential and parallel experiments. The former are
done on an Intel Xeon Skylake CP Gold 6144 with 192 GB RAM, the latter on an Intel
Xeon E5-2630 v3 with 8 cores (16 threads) and 64 GB RAM.

For threshold graphs, our generator HyperGIRGs is consistently faster than the
competitors, independent of the parameter choices; see Figure 2.6a and 2.6b. Only for
unrealistic average degrees (1 k), HyperGen slightly outperforms HyperGIRGs.

6The modifications are publicly available and referenced in our GitHub repository.

38

2.4 Experimental Evaluation

106 107 108 109

Number of Edges m

102

W
al

lti
m

e
[n

s]
 p

er
 E

dg
e

Embedder
HyperGIRGs
HyperGen
NkGen
NkOpt

(a) d̄ = 100, β = 2.2, T = 0, sequential

105 106 107 108

Number of Edges m

102

103

W
al

lti
m

e
[n

s]
 p

er
 E

dg
e

(b) d̄ = 10, β = 3, T = 0, sequential

105 106 107 108

Number of Edges m

103

104

105

W
al

lti
m

e
[n

s]
 p

er
 E

dg
e

Embedder
HyperGIRGs
NkQuad
NkGenBin

(c) d̄ = 10, β = 2.2, T = 0.5, sequential

105 106 107 108

Number of Edges m

102

103

W
al

lti
m

e
[n

s]
 p

er
 E

dg
e

(d) d̄ = 10, β = 3, T = 0, parallel (16
threads)

Figure 2.6: Comparison of HRG generators averaged over 5 iterations. (a), (b) Threshold
variant for different average degrees d̄ and power-law exponents β. (c) Bino-
mial variant with temperature T = 0.5. (d) The same configuration as (b)
but utilizing multiple cores.

For higher temperatures, we compare our algorithm with the three other non-quadratic
generators NkQuad (included in NetworKit), NkGenBin, and Embedder; see Fig-
ure 2.6c. One can clearly see the worse asymptotic running time of NkQuad. Hy-
perGIRGs is consistently 4 times faster than Embedder and 2-3 times faster than
NkGenBin for graphs that are not too small. We note that Embedder uses a different
estimation for R, which leads to an insignificant left-shift of the corresponding curve.

Figure 2.6d shows measurements for parallel experiments using 16 threads. The
parameters coincide with Figure 2.6b. Embedder does not support parallelization and
is outperformed even more by the other generators. For sufficiently large graphs, the
fastest generator in this multi-core setting is HyperGen, which is specifically tailored
towards parallel execution. Nonetheless, HyperGIRGs shows comparable performance
and overtakes the other two generators NkGen and NkOpt. We note that even on
parallel machines, the sequential performance is of high importance: one often needs
a large collection of graphs rather than a single huge instance. In this case, it is more
efficient to run multiple instances of a sequential generator in parallel.

39

2 Generating Geometric Inhomogeneous Random Graphs

104 105 106

Number of Nodes n

80

100

120

140

160

De
gr

ee Smallest GIRG Supergraph
HRG Reference Graph
Largest GIRG Subgraph

(a) n ∈ [212, 221], d̄ = 100, β = 2.5, T = 0

100 110 120 130 140 150
Degree

100

101

102

103

104

105

106

107

Nu
m

be
r o

f E
dg

es
 m

HRG\GIRG
HRG Reference Graph
GIRG\HRG

(b) n = 105, d̄ = 100, β = 2.5, T = 0

Figure 2.7: Relation between the HRG and the GIRG model. (a) The values for dHRG,
dGIRG, DGIRG averaged over 50 iterations. (b) The number of missing (HRG\
GIRG) and additional (GIRG\HRG) edges depending on the expected degree
of the corresponding GIRG. It can be interpreted as a cross-section of one
iteration in (a).

2.4.3 Difference Between HRGs and GIRGs

Recall from Section 1.2.6 that a HRG with average degree dHRG has a corresponding
GIRG sub- and supergraphs with average degrees dGIRG and DGIRG, respectively.

We experimentally determine, for given HRGs, the values for dGIRG by decreasing the
average degree of the corresponding GIRGs until it is a subgraph of the HRG. Analogously,
we determine the value for DGIRG. We focus on the threshold variant of the models, as
this makes the coupling between HRGs and GIRGs much simpler (the graph is uniquely
determined by the coordinates). Figure 2.7a shows dGIRG and DGIRG, compared to dHRG

for growing n. One can see that dGIRG and DGIRG are actually quite far apart. They in
particular do not converge to the same value for growing n. However, at least dGIRG seems
to approach dHRG. This indicates that every HRG corresponds to a GIRG subgraph that
is missing only a sublinear fraction of edges. On the other hand, the average degree of
the GIRG has to be increased by a lot to actually contain all edges also contained in the
HRG.
Figure 2.7b gives a more detailed view for a single HRG. Depending on the average

degree of the GIRG, it shows how many edges the GIRG lacks and how many edges
the GIRG has in addition to the HRG. For degree 100, the GIRG contains about 38 k
additional and lacks about 42 k edges. These are rather small numbers compared to the
5 M edges of the graphs.

2.5 Conclusion

We provide the first efficient implementation of a geometric inhomogeneous graph generator
and a special case adaption for hyperbolic random graphs that constitutes the fastest
sequential HRG generator to date. Our code is publicly available. We describe the
sampling algorithms along with crucial implementation details such as optimizations,

40

2.5 Conclusion

parallelization strategies, and the non-trivial estimation of input parameters to control the
average degree of the resulting graphs. Moreover, we relate the GIRG and HRG model
and find that, although a straightforward inclusion does not hold, they are sufficiently
similar in practice. For example a HRG with about 5 million edges and its corresponding
GIRG equivalent have 99.24% of their edges in common.

41

3 Computing Maximum Flows in
Scale-Free Networks

This chapter is based on joint work with Thomas Bläsius and Tobias Friedrich [BFW21].

3.1 Introduction

The maximum flow problem is arguably one of the most fundamental graph problems that
regularly appears as a subtask in various applications [AMO93; Sch07; VB12]. The go-to
general-purpose algorithm for computing flows in practice is the highest-label Push-Relabel
algorithm by Cherkassky and Goldberg [CG97], which is also part of the boost graph
library [Sch11]. Beyond that, the BK-algorithm by Boykov and Kolmogorov [BK04] or its
later iteration [Gol+11] should be used for instances appearing in computer vision. Our
main goal in this paper is to provide a flow algorithm tailored towards scale-free networks.
Such networks are characterized by their heavy-tailed degree distribution resembling a
power law, i.e., they are sparse with few vertices of comparatively high degree and many
vertices of low degree.

At its core, our algorithm is a variant of Dinitz’s algorithm [Din70], which is an
augmenting path algorithm that iteratively increases the flow along collections of shortest
paths in the residual network. In each iteration, at least one edge on every shortest
path gets saturated, thereby increasing the distance between source and sink in the
residual network. To exploit the structure of scale-free networks, we make use of the
facts that, firstly, shortest paths tend to span only a small fraction of such networks,
and secondly, a balanced bidirectional breadth-first search is able to find the shortest
paths very efficiently [BN16; Blä+18a]. Using a bidirectional search to compute shortest
paths in Dinitz’s algorithm directly translates this efficiency to the first iteration, as the
residual network initially coincides with the flow network. Though the structure of the
residual network changes in later iterations, our experiments show that the run time
improvements achieved by using a bidirectional search remain high. Scaling experiments
with geometric inhomogeneous random graphs [BKL19] indicate that the flow computation
of our algorithm runs in sublinear time. In comparison, previous algorithms (Push-Relabel,
BK, and unidirectional Dinitz) require slightly super-linear time. This is also reflected in
the high speedups we achieve on real-world scale-free networks.

With the flow computation itself being so efficient, the total run time for computing the
maximum flow for a single source-sink pair in a scale-free network is heavily dominated
by loading the graph and building data structures. Thus, our algorithm is particularly
relevant when we have to compute multiple flows in the same network. This is, e.g., the

43

3 Computing Maximum Flows in Scale-Free Networks

case when computing the Gomory-Hu tree [GH61] of a network. The Gomory-Hu tree
is a compact representation of the minimum s-t cuts for all source-sink pairs (s, t). It
can be computed with Gusfield’s algorithm [Gus90] using n − 1 flow computations in
a network with n vertices. Using our bidirectional flow algorithm as the subroutine for
flow computations in Gusfield’s algorithm lets us compute the Gomory-Hu tree of, e.g.,
the soc-slashdot instance with 70 k nodes and 360 k edges in only 2.6 s. In this context,
we observe that the Push-Relabel algorithm is also very efficient in computing the flow
values by computing a preflow. However, converting this to a flow or extracting a cut
from it takes significantly more time.

Our algorithm is designed to work particularly well on scale-free networks. Nonetheless,
we also conducted experiments on networks that are not scale-free. We observe that
our algorithm outperforms the Push-Relabel algorithm significantly on Erdős-Rényi
random graphs and slightly on the Pennsylvania road network. Unsurprisingly, our
algorithm is outperformed by the BK-algorithm on a segmentation instance from computer
vision. Moreover, Push-Relabel performs best on a layered network that was specifically
constructed to evaluate flow algorithms. However, we would argue that this type of
instance is rather artificial.

Contribution. Our findings can be summarized in the following main contributions.

• We provide a simple and efficient flow-algorithm that significantly outperforms
previous algorithms on scale-free networks 1.

• It’s efficiency on non-scale-free instances makes it a potential replacement for the
Push-Relabel algorithm for general-purpose flow computations.

• Our algorithm is well suited to compute the Gomory-Hu tree of large instances.

• In contrast to previous observations [CG97; DM89], situations exist where comput-
ing a flow with the Push-Relabel algorithm is significantly more expensive than
computing a preflow.

Related Work. We briefly discuss only the work most related to our result. For a
more extensive overview on the topic of flows, we refer to the survey by Goldberg and
Tarjan [GT14].

Our algorithm is based on Dinitz’s Algorithm [Din70], which belongs to the family
of augmenting path algorithms originating from the Ford-Fulkerson algorithm [FF56].
Augmenting path algorithms use the residual network to represent the remaining capacities
and iteratively increase the flow by augmenting it with paths from source to sink in the
residual network, until no such path exists. At every point in time, a valid flow is known
and at the end of execution, non-reachability in the residual network certifies maximality.
From this perspective, the Push-Relabel algorithm [GT88] does the reverse. At every

point in time, the sink is not reachable from the source in the residual network, thereby
1https://github.com/chistopher/scale-free-flow

44

https://github.com/chistopher/scale-free-flow

3.2 Network Flows and Dinitz’s Algorithm

guaranteeing maximality, while the object maintained throughout the algorithm is a
so-called preflow and the algorithm stops once the preflow is actually a flow. This is
achieved using two operations push and relabel ; hence the name. Different variants of
the Push-Relabel algorithm mainly differ with regard to the order in which operations
are applied. A strategy performing well in practice is the highest-label strategy [CG97].
The extensive empirical study by Ahuja et al. [Ahu+97] on ten different algorithms
shows that the highest-label Push-Relabel algorithm indeed performs the best out of
the ten. The only small caveat with these experiments is the fact that they are based
on artificial networks that are specifically generated to pose difficult instances. Our
experiments show that the structure of the instance matters in the sense that it impacts
different algorithms differently; potentially yielding different rankings on different types
of instances. The so-called pseudoflow algorithm by Hochbaum [Hoc08] was later shown
to slightly outperform (low single-digit speedups on most instances) the highest-label
Push-Relabel algorithm; again based on artificial instances [CH09].

Boykov and Kolmogorov [BK04] gave an algorithm tailored specifically towards instances
that appear in computer vision; outperforming Push-Relabel on these instances. It was
later refined by Goldberg et al. [Gol+11]. Most related to our studies is the work by
Halim et al. [HYW11] who developed a distributed flow algorithm for MapReduce on
huge social networks.

3.2 Network Flows and Dinitz’s Algorithm

This section introduces the concept of network flow and describes Dinitz’s algorithm [Din70].

3.2.1 Network Flows

A flow network is a directed graph G = (V,E) with source and sink vertices s, t ∈ V ,
and a capacity function c : V × V → N with c(u, v) = 0 if (u, v) 6∈ E. A flow f on G is
a function f : V × V → Z satisfying three constrains: (I) capacity f(u, v) ≤ c(u, v) (II)
asymmetry f(u, v) = −f(v, u) and (III) conservation

∑
v∈V f(u, v) = 0 for u ∈ V \ {s, t}.

We call an edge (u, v) ∈ E saturated if f(u, v) = c(u, v). Denote the value of a flow f as∑
v∈V f(s, v). The maximum flow problem, max-flow for short, is the problem of finding

a flow of maximum value.
Given a flow f in G, we define a network Gf called the residual network. Gf has

the same set of nodes and contains the directed edge (u, v) if f(u, v) < c(u, v). The
capacity c′ of edges in Gf is given by the residual capacity in the original network, i.e.,
c′(u, v) = c(u, v)− f(u, v). An s-t path in Gf is called an augmenting path.

3.2.2 Dinitz’s Algorithm

Let ds(v) be the distance from s to vertex v in Gf . We define a subgraph of Gf called the
layered network by restricting the edge set to edges (u, v) of Gf for which ds(u)+1 = ds(v),
i.e., edges that increase the distance to the source. We call a flow blocking if every s-t
path contains at least one edge saturated by this flow, i.e., there is no augmenting path.

45

3 Computing Maximum Flows in Scale-Free Networks

Dinitz’s algorithm (see Algorithm 3.1) groups augmentations into rounds. It augments
a set of edges that constitutes a blocking flow of the layered network in each round. One
can find such a set of edges by iteratively augmenting s-t paths in the layered network
until source and sink become disconnected. After augmenting a blocking flow, the distance
between the terminals in the residual network strictly increases.

Algorithm 3.1: Dinitz’s Algorithm.
1 while s-t path in residual network do
2 build layered network
3 while s-t path in layered network do
4 augment flow with s-t path

3.2.3 Running Time Considerations

To better understand how our modifications impact the run time, we briefly sketch how
Dinitz running time of O(n2m) is obtained. Since ds(t) increases each round, the number
of rounds is bounded by n− 1. Each round consists of two stages: building the layered
network and augmenting a blocking flow. The layered network can be constructed in O(m)
using a breadth-first search (BFS). Finding the blocking flow is done with a repeated
graph traversal, usually using a depth-first search (DFS). The number of found paths is
bounded by m, because each found path saturates at least one edge, removing it from
the layered network. A single DFS can be done in amortized O(n) time as follows. Edges
that are not part of an s-t path in the layered network do not need to be looked at more
than once during one round. This is achieved by remembering for each node which edges
of the layered network were already found to have no remaining path to the sink. Each
subsequent DFS will start where the last one left off. Thus, per round, the depth-first
searches have a combined search space of O(m), while each individual search additionally
visits the nodes on one s-t path which is O(n).

In our experiments ds(t) remains mostly below 10, implying that the number of rounds
is significantly lower than n− 1. Also, the number of found augmenting paths during one
rounds is far below m. In unweighted networks, for example, a DFS saturates all edges of
the found path resulting in a bound of O(m) to find a blocking flow. Dinitz’s algorithm
has a tight upper bound of O(n2/3m) in unweighted networks [ET75; Kar73].

3.3 Improving Dinitz on Scale-Free Networks

We adapt Dinitz’s algorithm to exploit the specific structure of scale-free networks. We
achieve a significant speedup by using the fact that a flow and cut respectively often
depend only on a small fraction of the network. The following three modifications each
tackle a performance bottleneck.

46

3.3 Improving Dinitz on Scale-Free Networks

3.3.1 Bidirectional Search

Recently, sublinear running time was shown for balanced bidirectional search on hyperbolic
random graphs [Blä+18a; BN16]. We use a bidirectional breadth-first-search to compute
the distances that define the layered network during each round of Dinitz’s algorithm. A
forward search is performed from the source and a backward search from the sink, each
time advancing the search that incurs the lower cost to advance one layer. A shortest
s-t path is found when a vertex is discovered that was already seen from the other
direction. Note that, for our purpose, the bidirectional search has to finish the current
layer when such a vertex is discovered, because all shortest paths must be found. Figure 3.1
visualizes the difference in explored vertices between a normal and a bidirectional BFS.
The augmentations with DFS are restricted to the visited part of the layered network,
meaning the search space of the BFS plus the next layer.

The distance labeling obtained by the bidirectional BFS requires a change to the DFS.
The purpose of the layered network is to contain all edges on shortest s-t paths. The DFS
identifies edges (u, v) of the layered network by checking if they increase the distance from
the source, i.e., ds(u) + 1 = ds(v). However, we no longer obtain the distances from the
source for all relevant vertices. For vertices processed by the backward search, distances
to the sink dt(v) are known instead. To resolve the problem, we allow edges that either
increase distance from the source or decrease distance to the sink, i.e., ds(u) + 1 = ds(v)
or dt(u)− 1 = dt(v). This deviates from the definition of the layered network. But since
edges on shortest s-t paths must both, increase the distance from the source and decrease
the distance to the sink, we do not miss any relevant edges. This definition has the
additional advantage that the DFS cannot deviate from shortest s-t paths in the search
space of the backward search. First, the search space of the backward search can only be
entered by the DFS via vertices on a shortest path. Second, when already on a shortest
path, each edge that decreases the distance to the sink will also be on a shortest path.

3.3.2 Time Stamps

The bidirectional search reduces the search space of the breadth-first search and depth-first
search substantially, potentially to sublinear. The initialization, however, still requires
linear time. It includes distances from the source and to the sink and one progress counter
per node for the augmentations. To avoid the linear initializations, we introduce time
stamps to indicate if a vertex was seen during the current round. The initialization of
distances and counters is done lazily as vertices are discovered during the BFS.

3.3.3 Skip Next Forward Layer

The DFS proceeds along edges outgoing from the last forward search layer independent
from the target vertex being seen only by the forward search (gray in Figure 3.1) or
also by the backward search (orange in Figure 3.1). However, the former type of vertex
cannot be part of a shortest s-t path. By saving the number of explored layers of the
forward search we can avoid the exploration of such vertices, thus limiting the DFS to

47

3 Computing Maximum Flows in Scale-Free Networks

ts ts

Figure 3.1: Search space of a breadth-first search from a source s to a sink t unidirectional
(left) and bidirectional (right). The blue area represents the vertices that are
explored, i.e., whose outgoing edges were scanned, by the forward search and
the green area the backward search. In the gray area are vertices that are
seen during exploration of the last layer, but not yet explored. Vertices in the
intersection of the upcoming layers of the backward and forward search are
marked orange.

vertices colored blue, green, or orange in Figure 3.1. With this optimization, the combined
search space during augmentation (lines 3,4 in Algorithm 3.1) is almost limited to the
search space of the BFS. The only additional edges that are visited originate from the
intersection of the forward and backward search.

3.4 Implementation

Our implementation is based on a version of Dinitz’s Algorithm that is commonly used
in programming competitions2. In the following, we describe the details of the general
implementation. Then, we elaborate our data layout, initialization, and optimizations.

3.4.1 Common Dinitz Implementations

Typical Dinitz implementations prepare the residual network by adding a reversed twin
for each edge. To support undirected networks, one can represent each undirected edge as
two directed edges. However, each directed edge already implies two edges in the residual
network: one with the given capacity, and a reversed twin edge with no capacity. To avoid
storing four times the amount of edges, the twin edge can be used to implement undirected
flow. By giving the twin edge the same capacity as its counterpart, the implementation
used for undirected as well as directed networks is the same.
Neither the residual network nor the layered network is constructed explicitly. The

residual network is implicitly defined by the capacities and flow values on edges and
the layered network by a distance labeling. This conveniently eliminates the need to
modify the network structure during the algorithm. When, e.g., saturating an edge during

2https://cp-algorithms.com/graph/dinic.html

48

https://cp-algorithms.com/graph/dinic.html

3.4 Implementation

augmentation, this implicitly removes the edge from the residual network and layered
network. However, with this representation, the BFS and DFS are performed on all
edges and must check if edges are part of the residual or layered network when they are
encountered. Note that the complexity considerations from Section 3.2.3 still apply for
BFS and for DFS. The amortization argument for the DFS extends to edges that are not
part of the layered- or residual network. That is, a counter into the adjacency list of each
vertex indicates which outgoing edges were already processed this round.

3.4.2 Data Layout and Initialization

We represent the graph by a linearized adjacency list of outgoing edges. Edges are sorted
by originating vertex in linear time. Each node stores a range of edges into this list. The
Push-Relabel implementation we compare against uses the same structure. Performance-
wise, the data structure significantly reduces the time to initialize large networks without
negative impact on the flow computation. Another detail of our implementation is that
we use begin and end indices into an array instead of a dynamically growing queue for
the BFS. An array of length n is sufficient because during BFS each vertex is pushed at
most once. We allocate this memory in advance and override the data each round.
We allocate memory for distance labels, counter, and the queue in advance when the

network is built instead of per flow computation. The performance of initialization heavily
depends on the data layout. We decided to store node data interleaved instead of in
separate buffers. This data layout reduces memory loads and facilitates cache locality
because all data for one node is fetched at once. On the other hand, the choice hinders
efficient initialization with SIMD instructions.

3.4.3 Low-Level Optimizations

As we will see in Section 3.5.2, the BFS is the slowest part of the final algorithm. Line-
by-line load analysis shows that more time is spent during the backward search than the
forward search. The backward search from the sink has to consider incoming instead
of outgoing edges but our implementation only maintains an adjacency list of outgoing
edges. However, for each incoming edge, there is an outgoing twin edge with a reference
to the incoming edge. This reference is used to determine the residual capacity of the
incoming edge to check if the incoming edge is part of the residual network. We can save
a memory lookup in the hot code of the algorithm, by determining the residual capacity
of the incoming edge without loading it into memory. The residual capacity of an edge is
obtained by subtracting the flow from the capacity. In undirected networks, the capacity
of an edge is the same as that of its twin. Additionally, consistency of flow links the flow
of both edges. Thus we can compute the residual capacity of incoming edges by looking
only at the outgoing edges. The change improves performance by 20 to 40% in undirected
networks. A similar optimization is possible for directed networks by caching the capacity
of the back edge in each twin. This concept is known and was applied in previous flow
implementations3, however, we only use the optimization for undirected networks.

3https://github.com/Zagrosss/maxflow

49

https://github.com/Zagrosss/maxflow

3 Computing Maximum Flows in Scale-Free Networks

fb-pages-tvshow girg10000 soc-slashdot girg100000 soc-flickr visualize-us dogster as-skitter actors brain
Instance

10 2

10 1

100

101

102

103

104

Ti
m

e
[m

s]
Dinitz
DinitzOPT
PushRelabel
BK-Algorithm

low
high

Figure 3.2: Runtime comparison of flow computations. The 20 computed flows per
instance are divided into low and high terminal pairs. For low, the terminal
degree is between 0.75 and 1.25 times the average degree. For high, it is
between 10 and 100 times the average degree. Pairs are chosen uniformly at
random from all vertices with the respective degree.

3.5 Experimental Evaluation

In this section, we investigate the performance of our algorithm DinitzOPT. First, we
compare it to established approaches on real-world networks in Section 3.5.1. We
additionally examine the scaling behavior and how the comparison is affected by problem
size, i.e., if there is an asymptotic improvement over other algorithms. Then, Section 3.5.2
evaluates to which extent the different optimizations contribute to better run times and
search space. In Section 3.5.3 we analyze the algorithms in a specific application (Gomory-
Hu trees) and compare their usability beyond the speed of the actual flow computation.
To this end, we test three different approaches to obtain a cut with the Push-Relabel
algorithm. Lastly, we extend our considerations to other types of networks in Section 3.5.4,
and discuss why the results on scale-free networks differ from previous studies. Recall that
bidirectional search was found to perform particularly well on heterogeneous networks.
For further reference, Section 3.5.5 describes the used datasets as well as integration and
changes to the implementations we compare against. Experiments were done on a Dell
XPS 15 9570 Laptop with an Intel Core i7-8750H CPU.

3.5.1 Runtime Comparison

In this section we compare our new approach to three existing algorithms: Dinitz [Din70],
Push-Relabel [GT88], and the Boykov-Kolmogorov (BK) algorithm [BK04]. The experi-
ments include two synthetic and eight real-world networks. All networks are undirected
and all but visualize-us and actors are unweighted. We restrict our experiments in
this section to the flow computation only excluding, e.g., loading times and resetting flow
values between runs. For Push-Relabel we only measure the computation of the preflow,
which is sufficient to determine the value of the flow/cut. Figure 3.2 shows the resulting
run times. For this plot, the terminals were chosen uniformly at random from the set of
vertices with degree close to the average (low) or considerably higher degree (high).

50

3.5 Experimental Evaluation

One can see that Dinitz and Push-Relabel display comparable times while BK is slightly
slower on most large instances. DinitzOPT consistently outperforms the other algorithms
by one to three orders of magnitude. The variance is also higher for DinitzOPT with
low pairs approximately one order of magnitude faster on average than high pairs. This
is best seen in the girg100000 instance and suggests that DinitzOPT is able to better
exploit easy problem instances. For all other algorithms the effect of the terminal degree
on the run time is barely noticeable. Another observation is that all algorithms display
drastically lower run times than their respective worst-case bounds would suggest.

The times in our experiments are close to what one might expect from linear algorithms.
For example, Dinitz computes a flow on the as-skitter instance in one second. Consid-
ering the tight O(mn2/3) bound on unweighted networks and assuming the throughput
per second to be around 108 — which is a generous guess for graph algorithms — would
result in an estimate of 30 minutes per flow. In contrast to our results, earlier studies
found Dinitz to be slower than Push-Relabel and both algorithms clearly super-linear
on a series of synthetic instances [Ahu+97]. However, these synthetic instances exhibit
specifically crafted hard structures that are placed between designated source and sink
vertices. These instances thus present substantially more challenging flow problems.

Effect of the Terminal Degree. In the following, we discuss the effect of terminal
degree and structure of the cut on the run time of Dinitz and DinitzOPT. Note that
the terminal degree is an upper bound on the size of the cut in unweighted networks.
Moreover, the terminal degree in our experiments is based on the average degree, which
is assumed to be constant in many real-world networks [Bar16]. Thus, the O(mC) bound
for augmenting path based algorithms, with C being the size of the cut, implies not
only a linear bound for the eight unweighted networks in our experiments, but would
also explain faster low pairs. Surprisingly, DinitzOPT exploits low terminal degrees
much more than Dinitz. Another explanation for faster low pairs is that many cuts are
close around one terminal, which is consistent with previous observations about cuts
in scale-free networks [Les+09; SJN06]. Moreover, Dinitz tends to perform well when
the source side of the cut is small [OZ14]. Although this does not fully explain why
DinitzOPT is more sensitive to the terminal degree, we observe in Section 3.5.3 that
Dinitz slows down massively when the source degree is high, even with low sink degree.
Since DinitzOPT always advances the side with a smaller volume during the bidirectional
search it does not matter which terminal has the higher degree.

Scaling. We perform additional experiments to analyze the scaling behavior of the
algorithms. Since real networks are scarce and fixed in size, we generate geometric
inhomogeneous random graphs to gradually increase the size while keeping the relevant
structural properties fixed. The efficient generator discussed in Chapter 2 allows us to
benchmark our algorithms on differently-sized networks with similar structure. Figure 3.3a
and Figure 3.3b show the results.
We measure the run time over a series of GIRGs with the number of nodes growing

exponentially from 1000 to 1 024 000 with 10 iterations each. In each iteration, we sample

51

3 Computing Maximum Flows in Scale-Free Networks

103 104 105 106

Number of Nodes

10 2

10 1

100

101

102

103

Ti
m

e
[m

s]

Dinitz
DinitzOPT
PushRelabel
BK-Algorithm

(a) Runtime scaling of flow algorithms.

103 104 105 106

Number of Nodes

10 2

10 1

100

101

102

103

Ti
m

e
[m

s]

Dinitz
DinitzBi
DinitzStamp
DinitzOPT

(b) Scaling of Dinitz variants.

Figure 3.3: (a) The average time per flow over multiple GIRGs and terminal pairs. (b)
This plot differs from Figure 3.3a only in the set of displayed algorithms.

a new random graph with average degree 10, power-law exponent 2.8, dimension 1, and
temperature 0. The run time for each algorithm is then averaged over 10 uniform random
pairs of vertices with degrees between 10 and 20. Standard deviation is shown as error
bars. The lower half of the symmetric error bars seems longer due to the logarithmic
axis. We add a quadratic and two linear functions in Figure 3.3a. Figure 3.3b shows the
functions n0.88 and n0.7 representing the theoretical upper bound and previously observed
typical run times, respectively, for the bidirectional search on hyperbolic random graphs
with the chosen power-law exponent [Blä+18a].

Dinitz, Push-Relabel, and BK show a near-linear running time. Compared to the
linear functions in Figure 3.3a, Dinitz and Push-Relabel seem to scale slightly worse
than linear, while DinitzOPT scales better than linear. In a construction with super-sink
and super-source, a similar scaling was observed for Push-Relabel on the Yahoo Instant
Messenger graph [Lan04].

3.5.2 Optimizations in Detail

In this section, we evaluate the performance impact of the changes discussed in Section 3.3.
We present a search space analysis and in-depth profiler results4. All optimizations can
be applied in any order and combination. Instead of considering all combinations of
optimizations, we individually add them in a specific order, such that the next change
always tackles a performance bottleneck. In fact, additional benchmarks reveal that
the next optimization in the order speeds up the computation more than enabling all
other remaining changes together. The four incrementally more optimized versions of
the algorithm are: DinitzBi, DinitzReset, DinitzStamp, and DinitzOPT. Each algorithm
corresponds to adding one optimization to the previous ones.

The experiments and benchmarks in this section consider 1000 uniform random terminal
pairs close to the average degree on the as-skitter instance. The average distance
between source and sink in the initial network is 4.2. The average number of rounds

4We used the Intel VTune profiler.

52

3.5
E

xperim
entalE

valuation

Table 3.1: Total run times and search space of visited edges for the five intermediate versions of our Dinitz implementation
during the computation of 1000 flows in as-skitter. Terminals are chosen like low pairs in Figure 3.2. The
first seven columns show times in seconds accumulated over all flow computations. BUILD is the construction
of the residual network that is reused for all flow computations, RESET means clearing flow on edges between
computations, INIT includes initialization of distances and counters per round, BFS and DFS refer to the respective
subroutines, FLOW is the summed time during flow computations (sum of BFS, DFS, INIT), and TOTAL is the
run time of the whole application including reading the graph from file. The last three columns contain the search
space relative to the number of edges in the graph in percent. Search space columns for BFS and DFS are per
round, while the FLOW column lists the search space per flow, e.g., Dinitz visits on average 65.66% of all edges per
BFS and every edge is visited about 5.58 times on average in one flow computation.

MaxFlow Search Space [%]

BUILD RESET INIT BFS DFS FLOW TOTAL BFS DFS FLOW

Dinitz 0.50 56.79 14.87 405.46 426.80 847.13 904.85 65.66 63.64 558.04
DinitzBi 0.55 58.15 21.02 2.78 8.94 32.73 91.82 0.26 1.87 8.38
DinitzReset 0.50 | 20.73 2.47 8.01 31.20 32.06 0.26 1.87 8.38
DinitzStamp 0.55 | | 2.51 10.30 12.81 13.72 0.26 1.87 8.38
DinitzOPT 0.55 | | 2.40 1.06 3.46 4.22 0.26 0.20 2.03

53

3 Computing Maximum Flows in Scale-Free Networks

until a maximum flow is found is 4.8, whereas the last round runs only the BFS to verify
that no augmenting path exists. Only counting rounds before the last round, 2.9 units of
flow are found on average per round. Out of the 1000 cuts, 882 have a value equal to
the degree of the smaller terminal. Table 3.1 shows profiler results and search space for
Dinitz and the optimized versions of the algorithm. Figure 3.4 compares the search space
with and without the bidirectional search.

Bidirectional Search. Dinitz takes 15 minutes to compute the 1000 flows and the
search space per flow is more than five times the number of edges on average. Almost all
of that time is spent in BFS or DFS. The bidirectional Dinitz reduces the flow-time from
14 minutes to 30 seconds, an improvement by a factor of 25.

