588 research outputs found

    A Calculus for Orchestration of Web Services

    Get PDF
    We introduce COWS (Calculus for Orchestration of Web Services), a new foundational language for SOC whose design has been influenced by WS-BPEL, the de facto standard language for orchestration of web services. COWS combines in an original way a number of ingredients borrowed from well-known process calculi, e.g. asynchronous communication, polyadic synchronization, pattern matching, protection, delimited receiving and killing activities, while resulting different from any of them. Several examples illustrates COWS peculiarities and show its expressiveness both for modelling imperative and orchestration constructs, e.g. web services, flow graphs, fault and compensation handlers, and for encoding other process and orchestration languages

    Probabilistic Interval Temporal Logic and Duration Calculus with Infinite Intervals: Complete Proof Systems

    Full text link
    The paper presents probabilistic extensions of interval temporal logic (ITL) and duration calculus (DC) with infinite intervals and complete Hilbert-style proof systems for them. The completeness results are a strong completeness theorem for the system of probabilistic ITL with respect to an abstract semantics and a relative completeness theorem for the system of probabilistic DC with respect to real-time semantics. The proposed systems subsume probabilistic real-time DC as known from the literature. A correspondence between the proposed systems and a system of probabilistic interval temporal logic with finite intervals and expanding modalities is established too.Comment: 43 page

    Kleene Algebras, Regular Languages and Substructural Logics

    Full text link
    We introduce the two substructural propositional logics KL, KL+, which use disjunction, fusion and a unary, (quasi-)exponential connective. For both we prove strong completeness with respect to the interpretation in Kleene algebras and a variant thereof. We also prove strong completeness for language models, where each logic comes with a different interpretation. We show that for both logics the cut rule is admissible and both have a decidable consequence relation.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    Progress Report : 1991 - 1994

    Get PDF

    A Road Map of Interval Temporal Logics and Duration Calculi

    Get PDF
    We survey main developments, results, and open problems on interval temporal logics and duration calculi. We present various formal systems studied in the literature and discuss their distinctive features, emphasizing on expressiveness, axiomatic systems, and (un)decidability results

    Abstract Representation of Music: A Type-Based Knowledge Representation Framework

    Get PDF
    The wholesale efficacy of computer-based music research is contingent on the sharing and reuse of information and analysis methods amongst researchers across the constituent disciplines. However, computer systems for the analysis and manipulation of musical data are generally not interoperable. Knowledge representation has been extensively used in the domain of music to harness the benefits of formal conceptual modelling combined with logic based automated inference. However, the available knowledge representation languages lack sufficient logical expressivity to support sophisticated musicological concepts. In this thesis we present a type-based framework for abstract representation of musical knowledge. The core of the framework is a multiple-hierarchical information model called a constituent structure, which accommodates diverse kinds of musical information. The framework includes a specification logic for expressing formal descriptions of the components of the representation. We give a formal specification for the framework in the Calculus of Inductive Constructions, an expressive logical language which lends itself to the abstract specification of data types and information structures. We give an implementation of our framework using Semantic Web ontologies and JavaScript. The ontologies capture the core structural aspects of the representation, while the JavaScript tools implement the functionality of the abstract specification. We describe how our framework supports three music analysis tasks: pattern search and discovery, paradigmatic analysis and hierarchical set-class analysis, detailing how constituent structures are used to represent both the input and output of these analyses including sophisticated structural annotations. We present a simple demonstrator application, built with the JavaScript tools, which performs simple analysis and visualisation of linked data documents structured by the ontologies. We conclude with a summary of the contributions of the thesis and a discussion of the type-based approach to knowledge representation, as well as a number of avenues for future work in this area

    On Modelling and Analysis of Dynamic Reconfiguration of Dependable Real-Time Systems

    Full text link
    This paper motivates the need for a formalism for the modelling and analysis of dynamic reconfiguration of dependable real-time systems. We present requirements that the formalism must meet, and use these to evaluate well established formalisms and two process algebras that we have been developing, namely, Webpi and CCSdp. A simple case study is developed to illustrate the modelling power of these two formalisms. The paper shows how Webpi and CCSdp represent a significant step forward in modelling adaptive and dependable real-time systems.Comment: Presented and published at DEPEND 201

    Complexity of ITL model checking: some well-behaved fragments of the interval logic HS

    Full text link
    Model checking has been successfully used in many computer science fields, including artificial intelligence, theoretical computer science, and databases. Most of the proposed solutions make use of classical, point-based temporal logics, while little work has been done in the interval temporal logic setting. Recently, a non-elementary model checking algorithm for Halpern and Shoham's modal logic of time intervals HS over finite Kripke structures (under the homogeneity assumption) and an EXPSPACE model checking procedure for two meaningful fragments of it have been proposed. In this paper, we show that more efficient model checking procedures can be developed for some expressive enough fragments of HS
    • …
    corecore