128,709 research outputs found

    Improvement and Performance Evaluation for Multimedia Files Transmission in Vehicle-Based DTNs

    Get PDF
    In recent years, P2P file sharing has been widely embraced and becomes the largest application of the Internet traffic. And the development of automobile industry has promoted a trend of deploying Peer-to-Peer (P2P) networks over vehicle ad hoc networks (VANETs) for mobile content distribution. Due to the high mobility of nodes, nodes’ limited radio transmission range and sparse distribution, VANETs are divided and links are interrupted intermittently. At this moment, VANETs may become Vehicle-based Delay Tolerant Network (VDTNs). Therefore, this work proposes an Optimal Fragmentation-based Multimedia Transmission scheme (OFMT) based on P2P lookup protocol in VDTNs, which can enable multimedia files to be sent to the receiver fast and reliably in wireless mobile P2P networks over VDTNs. In addition, a method of calculating the most suitable size of the fragment is provided, which is tested and verified in the simulation. And we also show that OFMT can defend a certain degree of DoS attack and senders can freely join and leave the wireless mobile P2P network. Simulation results demonstrate that the proposed scheme can significantly improve the performance of the file delivery rate and shorten the file delivery delay compared with the existing schemes

    Improvement and Performance Evaluation for Multimedia Files Transmission in Vehicle-Based DTNs

    Get PDF
    In recent years, P2P file sharing has been widely embraced and becomes the largest application of the Internet traffic. And thedevelopment of automobile industry has promoted a trend of deploying Peer-to-Peer (P2P) networks over vehicle ad hoc networks(VANETs) for mobile content distribution. Due to the high mobility of nodes, nodes’ limited radio transmission range and sparsedistribution, VANETs are divided and links are interrupted intermittently. At this moment, VANETs may become Vehicle-basedDelay Tolerant Network (VDTNs). Therefore, this work proposes an Optimal Fragmentation-based Multimedia Transmissionscheme (OFMT) based on P2P lookup protocol in VDTNs, which can enable multimedia files to be sent to the receiver fast andreliably in wireless mobile P2P networks over VDTNs. In addition, a method of calculating the most suitable size of the fragmentis provided, which is tested and verified in the simulation. And we also show that OFMT can defend a certain degree of DoS attackand senders can freely join and leave the wireless mobile P2P network. Simulation results demonstrate that the proposed schemecan significantly improve the performance of the file delivery rate and shorten the file delivery delay compared with the existingschemes

    Streaming video using cooperative networking

    Get PDF
    Title from PDF of title page (University of Missouri--Columbia, viewed on September 10, 2010).The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file.Dissertation advisor: Dr. Wenjun Zeng.Vita.Ph. D. University of Missouri--Columbia 2009.The main objective of this dissertation is to improve the overall video streaming performance in various networking environments, such as IP-multicast in wired network and wireless mesh networks (WMNs), using cooperation among participants including clients and routers. We investigate a number of key challenging issues associated with video streaming, and we explore solutions to those issues using a cooperative networking approach, which includes constructing overlay Peer-to-Peer (P2P) retransmission networks and exploring hybrid architecture of content distribution networks (CDN) and P2P networks. To solve the reliability issue in IP-multicast, we propose a novel overlay P2P retransmission architecture to exploit path diversity. An approach that leverages both disjoint path finding and periodic selective probing to take into account peer's recent packet loss probability, retransmission delay and recent retransmission performance is proposed to effectively construct an efficient and dynamic overlay peer retransmission network. To improve the video streaming quality over WMNs, we design a Unified Peer-to-Peer and Cache (UPAC) framework for high quality video on demand services over infrastructure multi-hop WMNs. In this framework, mesh routers work cooperatively with mesh clients to construct a CDN and P2P hybrid structure to improve the QoS of video streaming. We present a series of solutions to address the key challenges in video streaming over WMNs, i.e., the design of a new high throughput routing metric, a new enhanced routing algorithm, a cross-layer server and path selection strategy, a novel admission control algorithm with per-flow routing and a new P2P structure for video streaming. Simulation results show that the proposed UPAC framework can utilize the capacity of WMNs better than existing approaches and improve the video streaming quality over WMNs significantly.Includes bibliographical reference

    Peer to Peer Information Retrieval: An Overview

    Get PDF
    Peer-to-peer technology is widely used for file sharing. In the past decade a number of prototype peer-to-peer information retrieval systems have been developed. Unfortunately, none of these have seen widespread real- world adoption and thus, in contrast with file sharing, information retrieval is still dominated by centralised solutions. In this paper we provide an overview of the key challenges for peer-to-peer information retrieval and the work done so far. We want to stimulate and inspire further research to overcome these challenges. This will open the door to the development and large-scale deployment of real-world peer-to-peer information retrieval systems that rival existing centralised client-server solutions in terms of scalability, performance, user satisfaction and freedom

    Improving BitTorrent's Peer Selection For Multimedia Content On-Demand Delivery

    Get PDF
    The great efficiency achieved by the BitTorrent protocol for the distribution of large amounts of data inspired its adoption to provide multimedia content on-demand delivery over the Internet. As it is not designed for this purpose, some adjustments have been proposed in order to meet the related QoS requirements like low startup delay and smooth playback continuity. Accordingly, this paper introduces a BitTorrent-like proposal named as Quota-Based Peer Selection (QBPS). This proposal is mainly based on the adaptation of the original peer-selection policy of the BitTorrent protocol. Its validation is achieved by means of simulations and competitive analysis. The final results show that QBPS outperforms other recent proposals of the literature. For instance, it achieves a throughput optimization of up to 48.0% in low-provision capacity scenarios where users are very interactive.Comment: International Journal of Computer Networks & Communications(IJCNC) Vol.7, No.6, November 201

    Content-access QoS in peer-to-peer networks using a fast MDS erasure code

    Get PDF
    This paper describes an enhancement of content access Quality of Service in peer to peer (P2P) networks. The main idea is to use an erasure code to distribute the information over the peers. This distribution increases the users’ choice on disseminated encoded data and therefore statistically enhances the overall throughput of the transfer. A performance evaluation based on an original model using the results of a measurement campaign of sequential and parallel downloads in a real P2P network over Internet is presented. Based on a bandwidth distribution, statistical content-access QoS are guaranteed in function of both the content replication level in the network and the file dissemination strategies. A simple application in the context of media streaming is proposed. Finally, the constraints on the erasure code related to the proposed system are analysed and a new fast MDS erasure code is proposed, implemented and evaluated
    • 

    corecore