The search space is reduced by factors of 252 for BFS, 34 for DFS, and 67 per flow. It
is interesting to note, that the search space of BFS during the last round of each flow
changes even more. In this round, the BFS will find no s-t path. The bidirectional search
visits 39 edges on average, while the normal breadth-fist-search visits 44% of the graph.
This not only emphasizes that the cuts are close around one terminal but also shows that
the bidirectional search heavily exploits this structure.

The run time does not fully reflect this drastic reduction in search space, because DFS
and BFS no longer dominate the flow computation. The initialization time per round
increased by 50%, which can be explained by the additional distance label per node to
store the distance to the sink (now 3 ints instead of 2). Although the initialization is a
simple linear operation in the number of nodes, it takes twice as long as BFS and DFS
combined. The real bottleneck, however, is to reset the flow values between computations.
RESET takes almost a full minute which is twice as long as computing the flows.

Reset flow between computations. Between flow computations, the residual capacity
of all edges has to be reset before another flow can be found. After changing the BFS to
a bidirectional search, resetting the flow on all edges between computations dominates
the run time. To reduce the time of our benchmarks, and to make the code more efficient
in situations where multiple flows are computed in the same network, we address this
bottleneck. Instead of explicitly resetting flow values for all edges, we remember the
edges that contain flow and reset only those. This change is not mentioned in Section 3.3
because it does not speed up a single flow computation.

This change reduces the time for RESET to the point that it is no longer detected by
the profiler, while other operations are not affected. The total time to compute all 1000
flows is thus three times lower with the flow computation making up for almost all spent
time. The slowest part of the flow computation itself is still the initialization with 21 of
the 31 seconds.

Time Stamps. The distance labels and counters per node are initialized each round.
Using time stamps eliminates the need for initialization while adding a small overhead to
DFS. The flow computation gets 2.4 times faster with 13 seconds instead of 31. After

54

3.5 Experimental Evaluation

ALL

BFS

DFS

UNI-directional Search
Forward Search
Next Forward Layer
Intersection
Next Backward Layer
Backward Seach

ALL

BFS

DFS

BI-directional Search

7673553

278067

173114

88303699

70055477

38282210

Figure 3.4: Average number of edges visited per flow computation for the terminal pairs
used in Table 3.1, partitioned as in Figure 3.1. Forward/Backward Search
represent the edges explored by the respective search. Next Forward/Backward
Layer denote the edges that would be explored in the next step of the BFS.
Edges in the Intersection originate from vertices in both upcoming BFS-
layers. The BFS and DFS bars show the edges that are actually visited
by the algorithm. The shaded area indicates the edges skipped by our last
optimization (from DinitzStamp to DinitzOPT in Table 3.1) and is excluded
in the sum on the right.

fb-pages-tvshow girg10000 soc-slashdot girg100000 soc-flickr visualize-us dogster as-skitter actors brain
Instance

10 3

10 2

10 1

100

101

102

103

Ti
m

e
[m

s]

Dinitz
DinitzOPT
PushRelabel
BK-Algorithm

gh

Figure 3.5: Runtime comparison of flow computations. The 10 terminal pairs per instance
are uniformly chosen out of the n− 1 cuts required by Gusfield’s algorithm.

introducing the time stamps, the DFS is the new bottleneck and makes up for about 80%
of flow time.

Skip Next Forward Layer. This change prevents the DFS from visiting vertices
beyond the last layer of the forward search that are not also seen by the backward
search. In Figure 3.4 the skipped part is shaded. This optimization reduces the average
search space for DFS during one round from almost 2% of all edges to just 0.2%. The
improvement in search space is reflected by the profiler results. DFS is sped up from 10
seconds to just one second, which is faster than the BFS. The resulting time to compute
all 1000 flows is 3.46 seconds, which is only 7 times slower than building the adjacency
list in the beginning. In total, the time to compute the flows with the optimized Dinitz is
245 times faster than the unmodified Dinitz.

55

3 Computing Maximum Flows in Scale-Free Networks

3.5.3 Gomory-Hu Trees

In the last sections, we observed that heterogeneous network structure yields easy flow
problems that can be solved significantly faster than the construction of the adjacency
list. This performance becomes important in applications that require multiple flows
to be found in the same network. Gomory-Hu trees [GH61] fit this setting and have
applications in graph clustering [FTT04]. A Gomory-Hu tree (GH-tree) of a network is a
weighted tree on the same set of vertices that preserves minimum cuts, i.e., each minimum
cut between any two vertices s and t in the tree is also a minimum s-t cut in the original
network. Thus, they compactly represent s-t cuts for all vertex pairs of a graph. For
the construction of a GH-tree, we use Gusfield’s algorithm [Gus90] that requires n− 1
cut-oracle calls in the original graph.

In this section, we evaluate the performance of max-flow algorithms for the construction
of Gomory-Hu trees in heterogeneous networks. We will see that the terminal pairs
required for Gusfield’s algorithm yield easier flow problems than uniform random pairs.
DinitzOPT is able to make use of this easy structure to achieve surprisingly low run
times, and so is Push-Relabel when only considering the computation of the flow value.
However, we find that the need to extract the source side of the cut hinders Push-Relabel
to benefit from this performance.

Flow Computation on Gusfield Pairs. Figure 3.5 shows the same networks and
algorithms as in Figure 3.2 but with terminal pairs sampled out of the n − 1 flow
computations needed by Gusfield’s algorithm. The run times for all algorithms except the
BK-Algorithm have high variance and are spread over up to four orders of magnitude for
the larger instances. Although results for different terminal pairs vary greatly, BK seems
to be the slowest algorithm followed by Dinitz. DinitzOPT and PR have comparable
but significantly lower run times than the other algorithms. For example, 6 out of
the 10 gh pairs measured for the soc-slashdot instance are solved by DinitzOPT and
Push-Relabel faster than one microsecond which is the precision of our measurements.
This suggests, that these algorithms are more sensitive to the varying difficulty of the
flow computations for gh pairs. Our speedup over the Push-Relabel algorithm on gh pairs
is not as pronounced as for the random pairs in Section 3.5.1. On the dogster instance
PR is even faster than DinitzOPT on average.
To further investigate why gh pairs are this easy to solve, we analyze a complete run

of all pairs needed by Gusfield’s algorithm on the soc-slashdot instance. In Gusfield’s
algorithm, each vertex is the source once, thus the average degree of the source is the
average degree of the graph (10.24). In contrast, the average degree of the sink is ca. 1500,
which hinders the benefit of bidirectional search. Uni-directional Dinitz slows down by a
factor of 15 when computing the flows with switched terminals. The average distance
between two vertices in the original network is 4.16, but interestingly here the average
distance from source to sink is 1.78. Out of the 70 k flow computations, 56 k are trivial
cuts around one terminal. Computing a flow for a single s-t pair takes 2.76 rounds on
average with the last round only to confirm that the flow is optimal.

DinitzOPT and Push-Relabel are both extremely fast on gh pairs. DinitzOPT takes 2.5

56

3.5 Experimental Evaluation

seconds to compute all n = 70 k required flows, while PR needs 5 seconds. To obtain the
5 seconds for PR we exclusively measured the preflow computation, but PR is not limited
by the time to compute the preflow. Actually, the entire computation of the Gomory-Hu
tree on the soc-slashdot instance takes 12 minutes with Push-Relabel and 2.6 seconds
with DinitzOPT. Instead of being caused by the Gusfield logic — which actually makes up
less than 3% of the run time when using DinitzOPT as an oracle — the bottleneck when
using PR as a cut oracle is not the flow computation, but initialization and extracting
the cut. The drastic difference in run time is in part due to the optimizations we added
to DinitzOPT to reduce the time between flow computations, while the Push-Relabel
implementation recreates the auxiliary data structures, except the adjacency list, before
each flow. However, in the following, we will see that a large amount of Push-Relabels
run time is necessary to extract the cuts for Gusfield’s algorithm.

Computing Cuts with Push-Relabel. In Gusfield’s algorithm, we have to iterate over
all vertices in the source side of the cut. For Dinitz algorithm we can obtain a cut by
doing a BFS from the source. However, the PR algorithm only computes a preflow. We
outline the following three approaches to extract the cut and show that each has major
drawbacks.

Convert. Compute a preflow, convert it into a flow, then run BFS from the source.

T-Side. Compute a preflow, run BFS backwards from the sink, then take complement.

Swap. Compute a preflow from sink to source, then run BFS backwards from the source.

The most straightforward way to get a cut from a preflow is to convert it into a flow.
Then, as for Dinitz, one partition of a min-cut can be identified by reachability from the
source in the residual network. In previous works, the conversion from preflow to flow
makes up only a small fraction of the running time [CG97; DM89]. For Gusfield pairs,
however, Figure 3.6 shows that the conversion highly dominates the computation of the
preflow. Only about 5 seconds of the 12 minutes of the complete run are spent in preflow
computation.

To circumvent the conversion, we use the observation that one can obtain a cut directly
from the preflow by finding all sink-reaching vertices in the residual network. Since
Gusfield requires the source side of the cut, the complement of the found set of vertices
can be used. Unfortunately, doing the backward search from the sink is even more
expensive than the conversion. An explanation for this is the large sink side of the cut.
Using this T-side approach to identify the cut for DinitzOPT takes 4.5 minutes which is
a factor 100 slower than identifying the cut via the source side for DinitzOPT.
Making use of the fact that the source side of the cut is much smaller than the sink

side, the drawbacks of the previous approach can be avoided in undirected networks by
computing the preflow from sink to source. A cut can then be extracted by determining
the vertices that can reach the original source in the residual network. The drawback of
this method is that the preflow computation slows down massively from 5s to 47 minutes.

57

3 Computing Maximum Flows in Scale-Free Networks

Convert

T-Side

Swap

initialize
preflow
convert
find cut

736s

1062s

3333s

Figure 3.6: Distribution of spent time during Gusfield’s algorithm on the soc-slashdot
instance with three approaches to use the Push-Relabel algorithm as a min-cut
oracle. We split the measurements into initialization, preflow, conversion, and
cut identification. The time overhead for measurement, logging, and the logic
of Gusfield’s algorithm is included in the numbers on the right but excluded
in the bars.

In conclusion, the convert approach is the fastest with just above 12 minutes followed
by T-side with 18 minutes and swap with almost an hour. However, all three methods
perform significantly worse than DinitzOPT, not because PR flow computations are slow,
but both methods to avoid the four minutes run time of preflow-conversion imply even
worse performance costs; either due to a breadth-first search that has to traverse almost
the whole graph (T-side) or due to significantly slower preflow computations (Swap).

3.5.4 Performance on Homogeneous Networks

After evaluating the performance on heterogeneous networks we extend our experiments
to networks of different structures. We consider the following networks: an Erdős-Rényi
random graph [ER59] (er100000), an Erdős-Rényi random graph with uniform random
weights in [500, 10000] (er100000_weighted), an Erdős-Rényi random graph with super
terminals (er100000_super), a generated layered network [Ahu+97] (layered10000), the
road network of Pennsylvania (roadNet-PA), and a liver CT scan as a regular 6-connected
grid (liver.n6c100). Further details regarding the datasets can be found in Section 3.5.5.
Figure 3.7 shows the performance of the flow algorithms on these instances. The

performance on the Erdős-Rényi graphs is similar to our results for heterogeneous networks;
the BK-algorithm is the slowest, followed by Dinitz, Push-Relabel, and DinitzOPT in this
order. Note that a running time close to O(

√
n) was shown for bidirectional search on

Erdős-Rényi random graphs [BN16]. Neither weights nor higher-degree terminals change
how the algorithms compare to each other.
The layered network, which is specifically constructed to produce a computationally

difficult flow instance [Ahu+97], is indeed more difficult than the others. In the layered
network, Push-Relabel is at least five times faster than Dinitz. DinitzOPT is 10-20%
slower than Dinitz. After all, our optimizations trade a small overhead during flow
computation for the possibility of sublinear running time on particularly easy instances.
For the road network, the choice of the algorithm does not matter as much as for

the other instances. The choice of the terminal pair, however, affects the performance

58

3.5 Experimental Evaluation

er100000 er100000_weighted er100000_super layered10000 roadNet-PA liver.n6c100
Instance

10 1

100

101

102

103

104

105

Ti
m

e
[m

s]

Dinitz
DinitzOPT
PushRelabel
BK-Algorithm

Figure 3.7: Run time of max-flow computations for various networks. Each point corre-
sponds to one s-t flow. For each instance we computed 50 s-t flows. The in-
stances er100000_super, layered10000, and liver.n6c100 have designated
terminals. For er100000, er100000_weighted, and roadNet-PA terminals are
chosen uniformly at random. Unlike the experiments in Section 3.5.1, the
algorithms rebuild their internal data structures including the adjacency list
before each flow computation. This was necessary to prevent the BK-algorithm
from reusing search-trees, which makes the instances with given terminal pairs
trivial after the first run.

immensely. With a diameter of almost 800 and a very homogeneous degree distribution,
the uniform random choice of terminal pairs produces problems of varying difficulty.
Dinitz, BK, and DinitzOPT capitalize on the easier pairs, while Push-Relabel shows less
variance between pairs.

Lastly, the liver scan produces different results than previous instances. The BK-
algorithm was specifically designed for this kind of network structure and application.
Unsurprisingly, the BK-algorithm performs best, followed by Push-Relabel, Dinitz, and
DinitzOPT.

3.5.5 Data and Implementations

Table 3.2 lists the instances were used throughout this chapter. We obtained the datasets
from the University of Koblenz (KONECT) [Kun13], the Network Repository web-
site [RA15], as well as the Stanford Network Analysis Project (Snap) [LK14]. Furthermore,
we used our GIRG generator with default parameters. We implemented the ER model
and the layered network construction from Ajuja et al. [Ahu+97]. The parameters for ER
are n = 100000 and p = 0.02. The parameters for the layered network are taken from the
largest instance in their paper (W=71, L=141, d=10). Lastly, the liver.n6c100 instance
is from the University of Western Ontario. It is a regular 3D grid with 170x170x144
nodes, 6 edges per node, capacities up to 100, and a super sink/source. We converted all
instances to a text-based edge list with zero-based indices except for Section 3.5.4 where
we use the directed DIMACS format instead. The road network was undirected and is
converted to the directed DIMACS format. The number of edges for the road network
refers to the undirected version.

59

3 Computing Maximum Flows in Scale-Free Networks

Table 3.2: Instances used in this chapter.

instance directed weighted nodes edges avg. degree source

fb-pages-tvshow 4K 17K 8.87 Network Repository
girg10000 10K 60K 11.99 generated
soc-slashdot 70K 360K 10.24 Network Repository
girg100000 100K 600K 12.00 generated
soc-flickr 514K 3.2M 12.42 Network Repository
visualize-us X 594K 3.2M 10.92 Network Repository
dogster 427K 8.5M 40.03 U. Koblenz
as-skitter 1.7M 11.1M 13.08 U. Stanford
actors X 382K 15.0M 78.69 U. Koblenz
brain 178K 15.8M 176.47 Network Repository
er100000 X 100K 20M 199.94 generated
layered10000 X 10K 100K 9.96 generated
roadNet-PA (X) 1.1M 1.5M 2.83 U. Stanford
liver.n6c100 X X 4.1M 25M 6.04 U. Western Ontario

BK-Algorithm. We use the BK implementation from the web page of Vladimir Kol-
mogorov5 that was written for the original paper [BK04]. Boost provides another version6,
but we found the original one easier to use because its interface is tailored towards multiple
flow computations and provides easy and efficient access to the found cut. For each s-t
flow we add edges with infinite capacity between s, t and the virtual terminals. After
the flow is computed, we remove these edges again. This O(1) work is included in time
measurements. We apply the reuse trees feature and mark the changed terminals between
flow computations accordingly. Memory is allocated on network construction and not per
flow. We use 64-bit floating point numbers instead of integers to represent flow values
and capacities to support applications (e.g. [FTT04]) that require non-integer capacities.
The implementation requires additional checks to handle floating point imprecision. We
applied this to all compared implementations (not just BK) and observed a performance
drop of approximately 10% for all algorithms. Note that the range in which 64-bit floats
exactly represent integral numbers even exceeds the range of 32-bit integers. However, pre-
cision issues are caused by the infinity capacity edges. To resolve this, the representation
of infinity on these edges must be chosen according to the range of capacities.

Push-Relabel. The original implementation, used for example in [VB12], is no longer
available7. We use the C++ version of the original implementation provided in Boost8.
The Boost version is mostly the same code (up to same variable names) ported to C++,
but is data structure agnostic. Therefore, we reimplemented the linearized adjacency list
data structure used in the original implementation that we described in Section 3.4.

5http://pub.ist.ac.at/~vnk/software.html
6https://www.boost.org/doc/libs/1_72_0/libs/graph/doc/boykov_kolmogorov_max_flow.html
7was http://www.avglab.com/andrew/soft.html
8https://www.boost.org/doc/libs/1_72_0/libs/graph/doc/push_relabel_max_flow.html

60

http://networkrepository.com/fb-pages-tvshow.php
http://networkrepository.com/soc-slashdot.php
http://networkrepository.com/soc-flickr.php
http://networkrepository.com/visualize-us.php
http://konect.cc/networks/petster-friendships-dog
https://snap.stanford.edu/data/as-Skitter.html
http://konect.cc/networks/actor-collaboration
http://networkrepository.com/bn-human-BNU-1-0025890-session-1.php
https://snap.stanford.edu/data/roadNet-PA.html
https://vision.cs.uwaterloo.ca/data/maxflow
http://pub.ist.ac.at/~vnk/software.html
https://www.boost.org/doc/libs/1_72_0/libs/graph/doc/boykov_kolmogorov_max_flow.html
http://www.avglab.com/andrew/soft.html
https://www.boost.org/doc/libs/1_72_0/libs/graph/doc/push_relabel_max_flow.html

3.6 Conclusion

3.6 Conclusion

We presented a modified version of Dinitz’s algorithm with greatly improved run time
and search space on real-world and generated scale-free networks. The scaling behavior
appears to be sublinear, which matches previous theoretical and empirical observations
about the running time of balanced bidirectional search in scale-free random networks.
While these theoretical bounds apply during the first round of our algorithm, it is still
unknown whether the analysis can be extended to account for the changes in the residual
network. Our experiments, however, indicate that the search space remains small in
subsequent rounds.

We observe that the low diameter and heterogeneous degree distribution lead to small
and unbalanced cuts that our algorithm finds very efficiently. The flow computations
required to compute a Gomory-Hu tree are even easier, making usually insignificant
parts of the tested algorithms a bottleneck. For example, the preflow conversion leads to
Push-Relabel being greatly outperformed by our algorithm in this setting.

61

4 Computing Directed Minimum
Spanning Trees

This chapter is based on joint work with Maximilian Böther and Otto Kißig [BKW23].
The idea originated in a student project about the spread of infections organized by Karen
Seidel at the Hasso Plattner Institute.

4.1 Introduction

The minimum spanning tree problem is well studied with various applications [GH85;
SS84] and algorithms [Jar30; Kru56; Pri57]. The directed version, called the minimum
spanning arborescence problem, has received much less attention. For a given root r, it
aims at finding a directed spanning tree of minimum weight rooted at r. The applications
include infection chain modeling [Jom+10] and the approximation of traveling salesperson
instances [SS20]. Different versions and generalizations were studied [Geo03; KKT09;
Kam14]. Sometimes multiple roots are given or it is required to find the best root.
Historically, the problem was to find a set of non-overlapping trees with maximum total
weight, called an optimum branching. As these versions are linear time equivalent [Edm67;
Men+06], we focus on the minimum spanning arborescence problem a with given root.

The algorithm to find a minimum spanning arborescence was discovered independently
by Edmonds [Edm67], Chu [Chu65], and Bock [Boc71]. Karp [Kar71] was the first to give a
combinatorial proof of correctness. Following the literature, we call it Edmonds’ algorithm.
The algorithm runs in O(nm) and forms the basis for later, more elaborate versions by
Tarjan [Tar77; CFM79] running in O(min(n2,m log n)) and Gabow et al. [Gab+86]
running in O(n log n+m). We refer to the latter as the GGST algorithm. There exist
parallel algorithms for different settings of distributed computing [Lov85; FO19]. They
are based on Edmond’s Algorithm as well but we will focus solely on the sequential setting.
Both Tarjan’s versions and GGST have the same complexity for very sparse and very
dense graphs while the GGST version beats Tarjan’s by a logarithmic factor for the regime
in between. GGST likely is optimal since the problem of finding a minimum spanning
arborescence is at least as hard as finding an (s,t)-shortest path [FO21] and comparison
based sorting can be reduced to determining the order of contractions performed during
Edmonds’ algorithm [Gab+86]. However, a time of O(m log log n) was obtained in the
word RAM model with Tarjan’s version [Men+06]. Moreover, Tarjan’s version was shown
to run in O(n log2 n+m) on Erdős-Rényi graphs with random weights [Tar77; ER59].

To the best of our knowledge, no experimental evaluation of these algorithms, or even an
implementation of GGST, exists. The latter is likely due to the rather technical description

63

4 Computing Directed Minimum Spanning Trees

and the fact that the algorithm is not the main result of the corresponding paper. On the
other hand, there exist some efficient (meaning O(m log n)) implementations of Tarjan’s
version. The problem is a niche topic in coding competitions such as the International
Collegiate Programming Contest (ICPC). Unfortunately, they are hard to find because
most of them are only documented as submissions in online judge systems. The only ready-
to-use library implementations run in O(n2). This paper provides accessible descriptions
and implementations as well as a detailed evaluation. Our code is open source and can
be found in our public repository1. The core contributions of this paper include

• five Tarjan implementations with different underlying data structures, one of which
beats existing solvers on most instances,

• a high-level description of the GGST algorithm with several optimizations/simplifications,

• an efficient implementation of the GGST algorithm,

• and a detailed experimental evaluation on a large number of real-world and synthetic
networks.

In Section 4.2 we describe Edmonds’ algorithm along with the two versions by Tarjan
[Tar77] and Gabow et al. [Gab+86]. Section 4.3 describes the existing and new imple-
mentations as well as optimization techniques. The experimental evaluation is presented
in Section 4.4. We conclude in Section 4.5.

4.2 Edmonds’ Arborescence Algorithm

We discuss Edmonds’ algorithm in Section 4.2.1, Tarjan’s version in Section 4.2.2, and
the GGST version in Section 4.2.3. The latter two yield just the weight of the optimal
solution, not the actual edges. Reconstructing the edge set is discussed in Section 4.2.4.

4.2.1 Edmonds’ Original Version

Edmonds’ algorithm works as follows. For each vertex v 6= r, pick the cheapest incoming
edge π(v). If the set of these n−1 edges contains no cycles, it is an arborescence; otherwise,
it is possible to show that there is an optimal solution that contains all chosen edges except
one for each cycle. To determine which edge of each cycle to remove, Edmonds’ algorithm
contracts each cycle. Note that a vertex is a part of at most one cycle. The weight of
all edges going into a cycle C is reduced as follows. An edge pointing at vertex v ∈ C is
reduced by the weight of π(v), i.e., the weight of the cheapest edge incoming into v. We
then compute a solution on the contracted graph. The resulting solution has an incoming
edge for each cycle C we contracted. This edge corresponds to an original edge (u, v)
with v ∈ C, which we use to replace the cycle edge π(v) we picked earlier.

The correctness is based on the following fact. Adding a constant ∆ to all incoming
edge weights of a vertex changes the weight of each arborescence by ∆, since each solution

1https://github.com/chistopher/arbok

64

https://github.com/chistopher/arbok

4.2 Edmonds’ Arborescence Algorithm

picks exactly one of those. This means that the edge cost changes performed during the
algorithm preserve the optimal solution. Moreover, the cycle edges all get a cost of zero.
Thus, the final cost is the same, no matter which edge is replaced.

4.2.2 Tarjan’s Version

Tarjan proposed a version of Edmonds’ algorithm that, given the right data structures,
runs in O(m log n) or O(n2) [Tar77]. It features two major improvements. First, the cycle
expansion and removal of one edge per cycle is detached from the main algorithm and
seen as a postprocessing step. The algorithm tracks all chosen edges as a superset of the
solution, which can be reconstructed afterward in linear time. The second change is to
formulate the algorithm sequentially in such a way to avoid rebuilding the graph for each
contraction. The approach goes as follows. While there is a vertex other than the root
that was not processed yet, its cheapest incoming edge which is not a self-loop is added
to the solution. If this edge forms a cycle with previously chosen edges, the cost of edges
into the cycle is changed as in Edmonds’ algorithm and the cycle vertices including their
incoming edges are merged into a vertex representing the cycle. This vertex is then added
to the queue of unprocessed vertices.
The algorithm requires data structures to find the cheapest incoming edge, recognize

cycles of chosen edges, and track contractions. The latter two can be achieved with
disjoint set union (DSU) data structures such as a disjoint set forest [GF64; Tar75]. To
find cycles, a DSU maintains weakly connected components with respect to the chosen
edges. Note that each vertex has at most one incoming chosen edge. Thus, an edge closes
a directed cycle with previously chosen edges, if and only if, it connects two vertices in
the same weakly connected component. A second DSU is used to manage contractions
and map original vertices to contracted vertices. The endpoints of edges are not updated
after each contraction. Instead, a DSU lookup is required each time the algorithm handles
an edge.
The data structure to maintain incoming edge sets must support four operations:

(1) add an element, (2) extract the minimum element, (3) change the weight of all
elements in the set by a constant, and (4) merge two sets. If all operations take at most
logarithmic time, the algorithm runs in O(m log n). Most mergeable heaps (e.g., hollow
heaps, treaps, skew heaps) support operations (1), (2), and (4) and can be extended with
lazy propagation to allow for operation (3). Alternatively, if operations 2-4 run in O(n),
e.g., when using an adjacency matrix, the algorithm runs in O(n2), which is better for
dense graphs.

4.2.3 GGST Version

Gabow et al. [Gab+86] further refine the version given by Tarjan to reduce the running
time to O(n log n+m). They use the last remaining degree of freedom, namely the order
in which vertices are processed. The authors suggest to always process the vertex next
from which the last chosen edge originated thus forming a path of processed vertices,
called the growth path. To avoid special cases when the path reaches the root, they add

65

4 Computing Directed Minimum Spanning Trees

u w

v1
v2

v3
v4

Figure 4.1: Visualization of the growth path with the first four vertices v1, v2, v3, v4.
Additionally, the exit lists of two arbitrary vertices u,w are shown. Active
edges are red and passive edges are blue.

dummy edges with cost 0 from the root to all other vertices making the graph fully
connected. These edges do not affect the running time but they simplify the description
since the algorithm becomes oblivious to the root and the additional edges can be removed
in the reconstruction phase. The improved running time is achieved by exploiting the
structure of the path and clever handling of associated edges. For each vertex (on or
outside the growth path) an exit list contains outgoing edges pointing into the growth
path. The elements of an exit list are sorted by the position of their target vertex in the
growth path, i.e., the first edge points closest to the head of the path. The first edge in
each exit list is called active; all others are passive. The active edges are maintained in a
data structure we call an active forest. Figure 4.1 shows an example. In the following,
we give a concise, yet comprehensive, description of the algorithm that differs from the
original discussion in the level of abstraction and simplifies the logic and data structures.
The algorithm starts with an arbitrary vertex and repeatedly picks the cheapest

incoming edge of the path head until the path covers the whole graph. In each iteration,
the path is either extended or contracted. If the origin of the picked edge is not yet on
the growth path, then it becomes the new path head. If it is already on the growth path,
then the prefix of the growth path up to this vertex forms a cycle, which is contracted
into a single vertex that becomes the new path head. The process is summarized in
Algorithm 4.1. As in Tarjan’s version, contractions are tracked with a DSU [GF64; Tar75]
which handles the find(u) calls.

Growth Path Extension. When the growth path is extended by a new vertex u, all
incoming edges of u are introduced to the algorithm and inserted into their respective
exit lists. Consider the insertion of an edge, say (x, u), into x’s exit list. Since u has just
become the new head of the growth path, the edge will be inserted at the front of the
exit list. It will become active and, if the exit list was not empty, the previously active
edge will become passive. Because u has just become part of the growth path, it is not
a contracted vertex. However, x may be on the growth path and therefore x may be a
contracted vertex. As such, x may have multiple outgoing edges to u, originating from
different vertices inside x. To deal with this issue (and with multi-edges in the input), one

66

4.2 Edmonds’ Arborescence Algorithm

Algorithm 4.1: Minimum arborescence algorithm by Gabow et al. [Gab+86]
1 initialize growth path with arbitrary vertex;
2 insert its incoming edges into exit lists;
3 while not all vertices on growth path do
4 query min. incoming edge (u, v) of path head from active forest;
5 remember (u, v) for reconstruction;
6 if find(u) is not on growth path then
7 insert u’s incoming edges into exit lists;
8 else
9 delete prefix of path up to last occurrence of find(u);

10 update incoming edge costs for all vertices on prefix;
11 delete outgoing edges of prefix from exit lists;
12 merge prefix in DSU and Active Forest;
13 limit edges into the cycle to at most 1 per origin;

14 insert find(u) at front of path;

checks if the first edge in the exit list already points to u and if so, only keeps the cheaper
one. This limits the exit list to at most one edge pointing to u. Thus we maintain the
invariant that an exit list never contains two edges to the same vertex.

Growth Path Contraction. When a prefix of the path forms a cycle, it is contracted
just as in Edmonds’ algorithm. That is, the prefix is removed from the path, incoming
edges into the cycle are reduced in cost, edges resulting in self-loops are deleted, the cycle
vertices are contracted in the DSU as well as in the active forest, and multi-edges are
removed (see lines 9 - 13 in Algorithm 4.1).
The cost reduction (line 10) is done with the DSU which can be modified to track an

offset for each vertex [Gab+86]. Whenever the current cost of an edge is needed, a DSU
lookup analogous to a find is made to get the offset of the target vertex.
Self-loops are outgoing edges from the cycle. So by deleting all edges in exit lists of

cycle vertices, self-loops are avoided (line 11). This also deletes edges pointing further
down the path but these are irrelevant to the algorithm. They can only become incoming
edges of the head if, in the future, the path is contracted up to their target, and in this
case they would be self-loops.

Edges that became multi-edges by the contraction are consolidated (line 13). For each
vertex with more than one edge pointing into the cycle, the prefix of their exit list that
points into the cycle is deleted except for the cheapest of those edges. If a vertex has
more than one edge pointing into the cycle, at least one of them is passive. Thus, such
vertices can efficiently be found by maintaining, for each vertex on the growth path, a
list of incoming passive edges, called a passive list. If each edge stores a handle into the
passive list and exit list it is in, then these lists can be maintained without asymptotic
overhead. We propose a more efficient method in Section 4.3.4.

67

4 Computing Directed Minimum Spanning Trees

Active Forest. The active forest maintains all currently active edges and it must
be updated accordingly. It stores for each vertex the outgoing active edge and a set of
incoming active edges. We associate an active edge with the vertex it originates from.
The active forest is able to

INSERT an active edge for a vertex that does not yet have one in O(1),

REPLACE the active edge of a vertex by another one that points closer to the growth
path head or points to the same vertex but has less weight in O(1),

DELETE the active edge of a vertex in O(log n),

MERGE the sets of incoming active edges for the first two vertices of the growth path in
constant time, and

QUERY the minimum incoming active edge of the path head in O(log n) amortized time.

