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Abstract

The wholesale efficacy of computer-based music research is contingent on the sharing

and reuse of information and analysis methods amongst researchers across the con-

stituent disciplines. However, computer systems for the analysis and manipulation of

musical data are generally not interoperable. Knowledge representation has been ex-

tensively used in the domain of music to harness the benefits of formal conceptual

modelling combined with logic based automated inference. However, the available

knowledge representation languages lack sufficient logical expressivity to support so-

phisticated musicological concepts.

In this thesis we present a type-based framework for abstract representation of musi-

cal knowledge. The core of the framework is a multiple-hierarchical information model

called a constituent structure, which accommodates diverse kinds of musical informa-

tion. The framework includes a specification logic for expressing formal descriptions of

the components of the representation. We give a formal specification for the framework

in the Calculus of Inductive Constructions, an expressive logical language which lends

itself to the abstract specification of data types and information structures. We give an

implementation of our framework using Semantic Web ontologies and JavaScript. The

ontologies capture the core structural aspects of the representation, while the JavaScript

tools implement the functionality of the abstract specification. We describe how our

framework supports three music analysis tasks: pattern search and discovery, paradig-

matic analysis and hierarchical set-class analysis, detailing how constituent structures

are used to represent both the input and output of these analyses including sophis-

ticated structural annotations. We present a simple demonstrator application, built

with the JavaScript tools, which performs simple analysis and visualisation of linked

data documents structured by the ontologies. We conclude with a summary of the
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contributions of the thesis and a discussion of the type-based approach to knowledge

representation, as well as a number of avenues for future work in this area.
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Chapter 1

Introduction

1.1 Motivation and Research Problem

1.1.1 Research Topic

The topic of this thesis is computer representation of music. This encom-

passes many aspects of computer science, such as information modelling, ontology and

knowledge representation. We are primarily interested in representations which support

information systems and software tools for computational musicology. In particular, we

are interested in representations which admit sophisticated reasoning with information.

As such knowledge representation plays a central role in the topic. The intersection of

knowledge representation and music is heavily dominated by work related to the Seman-

tic Web. Although the focus of this thesis is not the Semantic Web, it will nonetheless

play a role; we examine representations from a broader point of view, and regard the

Semantic Web as a set of technologies which may or may not be applicable to the wider

task.
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1.1.2 Relevance of the Topic

Scientific music research is highly interdisciplinary, encompassing acoustics, cognitive

science, information retrieval and traditional musicology, to name but a few. The ubiq-

uitous application of computers leads computer science to the forefront of many en-

deavours, and representations of music and related information underpin all computer-

based music research. The different research activities across these disciplines each

consume and produce data. As a result, computational musicology is increasingly

data-driven. The plethora of available data prompts new research questions which ex-

plore the connection between perspectives from different disciplines. Addressing these

interdisciplinary questions requires the integration of data and methods across research

activities. The way that data is stored, accessed and processed is therefore

of central importance. A considerable amount of research is dedicated to these as-

pects of information management in music, with knowledge representation playing a

crucial role. The complexity of music as a subject of scientific study poses a great

many challenges from the point of view of knowledge engineering, and there remain

open problems.

1.1.3 Research Problem

Despite the overlapping aims of different research tasks, computer systems for the

communication, analysis and manipulation of music are in general not in-

teroperable. This problem stems from the underlying design of the representations

involved. There exist numerous low-level encoding formats for musical information

which generally cater towards a particular musical repertoire, notational convention or

processing application. Meaningful comparison of these encodings is not possible with-

out explicit tools for conversion. These tools are often developed ad hoc and embedded

in larger software tools whose primary purpose is not the integration of data. In addi-

tion, these basic encodings do not support more sophisticated musicological information.
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This problem can be addressed by applying the principles of knowledge representation.