This is implemented as follows. Each vertex stores its incoming active edges in a
Fibonacci heap [FT87], which enables the operations INSERT, DELETE, MERGE, and
QUERY by just mapping them to the corresponding Fibonacci heap operations. The
REPLACE operation could be implemented as a DELETE followed by an INSERT.
Unfortunately, this results in a running time of O(log n). Instead, Gabow et al. [Gab+86]
suggest to reuse the internal heap node representing the old edge. The node is moved
from the heap the old edge is in to the heap where the new edge should be and receives
the new edge as a key. This move takes O(1) time and is the crucial point where the
logarithmic factor over Tarjan’s version is saved. The move operation is possible by
restricting QUERY, REPLACE, and MERGE to the structure of the growth path. In
general, no mergeable heap data structure is known that lifts these restrictions and still
supports something like a constant time move [Men+06].
However, the move has two major problems for which we need to understand some

internals about Fibonacci heaps. A Fibonacci heap is a forest whose roots are kept in a
list called the root list of the heap. Each tree maintains the heap property, i.e., the key of
a child node is higher or equal to the key of its parent. The key in our case is the weight
of the corresponding active edge. Also, a Fibonacci heap usually maintains the minimum
key of nodes in the root list to allow queries in constant time. The first problem of the
move operation is that the cached minimum of a root list cannot be updated in constant
time if the current minimum is moved out of that list. Therefore, we do not maintain
the minimum. Instead, the QUERY operation rebuilds the root list, which is a common
operation for Fibonacci heaps usually done upon extraction of the minimum, resulting in
an amortized O(log n) running time. The second problem is that moving an internal heap
node actually moves the whole subtree rooted at this node. Descendants of the node are
displaced into the wrong heap and, moreover, changing the key of the moved node can
violate the heap property. To fix the displacement, every time a Fibonacci heap operation
would put a node into the root list it is returned to the root list of the heap the node
actually belongs to, which we call the home heap of that node. That is, the home heap of
a heap node is the heap of the target vertex of the corresponding active edge. Finding

68

4.2 Edmonds’ Arborescence Algorithm

a

bc

d

e

f

g

a b c

d

e f

g

Figure 4.2: Example graph (left) and corresponding reconstruction forest (right). Assume
Gabow starts at the vertex marked with a dot and the edges are labeled
alphabetically in the order they were added to the growth path. The first
step of the reconstruction process is indicated by colors.

the home heap requires a DSU lookup because the target vertex might be contained in a
contracted vertex. Gabow et al. [Gab+86] prove the following three invariants to address
the violated heap property and the correctness of the home heap fix. (1) The root of
any tree is always in its home heap. (2) The heaps maintain an additional heap property
w.r.t. their home heaps ordered by the position in the growth path. That is, the home
heap of a parent node is at least as close to the growth path head as the home heaps of
its children. (3) The original heap property is never violated between two nodes that are
in their home heap. Only displaced nodes can temporarily violate the heap property.

Time Complexity. The growth path is extended at most n times. Since contracting
a cycle of length l reduces the total number of vertices in the graph by l − 1, there are
at most n− 1 contractions and the summed length of all contracted cycles is less than
2n. Thus, QUERY, DELETE, and MERGE are called O(n) times on the active forest.
Furthermore, the following operations happen at most once per edge and can all be done
in constant time. Insertion into an exit list, the active forest, or passive list, REPLACE
in the active forest, deletion from an exit list, and deletion from a passive list. The DSU
imposes no additional overhead since, if there are at least n log n calls to find, each
individual one takes amortized constant time [Tar75]. In total this yields a running time
of O(n log n+m).

4.2.4 Arborescence Reconstruction

Although Tarjan [Tar77] proposed to split off the reconstruction phase from the main
algorithm, the reconstruction method given in the paper is incorrect. A note by Camerini
et al. outlines a working method [CFM79]. Consider a new graph called the reconstruction
forest where the nodes are the edges that are picked by the arborescence algorithm. In the
forest, an edge that was picked as an incoming edge to a contracted vertex has directed
arcs to the edges that constitute the top-level cycle of the contracted vertex. A leaf in

69

4 Computing Directed Minimum Spanning Trees

Table 4.1: Overview of arborescence algorithms. Tarjan+Path means they implement
Tarjan’s version but adjust the order in which vertices are processed to form a
path as in the GGST version.

Solver Author/Source Variant Data Structure Runtime

felerius David Stangl Tarjan Skew Heap [ST86] O(m log n)
spaghetti Takanori Maehara Tarjan+Path Skew Heap [ST86] O(m log n)
yosupo Kohei Morita Tarjan+Path Pairing Heap [Fre+86] O(m log n)
lemon LEMON 1.3.1 Tarjan+Path Adjacency List O(n2)
atofigh Ali Tofigh Tarjan Adjacency List O(n2)
matrix this paper Tarjan Adjacency Matrix O(n2)
treap this paper Tarjan Treap [SA96] O(m log n)
hollow this paper Tarjan Hollow Heap [Han+17] O(m log n)
set this paper Tarjan Red Black Tree [GS78] O(m log2 n)
pq this paper Tarjan Binary Heap [Cor+09] O(m log2 n)
ggst this paper GGST Fibonacci Heap [FT87] O(n log n+m)

the reconstruction forest corresponds to the first picked incoming edge of a vertex of
the original graph. Figure 4.2 shows an example. The reconstruction process repeatedly
selects a root of the forest. The corresponding edge becomes part of the final solution.
The target vertex in the original graph of the selected edge has an associated leaf in the
reconstruction forest. The process deletes the path from this leaf to the selected root
from the forest, then proceeds with the next root.

A very concise implementation is possible by noting that the order in which the main
algorithm picks edges is a reverse topological order of the reconstruction forest. Thus, all
roots are found by iterating over the picked edges in reverse and skipping already deleted
ones. Further required information is the leaf of each original vertex and the parent for
each node in the reconstruction forest. The former is computed by iterating over the
picked edges to find the first occurrence of each target. The latter must be saved by the
main algorithm each time it contracts a cycle.

4.3 Implementation

This section introduces different solvers for the minimum arborescence problem and
highlights their key points as well as optimizations and deviations from the abstract
description in Section 4.2. We compare 11 solvers; our five versions of Tarjan’s approach
using different data structures, five external Tarjan-based solvers, and our Gabow im-
plementation (see Table 4.1). External solvers fall into two categories, namely coding
competition code and library solvers.

70

4.3 Implementation

4.3.1 Competition Codes

Coding competitions occasionally feature arborescence tasks that require an efficient
implementation for sparse graphs. These implementations are often not as maintainable
or usable as library solvers but they are written with a high focus on performance. The
online judge platform Library Checker2 contains a test set for the minimum arborescence
problem. We include the jury solution by the maintainer Kohei Morita as well as the fastest
submission by David Stangl. We denote them by yosupo3 and felerius4 according to
their pseudonyms on popular contest websites. Furthermore, there is a competition-style
implementation by Takanori Maehara5, which we denote by spaghetti. With around 130
lines of code, it is the most concise implementation. However, it lacks the reconstruction
phase and a proper memory management.

4.3.2 Library Solvers

The two library implementations we consider are lemon and atofigh, both running
in O(n2). The former is part of the LEMON library for graph algorithms6. We use the
latest release 1.3.1 from 2014. They save incoming edges in arrays. The merge is done
by iterating over all incoming edge lists of cycle vertices while collecting the cheapest
edge into the cycle for each origin. They reuse the same collecting array each time
and clear the used entries afterward, such that the merge is not O(n) but linear in the
number of merged edges. Thus, the solver is faster the fewer edges are involved in each
contraction. The second library implementation, atofigh, was written by Ali Tofigh
and Erik Sjölund7 using the Boost Graph Library [Sch11]. They also represent incoming
edge sets as dynamically growing arrays. However, the arrays are sorted by origin vertex
and the merge is done with the linear time merge routine usually known from merge sort.
It was modified to remove multi-edges by only keeping the cheapest one for each origin.
The same performance considerations apply. Note that there exist sparse networks where
these merge strategies yield quadratic running time.

4.3.3 Our Tarjan-based Solvers

Our Tarjan code shares the logic for the algorithm and reconstruction and differs only in
the data structure to manage the sets of incoming edges (see Section 4.2.2). The matrix
solver maintains an adjacency matrix and performs the operations in linear time. The
hollow and treap solvers use our implementations of Hollow heaps [Han+17] and
Treaps [SA96], respectively, which both support lazy propagation to update weights. The
hollow heap is not required to implement the usual decrease key operation as it is not
required by the algorithm, which allows for implementing the merge operation efficiently,

2https://judge.yosupo.jp/problem/directedmst
3https://codeforces.com/profile/yosupo
4https://codeforces.com/profile/Felerius
5https://github.com/spaghetti-source/algorithm
6https://lemon.cs.elte.hu/trac/lemon
7https://github.com/atofigh/edmonds-alg

71

https://judge.yosupo.jp/problem/directedmst
https://codeforces.com/profile/yosupo
https://codeforces.com/profile/Felerius
https://github.com/spaghetti-source/algorithm
https://lemon.cs.elte.hu/trac/lemon
https://github.com/atofigh/edmonds-alg

4 Computing Directed Minimum Spanning Trees

by simplifying some bookkeeping tasks. The set and pq variants use the std::set
and std::priority_queue data structures from the C++ standard template library.
They are typically implemented as a red-black tree [GS78] and a binary heap [Cor+09],
respectively. Since the set and priority queue interfaces do not support a fast merge
operation, we use the well known smaller into larger technique. That is, for a merge we
iterate over the smaller of the two sets and add the elements individually to the larger
set. An element switches sets at most O(log n) times, each time into a set that is at
least twice as large, and a switch takes O(log n). This sums up to O(m log2 n) for all
merges combined. Since the elements are moved individually, weight updates do not need
lazy propagation but they are handled by an offset for each set that is applied when an
element enters or leaves the set.

4.3.4 Our GGST Solver

The solver features three optimizations compared to the description in Section 4.2.3.
First, no dummy edges are inserted. Instead a new path is started each time the root
is reached. Second, we replace linked lists by dynamic arrays where possible. Exit lists,
passive lists, and the growth path are only modified at the front, so an array can be used
by saving them in reverse. Actually, the usage of passive lists as previously described
requires arbitrary deletions and thus cross references for each edge to the position in the
list. Our third optimization is to remove the need for cross references by simplifying the
deletion patterns. The only time the algorithm deletes edges is during the contraction
of a cycle8. Outgoing edges are deleted by clearing complete exit lists and mirroring
the deletions across passive lists. Incoming multi-edges are deleted by clearing complete
passive lists and mirroring the deletions across exit lists. We modify the two steps to
make synchronization between exit and passive lists easier and restrict modifications to
the front of the lists.
When outgoing edges of a cycle are deleted, some of these edges are self-loops and

some point further down the growth path. Instead of mirroring the clearing of the exit
lists by deleting corresponding entries from passive lists, we suggest to entirely skip the
removal from the passive lists. This, of course, keeps invalid entries in the passive lists.
However, a passive list is only read during a contraction to identify multi-edges into the
cycle. At this time, the invalid entries point into a prefix of the path but at the time of
deletion pointed down the path. Thus, they became self-loops which can be identified
and skipped. Since a passive list is cleared after identification of self-loops, each invalid
entry is seen only once.

We propose to implement the consolidation of multi-edges as follows. For each passive
edge into the cycle, compare the first two edges in the exit list of the origin of the passive
edge and delete the more expensive one. This “delete one of the first two edges” operation
is done for each origin as often as this origin has passive edges into the cycle. Since this
origin’s exit list starts with an active edge pointing into the cycle, followed by all the
passive edges into the cycle, the cheapest edge of this prefix will remain at the front of

8The original description by Gabow et al. has more deletions. We simplified the algorithm in this regard.

72

4.4 Experiments

the exit list. Gabow et al. propose a similar strategy but delete either the first edge or
the currently inspected passive edge (instead of the second in the exit list), which requires
for each passive edge a way to obtain its handle in the exit list.

4.3.5 Alternative Reconstruction Method

The felerius solver features an alternative method for reconstruction more closely related
to the original idea of Edmonds’ algorithm. Recall that Edmonds’ algorithm contracts
each cycle C and when picking an incoming edge into the contracted vertex, it replaces one
of the cycle edges. That is, the edge into the contracted vertex corresponds to an original
edge (u, v) and replaces the cycle edge incoming to v. The difficulty when adapting
this to Tarjan’s version is that endpoint indices of edges are not explicitly updated after
each contraction. Thus, one has to deal with the possibility that the cycle vertices are
contracted vertices representing previous cycles. In this case, v might be contained in a
cycle vertex v′ ∈ C rather than being part of the cycle itself. This is, e.g., the case in
Figure 4.2 where the edge g replaces the edge d. Stangl tackles this challenge as follows.
Since Tarjan maintains an incoming edge for each vertex during the main algorithm, the
reconstruction phase processes the cycles from last to first and performs the necessary
replacements. When a cycle is processed, the edge (u, v) that was picked as incoming
for this cycle can be found as the incoming edge to the vertex representing the cycle.
To find the cycle edge it should replace, a persistent DSU is used to query the cycle
vertex v′ containing v at the time just before the cycle was contracted. To make the DSU
persistent, Stangl drops path compression [Tar75] from the data structure which means
each find call takes O(log n). However, the main algorithm as well as the reconstruction
perform only O(n) find calls thus leaving the total running time unchanged.

Another issue during implementation is that, after contracting a cycle, it is represented
by one of its cycle vertices. The representative is chosen by the DSU among the cycle
vertices according to the union-by-size strategy [Tar75]. The picked edge incoming to the
contracted vertex thus overrides the cycle edge of this representative. The representative
and the edge that was (mistakenly) replaced are saved during the main algorithm and
restored in reconstruction just before the actual edge is determined that should be
replaced.

4.4 Experiments

In this section we evaluate the solvers listed in Table 4.1. The solvers, data preparation
scripts, plotting code, execution logs, and timing data are available in our public repository.

4.4.1 Setup and Datasets

The experiments were performed on a server with two 8-Core Intel Xeon™ Gold 6144
CPUs and 192GB DDR4 memory on the openSUSE Leap 15.3 operating system. The
implementations are written in C++ and adjusted to fit a common interface. The code was

73

4 Computing Directed Minimum Spanning Trees

compiled with gcc version 10.3.0. Each run had a timeout of 30 minutes. We used a total
of 656 networks from the following sources. The number of networks is in parentheses.

• konect (319). All directed networks smaller than 5GB from the KONECT project9.

• networkrepository (75). A selection of sparse networks from the Network Reposi-
tory project10. The project contains mostly undirected networks and does not label
directed ones as such. We downloaded all networks (around 3000) and kept the
ones that are labeled as directed in their respective file format.

• girgs (200). This data set contains geometric inhomogeneous random graphs. We
used the efficient generator from Chapter 2 with default parameters except for n,
deg, and seeds. We set n = 104 and average degrees from 50 to 2000 in steps of 100
with 10 networks per configuration. Edges are directed randomly.

• antilemon (5). A sparse family of networks crafted to be difficult for arboresence
solvers. They require at least n/2 contractions with at least n/2 edges pointing into
each contracted cycle. We generated networks with n = 10i for i ∈ [2, 6].

• fastestspeedrun (47). Test cases of a programming task from the ICPC North-
western Europe Regional Contest 201811. They have up to 2500 vertices and are
fully connected.

• yosupo (10). Test cases for the Directed MST problem on the Library Checker
website. The networks are Erdős-Rényi graphs [ER59] with a random spanning tree
from the root vertex as subgraph. Weights are sampled uniformly at random.

For unweighted networks, we sample integer weights uniformly at random. If an instance
has no specified root, we restrict ourselves to the largest connected component and add a
root vertex that connects to all original vertices with edges of weight infinity.

4.4.2 External Solver Integration

The lemon solver does not compile with C++20 upwards because it uses allocator
methods that were deprecated in C++17 and removed in C++20. We had to compile it
separately from the other solvers. Furthermore, it performs reconstruction during the
main algorithm. In Figure 4.4, its reconstruction time is the time to obtain the solution
from their internal data structures.

The atofigh solver contains a programming error in a radix sort subroutine where a
right shift equal to the size of the left-hand operand type (int in our template instantiation)
is performed. The C++ standard12 states in Section 7.6.7 concerning shift operators “The
behavior is undefined if the right operand is negative, or greater than or equal to the

9http://konect.cc/
10https://networkrepository.com
11https://2018.nwerc.eu/
12The standard must be purchased but a working draft is available at http://www.open-std.org

74

http://konect.cc/
https://networkrepository.com
https://2018.nwerc.eu/
http://www.open-std.org

4.4 Experiments

102 103 104 105 106 107

n

100

101

102

103

av
g

de
g

76 felerius
177 GGST
6 hollow
2 lemon
50 matrix
229 pq
1 spaghetti

(a) Fastest solver per instance.

250 500 750 1000 1250 1500 1750 2000
avg deg

0

2000

4000

6000

8000

10000

12000

tim
e

in
 m

s

atofigh
felerius
GGST
hollow
lemon
matrix
pq
set
spaghetti
treap
yosupo

(b) Runtime scaling over growing GIRGs.

Figure 4.3: Left: For each instance the untied fastest solver if any. The legend includes
the number of wins per solver. Right: The run time of the solvers on GIRGs
with 104 vertices over growing density. Each data point is averaged over 10
GIRGs with the same density.

width of the promoted left operand” [ISO20]. Most compilers give a warning (if enabled)
and default to 0 which actually works with the given implementation. Nevertheless,
we fixed this error by changing ≤ to < in the loop that iterates over the radix. The
atofigh solver also performs reconstruction during the main algorithm. In Figure 4.4, its
reconstruction time is the time to obtain the solution from their internal data structures.
The yosupo solver uses std::shared_ptr for memory management. On very large

instances this crashes due to a stack overflow caused by deep recursion in the destructor.
On Linux machines, one can increase the stack limit to circumvent this problem which is
what we do in our experiments.

The spaghetti solver does not free allocated memory which gives it an advantage
over the other solvers. We decided to keep the leak since a proper cleanup would require
considerable changes to their code and performance. The spaghetti solver is the only
solver that does not support reconstruction.

4.4.3 General Performance

Figure 4.3a shows all instances with an untied fastest solver, i.e., a solver that is strictly
faster than all others. The major reason for ties is that two or more solvers are faster
than 1ms which is the precision of our measurements. Overall, 115 instances are tied,
85 instances have at least two algorithms that solve the instance faster than 1ms, 73
instances are solved in under 1ms by at least six solvers, and 46 instances are solved in
under 1ms by all solvers.

On the untied instances, the pq solver dominates with 229 wins, followed by ggst with
177, then felerius with 76, and matrix with 50. Combined, these four solvers win more
than 98% of the untied instances. Moreover, there is a clear trend regarding the type of
instance each solver is good at mirroring the theoretical complexities of the algorithms

75

4 Computing Directed Minimum Spanning Trees

quite closely. The matrix-based Tarjan solver, matrix, is best for dense graphs, the
heap-based Tarjan solvers, pq and felerius, are optimal for sparse graphs, and the
GGST algorithm wins in between. For the sparse real-world instances, there is a clear cut
between the pq and felerius solvers. The felerius solver was specifically tuned to be
fast on the yosupo instances which have barely more edges than vertices and thus wins
on instances with average degree below 10. Furthermore, all but three of the 177 ggst
wins are on GIRGs. We explicitly generated the GIRGs to fill the gap between the sparse
real-world networks and the fully connected fastestspeedrun instances. The most
surprising result, however, is that the pq solver using a binary heap performs exceptionally
well although it should scale worse in the number of edges than the competitors by at
least a logarithmic factor due to the missing merge operation. We identify three possible
reasons for this behavior. First, a binary heap implementation is very efficient while the
more complex logic of ggst and fewer cache efficient data structures of felerius cause
significant overhead. Second, realistic data is easy in the sense that the contractions,
which are the theoretical bottleneck of the pq solvers, occur not as often or involve less
edges and vertices. Finally, realistic networks are sparse and thus O(n log n) becomes
indistinguishable from O(m log n), which is the remaining complexity of the binary heap
implementation when ignoring the cost for contractions. Therefore, on sparse networks
with few contractions, the three solvers ggst, felerius, and pq all have a complexity
of roughly O(n log n) and it comes down to implementation details like memory layout,
cache efficiency, and the level of code optimization. For the same reason matrix beats
ggst on very dense instances where both solvers have a complexity of O(n2).

4.4.4 Scaling Analysis

To examine the effect of density on solver performance we use the girgs data set. The
GIRG model produces realistic networks regarding degree distribution, clustering, and
distances that resemble the real-world networks from the networkrepository and
konect data sets. Figure 4.3b shows the results. As expected, the matrix solver is
not affected by the number of edges. It starts out as the slowest solver but beats all the
others by the time the degree reaches 2000. All other solvers exhibit an approximately
linear scaling in the number of edges which emphasizes again that logarithmic factors
are hardly noticeable for reasonably sized inputs. Most notably, this includes the O(n2)
atofigh and lemon solvers. These solvers heavily depend on the fact that the instance
structure is easy and needs few contractions involving few edges. The lemon solver is the
second fastest solver only slightly outperformed by ggst indicating that GIRGs are even
easier to solve than the real-world networks from the other data sets. The reason for this
could be the randomized edge direction for the GIRGs. Another interesting fact is that
the five solvers that scale the worst with growing density are yosupo, treap, hollow,
spaghetti, and set. These five have in common that they use pointer-based heap data
structures to manage the edges. The other solvers use indices into a preallocated pool
(felerius), don’t have a heap element for every edge (ggst), or don’t use a heap to
manage edges (lemon, atofigh).

76

4.4
E

xperim
ents

100 101 102 103 104 105

atofigh
felerius

GGST
hollow
lemon
matrix

pq
set

spaghetti
treap

yosupo

antilemon

100 101 102 103 104

fastestspeedrun

100 101 102 103 104 105 106

girgs

100 102 104 106

atofigh
felerius

GGST
hollow
lemon
matrix

pq
set

spaghetti
treap

yosupo

konect

100 101 102 103 104 105 106

time in ms

networkrepository

100 101 102 103 104 105

yosupo

initialization run reconstruction destructor timeout

Figure 4.4: For each data set the summed run time over the contained instances per algorithm. The bars are divided into
colored segments to show the fraction of time spent on each subroutine. For timeouts, all 30 minutes are counted
as timeout no matter what was done in these 30 minutes. Note that the colored segments inside each bar are
completely detached from the logarithmic x-axis.

77

4 Computing Directed Minimum Spanning Trees

4.4.5 Time Per Operation

Figure 4.4 shows the run times of the solvers divided into initialization, execution,
reconstruction, and destructor subroutines as well as timeouts. The atofigh solver
crashed by exceeding the available memory on the largest antilemon graph and 8
road networks from the konect data set, which are originally from the 9th DIMACS
Implementation Challenge on shortest paths. These crashes are treated as timeout. The
matrix solver is only executed on graphs with less than 105 vertices and treated as
timeout otherwise. The lemon solver timed out on three DIMACS graphs and the largest
antilemon graph.

On the real-world networks from the konect and networkrepository data sets,
the quadratic solvers perform much worse than the other algorithms. Of course, matrix
cannot handle large graphs but also atofigh and lemon occasionally encounter a difficult
instance. This overshadows their good performance on the many easy instances since
we only consider the summed run time here. The lemon solver performs well on the
girg data set and the matrix solver dominates the fully connected fastestspeedrun
instances. Otherwise, the quadratic solvers are never among the fastest. In particular,
these three solvers are more than two orders of magnitude slower than the felerius
solver on the networkrepository graphs where the felerius solver is the fastest
on all instances. The antilemon instances were crafted as worst-case instances for
lemon and atofigh which is clearly visible in the results. On this data set, the pq
solver outperforms the others. Unsurprisingly, the felerius solver performs best on the
yosupo data which it was optimized for.

Before evaluating the run times of individual subroutines, we note that lemon and
atofigh perform most of the initialization and reconstruction operations in the main
phase of the algorithm while spaghetti has neither reconstruction nor memory man-
agement. With that in mind, our experiments show that the reconstruction phase takes
only a fraction of the run time independent of the solver or data set. Furthermore, the
initialization, which includes allocating memory and building internal data structures,
takes a considerable amount of time for all algorithms. The high initialization time can
be explained by the fact that just inserting the edges into the heap data structures takes
O(m log n) and as such is one of the theoretical bottlenecks of most implementations.
There exist linear time constructions for some of the data structures (e.g. treaps, bi-
nary heaps, skew heaps) but for consistency across solvers, we build them by repeated
insertions. Finally, the high destructor time of the yosupo solver is due to their use of
std::shared_ptr instead of manual memory management.

4.5 Conclusion

In this paper we discussed the Tarjan and GGST versions of Edmonds’ algorithm for
the minimum spanning arborescence problem. We outlined existing solvers, provided our
own implementations, and compared their practical performance. Our implementation
of the GGST algorithm is the first public implementation and our description simplifies

78

4.5 Conclusion

the original one in several aspects. Our experiments show that the compared solvers
perform well on real-world data while scaling experiments suggest that realistic networks
are substantially easier than worst-case instances. Even solvers with an O(n2) worst-case
complexity often perform almost linear in the number of edges. However, they are not
as consistent. They time out when the instance contains difficult structures, which
occasionally happens even on real-world networks. Furthermore, we find that differences
in complexity by logarithmic factors are mostly irrelevant in practice. Our O(m log2 n)
Tarjan implementation using a binary heap beats the other solvers on most real-world
networks although our O(n log n+m) GGST implementation is two logarithmic factors
faster asymptotically. This, again, emphasizes that real-world instances often do not
force the worst case of an algorithm and complex logic and data structures can produce
significant overhead. For future work, it would be interesting to examine what makes
realistic instances easy and possibly show a better running time on a random model like
hyperbolic random graphs similar to the result for Erdős-Rényi graphs.

79

5 A Branch-and-Bound Algorithm for
Hitting Set

This chapter is based on joint work with Thomas Bläsius, Tobias Friedrich, and David
Stangl [Blä+22c]. The idea for this work and the majority of the implementation originate
in the master thesis by Stangl [Sta20]. The aim of the thesis was to transfer heuristics
from SAT solving to other NP-hard problems. Specifically, a learning approach was to
direct the branching decisions of the solver. The result was that the solver learned to
branch on the vertices of highest degree, which is already an established heuristic. While
interesting to see such a heuristic emerge without it being explicitly implemented, using
just the heuristic instead of the learning approach was slightly faster.

5.1 Introduction

Hitting set naturally emerges from many problems appearing in various domains, e.g.,
transportation [Wei98], model-based diagnosis [Rei87], data profiling [Bir+20], or biol-
ogy [ITK00]. Unfortunately, hitting set is NP-hard. In fact, it is among the first 21
NP-complete problems [Kar72].
Beyond its NP-completeness, there is a wide range of theoretic results on hitting set,

including exact algorithms [SC10], approximation results [Sla97; CV07; DS14], parame-
terized algorithms [Abu10; Fer06], and parameterized approximation algorithms [BF12].
Moreover, several variants of the problem have been studied, e.g., weighted variants [Fer06],
geometric variants, where the instance represents geometric objects [CV07], implicit hit-
ting set, where the instance is not explicitly given but implicitly by an oracle that reveals
sets not yet hit [Cha+11; MK13], and the enumeration variant, where one has to find all
inclusion-wise minimal hitting sets instead of just the minimum [GV17].
Due to its importance for various applications, hitting set has also been studied from

a practical perspective. A lot of engineering work has been dedicated to the above
mentioned enumeration variant; see the survey by Gainer-Dewar and Vera-Licona [GV17]
for an overview and the paper of Murakami and Uno [MU14] for the state-of-the-art
algorithm. For the optimization problem of finding a minimum hitting set, there are
results on heuristic algorithms, e.g., [Boj14; CKW10], as well as heavily parallelized
brute-force approaches using GPUs [Car+17; Car+15].
Concerning clever algorithmic techniques for solving hitting set exactly, there is the

seminal work of Weihe [Wei98] proposing two rules for data reduction that perform
very well on instances coming from rail networks [Blä+19a]. More recently, Bevern and
Smirnov [BS20] proposed alternative reduction rules for d-hitting set (restricting the

81

5 A Branch-and-Bound Algorithm for Hitting Set

size of each set to at most d) and evaluated them on instances coming from the cluster
vertex deletion problem. Though reduction rules are a crucial component in designing
efficient algorithms, one generally still needs an algorithm to solve the remaining instance.
Concerning such an algorithm, the current state-of-the-art is somewhat unsatisfactory. In
2000, Caprara, Toth, and Fischetti [CTF00] did an exhaustive study of all prevalent solvers
at the time and conclude: “This shows that the state-of-the-art general-purpose ILP solvers
are competitive with the best exact algorithms for SCP1 presented in the literature, and
that their performance can sensibly be improved by an external preprocessing procedure.”
([CTF00]) Later, de Kleer [Kle11] conducted an empirical study on the effect of Weihe’s
reduction rules [Wei98] in a simple branch-and-bound algorithm. However, the algorithm
does not outperform a general-purpose ILP solver. To the best of our knowledge, using
an ILP solver, potentially after preprocessing, remains the state-of-the-art to this day.
In this paper, we engineer and evaluate a branch-and-bound algorithm that beats

this state-of-the-art. On our test set of 929 instances where the ILP solver reported a
non-zero2 running time, we reach a median speedup factor of more than 25. For three
quarters of these instances, we have a speedup of more than one order of magnitude.

The basic building blocks of our branch-and-bound algorithm are bounds on the solution
size and data reduction rules. They are described in Section 5.2. We note that most
bounds and reduction rules we use have been considered before, either for hitting set or
in a different context. For the different lower bounds we give a theoretical analysis that
completely characterizes how they relate to each other; see Section 5.2.3. In Section 5.3
we specify our overall algorithm and provide details on how to efficiently implement it.
Our evaluation in Section 5.4 is based on 4256 instances from different domains. Beyond
the overall running time of our algorithm, we give a detailed evaluation of how much the
different building blocks contribute to the final result. Finally, we discuss the performance
impact of structural properties of the input instance in Section 5.5 using the generative
network model geometric inhomogeneous random graphs [BKL19]. Our implementation
is publicly available3.

5.2 Basic Building Blocks

In this section we describe lower and upper bounds as well as reduction rules and introduce
the hitting set problem and our notation.

5.2.1 Problem Definition

Formally, a hypergraph F is a set family over a vertex set V , i.e., every F ∈ F is a subset
of V . We call these elements F ∈ F hyperedges. For brevity, we will refer to them as
edges. The number of vertices in the hypergraph is |V |, and likewise the number of edges
|F|. Additionally, we use ‖F‖, called the hypergraph size, to refer to the sum of all edge

1SCP stands for “set cover problem”, which is equivalent to the hitting set problem.
2Gurobi reports running times below 0.01 as 0.
3https://github.com/Felerius/findminhs

82

https://github.com/Felerius/findminhs

5.2 Basic Building Blocks

sizes, i.e., ‖F‖ =
∑

F∈F |F |. For a vertex v ∈ V , we denote the set of edges containing v
as F(v). We call deg(v) = |F(v)| the degree of v. Note that the sum of vertex degrees is
equal to ‖F‖.

We say that a vertex hits an edge if it is contained in it. Based on this, we call a vertex
subset H ⊆ V a hitting set of F if all edges in F are hit by at least one vertex in H.
Formally, H ⊆ V is a hitting set of F if and only if ∀F ∈ F : H ∩ F 6= ∅. We call a
hitting set minimum if no smaller hitting set for the same hypergraph exists. We refer to
a hitting set as minimal if it contains no other hitting set as proper subset. The hitting
set problem asks for a minimum hitting set of a given hypergraph.

5.2.2 Upper Bounds

For the upper bound, we use the simple greedy algorithm of repeatedly picking the vertex
with the highest degree. This results in a log n-approximation, works well in practice,
and runs in linear time [GW97; Ski20]. We note that there are multiple LP-based upper
(and also lower) bounds for which we refer to the overview by Caprara [CTF00].

5.2.3 Lower Bounds

In contrast to upper bounds, good lower bounds are harder to achieve, but crucial for the
pruning. Here we describe five lower bounds, some of which have been used for hitting
set or other problems. Moreover, we prove a complete characterization of how the lower
bounds relate to each other.

max-degree bound The max-degree bound uses that each vertex hits at most dmax many
edges, where dmax is the highest vertex degree. Thus, at least

⌈
|F|
dmax

⌉
vertices are

required to hit all edges.

sum-degree bound Let d1, . . . , dn be the vertex degrees in descending order. Since
vertices can only be chosen once, the max-degree bound can be improved to the
smallest k for which

∑k
i=1 di ≥ |F|.

efficiency bound Consider any solution S. Let each vertex v ∈ S charge its cost onto
the edges it hits. That is, each edge F ∈ F(v) is charged 1/ deg(v) by v. The
size of the solution can now be expressed as the sum of the cost of all edges,
i.e., |S| = ∑F∈F

∑
v∈S∩F 1/ deg(v). The efficiency bound assumes the lowest cost

for each edge individually, yielding
⌈∑

F∈F minv∈F
1

deg(v)

⌉
as a lower bound.

packing bound A set P of pairwise disjoint edges constitutes a lower bound, because each
vertex appears in at most one of those edges. Thus at least |P | vertices are required
to cover them. Finding the best packing bound is actually an independent-set
problem on the intersection graph of the edges F . Using an independent set of
conflicts as a lower bound is a known technique applied by recent solvers for other
hard problems [Got+20a].

83

5 A Branch-and-Bound Algorithm for Hitting Set

max-degree

sum-degree packing

sum-over-packingefficiency
(3)

(2)

(1)

(a) Relations between lower bounds.

n
k

k

(
kn
2

)

(b) Instance family represented as a bipartite
graph.

Figure 5.1: Left: Hierarchy of lower bounds. A bold arrow from a to b means that a
is dominated by b (Lemma 2). Dashed arrows are labeled as in Lemma 3
and indicate that there exists an instance where a is smaller than b. Note
that for any pair of bounds, there is either a directed bold path (indicating
dominance) or a directed path containing exactly one dashed edge (indicating
non-dominance). Right: This instance family is used in Lemma 3. Hyperedges
are blue and vertices are orange. The sum-over-packing bound is worse than
efficiency for k = 2 and efficiency < packing for k = 1.

sum-over-packing Any packing P can be used to strengthen the sum-degree bound, as
the packing requires to select |P | vertices to cover the edges in P , which might
not be the vertices of highest degree that the sum bound would use otherwise.
In the remainder, we focus on how many edges of F \ P we cover. The vertices
selected to cover P can cover at most bP =

∑
F∈P maxv∈F (deg(v) − 1) edges in

F \ P . If bP is smaller than |F \ P |, we have to pick additional vertices to cover
the remaining |F \ P | − bp edges. To this end, let d1, . . . , dn be the descending
vertex degrees in F \ P , excluding the vertex of highest degree of each edge in P
(these vertices have already been selected and cannot be selected twice). With this,
the improved sum bound is |P |+ k where k ≥ 0 is the smallest number for which∑k

i=1 di ≥ |F \ P | − bP .

A lower bound a dominates another bound b, if a ≥ b for all problem instances. If
a bound has multiple choices (e.g., the packing bounds), we consider the choice that
leads to the highest bound. Two bounds are incomparable if neither dominates the other,
i.e., there is an instance where a < b and another instance where a > b. Figure 5.1a shows
the relations between the lower bounds stated in the following lemmas.

Lemma 2. The sum-over-packing dominates the sum-degree and the packing bound. The
sum-degree bound dominates the max-degree bound and is dominated by the efficiency
bound.

Proof. We first show that the sum-over-packing bound dominates the sum-degree, and

84

5.2 Basic Building Blocks

the packing bound. The packing bound cannot be larger because the sum-over-packing
bound adds a non-negative number to it. Also the sum-over-packing bound over an empty
packing is exactly the sum-degree bound.
The max-degree bound can be expressed as the smallest k for which

∑k
i=1 d1 ≥ |F|

showing that the sum-degree bound dominates the max-degree bound.
It remains to show that the efficiency bound dominates the sum-degree bound. The

sum-degree bound is given by the k highest degree vertices whose degrees sum up to just
above |F|. Let v1, . . . , vk be these vertices sorted descending by degree. We partition the
edges of F into k sets E1, . . . , Ek with the following two properties. First, |Ei| = deg(vi)
for i < k and 1 ≤ |Ek| ≤ deg(vk). Second, the maximum vertex degree for every edge in
Ei is at most deg(vi). Such a partition can be achieved as follows. Assign to E1 all edges
containing v1. For larger i, assign to Ei all edges that contain vi that have not yet been
assigned. Moreover, add further edges arbitrarily, until Ei contains deg(vi) edges. The
first property, concerning the sizes of Ei, clearly holds. For the second property, observe
that in step i, all edges containing vertices v1, . . . , vi−1 have already been assigned. Thus,
all unassigned edges, and thereby all edges ending up in Ei, only contain vertices of degree
at most deg(vi).
With this partition, we get that the efficiency bound is larger than k − 1, because

∑
F∈F

min
v∈F

1

deg(v)
=

k∑
i=1

∑
F∈Ei

min
v∈F

1

deg(v)

≥
k∑
i=1

∑
F∈Ei

1

deg(vi)

= k − 1 +
|Ek|

deg(vk)
> k − 1,

and thus the rounded-up efficiency bound is at least as high as the sum-degree bound.

Lemma 3. The packing bound is incomparable with the max-degree, sum-degree, and
efficiency bound. The efficiency bound is incomparable with the sum-over-packing bound.

Proof. We give examples of instances where (1) packing < max-degree, (2) efficiency
< packing, and (3) sum-over-packing < efficiency; see Figure 5.1a. With the domina-
tion relations from Lemma 2, the incomparability of the packing bound follows from
the instances where packing <(1) max-degree ≤ sum-degree ≤ efficiency <(2) packing.
Similarly, the second part of the lemma follows from the instances where efficiency <(2)
packing ≤ sum-over-packing <(3) efficiency.

In the example for (1), there are three vertices a, b, c and three edges {a, b}, {a, c}, {b, c}.
Every packing contains at most one edge. In contrast the max-degree bound is d3/2e = 2.
We give a parametrized example for (2) and (3). The construction is shown in

Figure 5.1b. There are three types of edges. In the center, there are n disjoined edges,
the center edges, that constitute a maximum packing. To the right there are n edges, the
right edges, that share n vertices. To the left are k · n edges, the left edges, that pairwise

85

5 A Branch-and-Bound Algorithm for Hitting Set

share a vertex of degree two. Each of the center edges contains one of n high degree
vertices shared by the right edges. Each center edge also contains k vertices of degree two
that are also contained in one of the k · n left edges.

For k = 1, the efficiency bound is (for edges from left to right) n/2 +n/(n+ 1) +n/(n+
1) < n while the largest packing, e.g., the center edges, has size n. Thus, the efficiency
bound can be smaller than the largest packing showing (2).
For k = 2 the efficiency bound is 2n/2 + n/(n+ 1) + n/(n+ 1) > n. To prove (3), it

remains to show that the sum-over-packing bound is at most n for each possible packing.
Note that the argument must hold for each packing and not just maximum packings
because a maximum packing does not necessarily lead to the highest sum-over-packing
bound. If a packing includes a right edge, this prevents the inclusion of all other right
edges and all center edges. If a packing includes a left edge, this prevents the inclusion of
all other left edges and exactly one center edge. The only disjoined packings possible are
either only center edges, one left edge and the rest center edges, or one left and one right
edge. Thus, each packing P has size at most n and contains at least |P | − 2 center edges,
which have vertices of degree n+ 1.

Now we show that the sum-over-packing bound is either constant or limited by the
packing size. For sufficiently large n and any packing S that is larger than six, the
packing contains at least four center edges. The sum-over-packing bound adds nothing
to the size of the packing because the maximum degrees of the vertices in four center
edges add up to more than |F|. That is, the sum-over-packing bound is |S|, because∑

F∈S maxv∈F deg(v) > 4n = |F|. For any packing S smaller than six, the remaining
instance after deleting S and its max-degree vertices still contains Ω(n) nodes of degree
at least n. Four of them suffice to obtain a degree sum larger than |F|. Therefore the
sum-over-packing bound is at most |S| + 4 ≤ 10. In each case, the sum-over-packing
bound is at most n, thus smaller than the efficiency bound.

5.2.4 Reduction Rules

Our algorithm uses the following reduction rules. The domination rules were first described
by Weihe [Wei98]. The costly discard rule is a standard technique in branch and bound
but has, to the best of our knowledge, not yet been used for hitting set. The unit edge
rule is widely known and stated, e.g., by Shi and Cai [SC10].

Unit Edge Rule. If there is an edge of size one, then pick the contained vertex.

Edge Domination Rule. If there are two edges e1, e2 with e1 ⊆ e2, then delete e2.

Vertex Domination Rule. If there are two vertices v1, v2 such that F(v1) ⊆ F(v2), then
delete v1.

Costly Discard Rule. If discarding a vertex raises the lower bound to or above the current
upper bound, then pick this vertex.

We do not consider the complement of the costly discard rule (costly inclusion) because
including a vertex cannot raise the packing lower bound by more than one. The rule

86

5.3 The Branch-and-Bound Algorithm

could only take effect when the upper and lower bound differ by one, in which case the
instance is almost solved anyway.

We note that Shi and Cai [SC10] proved that branch-and-bound runs in timeO(1.23801n)
when using the first three of the above reduction rules in addition to two rules based on
edges of size two. We omitted these two rules from our solver, as they rarely take effect.

5.3 The Branch-and-Bound Algorithm

In this section we describe the structure and efficient implementation of our solver as
outlined in Algorithm 5.1. In every step, our algorithm branches on the inclusion or
exclusion of a vertex in the solution, thereby creating two new instances that are solved
recursively. Before each branch, we apply the following two steps. First, an approximate
solution for the current instance is found using a greedy algorithm. The best found
solution so far represents the current upper bound and is globally maintained as a result
of the algorithm. It is used to prune branches where no better solution can be achieved.
Second, reduction rules are repeatedly applied until either no reduction is possible or a
lower bound allows the current branch to be pruned.

Algorithm 5.1: Solve Recursively.
1 update upper bound // greedy
2 while reductions or pruning possible do
3 compute lower bounds
4 if lower bound ≥ upper bound then return
5 apply first applicable reduction

6 select branching vertex v by highest degree
7 branch on choosing v // inclusion branch
8 branch on discarding v // exclusion branch

5.3.1 Operation Summary and Reduction Order

Initially we compute a greedy upper bound in time O(||F||) but do not repeat it in the
reduction loop. Then, reductions and bounds are checked one after another (Algorithm 5.1,
line 2-5). They are processed in ascending order by runtime to prevent expensive operations
when possible. After one reduction is applied, the search starts from the top of the list
again. In general, lower bound pruning happens before reductions. Although the max-
degree bound is dominated by the efficiency bound, we include it due to the lower
computational complexity. The order of lower bounds and reductions is as follows.

1. max-degree bound in O(|V |)

2. efficiency bound in O(||F||)

3. packing bound in O(||F||+ |F| log |F|)

87

5 A Branch-and-Bound Algorithm for Hitting Set

4. sum-over-packing bound in O(||F||)

5. unit edge rule in O(|F|)

6. costly discard rule with efficiency bound updates for all vertices in O(||F||)

7. costly discard rule with packing updates for all vertices in O(||F||+ |F| log |F|)

8. costly discard rule with repack for 3 vertices in O(||F||+ |F| log |F|)

9. edge domination rule in O(|F| · ||F||)

10. vertex domination rule in O(|V | · ||F||)

In the following, we discuss the branching strategy and implementation details of the
instance representation, the bound computation, and the reduction rules.

5.3.2 Branching Strategy

As mentioned above, we branch on the inclusion or exclusion of a vertex. The remaining
degrees of freedom are the vertex to branch on and the order in which the two branches
are processed. We found the latter to be irrelevant while the former crucially affects
search space and performance. Our solver always branches on the vertex with highest
degree in the remaining instance and processes the inclusion branch first.

5.3.3 Instance Representation

During the algorithm the instance needs to be updated regularly. To avoid copying the
instance, we maintain one data structure representing the current instance throughout
the algorithm. There are three places in the algorithm where the instance is modified.
First, the greedy algorithm iteratively deletes vertices. Second, the reduction rules reduce
the instance. Third, when branching, a vertex is excluded (it is deleted) or is included (it
and all its edges are deleted). In all cases, changes have to be rolled back appropriately.
To support these operations, we maintain the vertices of each edge and the edges

of each vertex in sorted order at all times. Maintaining the order speeds up set-like
operations, e.g., union of two edges, and is required by the reduction rules for edge and
vertex domination.

For this, we implement a data structure called ordered subset list that manages a subset
S ⊆ {s1, . . . , sn} of n strictly-ordered objects s1 < s2 < · · · < sn. Assuming the si are
sorted in advance, it supports the following operations.

Name Description Time

init() Initialize S = {s1, . . . , sn} O(n)
del(i) Delete si from S O(1)

undo() Undo last (not undone) deletion O(1)
iter() Traverse S in increasing order O(|S|)

iterrev() Traverse S in decreasing order O(|S|)

88

5.3 The Branch-and-Bound Algorithm

This can be implemented by storing the subset S itself in a doubly-linked list. Additionally,
we have an array A that points for each i to the list entry corresponding to si. When
deleting an element from S, its list entry can be found in constant time via A. It is
removed from the list, but the list item itself remains in memory and A keeps the pointer
to it. To allow for later reinsertion, we maintain a stack of indices of deleted list entries.
As the list entry itself has not been modified at the time of deletion, its previous and next
entries are intact and thus we can reinsert it into the list in constant time in the position
it was before its deletion.

5.3.4 Upper Bound Computation

The greedy algorithm picks the highest degree vertex and deletes it and its edges from
the instance until all edges are hit. Since modifications, i.e., deleting edges and vertices,
are done in time linear in the number of changes (see Section 5.3.3), this totals to at most
linear time until a hitting set is found. Finding the vertex with highest degree in each
step is done with a bucket heap [Cor+09; Ski20] that stores the vertex degrees. The data
structure allows constant time operations due to the limited range of the stored values.
Since degrees are only lowered during the procedure and the total vertex degree is ||F||
the greedy algorithm takes linear time in the size of the instance.

5.3.5 Packing Bound Computation

Finding a maximum packing of disjoined edges is an independent set problem and thus
computationally expensive. Recent solvers for the quasi-threshold editing and cluster
editing problem, which use the same idea of packing conflicts, apply the min-degree
heuristic to find a good packing [Got+20a; HH15]. In our context, the degree in the
conflict graph of an edge F from the original instance would be the number of other
edges that share at least one vertex with F . We approximate this and sort all edges by∑

v∈F deg(v) in ascending order. Then, we go through the edges and add the current
edge to the packing if possible. When adding an edge to the packing, each contained
vertex is marked. An edge F can be added if all contained vertices are unmarked, which
can be checked in |F |. In total, the initial packing is computed in O(||F||+ |F| log |F|).
We implemented the 2-improvement heuristic for independent set to grow the pack-

ing [ARW12]. The heuristic is a local search that repeatedly tries to replace an element
from the packing with two new ones. Although this technique is effective [Got+20a], we
found it to be too slow and too rarely applicable to justify the high computational cost
(see Figure 5.6). Our implementation runs in O(|P | · ||F||) per improvement where P is
the current packing.

5.3.6 Efficient Costly Discard Rule

The costly discard rule states that a vertex must be picked if discarding it raises some lower
bound to or above the current upper bound. That is, if we were to branch on that vertex,
the exclusion branch would be pruned immediately. The rule has two degrees of freedom:

89

5 A Branch-and-Bound Algorithm for Hitting Set

first, the vertex it is applied to and, second, the lower bound that is used. For maximum
effectiveness of the reduction, we would like to check the rule for all vertices and lower
bounds. However, computing all lower bounds from scratch |V | times is computationally
expensive. We restrict it to the efficiency and packing bound. In the following, we discuss
how to compute these bounds efficiently for all vertices at once.

Costly Discard with Efficiency Bound. For the efficiency bound, checking the costly
discard rule for all vertices at once can be done in O(||F||) as follows. First, the efficiency
bound is computed for the current instance. While doing so, for each edge the two vertices
with highest degree are saved. When a vertex v would be discarded from the instance,
only edges v is contained in can change their contribution to the bound. Such an edge F
changes the contribution minu∈F 1/ deg(u) only if v was the vertex with highest degree
in F . In this case the contribution depends on the vertex with second highest degree in
F , which was identified earlier. In total, discarding v changes the contribution of at most
deg(v) edges that can be updated in constant time each. Over all vertices this sums up
to ||F||.

Costly Discard with Packing Bound. For the packing bound, a similar approach of
dynamically updating a packing bound |V | times can be used to check the rule for all
vertices and constitutes item 7 in Section 5.3.1. Discarding a vertex v removes it from
all edges. The edges that are relevant are those that intersect the union of the current
packing exactly in vertex v. That is, they could now be included in the packing after
v’s removal. We say that such an edge is blocked by vertex v. Each edge is blocked by
at most one vertex. After the initial packing is constructed, we create for each vertex
v a list of edges that are blocked by this vertex and sort each list individually by the
highest degree of a contained vertex (excluding v). These lists are found and sorted in
O(||F||+ |F| log |F|). When checking if a vertex qualifies for the costly discard rule with
the packing bound, we traverse the list of blocked edges for this vertex and greedily add
them to the packing if possible. After the rule is checked, we remove the added edges to
restore the initial packing. Since each edge F is in at most one list and can be added
to the packing in time O(|F |), the costly discard rule can be checked for all vertices in
time O(||F||) when using the lists. The creation of the lists dominates the running time
with O(||F||+ |F| log |F|), which is the same as the time it takes to compute the initial
packing.

Unfortunately, the updated packings are worse than if they were computed from scratch.
Therefore, we additionally choose the c vertices of highest degree, for which we check the
costly discard rule with a completely new packing each (see item 8 in Section 5.3.1). Our
experiments in Section 5.4.5 suggest that c = 3 is a reasonable choice.

5.3.7 Efficient Domination Rules

The domination rules can be checked naively by comparing each set with all others to
find inclusions. This implies a running time of O(|V | · ||F||) and O(|F| · ||F||) which

90

5.4 Evaluation on Public Hitting-Set Instances

is quadratic in the number of edges or vertices, respectively. In fact, under the strong
exponential time hypothesis the reduction cannot be done in less than quadratic time in
the worst case [BCH16]. In practice, however, the sub- and superset reductions can be
sped up significantly using set tries, a data structure described by Savnik [Sav13].

A set trie manages a collection T of sets over [n] and supports the following operations
which require that the given sets are sorted and can be traversed in linear time.

Name Description Time

add(S) add S to T O(|S|)
hasSubset() does T contain a subset of S O(|S|+ ‖T ‖)

hasSuperset() does T contain a superset of S O(|S|+ ‖T ‖)

For the dominated edge rule we create an empty set trie and iterate through the edges
in increasing order of their size. For each edge, we check whether a subset of it exists
in the set trie. If so, the edge is dominated. Otherwise the edge is added to the set trie.
Note that this process can be continued after the first dominated edge to find all of them.

For the dominated vertex rule, the process is similar. An empty set trie is created that
stores sets of edges. Then, vertices are iterated in decreasing order of their degree. Recall
that F (v) is the set of edges containing the vertex v. If the set trie contains a superset of
F (v), the vertex v is dominated. Otherwise, F (v) is added to the set trie.

5.4 Evaluation on Public Hitting-Set Instances

In this section, we evaluate our branch-and-bound algorithm experimentally on a range of
instances used in previous publications. First, in Section 5.4.2, we compare its run time
to the state-of-the-art ILP-solver Gurobi [Gur21] and analyze how much time is spent in
which part of the algorithm. Moreover, we examine the contributing factors for the size
of the search space during a run. The next three sections evaluate the used techniques as
well as substantiate our design decisions by providing experimental grounds to argue in
favor of our choices regarding the solver configuration. We investigate details regarding
the performance and effectiveness of lower bounds in Section 5.4.3, upper bounds in
Section 5.4.4, and reduction rules in Section 5.4.5. Specifically, we evaluate the set and
order of used lower bounds, the number of checked vertices in the costly discard repack
rule, the frequency of greedy invocations, and the order in which reductions are applied.

5.4.1 Experimental Setup

Our implementation is written in the Rust programming language and is available in our
public GitHub repository4 along with all datasets, logs, run results, and evaluation scripts.
All auxiliary packages, including the versions used, are listed in the repository as part of
the Cargo project format. For the evaluation, we used version 1.53.0 of the Rust compiler
with link-time optimization enabled. The experiments were run on a Gigabyte R282-Z93

4https://github.com/Felerius/findminhs

91

https://github.com/Felerius/findminhs

5 A Branch-and-Bound Algorithm for Hitting Set

(rev. 100) server at 2.6GHz base speed with 1024GB DDR4 (3200MHz) memory. Runs
had a timeout of 24h.
We use instances from four sources.

UCC [Bir+20] contains 134 instances, two for each of 67 databases. In the first type
of instance, the hitting sets correspond to the unique column combinations of the
database. The second type of instances are the transversal hypergraphs of the first
type.

CVD [BS20] contains cluster vertex deletion instances, derived from weighted graphs of
protein similarities [Rah+07; Böc+07]. In the reduction step from weighted graphs
to unweighted graphs, we use all edges with non-negative weights. This is consistent
with the code linked in the paper of Bevern and Smirnov [BS20], but differs from
the statement in the paper itself, which only uses edges with positive weights. Like
the authors, we restict us to hypergraphs with at most 106 edges, resulting in a
total of 3952 instances.

EN1 [MU14] contains 159 instances that were previously used to evaluate algorithms
for enumerating minimal hitting sets. These contain several classes of instances,
including real-world and generated instances. The original data set contains 172
instances of which we omitted 13 whose size ||F|| exceeds 3 · 107, as the RAM
required to run experiments on them proved to be prohibitive.

EN2 [GV17] contains eleven additional instances that have been used to evaluate enu-
meration algorithms. Five of them are derived from metabolic reaction networks
and six from interventions in cell signaling networks.

We distinguish between the randomly generated instances (rnd) from the EN1 dataset
and application specific instances (appl) due to their different structure. The instances
displayed in the various plots are filtered depending on the context. Figure 5.2 includes
all 4256 instances. Subsequent plots are restricted to the 136 instances (58 rnd, 78 appl)
that finish in 24 hours (excludes 6) and are non-trivial (excludes 4114), that is, instances
where our solver runs at least one second in its default configuration. For experiments
that compare different configurations, only the instances finishing in all configurations are
used. Effected by this is Figure 5.6 where three instances were dropped due to timeout in
some configuration. Additionally, ten instances where dropped in Figure 5.9b because
they had no forced vertices and two instances where dropped in Figure 5.5b because they
never had a branch pruned due to bounds.

5.4.2 Runtime Performance and Search Space

Figure 5.2 shows the run time of our solver in comparison with Gurobi. Gurobi is at version
9.1.2, restricted to a single thread, and without a memory restriction. We note that there
are instances where Gurobi uses almost 50GB of memory. Following Caprara [CTF00],
instances were reduced with the domination rules before running Gurobi on them. The

92

5.4 Evaluation on Public Hitting-Set Instances

10−2 10−1 100 101 102 103 104 105

Runtime Gurobi reduced (s)

10−2

10−1

100

101

102

103

104

105

R
u

n
ti

m
e

(s
)

appl

appl (timeout)

rnd

rnd (timeout)

Figure 5.2: Run time of our solver compared to Gurobi with preprocessing. Times are
rounded up to 0.01s.

reduction process is included in the reported run times. Preliminary experiments showed
this to be faster than running the ILP alone.

Our solver is significantly faster than Gurobi on non-random instances; on three quarter
of non-random instances at least one order of magnitude. Contrasting this, there are only
three instances (random and non-random) where Gurobi is faster by more than a factor
of 4. Run times for random instances are competitive. Gurobi is approximately 1.5 times
faster on smaller instances while we are consistently faster on instances that take more
than 30 minutes to solve. In total, there are 8 instances that finish in the timeout only
for our solver. There are 2 instances that finish just for Gurobi.
Figure 5.3 shows the fraction of run time that is spent in each step of the algorithm.

As expected from the asymptotic considerations in Section 5.3, the domination rules
dominate the run time although they are executed last and thus avoided when possible.
Random instances spent most time in edge domination since they have many edges and
few vertices. Non-random instances spend most time in vertex domination. Still, when
taking both classes of instances together, the total time spent is spread over different
subroutines and, in the median, no individual task takes more than 20% of the total
time. Greedy, packing lower bound, and the costly discard repack reduction rule show
comparable times. Although, the repack reduction essentially computes three packings, it
is processed later in the loop than the packing lower bound, which explains why the rule
does not take three times as much time as the packing. Finally note that the column for
other is vanishingly small. It includes, e.g., the instance manipulation and rollbacks as
well as logging, timing, and branching.

After evaluating the runtime in general, the question poses itself, what key factors
contribute to the performance and which instances are the most difficult. For this, we

93

5 A Branch-and-Bound Algorithm for Hitting Set

Greedy Max
deg.

bound

Eff.
bound

Packing
bound

Sum
over

packing
bound

Unit
edge

Costly
discard
packing
update

Costly
discard
repack

Vertex
dom.

Edge
dom.

Other

0%

20%

40%

60%

80%

100%
appl

rnd

Figure 5.3: For each instance, the run time share of each operation was measured relative
to the total run time of the instance. Note that the time for efficiency costly
discard is included in the efficiency bound time.

104 105 106 107

‖F‖

0
100

101

102

103

104

105

106

107

S
ea

rc
h

sp
ac

e
(#

b
ra

n
ch

in
g

st
ep

s)

appl

rnd

0 25 50 75 100 125

Bound gap (upper− lower)

appl

rnd

Figure 5.4: Search space compared to instance size (left) and difference between upper
and lower bound (right). Each instance represents one sample.

94

5.4 Evaluation on Public Hitting-Set Instances

1 2 3 4
opt/lower

1

2

u
p
p

e
r /

o
p
t

appl

rnd

(a) Quality of upper and lower bounds.

Max
degree

Efficiency Packing Sum over
packing

0%

20%

40%

60%

80%

100%
appl

rnd

(b) Number of prunes by bound.

Figure 5.5: Left: For each instance, the initial lower bound relative to the optimum on
the x-axis and the upper bound relative to the optimum on the y-axis. Right:
For each instance, the breaks from the reduction loop split by the responsible
bound. Values are relative to the total number of breaks for the instance.

measure the search space, that is the number of branching decisions of the solver, instead
of its run time. Figure 5.4 shows the size of the search space depending on the instance
size and the difference between the initial upper and lower bound. The lack of samples
with low search space and instance size is an artifact due to the exclusion of instances
that are solved in less than a second. There appears to be no clear correlation to indicate
that instance size reflect difficulty. On the other hand, the bound gap is usually a good
estimate for the difficulty of an instance to a given branch-and-bound solver, because the
solver lowers this gap during execution and is finished if the difference reaches zero. The
random instances exhibit a distinct exponential growth in search space with growing gap.
Overall, the gap between upper and lower bound is the key factor that determines the
performance of the algorithm.
To find out which bound is responsible for the gap, Figure 5.5a explores the overall

quality of lower and upper bounds compared to the optimum. The initial upper bounds
are already close to the optimum with all but three being less than 1.3 times the optimum.
Lower bounds are spread out more. Some instances have lower bounds that are not even
a third of the optimum. Interestingly, the instance with with worst upper bound has a
perfect lower bound. In conclusion, this shows that lower bounds as well as upper bounds
can be improved but upper bounds are closer to the optimum already. Thus, a significant
performance improvement could be gained from better lower bounds.

5.4.3 Lower Bound Effectiveness

Figure 5.5b counts how often each bound was responsible for pruning a branch in the
search tree. For random instances, the max-degree bound is sufficient and is responsible
for almost all prunes. Application instances make use of several bounds. Max-degree still
helps but, excluding a few instances, accounts for less than 30%. The efficiency and the
packing bounds then catch branches that are missed by the previous bounds with the

95

5 A Branch-and-Bound Algorithm for Hitting Set

Max degree Sum degree Efficiency Packing Packing
(local search)

Sum
over packing

Sum
over packing
(local search)

0

100

101
R

el
at

iv
e

se
ar

ch
sp

ac
e

appl

rnd

Figure 5.6: Search space when only using a certain bound, relative to default settings.
Note the logarithmic y-axis with special handling for zero.

packing bound being significantly more successful than the efficiency bound despite it
being run after it.

For the efficiency bound, the outlier at 100% is due to an instance with a trivial search
space of one node that is pruned by the efficiency bound. Still, there are a few instances
where the max-degree bound fails often while the efficiency bound is responsible for 40%
to 60% of all prunes.

There are even more instances which almost exclusively depend on the packing bound.
This can be explained due to the packing bound representing a different approach to
obtain the lower bound than the max-degree or efficiency bound and thus performs well
on a different kind of instances. The max-degree bound performs well if the high degree
vertices do not share many edges, i.e., if the instance can be covered by selecting few
high-degree vertices. On the other hand, many edges containing multiple high-degree
vertices makes it possible to have many edges containing only vertices of lower degree,
which facilitates large packings.

Regarding the last bound, note that the sum-over-packing bound rarely applies. How-
ever, Figure 5.3 shows that its run time is negligible since the previously computed packing
is reused. For some instances the bound actually prunes a significant number of branches.
With the question answered to what extent our chosen lower bounds contribute to

pruning, it remains to show that it is their combination and not one bound alone that
is responsible for the overall performance. Figure 5.6 shows the relative search space
when using only one bound compared to using our default configuration for the solver.
Max-degree, sum-degree, and efficiency all behave similar, that is worse than with all
bounds. On the other hand, for random instances only using the packing bound leads to
significantly higher search space. These instances, however, are solved easily when using
the sum-over-packing instead of the packing alone. In fact, using only sum-over-packing
is almost always as good as using the combination of bounds. Nonetheless, it still makes
sense to use the other bounds before: The packing bound is free as we have to compute
a packing anyway to apply sum-over-packing. Moreover, the simpler bounds can be
computed more quickly than a packing (recall Figure 5.3) but are often sufficient as can

96

5.4 Evaluation on Public Hitting-Set Instances

0% 20% 40% 60% 80% 100%

Runtime

0%

20%

40%

60%

80%

100%

U
p

p
er

b
o
u

n
d

p
ro

g
re

ss

0%

20%

40%

60%

80%

100%

Figure 5.7: For a given time in the solving process and an amount of progress from the
initial upper bound towards opt, the number of instances that have reached
this progress at that time.

be seen in Figure 5.5b.
As mentioned in Section 5.3.5, we implemented versions of the packing with local search

and included them in Figure 5.6. In the following we consider the influence of adding
local search to packing or sum-over-packing. For application instances, adding the local
search to the packer or sum-over-packing bound results in a slight improvement over
the combination of all other bounds. However, preliminary testing showed local search
to be too computationally expensive to justify the reduction in search space it yields.
On random instances, adding local search to packing does not change the search space,
while adding it to sum-over-packing surprisingly increases the search space. Further
investigation revealed that a packing that was augmented with local search is enlarged to
the point that taking the highest degree vertex of each edge in the packing constitutes
for enough total degree to cover the whole instance. In this case, the sum-over-packing
bound is equal to the packing bound.

5.4.4 Upper Bound Effectiveness

The greedy upper bound is used to initialize and, during a run, improve the best solution
found so far. Figure 5.7 shows the progression and gradual lowering of the upper bound
during execution. Each individual instance starts in the lower left corner at (0,0) and
progresses to the upper right corner at (100,100). Under the assumption that this
progression is linear we would get white above and black below the main diagonal.
However, the plot can be better described as growing darker from left to right. This
verticality means that during a run, upper bounds progress is often achieved all at once.
Also the upper bound is surprisingly good with more than 40% of the instances already
having a perfect upper bound to start with. After 25% of the run time the optimum has

97

5 A Branch-and-Bound Algorithm for Hitting Set

0.0 0.5 1.0 1.5 2.0 2.5

Every loop, before expensive reductions

0.0

0.5

1.0

1.5

2.0

2.5
E

ve
ry

lo
o
p

,
b

ef
or

e
b

ou
n

d
s

appl

rnd

(a) Runtime of greedy modes relative to each
other.

Once,
in the

beginning

Every loop,
before expensive

reductions

Every loop,
before
bounds

0.0

0.5

1.0

1.5

appl

rnd

(b) Runtime of greedy modes relative to no
greedy.

Figure 5.8: Left: Run times of two non-default greedy modes relative to the run time
when using greedy once per node in the search tree. Each instance is a data
point. Right: Relative run time for all three greedy modes compared to not
using greedy upper bounds.

been found (100% progress) for more than 60% of instances. The remaining 75% of the
run time are used for proving its optimality.
Still, the solver could be implemented without greedy at all. The upper bound would

then be initialized to contain all vertices in V and updated when the branching reaches a
hitting set. Running the greedy subroutine has the benefit that it helps to find solutions
before reaching the associated leaf in the search tree and thus facilitates earlier pruning.
In the following, we compare four different frequencies of running greedy to recompute
the upper bound. The alternatives are to not use greedy at all, run greedy once before
the reduction loop (which is what we do in the final configuration of our algorithm), run
greedy every iteration of the loop (i.e., as item zero in Section 5.3.1), or to run it every
loop just before the expensive reductions (i.e., between items 7 and 8 in Section 5.3.1).