However, music is a highly complex domain and presents a number of specific chal-

lenges. Many knowledge representation languages lack sufficient expressive

power to capture sophisticated musicological concepts. Music representations

based on these languages do fully accommodate the complexity of music, resulting in

application-specific models which are often not conceptually interoperable. In addi-

tion, music representations must support a multitude of different processing applica-

tions such as querying, data integrity checking, logical inference and application-specific

(user-defined) analysis algorithms. Existing information management solutions often

treat these kinds of applications separately. For example, knowledge representation

systems are generally designed to support a specific kind of automated reasoning and

do not easily integrate with programming languages in which users can design bespoke

analysis algorithms. The multitude of different applications of music representations,

combined with conceptual complexity of the domain, requires that representations be

modular and layered. Abstraction and modularity are two aspects of software devel-

opment whose purpose is to manage this kind of complexity. However, these design

aspects are absent from many knowledge representation languages.

1.2 Research Question and Objectives

1.2.1 Question

Our motivation for the current work has highlighted the importance of knowledge rep-

resentation, as well as aspects of software engineering, to the task of representing music

in computers. We therefore declare the research question of this thesis as follows:

Question: How can the principles of knowledge representation and techniques

of software engineering be unified to assist in the design of general purpose

music representations which support information systems and software tools for

computational musicology?
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1.2.2 Objectives

To address the research question, we define the objectives of the current work as follows:

Objective I: Ascertain the major requirements of music representations.

This requires establishing the diversity and commonality of different music

research tasks in terms of their representation requirements and examining these

requirements from the point of view of knowledge representation. Furthermore,

we aim to examine and evaluate existing methods of music representation in

terms of these requirements.

Objective II: Develop a general purpose music representation system.

The representation system should address the issues and general requirements

ascertained through Objective I. The representation system should be formally

specified using software engineering methods to allow it to be implemented

in computer systems for digital musicology. The specification for the system

should be implementation-independent; it should not constrain the user of the

system to any particular software platform of programming environment.

Objective III: Demonstrate the utility of the proposed representation.

This requires an implementation of the system. The implementation must use

mainstream technologies and tools so that it may be easily accommodated into

existing systems and methodologies by researchers and developers. Finally, we

must demonstrate the utility of the representation system by showing how it

supports a variety of typical applications and musicological research tasks.

1.3 Research Methods and Scope

In this section we outline the methods that are used to tackle the research question of

this thesis. In addition, we clarify the scope of the work by stating the bounds of our

focus.
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1.3.1 Research Methods

The method is divided into three parts, each of which addresses one of the objectives

outlined in the previous section. These three methods are as follows:

Method I: Literature survey The first part of our method is a literature sur-

vey which addresses Objective I. We review work on the principles of knowledge

representation and music representation and enumerate the specific requirements

for a general purpose music representation system. We survey existing knowledge

representation and music representation systems and consider them in terms of

these requirements.

Method II: Specification The second part of the method is a formal specifi-

cation for a music representation framework which addresses Objective II. The

specification is given using dependent type theory and addresses the require-

ments identified. We give a functional specification of a multiple-hierarchical

information model called a constituent structure. We define a specification logic

for constituent structures in which the structural properties of represented en-

tities can be formally expressed. We describe a number of extensions to the

specification which realise a range of different representational features and re-

quirements.

Method III: Demonstration The third part of our method is a implemen-

tation of the specification which addresses Objective III. We present a number

of Semantic Web ontologies which capture the constituent structure model and

specification logic of the framework. We implement a number of JavaScript mod-

ules which provide the core functionality of the representation. We illustrate how

the representation can be used in support of three music analysis tasks. Finally,

we use the implementation to build a demonstrator application which performs

simple analysis and visualisation of musical material.
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1.3.2 Scope of Research

It is important at this stage to clarify precisely the scope of the current work. Firstly, we

emphasis that the main focus of the work is on the general methodology of computer-

based music research. It is not concerned with any particular analysis algorithm, re-

search task or method of computational musicology. We regard representation as being

the cornerstone of computer-based methodology and a subject of study independent of

any particular application. Secondly, the emphasis of this work is on formal specification

at an abstract level. We are, in general, not concerned with concrete implementations

of systems. We are not proposing a new data format or standard and are especially

not interested in implementation details such as space and time complexity. We regard

implementations as being concrete instantiations of the representation specification.