Figure 5.8a compares the latter three alternatives. The baseline in the plot (and default
configuration for the solver) is to run it once before the loop. The axes show the relative
run time compared to this baseline. A point in the lower left quadrant means that the
baseline is the worst out of the three; a point in the upper right quadrant that it is
best, while the rest ranks it in the middle. Samples are concentrated in the center but
slightly tilted to the upper right. Additionally, there are no outliers that favor running
greedy every loop while there are outliers that heavily slow down when deviating from
our baseline.

Figure 5.8b shows run times of all alternatives that use greedy compared to not using
greedy at all, that is, initializing the upper bound to V and find better solutions only
in leaf nodes while branching. Surprisingly, the median favors not using greedy at all

98

5.4 Evaluation on Public Hitting-Set Instances

Costly
discard

efficiency

Costly
discard
packing
update

Costly
discard
repack

Vertex
dom.

Edge
dom.

0%

20%

40%

60%

80%

100%

appl

rnd

(a) Number of reduction iterations that reach a
given point.

Unit
edge

Costly
discard

efficiency

Costly
discard
packing
update

Costly
discard
repack

0%

20%

40%

60%

80%

100%
appl

rnd

(b) Number of forced vertices found.

Figure 5.9: Left: For each instance, the number of reduction loop runs that reach a given
reduction. Values are relative to all runs that do not break due to bounds.
The forced vertex rule is excluded as it is the first and thus always reached.
Right: For each instance, the number of found forced vertices by reduction
rule. Values are relative to the total number of forced vertices for the instance.

but the outliers are heavily in favor of using greedy. Running greedy once before the
reduction loop is never slower than 1.5 times the run time of no greedy, 1.02 times slower
in the median, and up to 600 times faster at best, which makes it a good choice for the
final configuration of our algorithm. Note that the benefits of greedy are restricted to
application instances. On random instances there are no heavy outliers in favor of any
configuration.

5.4.5 Reduction Effectiveness

Before we establish how effective each specific reduction is, we first investigate how
often each reduction is actually reached in the reduction loop as shown in Figure 5.9a.
Differences between two adjacent reductions express the success rate of the left one.
Random instances, again, behave completely different than application specific instances.
They almost always execute all reductions, because all reductions before the last one
are unsuccessful. For application instances, all rules contribute somewhat. Although
the domination rules have the highest run time share (recall Figure 5.3) they are only
executed in 20–30% of loop iterations for most instances. The most frequent end to an
iteration are a successful costly discard rule with packing updates or repacking. These
rules are reached in more than 80% of iterations for most instances and the next rule
(vertex domination) is checked 30% of the time in the median. Note that an iteration
only ends in the repack step if the costly discard rule was unsuccessfully checked with a
packing update before succeeding through a repack, giving evidence to the usefulness of
repacking.

99

5 A Branch-and-Bound Algorithm for Hitting Set

1 3 5 7 9 11 13 15 17 19

#Nodes checked

0

1

2

3
R

u
n
ti

m
e

(r
el

.
to

w
/o

ru
le

) appl

rnd

Figure 5.10: Run time when using different settings for the costly discard packing from
scratch rule. All values are relative to the run time when that rule is disabled.

Figure 5.9b compares the effectiveness of the reductions that force a vertex to be
included in the solution. The effectiveness is measured by the number of forced vertices.
The unit edge rule and the costly discard rule with the efficiency bound catch almost
no vertices compared to the two packing rules. Since they are very easy to compute
and find a good amount of application on some instances they are nonetheless worth
trying. Above 80% of forced vertices in application instances are found with the costly
discard packing update rule. This constitutes no contradiction to Figure 5.9a because,
although the repack rule is applicable as often, the packing update rule can find multiple
forced vertices at once. The fact that the repack rule still finds a large amount of all
forced vertices while being applied only after packing update failed to find anything,
again, emphasizes that the updated packings are not as good as the packings that are
constructed from scratch. The results for random instances are less expressive because
only a small number of reductions are applicable, as established in the previous paragraph.
Nevertheless, they follow the same trend as the other instances but rate packing update
lower and packing repack higher.

One degree of freedom for the repacking is the number of vertices for which we apply it.
Recall from Section 5.3.1 that we repack for the c = 3 vertices of maximum degree in our
final configuration. Figure 5.10 shows the run time for different values of c relative to the
run time when not repacking. One can make two main observations. First, for random
instances, the cost of repacking outweighs the gain leading to slightly increasing median
run times for increasing c. Second, repacking helps significantly on non-random instances
but there is no additional gain in repacking more than three times, which has the lowest
median. Thus, by using c = 3, we obtain a good balance between increasing run time
for random instances only slightly while obtaining big speedups for some application
instances.

100

5.5 Evaluation on Geometric Inhomogeneous Random Graphs

(0, 0) (0, 1) (1, 0) (1, 1)
[uniform vertices, uniform edges]

0
100

101

102

103

104

Se
ar

ch
 S

pa
ce

(a) Search space by distribution combination.

500 1500 2500 3500 4500 5500 6500 7500 8500 9500
|V|

0

100

101

102

103

104

Se
ar

ch
 S

pa
ce

(b) Search space by number of vertices.

Figure 5.11: Left: Search space of the solver when choosing a homogeneous or heteroge-
neous distribution for vertex degrees and hyperedge sizes, respectively. Right:
Search space of the solver for growing number of vertices and |F| = 5000.
Vertex degrees are heterogeneous and hyperedge sizes homogeneous.

5.5 Evaluation on Geometric Inhomogeneous Random
Graphs

In this section, we discuss the performance impact of different structural properties of the
input instance. To obtain realistic instances with controllable structural properties, we
use geometric inhomogeneous random graphs (GIRGs) [BKL19]. This lets us isolate the
effect of a single structural property on the algorithm performance while keeping other
properties of the instance fixed. We discuss — in this order — the degree distribution,
the hyperedge size distribution, the ratio of vertices to hyperedges, the average hyperedge
size, the instance size, as well as the amount of locality.

We use the efficient generator introduced in Chapter 2 and modify it to generate
bipartite graphs, which can be interpreted as hitting set instances. This approach comes
with two challenges. First, the generator may generate trivial instances due to empty
hyperedges, since their size is controlled in expectation. Second, the estimation method
for the model parameter that controls average degree does not work for bipartite graphs.
We circumvent the latter problem by using an exponential search followed by a binary
search to get a graph with the desired density. Then we discard empty hyperedges. We
monitor the amount of discarded edges to (manually) guarantee that only a very small
fraction is discarded. We set the internal parameters of the GIRG model to temperature
0, dimension 2, and a power-law exponent of 2.8. Each box of the box plots summarizes
50 graphs generated with the same set of parameters but different seeds. The modified
generator, plotting code, raw results, as well as execution logs are publicly available5.

5https://github.com/chistopher/sat-girgs

101

https://github.com/chistopher/sat-girgs

5 A Branch-and-Bound Algorithm for Hitting Set

5 10 15 20 25 30 35 40 45 50
average size of hyperedges

0

100

101

102

Se
ar

ch
 S

pa
ce

(a) Search space for heterogeneous vertex de-
gree.

5 10 15 20 25 30 35 40 45 50
average size of hyperedges

0

100

101

102

103

104

Se
ar

ch
 S

pa
ce

(b) Search space for heterogeneous edge size.

Figure 5.12: Search space by hyperedge size. In (a) |V | = 5000, |F| = 5000. In (b)
|V | = 200, |F| = 200.

5.5.1 Degree Distributions

Vertex degrees and hyperedge sizes are two degrees of freedom when generating instances.
Viewed as a bipartite graph, these correspond to the degree distributions of the two
partitions. While there are numerous reasonable possibilities for the distributions, we
focus on homogeneity vs. heterogeneity represented by a Poisson binomial and a power-
law distribution, respectively. Figure 5.11a shows the search space of the solver for
all four combinations. Heterogeneity drastically reduces the search space. Moreover,
the instances with just a heterogeneous vertex degree are easier than the ones with just
heterogeneous hyperedge sizes. This fits nicely with the data sets from the previous section.
There, the appliation instances tend to have more heterogeneous vertex degrees and more
homogeneous hyperedge sizes. In detail, for application instances with ‖F‖ > 100, the
coefficient of variation for edge degrees is 1.03 on average, while it is 0.46 for hyperedge
sizes.

5.5.2 Vertex to Edge Ratio

Figure 5.11b considers the effect of the ratio between vertices and edges on performance.
We focus on homogeneous hyperedge sizes and heterogeneous vertex degrees to mirror
the application instances. Note that the instance size is significantly larger than in
Figure 5.11a. With this choice of distribution, most instances would be trivial otherwise.
The figure shows the search space for instances with 5000 hyperedges with average size
of ten over a growing number of vertices. The figure indicates the trend that having a
large amount of vertices in comparison to the number of hyperedges makes the instances
more difficult. Aside from the larger input size, which should not matter as much, the
trend can be explained by the fixed hyperedge size. Since the average hyperedge size is
fixed to ten, more vertices implies smaller vertex degrees which in turn implies larger
solution sizes. Large solutions are generally difficult to find, since they require either more

102

5.5 Evaluation on Geometric Inhomogeneous Random Graphs

50 100 150 200 250 300
|V| and | |

0

100

101

102

103

104

Se
ar

ch
 S

pa
ce

T=0.0
T=0.3
T=0.6
T=0.9

Figure 5.13: Search space by instance size for different temperatures. Vertex degrees are
heterogeneous and hyperedge sizes homogeneous.

successful reductions or more branching. Preliminary experiments confirmed a similar
trend for other distributions as long as at least one of them is heterogeneous.

5.5.3 Hyperedge Size

Figure 5.12 shows the search space over a growing average size of hyperedges. Interestingly,
the results vary drastically depending on which distribution is chosen as the heterogeneous
one. For heterogeneous vertex degrees larger hyperedges make the instance easier (see
Figure 5.12a). In contrast, larger hyperedges make the instance harder for heterogeneous
hyperedge sizes (see Figure 5.12b). The former is due to the trivial one or two vertex
solutions that are reached far earlier when vertex degrees are heterogeneous. We explain
the latter by the domination rules, which are less effective the larger the hyperedges.
Note, however, that extremely small and extremely large hyperedge sizes should both
be easy in the limit. Too small hyperedges of size zero or one lead to trivial instances
while too large hyperedges lead to tiny (one or two vertex) solutions. Thus, the different
trends in difficulty that are visible in the plots are due to the range of values that we
investigated; in this case 5-50.

5.5.4 Locality

The temperature parameter T of the GIRG model controls the clustering, that is, it
controls the extent to which the geometry is respected during generation. Higher values
of T means less clustering. Figure 5.13 shows the search space over growing instance size
for different values of T . Due to high variance this plot is averaged over 200 repetitions
per data point instead of 50. As the algorithm was built for realistic instances, which
usually have a high amount of clustering, it is not surprising that the search space grows
rapidly when there is less clustering. A lack of clustering not only makes the instance
harder but higher T also makes the solver scale worse with instance size. We suspect the

103

5 A Branch-and-Bound Algorithm for Hitting Set

domination rules to be the reason for this drastic impact on performance because they
benefit from high clustering.

5.6 Conclusion

We provide a fast branch-and-bound solver that beats a modern ILP solver, which is
the state-of-the-art for solving the minimum hitting set problem. Our implementation
provides a baseline for future work in this direction. We explain the basic building blocks
of our algorithm — which are lower bounds, upper bounds, and reduction rules — and
experimentally evaluate their run time and efficiency to find a good configuration of
used rules and bounds. We confirm the effectiveness of Weihes reduction rules noted in
previous works. Another crucial part of the algorithm turns out to be the quality of lower
bounds. The parameter-dependent Costly Discard Rule builds upon lower and upper
bounds and contributes significantly to the performance of our algorithm. We find that
the algorithm behaves differently on random inputs. Lastly, we find that the performance
heavily depends on the heterogeneity of the degree distribution as well as the amount of
locality. In the future, it would be interesting to determine why non-random instances
are easier for our solver than random instances and if their structure can be exploited to
design even faster algorithms for practical instances.

104

6 A Branch-And-Bound Algorithm for
Cluster Editing

This chapter is based on joint work with Thomas Bläsius, Philipp Fischbeck, Lars Gottes-
büren, Michael Hamann, Tobias Heuer, Jonas Spinner and Marcus Wilhelm [Blä+22a].
As a team, we participated in and won the exact and the heuristic track of the 2021 PACE
challenge. Although both submissions were a team effort, Lars Gottesbüren, Michael
Hamann, and Tobias Heuer focused more on the heuristic solver [Blä+21a], while the rest
of the team focused on the exact solver [Blä+21b]. The evaluation of the exact algorithm
was done after the participation in the challenge.

6.1 Introduction

In graph clustering, the goal is typically to partition the vertices into clusters such that
there are many edges inside and few between clusters. The most clear-cut cases are
so-called cluster graphs in which each connected component forms a clique. Thus, with
one cluster for each connected component, there are no edges between clusters and all
possible edges inside clusters exist. The cluster editing problem asks to use as few edge
insertions and deletions as possible to transform a given graph into a cluster graph;
thereby computing a clustering.
The cluster editing problem is NP-hard [KM86] and thus we cannot expect to solve

it efficiently in general. Nonetheless there are algorithmic approaches using reduction
rules [CC12; CM12; Guo09] or search trees [Böc+09; HH15]. The theoretically fastest
known algorithm is by Böcker [Böc12] with a running time of O(1.62k + n+m), where k
is the number of edits (edge insertions plus deletions) and n,m are the number of vertices
and edges of the graph, respectively. To encourage development and implementation of
practical algorithms, the challenge of PACE 2021 [Kel+21] was to solve cluster editing.
Our solvers won the exact [Blä+21b] and heuristic [Blä+21a] track.
In this paper, we describe the details of our exact solver [Blä+21b] and present an

in-depth evaluation. Roughly speaking our solver is a branch-and-bound algorithm:
Whenever possible, we apply reduction rules to shrink the instance. When no reductions
apply, we branch on the decision whether to put a pair of vertices in the same or in
different clusters. To reduce the size of the resulting search tree, we compute lower bounds
on the optimal solution and prune subtrees where the lower bound exceeds the upper
bound computed by our heuristic solver.
Our lower bounds are based on so-called packings of small substructures for which

we know optimal solutions. This approach has been used before to solve related prob-

105

6 A Branch-And-Bound Algorithm for Cluster Editing

lems [Got+20b] and for cluster editing in particular by packing paths of length 3 [HH15].
We generalize this approach to support larger substructures and weighted1 instances; see
Section 6.3.2. For the reduction rules, we use various rules from the literature [Bas+16;
BBK11; CC12; CM12; Got+20b; Guo09] as well as newly developed ones; see Section 6.3.3.
One type of reduction rule are so-called forced choices that essentially look ahead one
branching step, e.g., if putting two vertices in different clusters would yield a lower bound
exceeding the upper bound, one must put them in the same cluster. Thus, the lower
bounds and the reduction rules are intertwined in the sense that better lower bounds lead
to more applications of the forced choices rules. In Section 6.4 we evaluate how effective
and efficient different reductions and lower bounds are, using the instances from the PACE
challenge. Additionally, we evaluate our algorithm on geometric inhomogeneous random
graphs [BKL19], which lets us study scaling behavior of our solver and its efficiency
depending on certain instance properties. Our main findings are summarized as follows.

• The instances we can solve are usually already solved by just the reduction rules, i.e.,
once we have to apply branching we usually do not find a solution within reasonable
time.

• The forced choices reduction rules are by far the most effective rules. This identifies
good lower bounds as the key ingredient of our algorithm.

• Using packings of stars instead of paths of length 3 is still computationally feasible
and yields substantially better lower bounds.

• The solver performs better on graphs with low average degree and if the graph is
well-clusterable.

• The upper bounds computed by our heuristic solver are exceptionally good. In fact,
the heuristic solver found an optimal solution on all instances where we know it.

6.2 Preliminaries

Let G = (V,E) be a simple, undirected graph. The cluster editing problem asks to
transform G into a disjoint union of cliques with the least number of edge edit operations.
An edit is the deletion of an existing edge or the insertion of a missing edge. As a graph
is a disjoint union of cliques if and only if it does not contain an induced path on three
vertices (a P3), the problem can also be seen as P3-free editing.

The weighted cluster editing problem replaces the set of edges with a symmetric cost
function s : V × V 7→ Z. If s(uv) > 0, the pair uv is considered an edge with a deletion
cost of s(uv). For s(uv) < 0 the pair uv is a non-edge with an insertion cost of −s(uv).
A vertex pair with s(uv) = 0 is called a zero-edge that can be inserted or deleted for
free. A solution to the weighted cluster editing problem is a partition of vertices. We
associate a solution K with its corresponding equivalence relation ≡K . The cost of K for

1Though the input is unweighted, our reduction rules as well as the branching lead to weighted instances.

106

6.3 The Branch-and-Bound Algorithm

the instance (V, s) is defined as the total cost of edges between clusters and non-edges
inside clusters. That is,

cost(K, s) =
∑

s(uv)>0
u6≡Kv

|s(uv)|+
∑

s(uv)<0
u≡Kv

|s(uv)|.

6.3 The Branch-and-Bound Algorithm

Our algorithm uses branch-and-bound to solve the decision variant of cluster editing,
which asks if there exists a solution with a cost of k or less. The optimization problem is
solved by calling the decision variant with increasing values of k. At its core our algorithm
is a simple recursive subroutine that computes a kernel by applying reductions, returns if
the lower bound for the remaining instance is above k, and otherwise branches on the
inclusion or exclusion of an edge in the solution, introducing permanent and forbidden
edges into the instance. We select the edge to branch on by highest edit cost and tiebreak
by the number of P3s that overlap this edge. As outlined by Böcker et al. [Böc12; Böc+09],
the endpoints of permanent edges can immediately be merged to obtain an equivalent
weighted instance2 of smaller size.

Since branching creates weighted instances, we initially apply a series of reductions that
are only possible for unweighted instances before we run the recursive branch-and-bound
algorithm. Furthermore, we split the initial instance into connected components and solve
them separately because an optimal solution never connects them.
In the following we discuss the different parts of our algorithm. In Section 6.3.1, we

mention our approach to obtain upper bounds. Section 6.3.2 introduces and generalizes
the concept of lower bounds via conflict packings. Finally, we list the used reduction rules
and explain their application in our algorithm in Section 6.3.3.

6.3.1 Upper Bounds

An upper bound for the optimal solution is crucial for any branch-and-bound algorithm
to identify and prune branches that cannot lead to an optimal solution. For this, we use
our heuristic solver that won the heuristic track of the 2021 PACE challenge [Blä+21a].
The heuristic solutions are optimal on all 173 of the 200 test instances for the exact track
we were able to solve (see Section 6.4). We refer to the solver description [Blä+21a] for
details about the algorithm.

6.3.2 Lower Bounds

For lower bounds, we use an idea from recent solvers for this and other similar prob-
lems [Blä+22c; Got+20b; HH15]. The idea is to find a large set of vertex-pair disjoint
P3s. Recall that cluster editing can be seen as P3-free editing. We call such a set a
conflict-packing or packing for short. Since each P3 in a packing needs at least one edit

2Forbidden edges have a weight of negative infinity.

107

6 A Branch-And-Bound Algorithm for Cluster Editing

to resolve and no edit overlaps with more than one conflict, the size of the set is a lower
bound on the required number of edits.
Finding a maximum disjoint set of conflicts is an independent set problem, which is

hard to solve in general. We are not aware of complexity results for independent set
on this specific kind of intersection graph. Hartung et al. [HH15] use the commonly
known small degree heuristic and some random perturbation to find a maximal set of P3s.
Gottesbüren et al. [Got+20b] also use the concept of a conflict packing in their algorithm
for the quasi-threshold editing problem, i.e., {C4, P4}-free editing. They propose to use a
local search with random replacements and the 2-improvement heuristic for independent
set to grow the packing [ARW12].

With these heuristics, good P3 packings can be found in reasonable time. However, P3

packings have two major drawbacks. First, they are defined only for unweighted instances
while the best known branch-and-bound algorithms for cluster-editing work on weighted
instances [Böc12; Böc+09]. Second, each P3 has two edges and one non-edge. Therefore a
P3 packing can never be larger than |E|/2 while many difficult instances require more than
|E|/2 edits. We propose a framework to circumvent both these drawbacks by generalizing
conflict packings.

In the following we formalize the concept of packing arbitrary substructures for which
we know lower bounds into weighted instances. We call two cost functions a, b : V ×V 7→ Z
conflicting if there is a vertex pair uv that is a non-edge in (V, a) and an edge in (V, b) or
vice versa, i.e., if |a(uv) + b(uv)| < |a(uv)|+ |b(uv)|. Let a+ b denote the element-wise
addition of the functions a, b, that is, (a+ b)(uv) = a(uv) + b(uv). We call a set of cost
functions P a packing for the instance (V, s) if (1) they are pairwise non-conflicting, (2)
they are non-conflicting with s, and (3) they do not exceed s in any vertex pair, that is∑

p∈P |p(uv)| ≤ |s(uv)|. Note that
∑

p∈P |p(uv)| = |∑p∈P p(uv)| because of property (1).
Also note that property (1) actually follows from (2) and (3).

Lemma 4. Let a, b, c be three cost functions. If they are pairwise non-conflicting, then
(a+ b) and c are non-conflicting.

Proof. Let uv be a vertex pair with c(uv) > 0. If c(uv) > 0, then a(uv) ≥ 0 and b(uv) ≥ 0
since both are non-conflicting with c. Thus (a+ b)(uv) = a(uv) + b(uv) ≥ 0 which means
that (a+ b) is non-conflicting with c on this vertex pair. The case for c(uv) < 0 works
analogously. The case where c(uv) = 0 cannot lead to a conflict for c with any other
function.

Lemma 5. Let a, b be two non-conflicting cost functions. If for all vertex pairs uv,
|a(uv)| ≤ |b(uv)|, then opt(V, a) ≤ opt(V, b).

Proof. Let K be a solution for (V, a). Lemma 5 follows from the fact that all vertex
pairs that are edited in cost(K, a) are present in cost(K, b) with greater or equal absolute
value.

Lemma 6. For non-conflicting cost functions a, b, opt(V, a) + opt(V, b) ≤ opt(V, a+ b).

108

6.3 The Branch-and-Bound Algorithm

Proof. LetK be an optimal solution of (V, a+b). Since a, b and a+b are all non-conflicting
(due to Lemma 4), there is never a non-edge in one instance that is an edge in the other.
Thus we get,

opt(V, a) + opt(V, b) ≤ cost(K, a) + cost(K, b)

=
∑

a(uv)<0
u≡Kv

|a(uv)|+
∑

a(uv)>0
u6≡Kv

|a(uv)|+
∑

b(uv)<0
u≡Kv

|b(uv)|+
∑

b(uv)>0
u6≡Kv

|b(uv)|

=
∑

(a+b)(uv)<0
u≡Kv

|(a+ b)(uv)|+
∑

(a+b)(uv)>0
u6≡Kv

|(a+ b)(uv)|

= cost(K, a+ b) = opt(V, a+ b).

Theorem 1. For packing P of the instance (V, s),
∑

p∈P opt(V, p) ≤ opt(V, s).

Proof. Let c : V × V 7→ Z be the element-wise addition of all functions in P which is
non-conflicting with s by Lemma 4. Moreover, Lemma 6 implies that

∑
p∈P opt(V, p) ≤

opt(V, c). Since P is a packing for (V, s) the third property of packings states that for all
vertex pairs uv: |c(uv)| ≤ |s(uv)|. Therefore, Lemma 5 results in opt(V, c) ≤ opt(V, s).

The theorem states that we can pack structures together and sum their lower bounds
to obtain a lower bound for the initial instance. A P3, for example, is represented by
a cost function that is zero throughout except for its three (non-)edges. Therefore, the
concept generalizes P3 packings to weighted instances. Moreover, our formulation of a
packing allows for other structures than P3s. Recall that P3 packings have the drawback
that they cannot exceed |E|/2. To remedy this, we have to find other structures that
have a better lower bound to edge ratio. Actually, a star Sk with k leaves (thus k edges
and

(
k
2

)
non-edges) cannot be solved with less than k − 1 edits. Coincidentally, a P3 is a

star with two leaves. One can even generalize from stars to complete bipartite graphs
Ka,b which cannot be solved in less than a · (b − 1) edits. A star Sk is just a K1,k. So
there is a tradeoff between structures that are easy to find and pack and structures that
have strong lower bounds.
We implemented a P3 packing, a star packing, and a Ka,b packing. In preliminary

experiments, we observed that the quality of star and Ka,b packings were similar while
star packings were easier, and thus slightly quicker, to compute. We thus focus on star
bounds in the following. Our implementation of the star packing builds upon the P3

packing described by Gottesbüren et al. [Got+20b]. They go through all items in the
packing and try to replace one with two currently not in the packing. To not get stuck in
a local optimum, they also randomly replace an item with one other item with a small
probability when it cannot be replaced by two new ones. We make three major changes.
First, we introduce more mutations that change the lower bound by exactly one. For P3s,
the packing grows by removal of one P3 and insertion of two new ones in its place. We
never insert or remove stars with more than two leaves. Instead, we add the option to

109

6 A Branch-And-Bound Algorithm for Cluster Editing

add/remove a leaf. Second, when possible we merge a star with another existing star
instead of mutating it. The merge increases the lower bound of the packing by one. Third,
we relax the termination condition for the local search. They stop if the packing does not
grow for five iterations. In contrast, we continue while the average number of improving
iterations is still above one in five, i.e., five times the number of improving iterations is
greater or equal the number of total iterations. This leads to better packings for instances
that benefit from longer local search while still being fast on instances that quickly hit a
local maximum. Finally note that the packing is weighted but we only pack or modify
unweighted structures. For performance, however, we associate an integer weight with
each star to represent multiple identical overlapping stars.

6.3.3 Reduction Rules

There exist various reduction rules [Bas+16; BBK11; CC12; CM12; Got+20b; Guo09] and
we introduce additional ones (Forced Choices Single Merge and Clique-Like Subgraph).
In the following, we discuss the reduction rules used by our solver and go into detail on
how our solver applies the rules.

Twin Simple [Guo09]. This rule merges vertices with identical neighborhoods and is
part of the unweighted 4k kernel based on critical cliques [Guo09]. The rule originally
only works for unweighted instances. We generalize it to a pair of vertices in the weighted
setting as follows. We can merge u and v with s(uv) ≥ 0 if their edit cost to every other
vertex differs by the same constant positive factor, i.e., there exists a c > 0 such that
s(uw) = c · s(vw) for every other vertex w. The correctness proof is analogous to the
unweighted case and goes roughly as follows. If v being in a certain cluster produces cost
X, then u being in this cluster produces cost cX. Thus, the cheapest cluster for v is also
the cheapest cluster for u, though there could be multiple equally cheap clusters. In the
latter case it is nonetheless still not worse to put u and v together as s(uv) ≥ 0. We note
that applying this rule repeatedly to an initially unweighted instance merges all critical
cliques.

Twin Complex [BBK11, Rule 5]. Let u, v be two nodes that are connected with an
edge. The rule considers, for all possible ways to separate them into different cliques,
the worst case cost of moving one into the clique of the other. If deleting the edge uv
is at least as expensive as this worst case, then there is an optimal solution with u, v in
the same clique and the edge can be contracted. The rule is checked with a dynamic
programming (DP) approach [BBK11].

Unfortunately, the DP degenerates when dealing with forbidden edges, i.e., edges with
cost −∞. In the following, we discuss why this problem exists and what we did to fix it.
If u and v have a similar neighborhood, then there is no worst case where both, moving
u into v’s clique or vice versa, are expensive. Intuitively, the rule works because one
of the two options is always cheap. Now consider a vertex w with non-edges to u and
v. If another reduction finds the edge uw to be forbidden, i.e., s(uw) = −∞, then two

110

6.3 The Branch-and-Bound Algorithm

things happen to the DP. First, the solutions that put u and w in the same clique can
be ignored, which is beneficial as it makes it more likely that v can be moved into the
clique of u. Second, the worst case will put w and v together, which makes it impossible
to move u into the cluster of v. Thus, due to the second implication, knowing that uw
is forbidden can have a detrimental effect on the applicability of the reduction rule. In
fact, the DP degenerates to the point that not even true twins (except for the forbidden
edge to w) can be merged. To circumvent this problem, we remember the edit cost for
edges that are marked forbidden throughout the whole algorithm. In the DP we then
use the original weights (getting rid of the downside due to the second aspect) but still
skip solutions that put forbidden node pairs in the same clique (still using the upside of
knowing uw is forbidden for the first aspect).

Induced Cost Forbidden/Permanent (icf,icp) [BBK11]. Let ∆ denote the symmetric
difference. The induced costs for setting a vertex pair to forbidden (icf) or permanent
(icp) are

icf(uv) =
∑

w∈N(u)∩N(v)

min{s(uw), s(vw)}

icp(uv) =
∑

w∈N(u)∆N(v)

min{|s(uw)|, |s(vw)|}.

If the induced cost of setting a vertex pair to forbidden (icf) exceeds the current budget,
then the pair must be merged. If the induced cost of setting a vertex pair to permanent
(icp) exceeds the current budget, then the pair must be forbidden.

Heavy Non-Edge [BBK11, Rule 1]. If s(uv) < 0 and |s(uv)| ≥ ∑w∈N(u) s(uw), i.e.,
inserting the edge uv is at least as expensive as isolating u by cutting all of its edges, one
can set uv to forbidden, forcing u and v to be in different clusters.

Heavy Edge, Single End [BBK11, Rule 2]. If s(uv) ≥∑w∈V \{u,v} |s(uw)|, i.e., deleting
uv is at least as expensive as editing all other pairs involving u, one can merge u and v.

Heavy Edge, Both Ends [BBK11, Rule 3]. If s(uv) ≥∑w∈N(u)\{v} s(uw)+
∑

w∈N(v)\{u} s(vw),
i.e., deleting uv is at least as expensive as deleting all other edges adjacent to u and v,
one can merge u and v, as it is always better to let u and v form their own cluster of size
2 than to separate them.

Distance Three Rule [Bas+16]. Two vertices with distance three or more cannot be
in the same cluster in an optimal solution. Therefore, all vertex pairs with distance three
or more are initially marked as forbidden. This does not apply to weighted instances.

111

6 A Branch-And-Bound Algorithm for Cluster Editing

Forced Choices, all Pairs [Got+20b]. If setting an edge to forbidden or permanent
would raise the lower above the upper bound, then the opposite edit must be performed.
In other words, we identify an edge where, if branched on it, one branch would be pruned
immediately.
A naive implementation of this rule is too slow as it requires a quadratic number of

lower bound (i.e. packing) computations [Got+20b]. However all these packings are
similar. Given a packing lower bound for the instance, we locally modify the packing
for each vertex pair to obtain the required bounds. Because a packing changes only
locally, this can be done significantly faster than computing

(
n
2

)
packing lower bounds

from scratch.

Forced Choices, Single Merge. Updating the lower bounds as in the previous rule is
usually worse than computing the bounds from scratch. Thus, we additionally identify
a constant number of edits that are unlikely to be included in the optimal solution and
compute lower bounds for them from scratch. Specifically, we choose five vertex pairs and
test if editing them to non-edges would be too expensive so that the rule produces a merge
when applicable. We do not test for the converse because merges are far more rewarding
than finding a single forbidden edge. To choose the five pairs, a heuristic estimates in
advance which pairs would produce the highest cost when set to non-edges. Criteria for
this heuristic are the cost of the edit as well as the number of overlapping P3s with the
vertex pair before and after the edit.

Clique-Like Subgraph. Given the instance (V, s) and the subset C ⊂ V , we define the
C-subinstance (V, sC) by setting sC(u, v) = s(u, v) if u ∈ C or v ∈ C and sC(u, v) = 0
otherwise, i.e., if u, v ∈ V \ C. The rule states that, if the C-subinstance has no better
solution than to isolate C into a singleton cluster, then we can isolate C in the original
instance. The rule can be checked by exactly solving the C-subinstance. We note that
the instance (V, sC) is likely easier than (V, s) due to the following observation. When
looking at the graph with vertex set V with an edge between u and v if s(u, v) > 0, then
we expect the closed neighborhood N [C] of C to be rather small. Moreover, for a vertex
u ∈ V \N [C] and any other vertex v ∈ V , we have sC(u, v) = 0. Thus, we know that
there is an optimal solution of (V, sC) that has u as singleton, which reduces the instance
to only the vertices in N [C].
To show that the rule is correct, we prove the following theorem.