1.4 Thesis Outline and Contributions

This thesis is divided into four parts. Parts 1-3 include the major work of the thesis.

Part 4 includes conclusions and future work.

1.4.1 Part I

Part I introduces the relevant background and related work. It includes the literature

survey of Method I. The key contribution of this part is a review of the issues and

existing approaches to knowledge representation and music representation. The part is

divided into three chapters. Chapter 2 describes the relevant background and related

work in the areas of type theory and category theory and describes their relevance to

knowledge representation. Chapter 3 includes the relevant background in the topic of

knowledge representation and reasoning. We discuss the methodological principles of

knowledge representation with a particular focus on interoperability of representations.

The key contribution of this chapter is a survey of a number of existing technologies

with particular assessment of aspects which will be relevant to music. Chapter 4 is
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the principle literature review chapter, containing a discussion of the core issues of

music representation. It draws on the background presented in the previous chapter to

assess the requirements of general purpose music knowledge representations. The key

contribution is a survey of existing approaches to music representation, with particular

attention paid to Semantic Web representations and the CHARM system.

1.4.2 Part II

Part II contains the core theoretical work of the thesis. It describes a type-based frame-

work for music knowledge representation. It is divided into three chapters. Chapter 5

describes a general purpose representation of music based on abstract data types, called

constituent structures. The key contribution of this chapter is a functional specification

of the constituent structure representation given in dependent type theory. Chapter 6

describes a specification logic for constituent structures. It provides an expressive lan-

guage for capturing logical descriptions of the structure of represented entities. Chapter

7 describes several extensions to the both the constituent structure representation and

the specification logic which capture a range of desirable representational features. This

chapter aims to demonstrate how the type-based method supports the formalisation of

many sophisticated representational approaches.

1.4.3 Part III

Part III describes an implementation of the representation using Semantic Web on-

tologies and JavaScript modules. The core contribution of this part is a demonstra-

tion of the type-based knowledge representation framework. Chapter 8 describes three

Semantic Web ontologies which capture the different parts of the framework. It in-

cludes an ontology for representing constituent structures, an ontology for describing

functional specifications of abstract data types based on type theory, and an ontology

which captures expressions of the specification logic. Chapter 9 describes a number of

JavaScript tools which implement the core functional behaviours of the representation
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framework, and provide a basis for developing music analysis applications. Chapter 10

gives concrete examples of the use of the framework, describing how the representation

supports three different music analysis tasks: pattern search and discovery, paradig-

matic analysis, and hierarchical set-class analysis. In addition, it presents a web-based

demonstrator application, built using the JavaScript tools, to perform paradigmatic

analysis and visualisation of linked data documents, structured by the ontologies.

1.4.4 Part IV

Finally, Part IV contains the conclusions of the thesis and proposals for future work.

Chapter 11 summaries the contributions of the work and gives a broad discussion of

the type-based approach to knowledge representation with reflection and comparison

on existing approaches. Chapter 12 identifies aspects of the current work which require

further development, as well as a number of potential avenues of future research within

the topic.
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Part I

Background and Literature Review
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Summary

In this part, we introduce the requisite background material and give a review of related

work. The current work draws on a wide variety of disciplines, including theoretical

computer science, artificial intelligence, and computational musicology. These fields are

not substantially cross pollinated, and as such a principle aim of this part is organise

the requisite material in such a way as to draw out the connections between them.

Therefore, we take care in clearly describing the connections between the topics and

their application to computer representation of music. The part is divided into three

chapters, each broadly dealing with a different discipline. Chapter 2 deals with top-

ics from mathematics and computer science. It introduces two areas of mathematics,

namely type theory and category theory, which have wide applications in computer sci-

ence. It introduces the requisite background and reviews a number of applications, each

of which serve to illustrate the relevance of these disciplines to the field of knowledge

representation and reasoning. Chapter 3 presents the background material on the topic

of knowledge representation and reasoning. It provides a high-level overview of the the-

oretical aspects of the field, and reviews a number of existing knowledge representations

systems. Various theoretical aspects and existing technologies are highlighted due to

their importance in the subsequent discussion of music representation. Chapter 4 deals

with the topic of computer representation of music from the perspective of knowledge

representation, with reference to the insight of the previous chapter. It highlights the

specific knowledge representation requirements and challenges encountered in the do-

main of music. It reviews a number of existing music representation systems, regarding

each in terms of its suitability as a general purpose music knowledge representation

system.
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Chapter 2

Type Theory and Category Theory

2.1 Introduction

This chapter introduces the requisite mathematical topics, namely type theory and

category theory. Of the two, type theory plays a greater role in the current work. It

is used as a formal basis for the music knowledge representation framework described

in Part II. In this chapter we introduce the requisite type-theoretic material for what

follows. Category theory plays a smaller role. However, its application in areas related

to knowledge representation, as well as its deep connection to type theory, is what

prompts its inclusion.

Chapter Outline

The outline of the chapter is as follows: §2.2 introduces the requisite background on type

theory. In particular, it includes a description of the specific metalanguage and notation

used in Chapter II, and a review of three applications of type theory which possess

certain conceptual and methodological aspects in common with the current work. §2.3

introduces the requisite category-theoretic material and reviews two applications of

category theory with close connections to the current work. §2.4 provides summary

of the conclusions of the chapter, with a specific look ahead to the involvement of
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these mathematical topics in the discussion of knowledge representation and music

representation.

2.2 Type Theory

2.2.1 Overview

What is Type Theory?

Type theory is concerned with formal systems for rewriting certain strings of symbols.

It formalises the notion of a mathematical term, in particular the notions of variable,

function and substitution. In type theory each term has a type. Terms are written as

(explicitly typed) lambda terms and can be seen as a logical extension to the lambda

calculus (Church, 1936).

Why is it Relevant?

In this thesis we propose the use of type theory as a basis for knowledge representation.

The motivation for doing so is two-fold: First, type theories are systems of con-

structive logic via the Curry-Howard correspondence (Curry and Feys, 1958; Howard,

1980). Logic is central to the field of knowledge representation as a basis for mechanical

reasoning. In this thesis we argue that constructive logic is an attractive alternative to

classical first-order logic as basis for knowledge representation. Second, type theories

are mathematical formalisations of programming languages. In this thesis we

argue that a knowledge representation language is a programming language, and as

such, the theory of programming languages should be involved in the task of knowledge

representation. The Curry-Howard correspondence originated through the identifica-

tion of a precise correspondence between intuitionist propositional logic and simply-

typed lambda calculus. It has since been developed into the more general paradigm

of “propositions as types; proofs as programs” in which every theorem statement of a

logic can be identified with a type, and every proof of a theorem can be identified with
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a program of that type. This paradigm has been highly influential in theoretical com-

puter science and logic and is the principle motivation behind the use of type theory in

the current work.

2.2.2 Prerequisites

Judgements and Inference Rules

A type theory is a system of natural deduction for deriving typing judgements of the

form Γ ` M : A, read as “M is a term of type A in context Γ”, where M is a lambda

term, A is called the type ofM , and the context Γ is a sequence of variable decalrations

(x1 : T1, ...xn : Tn) which includes the free variables ofM and A. The symbol ` denotes

an entailment relation between contexts and terms. Other forms of judgement capture

the notions of definitional equality between types, terms and contexts. For example,

Γ ` M ≡ N : A captures when M and N are equal terms of type A. The inference

rules of the system govern the formation of types, the introduction and elimination of

terms of those types, the computational properties of terms with respect to definitional

equality, and the structural rules for contexts with respect to the entailment relation.

For a full discussion of judgements and rules we refer the reader to Jacobs (1999). There

are many such systems, each characterised by their rules for forming types and terms.