Theorem 2. Let (V, s) be an instance of Weighted Cluster Editing, and let C ⊂ V
be a set of vertices. If an optimal solution for the C-subinstance isolates C into its own
cluster, then there is an optimal solution for (V, s) that does so as well.

Proof. Let P be any solution of (V, s). We construct a new partition P? that isolates C
such that cost(P?, s) ≤ cost(P, s). For every cluster A ∈ P, the partition P? contains
A \ C. Additionally P? contains C.

For a pair u, v ∈ V , we say that P splits u and v if u and v are in different clusters of
P; otherwise P joins u and v. Similarly, for C ⊆ V , we say that P splits C if P splits

112

6.3 The Branch-and-Bound Algorithm

at least one pair of vertices in C. Otherwise, if C is contained in a cluster of P, then P
joins C. We regularly need to sum over only negative or only positive cost. To simplify
notation in these cases, let s+, s− : V × V → N be defined as s+(u, v) = max(0, s(u, v))
and s−(u, v) = max(0,−s(u, v)). The cost of the solution P is then defined as

cost(P, s) =
∑
u,v∈V

P splits u,v

s+(u, v) +
∑
u,v∈V

P joins u,v

s−(u, v).

For the subset C ⊂ V and its complement T = V \ C it will be useful to split the sum
in cost(P, s) by vertex pairs within C, pairs between C and T , and pairs within T . We
have

cost(P, s) =
∑
u,v∈C

P splits u,v

s+(u, v) +
∑
u,v∈C

P joins u,v

s−(u, v) +

∑
(u,v)∈C×T
P splits u,v

s+(u, v) +
∑

(u,v)∈C×T
P joins u,v

s−(u, v) +

∑
u,v∈T

P splits u,v

s+(u, v) +
∑
u,v∈T

P joins u,v

s−(u, v).

(6.1)

Now we can bound the cost of P? in the original instance. Consider the six sums of
cost(P?, s) as in Equation (6.1). The first sum evaluates to 0 as P? does not split pairs
in C. Similarly, the fourth sum evaluates to 0, as P? does not join vertices from C with
vertices from T . For the second and third sum, we can drop the condition that P joins
and splits u, v, respectively, as P joins all pairs in C and splits all pairs between C and T .
Finally, P? splits a vertex pair u, v ∈ T if and only if P does, i.e., we can exchange P?
with P in the fifth and sixth sum. Thus, writing the remaining sums in order 5, 6, 2, 3,
we obtain

cost(P?, s) =
∑
u,v∈T

P splits u,v

s+(u, v) +
∑
u,v∈T

P joins u,v

s−(u, v) +
∑
u,v∈C

s−(u, v) +
∑

(u,v)∈C×T

s+(u, v)

=
∑
u,v∈T

P splits u,v

s+(u, v) +
∑
u,v∈T

P joins u,v

s−(u, v) + opt(V, sC)

≤
∑
u,v∈T

P splits u,v

s+(u, v) +
∑
u,v∈T

P joins u,v

s−(u, v) + cost(P, sC)

= cost(P, s).

The first equality follows from the premise of the theorem that there is an optimal solution
for the C-subinstance that isolates C. Any solution for the subinstance that isolates C
has to pay for all non-edges in C as well as all edges from C to V \ C. Moreover the

113

6 A Branch-And-Bound Algorithm for Cluster Editing

solution that keeps all other vertices as singletons incurs no additional cost beyond this.
Therefore the premise can alternatively be stated as∑

u,v∈C
s−(u, v) +

∑
(u,v)∈C×T

s+(u, v) = opt(V, sC). (6.2)

For the inequality, we have opt(V, sC) ≤ cost(P, sC) because P is also a solution for
(V, sC). Regarding the last equality, note that cost(P, sC) coincides with cost(P, s) except
that the last two terms of Equation (6.1) evaluate to 0 for costS(P, sC), i.e.,

cost(P, s) = cost(P, sC) +
∑
u,v∈T

P splits u,v

cost+(u, v) +
∑
u,v∈T

P joins u,v

cost−(u, v).

In conclusion, we obtain cost(P?) ≤ cost(P), which proves the claim.

Unused Reductions. There are other reduction rules in the literature, which did not
make it into our solver for different reasons, which we briefly discuss in the following.

The Clique-Like Subgraph rule is similar to Rule 4 by Böcker et al. [BBK11], which is
based on min-cuts. Since the min-cut rule can be computed more efficiently it could be
useful in a solver, but we found it to be ineffective during preliminary testing. It has a
similar drawback as the Clique-Like Subgraph rule, in that it does depend on the choice of
a subset C. This drawback has been lifted in a recent result, which presents an algorithm
to efficiently find all subsets to which the rule is applicable [Sch+22]. Thus, the inclusion
of the min-cut rule in future solvers should be considered.
We implemented the reduction rules by Cao and Chen [CC12] leading to a kernel of

size 2k, which is the smallest known kernel for cluster editing. However, our preliminary
experiments showed that these reduction rules were dominated by other rules. Moreover,
the rules explicitly exclude zero-edges, which we can get due to edge contractions, and it
is not obvious how to adapt the rules to this setting.

Böcker et al. [BBK11] suggest the improvement to the Induced Cost Forbidden/Permanent
rules to add a lower bound for the graph without u and v to the induced costs to obtain
an even stronger rule. The P3-packing bound exactly captures this idea, even if it does
not explicitly compute icf / icp, because all triangles formed with uv have a combined cost
of icf / icp and can all be included in the packing because they share only the vertex pair
uv. Moreover, the P3-packing bound is strictly stronger in a weighted setting because
it can additionally use the residual cost of edges uw and vw for all w ∈ V \ {u, v} after
each P3 constituting the icf / icp is removed. Although the Forced Choices All Pairs
rule with P3 packings as bound dominates this improved version of the icp/icf rules, we
keep the icp/icf rules in the solver as a failsafe to detect possible errors in the involved
implementation of the forced choices rule.

Finally, there are the rules used in the unweighted 4k and 2k kernels [CM12; Guo09]. We
have not implemented or adapted them to a weighted setting except for our generalization
of the Simple Twin rule. The kernels are based on critical cliques, i.e., a clique containing
nodes with identical closed neighborhood and the Simple Twin rule merges all critical

114

6.3 The Branch-and-Bound Algorithm

cliques when applied repeatedly. Moreover, some other rules from these kernels are
captured by our implemented rules. E.g., the Induced Cost Forbidden rule dominates
rule 1 from the unweighted 2k-kernel [CM12]. Nevertheless, the rules could be useful in
future work.

6.3.4 Reduction Order

Reductions are checked sequentially in a certain order. If one reduction was applied, the
process rechecks all reductions starting with the first one. Before the loop repeats, a new
lower bound is computed to check if the current branch can be pruned. We chose the
order of reductions by decreasing effectiveness. The forced choices reductions are the
most effective reductions and come first. Twin Complex is also very effective, but we
do Twin Simple before that because it is faster and already catches some cases for Twin
Complex. The remaining reductions run in O(n3) each with low constant factors so their
order does not matter as much. The final order of reductions that are checked during the
branching algorithm is:

1. Forced Choices, all Pairs (Star)

2. Forced Choices, all Pairs (P3)

3. Twin Simple

4. Twin Complex

5. Induced Cost Forbidden/Permanent

6. Heavy Edge, Both Ends

7. Heavy Edge, Single End

8. Heavy Non-Edge

The initial instance is reduced differently. The Distance Three rule is applied once
before the reduction loop since it is only applicable to unweighted instances. Then, the
Clique-Like Subgraph reduction checks the clusters that are found by the heuristic solver.
The optimal solution for the subinstances is computed with the exact solver itself. To
keep the running time reasonable we skip subinstances with 50 vertices or more and run
the solver with a timeout of 5 seconds. Finally, the other reductions are applied in a
loop. During the loop, the order differs in three aspects from the order given in the list
above. First, small connected components are brute-forced before the first item on the
list. Second, Forced Choices Single Merge is added as a last reduction. Third, Force P3 is
applied before Force Star.

115

6 A Branch-And-Bound Algorithm for Cluster Editing

6.4 Experiments

In Section 6.4.1, we discuss the performance of our solver, the efficiency and effectiveness of
the reduction rules, and the quality of lower and upper bounds. In Section 6.4.2 we perform
scaling experiments and determine how structural properties affect the solver performance
on geometric inhomogeneous random graphs (GIRGs) [BKL19]. As a generative network
model, GIRGs can generate a series of similar instances that differ in a single property
such as size, average degree, or clustering.

Setup. The experiments were run single threaded on a 4-Core Intel Xeon E5-1630v3 at
3.7GHz with 128GB DDR4 at 2133MHz. Each run has a soft timeout of one hour except
for Figure 6.4a where it was 10 minutes per instance. Soft timeout means the current
subroutine, is allowed to finish for the solver to terminate gracefully. To generate GIRGs,
we use the efficient generator introduced in Chapter 2. The random components such as
the generation of GIRGs or the local search to find a packing bound use the Mersenne
Twister algorithm of the C++ standard template library. They are seeded as to produce
deterministic results. In fact, each lower bound computation uses the same seed therefore
producing the same output when given identical inputs. The code for the experiments,
raw data, execution logs, instances, as well as the plotting code can be found in a branch
of our public repository3.

6.4.1 PACE Instances

In the following, we use the public and hidden instances from the 2021 PACE challenge
to evaluate our solver. They represent a well balanced selection of instances from
bioinformatics and data mining as well as randomly generated ones. Moreover, they
are publicly available at the PACE website4. We discuss the effectiveness and efficiency
of individual reduction rules as well as their combination used in the solver. Then, we
compare the quality of the greedy upper bound to the lower bounds obtained by the P3

and star packing, respectively.

Solver Performance. In total, the algorithm solves 173 of the 200 instances from the
PACE challenge with a timeout of one hour. Most instances finish significantly faster
than that; 98 are solved in just one second and 160 finish in under a minute. Figure 6.1a
shows for each instance if it was solved and whether reductions produce an empty kernel
or branching was necessary. The axes correspond to the number of nodes and the initial
gap between upper and lower bound. The gap is a good indicator of difficulty for our
solver while the number of nodes seems unrelated to difficulty. All unsolved instances
have a gap above 10. Surprisingly, 151 instances are solved with reductions alone. For a
comparative evaluation of solver performance with other state-of-the-art algorithms, we
refer to the official report of the 2021 PACE challenge [Kel+21]. On the hardware used

3https://github.com/kittobi1992/cluster_editing/tree/experiments
4https://pacechallenge.org/

116

https://github.com/kittobi1992/cluster_editing/tree/experiments
https://pacechallenge.org/

6.4 Experiments

0 100 200 300 400 500 600
n

0

100

101

102

in
iti

al
 g

ap

unsolved
solved with branching
empty kernel

(a) The initial gap between lower and upper
bound.

0 25 50 75 100 125 150 175 200
instance

0

100

200

300

400

500

600

n

input w/o isolated cliques
input as is

(b) Vertices before/after removing isolated
cliques.

Figure 6.1: For the 200 PACE instances, the gap between upper and initial lower bound
(left) and the number of vertices per instance (right). In the left plot, the
color indicates if an instance was solved by reductions only, needed branching,
or remained unsolved in the given one-hour time limit.

in the actual challenge and a 30 min timeout, our algorithm solved 171 instances, while
the second best submission solved 160.

Reduction Effectiveness. To evaluate the effectiveness of the reduction rules, we com-
pute a kernel with each rule separately, i.e., apply the rule exhaustively with a soft
timeout of one hour. This results in one kernel per combination of rule and instance.
Before the kernel is computed we apply the Distance Three reduction rule which marks
all vertex pairs in distance three or more as forbidden. Isolated cliques are removed from
the input instance and once more from the final kernel. Figure 6.1b shows the size of the
instances with and without the removal of isolated cliques. The results of the kernelization
experiments can be seen in Figure 6.2. Each plot has a box for each reduction rule which
represents the kernels made with this rule. There are two columns; the left one includes
all instances while the right one only includes instances where the initial star bound does
not match the upper bound. The instances with a gap between upper and lower bound
represent more difficult instances for the solver thus making reductions more valuable on
them. The rules force p3 and force star refer to the Forced Choices, all Pairs reduction
with the respective lower bound. The combination of the Induced Cost Forbidden and
Permanent rules is labeled with icx. We also compute a kernel using all reduction rules
(labeled as all reds) in the combination and order they are used by our solver to reduce
the initial instance (see Section 6.3.3) excluding the brute-force of small components and
the Clique-Like Subgraph reduction.

To evaluate the quality, we use three different measures. First, the number of vertices
in the kernel, second, the number of edits that are already found, and third, whether the
lower and upper bound get closer after computing the kernel. The number of vertices
is a typical metric for kernel quality. For the second measure, the existence of an FPT
algorithm for cluster editing indicates that the difficulty of the problem (the exponential

117

6 A Branch-And-Bound Algorithm for Cluster Editing

0

20

40

60

80

100
ke

rn
el

 si
ze

 in
 %

all instances instances with gap>0

0

20

40

60

80

100

fo
un

d
ed

its
 in

 %
 o

f u
pp

er
 b

ou
nd

101

100

0
100

101

102

ke
rn

el
 g

ap
 -

in
iti

al
 g

ap

all
red

s

for
ce

p3

for
ce

sta
r

tw
in

sim
ple

tw
in

com
ple

x icx

he
av

y e
dg

e (
b)

he
av

y e
dg

e (
s)

he
av

y n
on

-ed
ge

for
ced

 sin
gle

 m
erg

e
100

101

102

103

104

105

106

107

tim
e

in
 m

s

all
red

s

for
ce

p3

for
ce

sta
r

tw
in

sim
ple

tw
in

com
ple

x icx

he
av

y e
dg

e (
b)

he
av

y e
dg

e (
s)

he
av

y n
on

-ed
ge

for
ced

 sin
gle

 m
erg

e

Figure 6.2: Kernels of PACE instances for each reduction rule. The rows show size, found
edits, absolute gap change and time to compute the kernels. The left column
includes all 200 instances while the right includes only the 121 instances
with non-matching upper and lower bound. The label all reds refers to a
combination of all other listed reduction rules.

118

6.4 Experiments

part) is due to the size of the solution (the number of edits) rather than the size of the
instance. In that sense, the percentage of edits that are already found during kernelization
is a better indicator for progress towards a solution than instance size. The third measure,
the gap between upper and lower bound, represents the difficulty of the kernel for any
branch-and-bound solver using the lower bound that was used to compute the gap. With
the change of the gap we estimate whether the kernel is easier or harder for our algorithm
than the initial instance.

The first row shows the number of vertices in the produced kernels relative to the size
of the initial instance without isolated cliques. The icx rules, both heavy edge rules and
the heavy non-edge rule do not reduce the instance in the median. The heavy non-edge
rule finds only forbidden edges. Therefore, the only way this rule could possibly reduce
the number of vertices is by isolating a clique that is removed by our postprocessing.
The simple twin and complex twin reductions are more effective with the complex twin
producing smaller kernels. The non-zero gap instances prove to be harder for the twin
reductions but the rules still find some application. The reductions based on forced
choices produce the smallest kernels with an average size of 26% for force star, 44% for
force P3 and 36% for forced single merge. Best of all is the combination of all reduction
rules that produces an empty kernel on more than 75% of instances and more than 50%
of instances with a positive gap. On average, all reds reduces the instance to a size of
18%. While not explicitly shown, the instances with zero gap are interesting, too. The
force star and the forced single merge reductions should produce an empty kernel in this
case. While they indeed always apply initially, they do not always produce an empty
kernel. This is because after the instance was reduced a few times it becomes weighted.
Computing good packings for weighted instances becomes more difficult and might not
be sufficient for the forced choices rules. In case of the forced single merge, the larger
instances time out before the kernel is finished. Both these phenomenon happen rather
rarely. On zero-gap instances the forced star produces a kernel size of 1.26% on average
and 5.08% for forced single merge.

The second row shows the number of found edits that must be included in an optimal
solution, i.e., the value that k is lowered by during kernelization. This value is normalized
relative to the upper bound and represents another kind of progress towards solving the
instance. The higher this value, the fewer choices remain to be fixed to solve the instance.
Note that the values should be inverted when comparing with kernel size because for
this plot 100% means solved while for instance size 0% means solved. Most reductions
indicate similar results as for the kernel size. A notable exception is the simple twin rule.
Since this rule only merges vertices with identical neighborhood, it never produces any
cost but just reduces the instance. Interestingly, the progress made due to found edits is
slightly better than the kernel size for the forced choices rules. For example, the force p3
kernel finds ca. 90% of edits in the median while the median kernel shrinks the instance
by less than 80%. Since cluster editing is FPT in the number of edits, this is contrary
to the expectation that the number of edits instead of the size of the instance should be
responsible for the instance difficulty.

The third row shows the absolute change in gap after the kernel was computed, i.e., how

119

6 A Branch-And-Bound Algorithm for Cluster Editing

much the difference between upper and lower bound has changed due to the kernelization.
The y-axis uses symmetric log-scaling. A positive value means the gap grew and a negative
value means the gap shrank. It might seem unintuitive that the gap can grow as previous
lower bounds (before kernelization) still hold for the kernel. To explain this, consider
two types of progress. The number of performed edits is hard progress, the lower bound
represents soft progress. Once the total progress reaches the upper bound, the instance
is solved. Hard progress is final but soft progress is temporary in the sense that, when
actually solving the remaining instance, each reduction or branching step produces a new
instance for which it might be more difficult to find good lower bounds. In general, there
is no clear tendency for any reduction rule to only grow or only shrink the gap. The
variance is very high to both sides. Thus, the inaccessibility of the kernel for soft progress
sometimes outweighs the hard progress. In other cases it is the other way round or soft
progress is even easier to achieve on the kernel. This is, e.g., the case for the simple twin
rule, which makes no hard progress at all but has outliers to both sides. The median gap
change is zero when looking at all instances. This is not surprising since 79 of the 200
instances already start with a gap of zero. For instances with a non-zero initial gap (the
right column), the combination of all reductions actually reduces the gap by one for the
median instance.

Reduction Efficiency. To evaluate the kernels by performance, we measure the time
it takes to compute them. The last row of Figure 6.2 shows the results. The y-axis is
logarithmic. Note that the highest outliers are approximately at 3.6 · 106ms which equals
the soft timeout of one hour. All but the forced choices rules have a comparable run
time with less than 100ms for more than 75% of the instances. Of these rules, just the
twin complex and the icx rule have outliers over 1s and are in general the slowest of the
non-forced choices rules. Note that the icx rule can be exhaustively applied in time O(n3)
which is the same time one execution of the rule takes [Böc+09]. We instead apply the
rule repeatedly since its run time is dominated by the forced choices rules. In the median,
force p3 is slightly below 100ms, force star takes just above 1s, and forced single merge
approximately one minute. All reductions combined are faster than force star but slower
than force p3. Since all reductions produce by far the best kernels, this speaks for the
order in which they are applied.

Bound Quality. Figure 6.3 compares the P3 bound, the star bound, and the optimum
solution. The values are given relative to the upper bound computed for the instance.
Figure 6.3a aggregates this over all instances while Figure 6.3b contains only solved
instances and additionally shows the optimum solution. Note that the y-axis begins at
0.7 which means that even the worst outlier is already fairly good. The first observation
is that the optimum is at 1.0 relative to the upper bound with no variance between
instances. In fact, the upper bound from our heuristic solver matches the optimum on all
173 instance we can solve. Therefore, the lower bounds can be considered relative to the
optimum; at least for the right plot. In total, the star bound is significantly better than
the P3 bound with all but one instances having a bound at more than 90% of the upper

120

6.4 Experiments

star bound p3 bound

0.70

0.75

0.80

0.85

0.90

0.95

1.00

bo
un

ds
 re

la
tiv

e
to

 u
pp

er
 b

ou
nd

(a) Lower bounds via P3, star packing (all in-
stances).

star bound p3 bound optimum

0.70

0.75

0.80

0.85

0.90

0.95

1.00

bo
un

ds
 re

la
tiv

e
to

 u
pp

er
 b

ou
nd

(b) Lower bounds and optimum for solved in-
stances.

Figure 6.3: Packing lower bounds via P3 and star packings on all instances (left) and on
solved instances (right). The right plot additionally contains a column for
the optimum. All values are relative to the respective upper bound for the
instance. Note that the y-axis ranges from 0.7 to 1.0.

bound. The orange line for the median is only slightly lower for P3 compared to the star
bound but in this context this is huge. The number of edits in an optimal solution is
approximately 1800 on average and goes as high as 27000. In contrast to this, we did
not solve any instance with an initial gap of more than 30 (see Figure 6.1a), which is
less than 2% of the 1800 edits needed on average. The average gap over all instances
is 123 for P3 and 15 for the star bound. Of course the average is heavily biased by the
huge number of edits for the larger instances. Nevertheless, the 75th percentile ordered
by absolute gap represents a gap of 43 for P3 and 9 for the star bound, which makes the
difference between solvable and unsolvable in this context.

6.4.2 Experiments on GIRGs

We use geometric inhomogeneous random graphs [BKL19] and our generator from Chap-
ter 2 to benchmark the solver for a growing number of vertices, temperature, and average
degree and to investigate the structure of an optimal solution. Unless noted otherwise, the
number of vertices is 150, the average degree is ten, the power-law exponent describing
the degree distribution is 2.9, the temperature parameter, which controls the degree of
clustering, is zero (meaning high clustering) and the dimension of the ground space torus
is two. For each set of input parameters for the GIRG model we generate 10 instances
with different seeds.

Temperature and Average Degree. Figure 6.4a shows the effect of clustering and
average degree on solver performance. For each combination of temperature and average
degree, the plot shows how many of ten instances were solved in less than ten minutes.
There is a clear threshold behavior that instances with both, high temperature and high
average degree, are rarely solved. High average degree (13) and low temperature (0.0) is

121

6 A Branch-And-Bound Algorithm for Cluster Editing

7 8 9 10 11 12 13
deg

0.0

0.2

0.4

0.6

0.8
T

Num Solved
0
2
4
6
8
10

(a) Number of solved instances by T and de-
gree.

100 120 140 160 180 200
n

0

5

10

15

20

in
iti

al
 g

ap

unsolved
solved with branching
empty kernel

(b) The initial gap between lower and upper
bound.

Figure 6.4: Solved instances by degree and T (left) and the initial gap on growing GIRGs
(right). The colors in the right plot indicate if an instance was solved by
reductions only, needed branching, or remained unsolved in the given time
limit. The left plot maps color and size to solved instances.

manageable with four of ten instances solved; high temperature (0.8) and low average
degree (7) even more so with seven of ten instances solved. In contrast, the algorithm
solved only 4 of the 80 instances with temperature at least 0.6 and average degree at least
10.

Graph Size. Figure 6.4b gives an overview of which instances could be solved with or
without branching. The axes are the size of the graph and the initial gap between lower
and upper bound. As expected, the instances that could not be solved have a higher gap.
Compared to the PACE instances, fewer can be solved without branching and only one
has matching initial upper and lower bounds. Nevertheless, 41 of these 110 instances
are solved by reductions alone. An instance with only 140 vertices was not solved and
has a substantially higher gap than the others of the same size. GIRGs with the same
configuration can vary greatly in difficulty for our solver. Two instances with 190 nodes
and three with 200 nodes are unsolved.
Figure 6.5a and 6.5b show the total run time of the solver and the time spent with

initial reductions, respectively. Although the run time of the solver differs up to three
orders of magnitude between instances of the same size, the median time to solve an
instance grows from 100 to 140 vertices. After that, the growth becomes less pronounced
such that the variance makes it hard to estimate a clear trend. Also the last two columns
are biased because of the instances that timed out. We explain the high variance by the
comparatively small range of n that can reliably be solved and the low number of samples.
Thus, in the range from 150 to 200 vertices the random sampling of position and degree
distribution affects the difficulty of the GIRG for our solver more than the size of the
graph. Nevertheless, the time to compute the initial kernel grows steadily with increasing
number of nodes (see Figure 6.5b).

122

6.4 Experiments

100 110 120 130 140 150 160 170 180 190 200
n

102

103

104

105

106

ru
n

tim
e

in
 m

s

(a) Run time in milliseconds on solved instances.

100 110 120 130 140 150 160 170 180 190 200
n

102

103

104

105

106

ru
n

tim
e

in
 m

s
(b) Run time in milliseconds for the initial ker-

nel.

Figure 6.5: The run time of the solver in total (left) and to compute the initial kernel
(right).

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

n

0

100

200

300

400

500

600

#o
f e

di
ts

deleted edges
added edges

(a) Average edit counts in an optimal solution.

0

7
22

23

71

105

125

133

140

145

148

32

118

136

14

25

30

52

53
60

63

75

128

54

59

126

137

5

143

48
79

28

29

46

47

70

76

78

81

101

108

112

123

132

9

35

73

87

103

1

4

11

13

21

27

36

66

69

82

85

98

100

120

122

127

134

139

144

146

20

67

84

95

107

129

41
80

102

93

86

48

142

45

51

55

106

115

15

99

104

8

16

24

34

44

90

91

124

130

83
109

10

121

12

43

50

65

89

68

37

58

113

72

138

117

26

3

6

56

111

116

57

61
62

77

88 131

64

40

135

119

141

49

96

2

31

42

38

19

39

74

92

110

147

17

18
33

43

94

97

149

114

(b) An optimal solution for a GIRG.

Figure 6.6: The number of edits in an optimal solution (left) and a possible optimal
solution (right). The left plot shows the average over ten instances. The right
GIRG was generated with default parameters and edits are indicated by color.
Thus, the green edges are not in the generated GIRG.

123

6 A Branch-And-Bound Algorithm for Cluster Editing

Solution Structure on GIRGs. Figure 6.6b shows the edits of an optimal solution for a
GIRG with the default parameters listed above. Note that the positions for the vertices
are sampled in a unit torus where opposite borders are identified. Due to the scale-free
degree distribution, some vertices have very high degree in the input instance. Most of
those edges are deleted and the high-degree node is placed in the largest clique in close
proximity. There are many small cliques in the resulting cluster graph and more edges
are deleted than inserted. Figure 6.6a confirms this observation. The plot shows the
number of deleted or added edges in an optimal solution over growing graph size. Each
bar represents the average over all solved instances for this size. Due to the average
degree of ten, the number of edges in the input is between 500 and 1000. The number of
total edits grows approximately linear in the size of the graph and deletes about half of
all edges. In fact, between 44 and 64 percent of the edges are deleted which seems to be
independent of graph size. The number of inserted edges is comparatively low but also
grows with growing number of vertices.

6.5 Conclusion

We present an exact branch-and-bound algorithm for the cluster editing problem. More-
over, we propose new reduction rules as well as formalize an improved technique to obtain
lower bounds via subgraph packings, which contributes significantly to the success of the
solver. We evaluate the lower bounds as well as various reductions rules on the instances
of the 2021 PACE challenge. The lower bounds match the optimum on 79 of the 173
instances we were able to solve. For the reduction rules, by far the most effective ones
are the rules that depend on lower bounds to identify forced choices, i.e., edge pairs that
must or must not be edited in any optimal solution. They produce kernels with a small
number of vertices and reduce k (the number of allowed edits) to an even greater extent.
Combining all reductions used by the solver produces an empty kernel on more than
75% of all instances. We also investigate the effect of size, clustering, and density on our
algorithm in a scale-free network model. While the size of the graph has a small effect on
performance, the combination of high density and low clustering produces remarkably
hard instances.

124

7 Conclusion and Outlook

In this thesis we explored the capabilities of the GIRG model in algorithm engineering.
After implementing an efficient GIRG generator, we used it to engineer algorithms for
maximum flow, minimum spanning arborescence, hitting set, and cluster editing. The
GIRG model as well as the generator helped to inspire, design, evaluate, and better
understand our algorithms on realistic networks. The following sections summarize the
findings of the individual chapters and propose directions for future research before
reaching a general conclusion in Section 7.6.

7.1 Generating GIRGs

The first step was to implement a generator that can efficiently produce instances of the
model at the scale of large real-world networks, which the naive quadratic implementation
is not capable of. Although a linear time algorithm was known for some time [BKL15;
BKL19], its description is rather technical and the algorithm was never implemented
before. This was partly due to HRGs, as a special-case of GIRGs, having a multitude of
efficient generators (see Section 2.1.2). Unfortunately, most of these HRG generators are
further restricted to the easier threshold case of the model (T = 0) and lack the capability
to generate more difficult, noisy instances.
In Chapter 2, we refined and implemented the algorithm by Bringmann, Keusch, and

Lengler [BKL19] to obtain the first subquadratic generator of the GIRG model. Our
generator allows non-zero temperatures and its HRG special case outperforms all existing
HRG generators in a sequential setting. The code supports parallelization. However, this
was not the focus of our work and generators for HRGs with better scaling on multiple
cores/compute nodes are available [Pen17; Fun+19].
In practice, a major open question was to determine the dependence of the input

parameters of the model on the average degree of the resulting graph. All applications
throughout this thesis need to fix the average degree in some way. For HRGs, there
exists a method to calculate the input parameters to achieve a desired average degree
asymptotically but this method becomes unreliable for small graphs and graphs with
non-zero temperature. For example, to generate the HRGs visualized in Section 1.2.5,
we input a desired average degree of 16 to obtain a graph with an actual average degree
of 8. Furthermore, this method does not translate to the GIRG model. We determined
the relation of the input parameters and average degree for the GIRG model, but it
turned out to be difficult to solve analytically. Instead we provide an efficient estimation
algorithm that produces accurate results and whose runtime is negligible in practice.

Using our generator and estimation algorithm, we were able to investigate the relation

125

7 Conclusion and Outlook

between HRGs and GIRGs. Since the theoretical inclusion of the HRG model in the
GIRG framework is an asymptotic statement, the actual similarity of these models in
practice was still an open question. We answered this question by experimentally showing
that a large GIRG and HRG with matching parameters have more than 99% of their
edges in common but the remaining difference does not fully converge to zero with a
growing number of vertices.
For future work, further speeding up the generator appears unnecessary, because the

current generator produces output faster than it can be written to disk. Instead, additional
features like generating only a region of the ground space like an angular segment of a
HRG are more valuable. Another contribution would be a better method to estimate the
average degree of HRGs since the HRG variant of our generator currently relies on the
imprecise estimation mentioned above.

7.2 Scale-Free Flow

In Chapter 3, we designed a flow algorithm specifically for scale-free networks. GIRGs
played a crucial role for this algorithm, since the theory on the related HRG model
provided the inspiration to use bidirectional breadth-first search. Moreover, GIRGs
allowed a thorough evaluation that yielded evidence to support the claim of sublinear
running time. In itself an algorithm with sublinear running time is only useful if it is
executed on the same dataset multiple times since otherwise the time to read the input
would dominate. Applications that require multiple cuts/flows in scale-free networks
include the computation of a Gomory-Hu tree [GH61], clustering techniques [FTT04;
LR04; Sch07; AL08; OZ14; VGM16; VKG19] as well as community detection and the
study of community structure in general [FLG00; IK04; SJN06; Les+09]. For future
work in this direction, it would be interesting to consider our experimental results from a
theoretic point of view.

7.3 Minimum Spanning Arborescence

In Chapter 4, we conducted the first experimental evaluation of algorithms for the
minimum spanning arborescence problem. To this end, we simplified and provided the
first implementation of the GGST algorithm [Gab+86], which is the asymptotically fastest
algorithm for the problem running in O(n log n + m). We also implemented efficient
solvers based on Tarjan’s algorithm [Tar77], which is at most a logarithmic factor slower
than the GGST algorithm in theory.
An extensive evaluation on a large number of real world networks found that the

overhead of the GGST algorithm still outweighs this logarithmic factor even after our
optimizations and careful implementation. Surprisingly, we found that the version of
Tarjan’s algorithm that uses a min-heap is often the fastest even though it adds another
logarithmic factor (on top of the previously mentioned) due to the missing decrease-key
operation. While GGST was outperformed on real-world networks, we were able to

126

7.4 Hitting Set

produce realistic instances with the GIRG generator in a density regime were our GGST
implementation beats the other available solvers.

The near-linear time of our implementations stands in contrast to the publicly available
library solvers, which are Tarjan-based and take quadratic time in the worst case. Inter-
estingly, the library solvers perform better than expected on many real-world instances
and especially on GIRGs. We described and benchmarked a family of networks, which
force them into their quadratic worst-case. For future work, it would be interesting
to investigate why the quadratic worst-case of the library solvers does not occur for
real-world networks. A nice result would be a parameter that is provably small on GIRGs
and allows to describe the running time of these solvers more accurately.
Another direction is to simplify the GGST algorithm, which is still quite complex. A

valuable contribution would be an algorithm that keeps the theoretical running time of
the GGST algorithm (which is probably optimal) but with less overhead. In general, our
work provides a baseline to evaluate and design arborescence algorithms in the future.

7.4 Hitting Set

In Chapter 5, we designed and evaluated a branch-and-bound algorithm for the hitting
set problem. Unlike the maximum flow and minimum arborescence problems, hitting set
is NP-hard. Thus our algorithm needs exponential time in the worst case. Nevertheless,
it is able to solve large instances in reasonable time and outperforms ILP solvers, which
are the state-of-the-art approach to solve hitting set.
The key contributing factor to its performance are lower bounds. We collected and

formalized lower bounds used in the literature and established the complete inclusion
hierarchy between them. One of the most effective techniques for obtaining lower bounds
are packings. In this context, a packing describes a collection of sets to hit that are
pairwise disjoint. Any valid solution must select at least as many elements as there are
sets in the packing, because each element hits at most one set. Using these lower bounds
and reduction rules based on them, the solver performs exceptionally good on real-world
instances but struggles with random input.
To further investigate why realistic input is easier to solve, we again use GIRGs and

our efficient generator developed in Chapter 2. At first glance, the hitting set problem
seems unrelated to GIRGs because it is defined for a family of sets instead of graphs.
However, an instance of hitting set forms a hypergraph and a hypergraph can be seen as
a bipartite graph with the two sides being the hyperedges and vertices of the hypergraph.
We adapted the GIRG generator to produce bipartite graphs and interpreted them as
hypergraphs. A very similar setting was proposed to analyze the proof complexity of
boolean satisfiability instances where clauses and variables form the bipartite incidence
graph [Blä+21c]. The bipartite GIRG generator allowed us to further investigate the
performance of the algorithm and we found that heterogeneity and locality are major
contributors to the performance of the algorithm.

Theoretically analyzing the bipartite GIRG model seems a promising direction of future
work. In particular, an estimation algorithm for the average degree would be desirable to

127

7 Conclusion and Outlook

avoid the currently used binary search. A different direction is to improve and broaden the
scope of the solver. For example, a fast solver for weighted hitting set would be valuable
in different contexts and could build on top of the findings of our unweighted solver.

7.5 Cluster Editing

The last problem we considered in this thesis is cluster editing. We provide a fast branch-
and-bound algorithm that solves instances with hundreds of vertices in a few seconds. We
use the packing technique — as in the hitting set solver — to obtain good lower bounds in
practice. These lower bounds together with parameter-dependent reduction rules allow us
to solve most of the instances of the 2021 PACE challenge without branching. To achieve
these results, we generalized the packings to weighted instances and to packings of more
elaborate structures. There is a tradeoff when choosing the complexity of the packed
structures. The more complex the structure, the better the bound but also the harder it
gets to compute a good packing. In our implementation, stars were most effective.
Using GIRGs we found that the time it takes the solver to process similar instances

varies significantly and the size of the instance does not seem to affect this behaviour
much. However, the amount of locality and the density of the graph drastically change the
difficulty of an instance. GIRGs with little locality and a slightly raised average degree
are almost impossible for the solver. Investigating further, we found that a solution on a
GIRG needs to delete most of the edges and keeps only few larger clusters. This explains
why higher density and missing locality makes the instances more difficult.

For future work, analyzing the packing technique would address multiple open questions.
Even though these lower bounds are the most important part of our algorithm, it is still
unclear if even the simplest packings can be computed in polynomial time since they reduce
to an independent set problem on a restricted graph class. Both, a polynomial algorithm
or a hardness result would certainly provide valuable insights. Even approximation results
for different kinds of packings could directly translate to huge performance improvements
of our solver. Another way to further improve the solver is to incorporate a recent
technique for a reduction rule based on min-cuts [Sch+22].

7.6 Summary

To summarize our results from the four considered problems, we showed that the GIRG
model can be useful in different contexts. GIRGs proved highly flexible and we used
them for problems on weighted, directed, and bipartite graphs. On top of providing
crucial benchmark instances for debugging and testing, GIRGs allowed us to obtain
valuable insights. Most notably, we experimentally showed sublinear running time of our
flow algorithm, investigated the solution structure of cluster editing, complemented our
benchmark set of arborescence instances with a density for which there are no real-world
networks available, and generated networks with adjustable locality and heterogeneity to
reveal the effects of these properties on different algorithms. All this was done using our
efficient generator without which, most of the experiments would not be possible.

128

Bibliography

[ABL09] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. “On the structure
of industrial SAT instances.” In: International Conference on Principles
and Practice of Constraint Programming. Springer. 2009, pp. 127–141. doi:
10.1007/978-3-642-04244-7_13.

[Abu10] Faisal N. Abu-Khzam. “A Kernelization Algorithm for d-Hitting Set.” In:
Journal of Computer and System Sciences 76.7 (2010), pp. 524–531. doi:
10.1016/j.jcss.2009.09.002.

[AD85] Joachim H. Ahrens and Ulrich Dieter. “Sequential Random Sampling.” In:
ACM Transactions on Mathematical Software 11.2 (1985), pp. 157–169. doi:
10.1145/214392.214402.

[Ahu+97] Ravindra K. Ahuja, Murali Kodialam, Ajay K. Mishra, and James B. Orlin.
“Computational investigations of maximum flow algorithms.” en. In: European
Journal of Operational Research 97.3 (1997), pp. 509–542. issn: 0377-2217.
doi: 10.1016/S0377-2217(96)00269-X.

[AJB99] Réka Albert, Hawoong Jeong, and Albert-László Barabási. “Internet: Diame-
ter of the world-wide web.” In: nature 401.6749 (1999), p. 130.

[AL08] Reid Andersen and Kevin J. Lang. “An Algorithm for Improving Graph
Partitions.” In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium
on Discrete Algorithms. SODA ’08. San Francisco, California: Society for
Industrial and Applied Mathematics, 2008, pp. 651–660. url: https://dl.
acm.org/doi/10.5555/1347082.1347154.

[Ama+00] Luıs A Nunes Amaral, Antonio Scala, Marc Barthelemy, and H Eugene
Stanley. “Classes of small-world networks.” In: Proceedings of the national
academy of sciences 97.21 (2000), pp. 11149–11152.

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network
flows: Theory, algorithms and applications. Prentice-Hall, Inc., 1993.

[Ans+16] Carlos Ansótegui, Maria Luisa Bonet, Jesús Giráldez-Cru, and Jordi Levy.
“Community Structure in Industrial SAT Instances.” In: CoRR abs/1606.03329
(2016).

[AOK15] Rodrigo Aldecoa, Chiara Orsini, and Dmitri Krioukov. “Hyperbolic Graph
Generator.” In: Computer Physics Communications 196 (2015), pp. 492–496.
doi: 10.1016/j.cpc.2015.05.028.

129

https://doi.org/10.1007/978-3-642-04244-7_13
https://doi.org/10.1016/j.jcss.2009.09.002
https://doi.org/10.1145/214392.214402
https://doi.org/10.1016/S0377-2217(96)00269-X
https://dl.acm.org/doi/10.5555/1347082.1347154
https://dl.acm.org/doi/10.5555/1347082.1347154
https://doi.org/10.1016/j.cpc.2015.05.028

Bibliography

[ARW12] Diogo V. Andrade, Mauricio G. C. Resende, and Renato F. Werneck. “Fast
local search for the maximum independent set problem.” In: Journal of
Heuristics 18.4 (2012), pp. 525–547. doi: 10.1007/s10732-012-9196-4.

[BA99] Albert-László Barabási and Réka Albert. “Emergence of scaling in random
networks.” In: science 286.5439 (1999), pp. 509–512.

[Bae18] Jeroen Baert. Libmorton: C++ Morton Encoding/Decoding Library. 2018.
url: https://github.com/Forceflow/libmorton.

[Bar+02] Albert-Laszlo Barabâsi, Hawoong Jeong, Zoltan Néda, Erzsebet Ravasz,
Andras Schubert, and Tamas Vicsek. “Evolution of the social network of
scientific collaborations.” In: Physica A: Statistical mechanics and its appli-
cations 311.3-4 (2002), pp. 590–614.

[Bar16] Albert-László Barabási. Network science. Cambridge university press, 2016.

[Bas+16] Lucas Bastos, Luiz Satoru Ochi, Fábio Protti, Anand Subramanian, Ivan
César Martins, and Rian Gabriel S Pinheiro. “Efficient algorithms for cluster
editing.” In: Journal of Combinatorial Optimization 31.1 (2016), pp. 347–371.
doi: 10.1007/s10878-014-9756-7.

[BB06] Danielle Smith Bassett and ED Bullmore. “Small-world brain networks.” In:
The neuroscientist 12.6 (2006), pp. 512–523.

[BBK11] Sebastian Böcker, Sebastian Briesemeister, and Gunnar W Klau. “Exact
algorithms for cluster editing: Evaluation and experiments.” In: Algorithmica
60.2 (2011), pp. 316–334. doi: 10.1007/s00453-009-9339-7.

[BCH16] Michele Borassi, Pierluigi Crescenzi, and Michel Habib. “Into the Square: On
the Complexity of Some Quadratic-time Solvable Problems.” In: Electronic
Notes in Theoretical Computer Science 322 (2016), pp. 51–67. doi: 10.1016/
j.entcs.2016.03.005.

[BF12] Ljiljana Brankovic and Henning Fernau. “Parameterized Approximation Al-
gorithms for Hitting Set.” In: Approximation and Online Algorithms (WAOA
2011). 2012, pp. 63–76.

[BF22] Thomas Bläsius and Philipp Fischbeck. “On the External Validity of Average-
Case Analyses of Graph Algorithms.” In: European Symposium on Algorithms.
Vol. 244. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, 21:1–
21:14. doi: 10.4230/LIPIcs.ESA.2022.21.

[BFL14] Annika Baumann, Benjamin Fabian, and Matthias Lischke. “Exploring the
Bitcoin Network.” In: WEBIST (1). 2014, pp. 369–374.

[BFW21] Thomas Bläsius, Tobias Friedrich, and Christopher Weyand. “Efficiently
Computing Maximum Flows in Scale-Free Networks.” In: European Sym-
posium on Algorithms (ESA). Vol. 204. 2021, 21:1–21:14. doi: 10.4230/
LIPIcs.ESA.2021.21.

130

https://doi.org/10.1007/s10732-012-9196-4
https://github.com/Forceflow/libmorton
https://doi.org/10.1007/s10878-014-9756-7
https://doi.org/10.1007/s00453-009-9339-7
https://doi.org/10.1016/j.entcs.2016.03.005
https://doi.org/10.1016/j.entcs.2016.03.005
https://doi.org/10.4230/LIPIcs.ESA.2022.21
https://doi.org/10.4230/LIPIcs.ESA.2021.21
https://doi.org/10.4230/LIPIcs.ESA.2021.21

[Bia07] Ginestra Bianconi. “The entropy of randomized network ensembles.” In:
EPL (Europhysics Letters) 81.2 (Dec. 2007), p. 28005. doi: 10.1209/0295-
5075/81/28005.

[Bir+20] Johann Birnick, Thomas Bläsius, Tobias Friedrich, Felix Naumann, Thorsten
Papenbrock, and Martin Schirneck. “Hitting set enumeration with partial
information for unique column combination discovery.” In: Proceedings of the
VLDB Endowment 13.12 (2020), pp. 2270–2283. doi: 10.14778/3407790.
3407824.

[BK04] Y. Boykov and V. Kolmogorov. “An experimental comparison of min-cut/max-
flow algorithms for energy minimization in vision.” In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 26.9 (2004), pp. 1124–1137.
issn: 1939-3539. doi: 10.1109/TPAMI.2004.60.

[BKL15] Karl Bringmann, Ralph Keusch, and Johannes Lengler. “Sampling Geometric
Inhomogeneous Random Graphs in Linear Time.” In: (Nov. 2, 2015). arXiv:
1511.00576 [cs.SI].

[BKL16] Karl Bringmann, Ralph Keusch, and Johannes Lengler. “Average Distance
in a General Class of Scale-Free Networks with Underlying Geometry.” In:
(Feb. 18, 2016). arXiv: 1602.05712 [cs.DM].

[BKL19] Karl Bringmann, Ralph Keusch, and Johannes Lengler. “Geometric Inho-
mogeneous Random Graphs.” In: Theoretical Computer Science 760 (2019),
pp. 35–54. doi: 10.1016/j.tcs.2018.08.014.

[BKW23] Maximilian Böther, Otto Kißig, and Christopher Weyand. “Efficiently Com-
puting Directed Minimum Spanning Trees.” In: Symposium on Algorithm
Engineering and Experiments (ALENEX). 2023.

[Blä+18a] Thomas Bläsius, Cedric Freiberger, Tobias Friedrich, Maximilian Katzmann,
Felix Montenegro-Retana, and Marianne Thieffry. “Efficient Shortest Paths
in Scale-Free Networks with Underlying Hyperbolic Geometry.” In: Inter-
national Colloquium on Automata, Languages, and Programming (ICALP).
Vol. 107. 2018, 20:1–20:14. doi: 10.4230/LIPIcs.ICALP.2018.20.

[Blä+18b] Thomas Bläsius, Tobias Friedrich, Anton Krohmer, and Sören Laue. “Efficient
Embedding of Scale-Free Graphs in the Hyperbolic Plane.” In: IEEE/ACM
Transactions on Networking 26.2 (2018), pp. 920–933. doi: 10.1109/TNET.
2018.2810186.

[Blä+19a] Thomas Bläsius, Philipp Fischbeck, Tobias Friedrich, and Martin Schirneck.
“Understanding the Effectiveness of Data Reduction in Public Transportation
Networks.” In: Algorithms and Models for the Web Graph. Springer Interna-
tional Publishing, 2019, pp. 87–101. doi: 10.1007/978-3-030-25070-6_7.

131

https://doi.org/10.1209/0295-5075/81/28005
https://doi.org/10.1209/0295-5075/81/28005
https://doi.org/10.14778/3407790.3407824
https://doi.org/10.14778/3407790.3407824
https://doi.org/10.1109/TPAMI.2004.60
https://arxiv.org/abs/1511.00576
https://arxiv.org/abs/1602.05712
https://doi.org/10.1016/j.tcs.2018.08.014
https://doi.org/10.4230/LIPIcs.ICALP.2018.20
https://doi.org/10.1109/TNET.2018.2810186
https://doi.org/10.1109/TNET.2018.2810186
https://doi.org/10.1007/978-3-030-25070-6_7

Bibliography

[Blä+19b] Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, Ulrich Meyer,
Manuel Penschuck, and Christopher Weyand. “Efficiently Generating Ge-
ometric Inhomogeneous and Hyperbolic Random Graphs.” In: European
Symposium on Algorithms (ESA). Vol. 144. 2019, 21:1–21:14. doi: 10.4230/
LIPIcs.ESA.2019.21.

[Blä+21a] Thomas Bläsius, Philipp Fischbeck, Lars Gottesbüren, Michael Hamann,
Tobias Heuer, Jonas Spinner, Christopher Weyand, and Marcus Wilhelm.
“PACE Solver Description: KaPoCE: A Heuristic Cluster Editing Algo-
rithm.” In: International Symposium on Parameterized and Exact Computa-
tion (IPEC). 2021, 31:1–31:4. doi: 10.4230/LIPIcs.IPEC.2021.31.

[Blä+21b] Thomas Bläsius, Philipp Fischbeck, Lars Gottesbüren, Michael Hamann,
Tobias Heuer, Jonas Spinner, Christopher Weyand, and Marcus Wilhelm.
“PACE Solver Description: The KaPoCE Exact Cluster Editing Algorithm.”
In: International Symposium on Parameterized and Exact Computation
(IPEC). 2021, 27:1–27:3. doi: 10.4230/LIPIcs.IPEC.2021.27.

[Blä+21c] Thomas Bläsius, Tobias Friedrich, Andreas Göbel, Jordi Levy, and Ralf
Rothenberger. “The Impact of Heterogeneity and Geometry on the Proof
Complexity of Random Satisfiability.” In: Proceedings of the 2021 ACM-
SIAM Symposium on Discrete Algorithms (SODA). Society for Industrial and
Applied Mathematics, Jan. 2021, pp. 42–53. doi: 10.1137/1.9781611976465.
4.

[Blä+22a] Thomas Bläsius, Philipp Fischbeck, Lars Gottesbüren, Michael Hamann,
Tobias Heuer, Jonas Spinner, Christopher Weyand, and Marcus Wilhelm.
“A Branch-And-Bound Algorithm for Cluster Editing.” In: Symposium on
Experimental Algorithms (SEA). Vol. 233. 2022, 13:1–13:19. doi: 10.4230/
LIPIcs.SEA.2022.13.

[Blä+22b] Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, Ulrich Meyer,
Manuel Penschuck, and Christopher Weyand. “Efficiently generating geo-
metric inhomogeneous and hyperbolic random graphs.” In: Network Science
(Nov. 2022), pp. 1–20. doi: 10.1017/nws.2022.32.

[Blä+22c] Thomas Bläsius, Tobias Friedrich, David Stangl, and Christopher Weyand.
“An Efficient Branch-and-Bound Solver for Hitting Set.” In: Symposium on
Algorithm Engineering and Experiments (ALENEX). 2022, pp. 209–220. doi:
10.1137/1.9781611977042.17.

[BN16] Michele Borassi and Emanuele Natale. “KADABRA is an ADaptive Algo-
rithm for Betweenness via Random Approximation.” In: 24th Annual Euro-
pean Symposium on Algorithms (ESA 2016). Vol. 57. Leibniz International
Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2016, 20:1–20:18. doi: 10.4230/LIPIcs.ESA.2016.20.

132

https://doi.org/10.4230/LIPIcs.ESA.2019.21
https://doi.org/10.4230/LIPIcs.ESA.2019.21
https://doi.org/10.4230/LIPIcs.IPEC.2021.31
https://doi.org/10.4230/LIPIcs.IPEC.2021.27
https://doi.org/10.1137/1.9781611976465.4
https://doi.org/10.1137/1.9781611976465.4
https://doi.org/10.4230/LIPIcs.SEA.2022.13
https://doi.org/10.4230/LIPIcs.SEA.2022.13
https://doi.org/10.1017/nws.2022.32
https://doi.org/10.1137/1.9781611977042.17
https://doi.org/10.4230/LIPIcs.ESA.2016.20

[Boa18] OpenMP Architecture Review Board. OpenMP Application Program Interface
Version 5.0. 2018. url: https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5.0.pdf.

[Böc+07] Sebastian Böcker, Sebastian Briesemeister, Quang Bao Anh Bui, and Anke
Trub. “A fixed-parameter approach for weighted cluster editing.” In: Proceed-
ings of the 6th Asia-Pacific Bioinformatics Conference. 2007. doi: 10.1142/
9781848161092_0023.

[Böc+09] Sebastian Böcker, Sebastian Briesemeister, Quang Bao Anh Bui, and Anke
Truß. “Going weighted: Parameterized algorithms for cluster editing.” In:
Theoretical Computer Science 410.52 (2009), pp. 5467–5480. doi: 10.1016/
j.tcs.2009.05.006.

[Böc12] Sebastian Böcker. “A golden ratio parameterized algorithm for cluster edit-
ing.” In: Journal of Discrete Algorithms 16 (2012), pp. 79–89. doi: 10.1016/
j.jda.2012.04.005.

[Boc71] F. C. Bock. “An algorithm to construct a minimum directed spanning tree
in a directed network.” In: Developments in Operations Research (1971).

[Boj14] Ćendić-Lazović Bojana. “A Genetic Algorithm for the Minimum Hitting
Set.” In: Scientific Publications of the State University of Novi Pazar Series
A: Applied Mathematics, Informatics and mechanics 6.2 (2014), pp. 107–117.

[BPK10] Marián Boguná, Fragkiskos Papadopoulos, and Dmitri Krioukov. “Sustaining
the internet with hyperbolic mapping.” In: Nature communications 1 (2010),
p. 62.

[BS20] René van Bevern and Pavel V. Smirnov. “Optimal-size problem kernels for
d-Hitting Set in linear time and space.” In: Information Processing Letters
163 (2020), p. 105998. doi: 10.1016/j.ipl.2020.105998.

[Car+15] Danilo Carastan-Santos, Raphael Yokoingawa De Camargo, David Correa
Martins, Siang Wun Song, Luiz Carlos Silva Rozante, and Fabrizio Ferreira
Borelli. “A Multi-GPU Hitting Set Algorithm for GRNs Inference.” In:
2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. 2015, pp. 313–322. doi: 10.1109/CCGrid.2015.29.

[Car+17] Danilo Carastan-Santos, Raphael Y. de Camargo, David C. Martins, Siang
W. Song, and Luiz C.S. Rozante. “Finding Exact Hitting Set Solutions
for Systems Biology Applications Using Heterogeneous GPU Clusters.” In:
Future Generation Computer Systems 67 (2017), pp. 418–429. doi: 10.1016/
j.future.2016.02.009.

[CC12] Yixin Cao and Jianer Chen. “Cluster editing: Kernelization based on edge
cuts.” In: Algorithmica 64.1 (2012), pp. 152–169. doi: 10.1007/s00453-011-
9595-1.

133

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://doi.org/10.1142/9781848161092_0023
https://doi.org/10.1142/9781848161092_0023
https://doi.org/10.1016/j.tcs.2009.05.006
https://doi.org/10.1016/j.tcs.2009.05.006
https://doi.org/10.1016/j.jda.2012.04.005
https://doi.org/10.1016/j.jda.2012.04.005
https://doi.org/10.1016/j.ipl.2020.105998
https://doi.org/10.1109/CCGrid.2015.29
https://doi.org/10.1016/j.future.2016.02.009
https://doi.org/10.1016/j.future.2016.02.009
https://doi.org/10.1007/s00453-011-9595-1
https://doi.org/10.1007/s00453-011-9595-1

Bibliography

[CF06] Deepayan Chakrabarti and Christos Faloutsos. “Graph Mining: Laws, Gener-
ators, and Algorithms.” In: ACM Comput. Surv. 38.1 (2006). doi: 10.1145/
1132952.1132954.

[CFM79] Paolo M. Camerini, Luigi Fratta, and Francesco Maffioli. “A note on finding
optimum branchings.” In: Networks 9.4 (1979), pp. 309–312. doi: 10.1002/
net.3230090403.

[CG97] B. V. Cherkassky and A. V. Goldberg. “On Implementing the Push—Relabel
Method for the Maximum Flow Problem.” In: Algorithmica 19.4 (1997),
pp. 390–410. doi: 10.1007/pl00009180.

[CH03] Reuven Cohen and Shlomo Havlin. “Scale-free networks are ultrasmall.” In:
Physical review letters 90.5 (2003), p. 058701. doi: https://doi.org/10.
1103/PhysRevLett.90.058701.

[CH09] Bala G. Chandran and Dorit S. Hochbaum. “A Computational Study of the
Pseudoflow and Push-Relabel Algorithms for the Maximum Flow Problem.”
In: Operations Research 57.2 (2009), pp. 358–376. issn: 0030364X, 15265463.

[Cha+11] Karthekeyan Chandrasekaran, Richard Karp, Erick Moreno-Centeno, and
Santosh Vempala. “Algorithms for Implicit Hitting Set Problems.” In: Proceed-
ings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2011). 2011, pp. 614–629. doi: 10.1137/1.9781611973082.48.

[Chu65] Yoeng-Jin Chu. “On the shortest arborescence of a directed graph.” In:
Scientia Sinica 14 (1965).

[CKW10] Graham Cormode, Howard Karloff, and Anthony Wirth. “Set Cover Algo-
rithms for Very Large Datasets.” In: Proceedings of the 19th ACM Inter-
national Conference on Information and Knowledge Management (CIKM
2010). 2010, pp. 479–488. doi: 10.1145/1871437.1871501.

[CL02a] Fan Chung and Linyuan Lu. “Connected Components in Random Graphs
with Given Expected Degree Sequences.” In: Annals of Combinatorics 6.2
(2002), pp. 125–145. doi: 10.1007/PL00012580.

[CL02b] Fan Chung and Linyuan Lu. “The Average Distances in Random Graphs
with Given Expected Degrees.” In: Proceedings of the National Academy of
Sciences 99.25 (2002), pp. 15879–15882. doi: 10.1073/pnas.252631999.

[CM12] Jianer Chen and Jie Meng. “A 2k kernel for the cluster editing problem.”
In: Journal of Computer and System Sciences 78.1 (2012), pp. 211–220. doi:
10.1016/j.jcss.2011.04.001.

[Cor+09] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. MIT press, 2009.

[CTF00] Alberto Caprara, Paolo Toth, and Matteo Fischetti. “Algorithms for the
Set Covering Problem.” In: Annals of Operations Research 98.1/4 (2000),
pp. 353–371. doi: 10.1023/a:1019225027893.

134

https://doi.org/10.1145/1132952.1132954
https://doi.org/10.1145/1132952.1132954
https://doi.org/10.1002/net.3230090403
https://doi.org/10.1002/net.3230090403
https://doi.org/10.1007/pl00009180
https://doi.org/https://doi.org/10.1103/PhysRevLett.90.058701
https://doi.org/https://doi.org/10.1103/PhysRevLett.90.058701
https://doi.org/10.1137/1.9781611973082.48
https://doi.org/10.1145/1871437.1871501
https://doi.org/10.1007/PL00012580
https://doi.org/10.1073/pnas.252631999
https://doi.org/10.1016/j.jcss.2011.04.001
https://doi.org/10.1023/a:1019225027893

[CV07] Kenneth L. Clarkson and Kasturi Varadarajan. “Improved Approximation
Algorithms for Geometric Set Cover.” In: Discrete & Computational Geometry
37 (2007), pp. 43–58.

[Din70] Yefim Dinitz. “Algorithm for Solution of a Problem of Maximum Flow in
Networks with Power Estimation.” In: Soviet Mathematics Doklady 11 (1970),
pp. 1277–1280.

[DM89] U. Derigs and W. Meier. “Implementing Goldberg’s max-flow-algorithm —
A computational investigation.” en. In: Zeitschrift für Operations Research
33.6 (1989), pp. 383–403. issn: 1432-5217. doi: 10.1007/BF01415937. url:
https://doi.org/10.1007/BF01415937.

[DS14] Irit Dinur and David Steurer. “Analytical Approach to Parallel Repetition.”
In: Forty-Sixth Annual ACM Symposium on Theory of Computing (STOC
2014). 2014, pp. 624–633. doi: 10.1145/2591796.2591884.

[Edm67] Jack Edmonds. “Optimum branchings.” In: Journal of Research of the Na-
tional Bureau of Standards 71B.4 (1967), p. 233. doi: 10.6028/jres.071b.
032.

[EG17] Nicole Eikmeier and David F Gleich. “Revisiting Power-law Distributions in
Spectra of Real World Networks.” In: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM.
2017, pp. 817–826.

[ER59] Paul Erdős and Alfréd Rényi. “On random graphs, I.” In: Publicationes
Mathematicae (Debrecen) 6 (1959), pp. 290–297.

[ET75] Shimon Even and R. Endre Tarjan. “Network Flow and Testing Graph
Connectivity.” In: SIAM Journal on Computing 4.4 (1975), pp. 507–518. doi:
10.1137/0204043.

[Fer06] Henning Fernau. “Parameterized Algorithms for Hitting Set: The Weighted
Case.” In: Algorithms and Complexity (CIAC 2006). 2006, pp. 332–343.

[FF56] L. R. Ford and D. R. Fulkerson. “Maximal Flow Through a Network.” In:
Canadian Journal of Mathematics 8 (1956), pp. 399–404. doi: 10.4153/CJM-
1956-045-5.

[FK18] Tobias Friedrich and Anton Krohmer. “On the Diameter of Hyperbolic
Random Graphs.” In: SIAM Journal on Discrete Mathematics 32.2 (2018),
pp. 1314–1334. doi: 10.1137/17M1123961.

[FLG00] Gary William Flake, Steve Lawrence, and C. Lee Giles. “Efficient identifi-
cation of Web communities.” In: Proceedings of the sixth ACM SIGKDD
international conference on Knowledge discovery and data mining - KDD
’00. ACM Press, 2000. doi: 10.1145/347090.347121.

135

https://doi.org/10.1007/BF01415937
https://doi.org/10.1007/BF01415937
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.6028/jres.071b.032
https://doi.org/10.6028/jres.071b.032
https://doi.org/10.1137/0204043
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1137/17M1123961
https://doi.org/10.1145/347090.347121

Bibliography

[FO19] Orr Fischer and Rotem Oshman. “A Distributed Algorithm for Directed
Minimum-Weight Spanning Tree.” In: 33rd International Symposium on
Distributed Computing (DISC 2019). Vol. 146. Leibniz International Proceed-
ings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2019, 16:1–16:16. doi: 10.4230/LIPIcs.DISC.
2019.16.

[FO21] Orr Fischer and Rotem Oshman. “A distributed algorithm for directed
minimum-weight spanning tree.” In: Distributed Computing (June 2021). doi:
10.1007/s00446-021-00398-3.

[Fre+86] Michael L. Fredman, Robert Sedgewick, Daniel D. Sleator, and Robert E. Tar-
jan. “The pairing heap: A new form of self-adjusting heap.” In: Algorithmica
1.1-4 (1986). doi: 10.1007/bf01840439.

[FT87] Michael L. Fredman and Robert E. Tarjan. “Fibonacci heaps and their uses
in improved network optimization algorithms.” In: Journal of the ACM 34.3
(1987). doi: 10.1145/28869.28874.

[FTT04] Gary William Flake, Robert E. Tarjan, and Kostas Tsioutsiouliklis. “Graph
Clustering and Minimum Cut Trees.” In: Internet Mathematics 1.4 (2004),
pp. 385–408. doi: 10.1080/15427951.2004.10129093.

[Fun+18] Daniel Funke, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren
Strash, and Moritz von Looz. “Communication-Free Massively Distributed
Graph Generation.” In: IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS). 2018, pp. 336–347. doi: 10.1109/IPDPS.2018.
00043.

[Fun+19] Daniel Funke, Sebastian Lamm, Ulrich Meyer, Manuel Penschuck, Peter
Sanders, Christian Schulz, Darren Strash, and Moritz von Looz. “Communication-
free massively distributed graph generation.” In: Journal of Parallel and
Distributed Computing 131 (2019), pp. 200–217. doi: 10.1016/j.jpdc.2019.
03.011.

[Gab+86] Harold N. Gabow, Zvi Galil, Thomas H. Spencer, and Robert E. Tarjan.
“Efficient algorithms for finding minimum spanning trees in undirected and
directed graphs.” In: Combinatorica 6.2 (1986). doi: 10.1007/bf02579168.

[Geo03] Leonidas Georgiadis. “Arborescence optimization problems solvable by Ed-
monds’ algorithm.” In: Theoretical Computer Science 301.1-3 (2003). doi:
10.1016/s0304-3975(02)00888-5.

[GF64] Bernard A. Galler and Michael J. Fisher. “An improved equivalence algo-
rithm.” In: Communications of the ACM 7.5 (1964). doi: 10.1145/364099.
364331.

[GH61] R. E. Gomory and T. C. Hu. “Multi-Terminal Network Flows.” In: Journal of
the Society for Industrial and Applied Mathematics 9.4 (1961), pp. 551–570.
issn: 0368-4245.