The Lambda Cube

Systems can be characterised by the variable dependencies which exist between the

objects of the theory. The lambda cube (Barendregy, 1991) is a three dimensional

cube-shaped graph which summaries the relationships between a number of different

typed lambda calculi. Each vertex of the cube represents a typed lambda calculus

and each edge is labelled with an arrow denoting the inclusion of one calculus within

another. The three dimensions of the cube represent three forms of abstraction: terms

depending on types (polymorphism), types depending on types (higher-order types

or type operators), and types depending on terms (dependent types). The simplest
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calculus of the structure is the simply-typed lambda calculus (STT: Church, 1940),

in which the only dependency is between terms and other terms. In STT, types are

generated from a set of base types using the constructors →, × 1, + and 0. Moving

along the edges of the cube introduces other kinds of dependency. For example, System

F (second-order or polymorphic lambda calculus: Reynolds, 1974) is an extension to

STT which allows terms to depend on type variables. The most expressive calculus of

the cube is The Calculus of Constructions (CC: Coquand and Huet, 1988), a higher-

order dependently-typed polymorphic lambda calculus, which admits all three kinds of

dependency resulting in a highly expressive programming language and logical calculus.

Dependent Types

In this thesis we are interested in use of dependent types as they correspond logically

to predicates. A typical example of a dependent type is the type

(n : Nat) ` NatList(n) : Type

of lists of natural numbers of length n (where Nat is the type of natural numbers).

The term NatList(n) is referred to as a family of types indexed by elements of the type

Nat. Given such a family B(x) indexed by terms of a type A, there are two ways of

constructing dependent types called products and sums. The dependent product (or

function) type, written Πx : A.B(x), is the type of functions whose return type varies

according to the value of the argument. For example, given f : Πx : A.B(x) and a : A,

f(a) has type B(a). The dependent sum type, written Σx : A.B(x), is the type of

pairs (a,b) where a has type A and b has type B(a). Dependent products and sums

generalise the notions of function type and product type respectively. Π and Σ are

both variable binding operations; they can be seen as the constructive equivalents of

the logical operations ∀ and ∃, respectively.
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Pure Type Systems

Pure type systems (Barendregy, 1991) are a unified framework for characterising

dependently-typed λ-calculi. Terms of a pure type system are explicitly typed lambda

terms with a single type constructor for dependent products, which are the type of

lambda abstractions. Pure type system are characterised by a set of sorts (type uni-

verses) which capture the types of types, a set of axioms which define the typing rules

for sorts and other constants of the systems, and a set of rules which specify the types

of dependent products. All of the calculi in the lambda cube, as well as many others,

can be characterised in this way.

2.2.3 The Calculus of Inductive Construction

When augmented with inductive types, CC becomes The Calculus of Inductive Con-

structions (CIC: Bertot and Castéran, 2004). CIC is a pure type system with an infinite

hierarchy of type universes given by the set {Prop, Set,Typei|i ∈ N}, where Prop is the

type of logical propositions, Set is the type of data types (such as Booleans and natural

numbers as well as function types and product types), and Typei is the type of higher-

order types. All sorts have a type which is also a sort. The typing of sorts is given by

the axioms Prop : Type1, Set : Type1 and Typei : Typei+1 for all i ∈ N. The hierarchy

of type universes is cumulative meaning that any term of Typei is also a term of type

Typei+1.

Inductive Definitions

CIC includes rules for introducing arbitrary inductive types, as well as a restricted

form of general recursion. Inductive types are defined by a finite number constructor

operations. Terms of an inductive type are the least set of objects generated by a finite

number of applications of the constructions. Typical examples of inductive types include

natural numbers (via Peano axioms) and lists (as in Haskell or ML). For the precise

rules governing inductive definitions in CIC we refer the reader to Bertot and Castéran
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(2004), however precise understanding of these rules is not required for understanding

the present work, or the use of inductive types in general. Functional programming

languages like ML and Haskell admit a simple kind of inductive type via their data type

definitions. All the standard data types and type structure form mainstream functional

programming languages, such as ML and Haskell, can be defined in CIC using inductive

definitions. As such, CIC is a highly expressive system for both functional programming

and logic, and it is used as the underlying logical language of the Coq proof assistant

(Bertot and Castéran, 2004).