136

https://doi.org/10.4230/LIPIcs.DISC.2019.16
https://doi.org/10.4230/LIPIcs.DISC.2019.16
https://doi.org/10.1007/s00446-021-00398-3
https://doi.org/10.1007/bf01840439
https://doi.org/10.1145/28869.28874
https://doi.org/10.1080/15427951.2004.10129093
https://doi.org/10.1109/IPDPS.2018.00043
https://doi.org/10.1109/IPDPS.2018.00043
https://doi.org/10.1016/j.jpdc.2019.03.011
https://doi.org/10.1016/j.jpdc.2019.03.011
https://doi.org/10.1007/bf02579168
https://doi.org/10.1016/s0304-3975(02)00888-5
https://doi.org/10.1145/364099.364331
https://doi.org/10.1145/364099.364331

[GH85] Ronald L. Graham and Pavol Hell. “On the History of the Minimum Spanning
Tree Problem.” In: IEEE Annals of the History of Computing 7.1 (1985).
doi: 10.1109/mahc.1985.10011.

[Gil59] E. N. Gilbert. “Random Graphs.” In: The Annals of Mathematical Statistics
30.4 (Dec. 1959), pp. 1141–1144.

[Gil61] Edgar N. Gilbert. “Random Plane Networks.” In: Journal of the Society for
Industrial and Applied Mathematics 9.4 (1961), pp. 533–543. doi: 10.1137/
0109045.

[GL04] Diego Garlaschelli and Maria I. Loffredo. “Fitness-Dependent Topological
Properties of the World Trade Web.” In: Physical Review Letters 93.18 (Oct.
2004), p. 188701. doi: 10.1103/physrevlett.93.188701.

[GL08] Diego Garlaschelli and Maria I. Loffredo. “Maximum likelihood: Extracting
unbiased information from complex networks.” In: Physical Review E 78.1
(July 2008), p. 015101. doi: 10.1103/physreve.78.015101.

[Gol+11] Andrew V. Goldberg, Sagi Hed, Haim Kaplan, Robert E. Tarjan, and Renato
F. Werneck. “Maximum Flows by Incremental Breadth-First Search.” en. In:
19th Annual European Symposium on Algorithms (ESA 2011). Lecture Notes
in Computer Science. Springer, 2011, pp. 457–468. isbn: 9783642237195. doi:
10.1007/978-3-642-23719-5_39.

[Got+20a] Lars Gottesbüren, Michael Hamann, Philipp Schoch, Ben Strasser, Dorothea
Wagner, and Sven Zühlsdorf. “Engineering Exact Quasi-Threshold Editing.”
In: 18th International Symposium on Experimental Algorithms (SEA 2020).
Vol. 160. Leibniz International Proceedings in Informatics (LIPIcs). 2020,
10:1–10:14. isbn: 978-3-95977-148-1. doi: 10.4230/LIPIcs.SEA.2020.10.

[Got+20b] Lars Gottesbüren, Michael Hamann, Philipp Schoch, Ben Strasser, Dorothea
Wagner, and Sven Zühlsdorf. “Engineering Exact Quasi-Threshold Editing.”
In: 18th International Symposium on Experimental Algorithms (SEA 2020).
Vol. 160. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020, 10:1–10:14.
doi: 10.4230/LIPIcs.SEA.2020.10.

[GPP12] Luca Gugelmann, Konstantinos Panagiotou, and Ueli Peter. “Random Hyper-
bolic Graphs: Degree Sequence and Clustering.” In: International Colloquium
on Automata, Languages, and Programming (ICALP). 2012, pp. 573–585.
doi: 10.1007/978-3-642-31585-5_51.

[Gra73] Mark S. Granovetter. “The Strength of Weak Ties.” In: American Journal
of Sociology 78.6 (1973), pp. 1360–1380.

[GS78] Leo J. Guibas and Robert Sedgewick. “A dichromatic framework for balanced
trees.” In: Proceedings of the Annual Symposium on Foundations of Computer
Science (SFCS). 1978. doi: 10.1109/sfcs.1978.3.

[GT14] Andrew V. Goldberg and Robert E. Tarjan. “Efficient Maximum Flow Algo-
rithms.” In: Commun. ACM 57.8 (2014), pp. 82–89. doi: 10.1145/2628036.

137

https://doi.org/10.1109/mahc.1985.10011
https://doi.org/10.1137/0109045
https://doi.org/10.1137/0109045
https://doi.org/10.1103/physrevlett.93.188701
https://doi.org/10.1103/physreve.78.015101
https://doi.org/10.1007/978-3-642-23719-5_39
https://doi.org/10.4230/LIPIcs.SEA.2020.10
https://doi.org/10.4230/LIPIcs.SEA.2020.10
https://doi.org/10.1007/978-3-642-31585-5_51
https://doi.org/10.1109/sfcs.1978.3
https://doi.org/10.1145/2628036

Bibliography

[GT88] Andrew V. Goldberg and Robert E. Tarjan. “A new approach to the
maximum-flow problem.” In: Journal of the ACM 35.4 (1988), pp. 921–
940. issn: 0004-5411. doi: 10.1145/48014.61051.

[Guo09] Jiong Guo. “A more effective linear kernelization for cluster editing.” In:
Theoretical Computer Science 410.8-10 (2009), pp. 718–726. doi: 10.1016/j.
tcs.2008.10.021.

[Gur21] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. 2021. url:
https://www.gurobi.com.

[Gus90] Dan Gusfield. “Very Simple Methods for All Pairs Network Flow Analysis.”
In: SIAM Journal on Computing 19.1 (1990), pp. 143–155. doi: 10.1137/
0219009.

[GV17] Andrew Gainer-Dewar and Paola Vera-Licona. “The Minimal Hitting Set
Generation Problem: Algorithms and Computation.” In: SIAM Journal on
Discrete Mathematics 31.1 (2017), pp. 63–100. doi: 10.1137/15m1055024.

[GW97] Tal Grossman and Avishai Wool. “Computational experience with approx-
imation algorithms for the set covering problem.” In: European Journal
of Operational Research 101.1 (1997), pp. 81–92. doi: 10.1016/s0377-
2217(96)00161-0.

[Han+17] Thomas Dueholm Hansen, Haim Kaplan, Robert E. Tarjan, and Uri Zwick.
“Hollow Heaps.” In: Transactions on Algorithms 13.3 (2017). doi: 10.1145/
3093240.

[HH15] Sepp Hartung and Holger H. Hoos. “Programming by Optimisation Meets
Parameterised Algorithmics: A Case Study for Cluster Editing.” In: Learning
and Intelligent Optimization. Springer, 2015, pp. 43–58. doi: 10.1007/978-
3-319-19084-6_5.

[HLK18] Pim van der Hoorn, Gabor Lippner, and Dmitri Krioukov. “Sparse Maximum-
Entropy Random Graphs with a Given Power-Law Degree Distribution.”
In: Journal of Statistical Physics (2018). doi: https://doi.org/10.1007/
s10955-017-1887-7.

[Hoc08] Dorit S. Hochbaum. “The Pseudoflow Algorithm: A New Algorithm for the
Maximum-Flow Problem.” In: Operations Research 56.4 (2008), pp. 992–1009.
doi: 10.1287/opre.1080.0524.

[HYW11] Felix Halim, Roland H.C. Yap, and Yongzheng Wu. “A MapReduce-Based
Maximum-Flow Algorithm for Large Small-World Network Graphs.” In:
2011 31st International Conference on Distributed Computing Systems. ISSN:
1063-6927. 2011, pp. 192–202. doi: 10.1109/ICDCS.2011.62.

[IK04] Noriko Imafuji and Masaru Kitsuregawa. “Finding Web Communities by
Maximum Flow Algorithm Using Well-Assigned Edge Capacities.” In: IEICE
Transactions (2004).

138

https://doi.org/10.1145/48014.61051
https://doi.org/10.1016/j.tcs.2008.10.021
https://doi.org/10.1016/j.tcs.2008.10.021
https://www.gurobi.com
https://doi.org/10.1137/0219009
https://doi.org/10.1137/0219009
https://doi.org/10.1137/15m1055024
https://doi.org/10.1016/s0377-2217(96)00161-0
https://doi.org/10.1016/s0377-2217(96)00161-0
https://doi.org/10.1145/3093240
https://doi.org/10.1145/3093240
https://doi.org/10.1007/978-3-319-19084-6_5
https://doi.org/10.1007/978-3-319-19084-6_5
https://doi.org/https://doi.org/10.1007/s10955-017-1887-7
https://doi.org/https://doi.org/10.1007/s10955-017-1887-7
https://doi.org/10.1287/opre.1080.0524
https://doi.org/10.1109/ICDCS.2011.62

[Int19] Intel. Intel 64 and IA-32 Architectures Developer’s Manual. Intel Corporation.
2019.

[ISO20] ISO. ISO/IEC 14882:2020 Programming languages — C++. Sixth. Interna-
tional Organization for Standardization, 2020. url: https://www.iso.org/
standard/79358.html.

[ITK00] Trey E. Ideker, Vesteinn Thorsson, and Richard M. Karp. “Discovery of
Regulatory Interactions Through Perturbation: Inference and Experimental
Design.” In: Pacific Symposium on Biocomputing. 2000, pp. 302–313.

[Jar30] Vojtěch Jarník. “O jistém problému minimálním [About a certain minimal
problem].” In: Práce moravské přírodovědecké společnosti 4.6 (1930).

[Jom+10] Thibaut Jombart, Rosalind M. Eggo, Peter J. Dodd, and Francois Balloux.
“Reconstructing disease outbreaks from genetic data: a graph approach.” In:
Heredity 106.2 (2010). doi: 10.1038/hdy.2010.78.

[Kam14] Naoyuki Kamiyama. “Arborescence Problems in Directed Graphs: Theorems
and Algorithms.” In: Interdisciplinary Information Sciences 20.1 (2014). doi:
10.4036/iis.2014.51.

[Kar71] Richard M. Karp. “A simple derivation of edmonds’ algorithm for optimum
branchings.” In: Networks 1.3 (1971). doi: 10.1002/net.3230010305.

[Kar72] Richard M. Karp. “Reducibility among Combinatorial Problems.” In: Com-
plexity of Computer Computations. Springer US, 1972, pp. 85–103. doi:
10.1007/978-1-4684-2001-2_9.

[Kar73] Alexander V. Karzanov. “On finding a maximum flow in a network with
special structure and some applications.” In: Matematicheskie Voprosy Up-
ravleniya Proizvodstvom 5 (1973), pp. 81–94.

[Kel+21] Leon Kellerhals, Tomohiro Koana, André Nichterlein, and Philipp Zschoche.
“The PACE 2021 Parameterized Algorithms and Computational Experiments
Challenge: Cluster Editing.” In: International Symposium on Parameterized
and Exact Computation (IPEC). 2021, 26:1–26:18. doi: 10.4230/LIPIcs.
IPEC.2021.26.

[KKT09] Naoyuki Kamiyama, Naoki Katoh, and Atsushi Takizawa. “Arc-disjoint in-
trees in directed graphs.” In: Combinatorica 29.2 (2009). doi: 10.1007/
s00493-009-2428-z.

[Kle11] Johan de Kleer. “Hitting set algorithms for model-based diagnosis.” In: 22nd
International Workshop on Principles of Diagnosis. 2011.

[KM86] Mirko Křivánek and Jaroslav Morávek. “NP-hard problems in hierarchical-
tree clustering.” In: Acta informatica 23.3 (1986), pp. 311–323. doi: 10.
1007/BF00289116.

[Kri+10] Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat,
and Marián Boguñá. “Hyperbolic Geometry of Complex Networks.” In:
Physical Review E 82 (3 2010). doi: 10.1103/physreve.82.036106.

139

https://www.iso.org/standard/79358.html
https://www.iso.org/standard/79358.html
https://doi.org/10.1038/hdy.2010.78
https://doi.org/10.4036/iis.2014.51
https://doi.org/10.1002/net.3230010305
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.4230/LIPIcs.IPEC.2021.26
https://doi.org/10.4230/LIPIcs.IPEC.2021.26
https://doi.org/10.1007/s00493-009-2428-z
https://doi.org/10.1007/s00493-009-2428-z
https://doi.org/10.1007/BF00289116
https://doi.org/10.1007/BF00289116
https://doi.org/10.1103/physreve.82.036106

Bibliography

[Kru56] Joseph Bernard Kruskal. “On the shortest spanning subtree of a graph and the
traveling salesman problem.” In: Proceedings of the American Mathematical
Society 7.1 (1956). doi: 10.1090/s0002-9939-1956-0078686-7.

[Kun13] Jérôme Kunegis. “KONECT – The Koblenz Network Collection.” In: Proc.
Int. Conf. on World Wide Web Companion. 2013, pp. 1343–1350. url:
http://konect.cc/.

[Lan04] Kevin Lang. Finding Good Nearly Balanced Cuts in Power Law Graphs.
Tech. rep. YRL-2004-036. Yahoo! Research Labs, 2004.

[Les+09] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney.
“Community Structure in Large Networks: Natural Cluster Sizes and the
Absence of Large Well-Defined Clusters.” In: Internet Mathematics 6.1 (2009),
pp. 29–123. doi: 10.1080/15427951.2009.10129177.

[LF16] Matthias Lischke and Benjamin Fabian. “Analyzing the bitcoin network: The
first four years.” In: Future Internet 8.1 (2016), p. 7.

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data. 2014.

[LM16] Moritz von Looz and Henning Meyerhenke. “Querying Probabilistic Neigh-
borhoods in Spatial Data Sets Efficiently.” In: International Workshop on
Combinatorial Algorithms (IWOCA). 2016, pp. 449–460. doi: 10.1007/978-
3-319-44543-4_35.

[LMP15] Moritz von Looz, Henning Meyerhenke, and Roman Prutkin. “Generating
Random Hyperbolic Graphs in Subquadratic Time.” In: International Sym-
posium on Algorithms and Computation (ISAAC). 2015, pp. 467–478. doi:
10.1007/978-3-662-48971-0_40.

[Loo+16] Moritz von Looz, Mustafa Safa Özdayi, Sören Laue, and Henning Meyerhenke.
“Generating Massive Complex Networks with Hyperbolic Geometry Faster
in Practice.” In: IEEE High Performance Extreme Computing Conference
(HPEC). 2016, pp. 1–6. doi: 10.1109/HPEC.2016.7761644.

[Loo19] Moritz von Looz. “High-Performance Graph Algorithms.” PhD thesis. Karl-
sruhe Institute of Technology (KIT), 2019. doi: 10.5445/IR/1000095908.

[Lov85] L. Lovasz. “Computing ears and branchings in parallel.” In: 26th Annual
Symposium on Foundations of Computer Science (sfcs 1985). 1985, pp. 464–
467. doi: 10.1109/SFCS.1985.16.

[LR04] Kevin Lang and Satish Rao. “A Flow-Based Method for Improving the
Expansion or Conductance of Graph Cuts.” In: Integer Programming and
Combinatorial Optimization. Springer, 2004, pp. 325–337. doi: 10.1007/978-
3-540-25960-2_25.

[Men+06] Ran Mendelson, Robert E. Tarjan, Mikkel Thorup, and Uri Zwick. “Melding
priority queues.” In: Transactions on Algorithms 2.4 (2006). doi: 10.1145/
1198513.1198517.

140

https://doi.org/10.1090/s0002-9939-1956-0078686-7
http://konect.cc/
https://doi.org/10.1080/15427951.2009.10129177
http://snap.stanford.edu/data
https://doi.org/10.1007/978-3-319-44543-4_35
https://doi.org/10.1007/978-3-319-44543-4_35
https://doi.org/10.1007/978-3-662-48971-0_40
https://doi.org/10.1109/HPEC.2016.7761644
https://doi.org/10.5445/IR/1000095908
https://doi.org/10.1109/SFCS.1985.16
https://doi.org/10.1007/978-3-540-25960-2_25
https://doi.org/10.1007/978-3-540-25960-2_25
https://doi.org/10.1145/1198513.1198517
https://doi.org/10.1145/1198513.1198517

[Mil+07] Gerald A Miller, Yi Y Shi, Hong Qian, and Karol Bomsztyk. “Clustering
coefficients of protein-protein interaction networks.” In: Physical Review E
75.5 (2007), p. 051910.

[Mil67] Stanley Milgram. “The small world problem.” In: Psychology today 2.1 (1967),
pp. 60–67.

[MK13] Erick Moreno-Centeno and Richard M. Karp. “The Implicit Hitting Set
Approach to Solve Combinatorial Optimization Problems with an Application
to Multigenome Alignment.” In: Operations Research 61.2 (2013), pp. 453–
468. doi: 10.1287/opre.1120.1139.

[MMO14] Eli A Meirom, Shie Mannor, and Ariel Orda. “Network formation games
with heterogeneous players and the internet structure.” In: Proceedings of
the fifteenth ACM conference on Economics and computation. ACM. 2014,
pp. 735–752.

[Mor66] Guy M Morton. A Computer Oriented Geodetic Data Base and a New Tech-
nique in File Sequencing. Tech. rep. International Business Machines Com-
pany New York, 1966. url: https://domino.research.ibm.com/library/
cyberdig.nsf/0/0dabf9473b9c86d48525779800566a39?OpenDocument.

[MS02a] Sergei Maslov and Kim Sneppen. “Specificity and stability in topology of
protein networks.” In: Science 296.5569 (2002), pp. 910–913.

[MS02b] Jose M Montoya and Ricard V Solé. “Small world patterns in food webs.”
In: Journal of theoretical biology 214.3 (2002), pp. 405–412.

[MS17] Tobias Müller and Merlijn Staps. “The Diameter of KPKVB Random
Graphs.” In: CoRR abs/1707.09555 (2017). arXiv: 1707.09555. url: http:
//arxiv.org/abs/1707.09555.

[MU14] Keisuke Murakami and Takeaki Uno. “Efficient algorithms for dualizing large-
scale hypergraphs.” In: Discrete Applied Mathematics 170 (2014), pp. 83–94.
doi: 10.1016/j.dam.2014.01.012.

[OM84] J. A. Orenstein and T. H. Merrett. “A Class of Data Structures for Asso-
ciative Searching.” In: ACM SIGACT-SIGMOD Symposium on Principles
of Database Systems (PODS). 1984, pp. 181–190. doi: 10.1145/588011.
588037.

[OZ14] Lorenzo Orecchia and Zeyuan Allen Zhu. “Flow-Based Algorithms for Local
Graph Clustering.” In: Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms. Society for Industrial and Applied Math-
ematics, 2014. doi: 10.1137/1.9781611973402.94.

[Pen03] Mathew Penrose. Random geometric graphs. Vol. 5. Oxford University Press,
2003.

141

https://doi.org/10.1287/opre.1120.1139
https://domino.research.ibm.com/library/cyberdig.nsf/0/0dabf9473b9c86d48525779800566a39?OpenDocument
https://domino.research.ibm.com/library/cyberdig.nsf/0/0dabf9473b9c86d48525779800566a39?OpenDocument
https://arxiv.org/abs/1707.09555
http://arxiv.org/abs/1707.09555
http://arxiv.org/abs/1707.09555
https://doi.org/10.1016/j.dam.2014.01.012
https://doi.org/10.1145/588011.588037
https://doi.org/10.1145/588011.588037
https://doi.org/10.1137/1.9781611973402.94

Bibliography

[Pen17] Manuel Penschuck. “Generating Practical Random Hyperbolic Graphs in
Near-Linear Time and with Sub-Linear Memory.” In: International Sym-
posium on Experimental Algorithms (SEA). Vol. 75. 2017, 26:1–26:21. doi:
10.4230/LIPIcs.SEA.2017.26.

[PN04] Juyong Park and M. E. J. Newman. “Statistical mechanics of networks.” In:
Physical Review E 70.6 (Dec. 2004), p. 066117. doi: 10.1103/physreve.70.
066117.

[Pri57] Robert C. Prim. “Shortest Connection Networks And Some Generalizations.”
In: Bell System Technical Journal 36.6 (1957). doi: 10.1002/j.1538-
7305.1957.tb01515.x.

[Pri76] Derek De Solla Price. “A general theory of bibliometric and other cumulative
advantage processes.” In: Journal of the American Society for Information
Science 27.5 (1976), pp. 292–306. doi: https://doi.org/10.1002/asi.
4630270505.

[RA15] Ryan A. Rossi and Nesreen K. Ahmed. “The Network Data Repository
with Interactive Graph Analytics and Visualization.” In: AAAI. 2015. url:
http://networkrepository.com.

[Rah+07] Sven Rahmann, Tobias Wittkop, Jan Baumbach, Marcel Martin, Anke
Truß, and Sebastian Böcker. “Exact and Heuristic Algorithms for Weighted
Cluster Editing.” In: Computational Systems Bioinformatics. 2007. doi:
10.1142/9781860948732_0040.

[Rei87] Raymond Reiter. “A theory of diagnosis from first principles.” In: Artificial
Intelligence 32.1 (1987), pp. 57–95. doi: 10.1016/0004-3702(87)90062-2.

[SA96] Raimund Seidel and Cecilia R. Aragon. “Randomized search trees.” In:
Algorithmica 16.4-5 (1996). doi: 10.1007/bf01940876.

[Sav13] Iztok Savnik. “Index Data Structure for Fast Subset and Superset Queries.”
In: Availability, Reliability, and Security in Information Systems and HCI.
Springer Berlin Heidelberg, 2013, pp. 134–148. doi: 10.1007/978-3-642-
40511-2_10.

[SBT04] Jeffrey R Sharom, David S Bellows, and Mike Tyers. “From large networks
to small molecules.” In: Current opinion in chemical biology 8.1 (2004),
pp. 81–90.

[SC10] Lei Shi and Xuan Cai. “An Exact Fast Algorithm for Minimum Hitting Set.”
In: 2010 Third International Joint Conference on Computational Science
and Optimization. IEEE, 2010. doi: 10.1109/cso.2010.240.

[Sch+22] Hjalmar Schulz, André Nichterlein, Rolf Niedermeier, and Christopher Weyand.
“Applying a Cut-Based Data Reduction Rule for Weighted Cluster Editing
in Polynomial Time.” In: International Symposium on Parameterized and
Exact Computation (IPEC). 2022. doi: 10.4230/LIPIcs.IPEC.2022.25.

142

https://doi.org/10.4230/LIPIcs.SEA.2017.26
https://doi.org/10.1103/physreve.70.066117
https://doi.org/10.1103/physreve.70.066117
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
https://doi.org/https://doi.org/10.1002/asi.4630270505
https://doi.org/https://doi.org/10.1002/asi.4630270505
http://networkrepository.com
https://doi.org/10.1142/9781860948732_0040
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1007/bf01940876
https://doi.org/10.1007/978-3-642-40511-2_10
https://doi.org/10.1007/978-3-642-40511-2_10
https://doi.org/10.1109/cso.2010.240
https://doi.org/10.4230/LIPIcs.IPEC.2022.25

[Sch07] Satu Elisa Schaeffer. “Graph clustering.” en. In: Computer Science Review 1.1
(2007), pp. 27–64. issn: 1574-0137. doi: 10.1016/j.cosrev.2007.05.001.

[Sch11] Boris Schäling. The Boost C++ libraries. 2011. url: https://theboostcpplibraries.
com/.

[Sco17] John Scott. Social network analysis. Sage, 2017.

[SG11] Tiziano Squartini and Diego Garlaschelli. “Analytical maximum-likelihood
method to detect patterns in real networks.” In: New Journal of Physics 13.8
(Aug. 2011), p. 083001. doi: 10.1088/1367-2630/13/8/083001.

[SJN06] S.-W. Son, H. Jeong, and J. D. Noh. “Random field Ising model and commu-
nity structure in complex networks.” In: The European Physical Journal B
50.3 (2006), pp. 431–437. doi: 10.1140/epjb/e2006-00155-4.

[Ski20] Steven S. Skiena. The Algorithm Design Manual. Springer International
Publishing, 2020. doi: 10.1007/978-3-030-54256-6.

[Sla97] Petr Slavík. “A Tight Analysis of the Greedy Algorithm for Set Cover.” In:
Journal of Algorithms 25.2 (1997), pp. 237–254. doi: 10.1006/jagm.1997.
0887.

[Spo+04] Olaf Sporns, Dante R Chialvo, Marcus Kaiser, and Claus C Hilgetag. “Orga-
nization, development and function of complex brain networks.” In: Trends
in cognitive sciences 8.9 (2004), pp. 418–425.

[SS20] Yaroslav V. Salii and Andrey S. Sheka. “Improving dynamic programming
for travelling salesman with precedence constraints: parallel Morin–Marsten
bounding.” In: Optimization Methods and Software (2020), pp. 1–27. doi:
10.1080/10556788.2020.1817447.

[SS84] Minsoo Suk and Ohyoung Song. “Curvilinear feature extraction using mini-
mum spanning trees.” In: Computer Vision, Graphics, and Image Processing
26.3 (1984). doi: 10.1016/0734-189x(84)90221-4.

[ST86] Daniel Dominic Sleator and Robert E. Tarjan. “Self-Adjusting Heaps.” In:
Journal on Computing 15.1 (1986). doi: 10.1137/0215004.

[Sta20] David Stangl. “Learning by Doing: Adapting Branching for Better Pruning
in Search Trees.” MA thesis. Hasso Plattner Institute, 2020.

[Tar75] Robert E. Tarjan. “Efficiency of a Good But Not Linear Set Union Algorithm.”
In: Journal of the ACM 22.2 (1975). doi: 10.1145/321879.321884.

[Tar77] Robert E. Tarjan. “Finding optimum branchings.” In: Networks 7.1 (1977).
doi: 10.1002/net.3230070103.

[Teo17] Dusan Teodorovic. Airline operations research. Routledge, 2017.

[VB12] Tanmay Verma and Dhruv Batra. “MaxFlow Revisited: An Empirical Com-
parison of Maxflow Algorithms for Dense Vision Problems.” In: Procedings
of the British Machine Vision Conference 2012. British Machine Vision
Association, 2012. doi: 10.5244/c.26.61.

143

https://doi.org/10.1016/j.cosrev.2007.05.001
https://theboostcpplibraries.com/
https://theboostcpplibraries.com/
https://doi.org/10.1088/1367-2630/13/8/083001
https://doi.org/10.1140/epjb/e2006-00155-4
https://doi.org/10.1007/978-3-030-54256-6
https://doi.org/10.1006/jagm.1997.0887
https://doi.org/10.1006/jagm.1997.0887
https://doi.org/10.1080/10556788.2020.1817447
https://doi.org/10.1016/0734-189x(84)90221-4
https://doi.org/10.1137/0215004
https://doi.org/10.1145/321879.321884
https://doi.org/10.1002/net.3230070103
https://doi.org/10.5244/c.26.61

Bibliography

[VGM16] Nate Veldt, David F. Gleich, and Michael W. Mahoney. “A simple and
strongly-local flow-based method for cut improvement.” In: Proceedings of
the 33rd International Conference on International Conference on Machine
Learning - Volume 48. ICML’16. JMLR.org, 2016, pp. 1938–1947. url: http:
//proceedings.mlr.press/v48/veldt16.html (visited on 03/16/2020).

[VKG19] Nate Veldt, Christine Klymko, and David F. Gleich. “Flow-Based Local Graph
Clustering with Better Seed Set Inclusion.” In: Proceedings of the 2019 SIAM
International Conference on Data Mining. Society for Industrial and Applied
Mathematics, 2019, pp. 378–386. doi: 10.1137/1.9781611975673.43.

[VSH04] Vera Van Noort, Berend Snel, and Martijn A Huynen. “The yeast coexpression
network has a small-world, scale-free architecture and can be explained by a
simple model.” In: EMBO reports 5.3 (2004), pp. 280–284.

[Wei98] Karsten Weihe. “Covering trains by stations or the power of data reduction.”
In: Algorithms and Experiments, ALEX (1998), pp. 1–8.

[WF01] Andreas Wagner and David A Fell. “The small world inside large metabolic
networks.” In: Proceedings of the Royal Society of London B: Biological
Sciences 268.1478 (2001), pp. 1803–1810.

[WF94] Stanley Wasserman and Katherine Faust. Social network analysis: Methods
and applications. Vol. 8. Cambridge university press, 1994.

[WGS03] Ryan Williams, Carla P Gomes, and Bart Selman. “Backdoors to typical
case complexity.” In: IJCAI. Vol. 3. Citeseer. 2003, pp. 1173–1178.

[WS98a] Duncan J Watts and Steven H Strogatz. “Collective dynamics of ‘small-
world’networks.” In: nature 393.6684 (1998), p. 440.

[WS98b] Duncan J. Watts and Steven H. Strogatz. “Collective Dynamics of “Small-
World” Networks.” In: Nature 393 (6684 1998), pp. 440–442. doi: 10.1038/
30918.

[Yu+08] Shan Yu, Debin Huang, Wolf Singer, and Danko Nikolić. “A small world of
neuronal synchrony.” In: Cerebral cortex 18.12 (2008), pp. 2891–2901.

144

http://proceedings.mlr.press/v48/veldt16.html
http://proceedings.mlr.press/v48/veldt16.html
https://doi.org/10.1137/1.9781611975673.43
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918

	Introduction
	Contribution and Outline
	Network Models
	Erdős-Rényi Random Graphs
	(Soft) Configuration Model
	Chung-Lu Random Graphs
	Random Geometric Graphs
	Hyperbolic Random Graphs
	Geometric Inhomogeneous Random Graphs

	Generating Geometric Inhomogeneous Random Graphs
	Introduction
	Contribution & Outline
	Comparison with Existing Generators

	Sampling Algorithm
	Inhomogeneous Weights
	Binomial Variant of the Model
	Efficiently Iterating Over Cell Pairs
	Efficient Access to Vertices by Bucket and Cell
	Adapting the Algorithm to HRGs

	Implementation Details
	Avoiding Double Counting Buckets, Cells, and Vertices
	Efficiently Encoding and Decoding Morton Codes
	Estimating the Average Degree Parameter
	Avoiding Expensive Mathematical Operations for HRGs
	Parallelization

	Experimental Evaluation
	Scaling of the GIRG Generator
	HRG Run Time Comparison
	Difference Between HRGs and GIRGs

	Conclusion

	Computing Maximum Flows in Scale-Free Networks
	Introduction
	Network Flows and Dinitz's Algorithm
	Network Flows
	Dinitz's Algorithm
	Running Time Considerations

	Improving Dinitz on Scale-Free Networks
	Bidirectional Search
	Time Stamps
	Skip Next Forward Layer

	Implementation
	Common Dinitz Implementations
	Data Layout and Initialization
	Low-Level Optimizations

	Experimental Evaluation
	Runtime Comparison
	Optimizations in Detail
	Gomory-Hu Trees
	Performance on Homogeneous Networks
	Data and Implementations

	Conclusion

	Computing Directed Minimum Spanning Trees
	Introduction
	Edmonds' Arborescence Algorithm
	Edmonds' Original Version
	Tarjan's Version
	GGST Version
	Arborescence Reconstruction

	Implementation
	Competition Codes
	Library Solvers
	Our Tarjan-based Solvers
	Our GGST Solver
	Alternative Reconstruction Method

	Experiments
	Setup and Datasets
	External Solver Integration
	General Performance
	Scaling Analysis
	Time Per Operation

	Conclusion

	A Branch-and-Bound Algorithm for Hitting Set
	Introduction
	Basic Building Blocks
	Problem Definition
	Upper Bounds
	Lower Bounds
	Reduction Rules

	The Branch-and-Bound Algorithm
	Operation Summary and Reduction Order
	Branching Strategy
	Instance Representation
	Upper Bound Computation
	Packing Bound Computation
	Efficient Costly Discard Rule
	Efficient Domination Rules

	Evaluation on Public Hitting-Set Instances
	Experimental Setup
	Runtime Performance and Search Space
	Lower Bound Effectiveness
	Upper Bound Effectiveness
	Reduction Effectiveness

	Evaluation on Geometric Inhomogeneous Random Graphs
	Degree Distributions
	Vertex to Edge Ratio
	Hyperedge Size
	Locality

	Conclusion

	A Branch-And-Bound Algorithm for Cluster Editing
	Introduction
	Preliminaries
	The Branch-and-Bound Algorithm
	Upper Bounds
	Lower Bounds
	Reduction Rules
	Reduction Order

	Experiments
	PACE Instances
	Experiments on GIRGs

	Conclusion

	Conclusion and Outlook
	Generating GIRGs
	Scale-Free Flow
	Minimum Spanning Arborescence
	Hitting Set
	Cluster Editing
	Summary

	Bibliography