2.2.4 Notation Used in This Thesis

In Part II we give a formal specification for a music representation system using CIC.

Our notation for the basic calculus is fairly standard. Variables are written x,A, while

constants and sorts are written x,A. We write lambda abstraction as λx : A.t, de-

pendent products as Πx : A.B, and functional application using brackets as f(t), with

f(t, u) short for f(t)(u). (As usual, application associates to the left.) We write the

dependent product Πx : A.P as ∀x : A.P when its type is Prop. We write dependent

products Πx : A.B as A→ B when x is not free in the type B. We sometimes omit the

type of bound variables in variable-binding operations. For example, λx.t is shorthand

for λx : A.t when the type of x is clear from the context (or could be inferred). We

also adopt a recursive style of notation for nested binding operations. For example

λx : A.λy : B.t is written λ(x : A)(y : B).t or λx y.t.

In addition to the core calculus, we assume (inductive) definitions for the following

type forming operations in the syntactic universe Prop: ∃x : A.P , >, P∧Q, ⊥ and P∨Q

stand for existential quantifier, true, conjunction, false and disjunction, respectively. We

also assume the type option(A) to be the polymorphic type for capturing the partiality

of operations. We use the type fset(A) for the type of polymorphic finite sets with the

usual set theoretic operations and predicates.

For simplicity, we do not include type contexts in the specification of Part II; the
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type of free variables in expressions is given separately when it is not obvious from the

context. Constants are introduced as either assumptions or definitions. Assumptions

are written simply as typing judgements C : T where C is the defined constant and T

is its assumed type. Definitions are written C := t or C : T := t where C is the defined

constant, T is its type and t is the term it is definitionally equivalent to. All typing

judgements are assumed to be derivable in a global context which includes previously

given definitions.

2.2.5 Relevant Applications of Type Theory

Programming Language Type Systems

The most commonly found application of type theory is in the theory and design pro-

gramming languages. A programming language can be viewed as collection of types;

the type structure of a language determines the types of computation it performs. Type

systems found in languages such as ML and Haskell are derived from particular type-

theoretic constructs and allow for the correctness (type safety) of a program to verified

at compile time. Recently, the functional paradigm of programming has increased in

popularity, as the strong mathematical basis provides powerful formal methods of rea-

soning about programs. In §4.3 we discuss a number of domain-specific programming

languages for music which have been developed in Haskell.

Theorem Proving and Verified Software

The connection between type theory and logic has led type theory to be used in the

field of theorem proving and program verification (Chlipala, 2007). Traditionally, pro-

gramming and theorem proving are treated as two distinct things, with separate mech-

anisms and tools being developed for each. The type-theoretical approach uses the

Curry-Howard correspondence to unify these two activities. The idea is that typed-

lambda calculi can be used as languages for writing formal program specifications and

as concrete formats for writing proofs of these specifications. This is merely an exten-
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sion of the convention of writing type annotations in the source code of statically typed

functional programs. Proofs of these trivial specifications (the programs) are proofs

of type safety. Generalising this idea leads to considering statically-typed program-

ming languages which include an embedded representation of proofs, thus unifying the

practises of programming and proving.

This unified view of programming and proving is the basis behind a number of

type-theoretic proof assistants. Coq (Bertot and Castéran, 2004) is arguably the most

advanced of the type-theoretic proof assistants and contains a lot of support for ac-

tivities in the area of formal verification including a sophisticated tactic language for

automatically constructing proof terms, program extraction, and an extensive standard

library. Coq has been used in a wide variety of verified software projects, including

verification of low-level programming languages (Chlipala, 2013), deductive synthesis

of abstract data types (Delaware et al., 2015) and verified database systems (Malecha

et al., 2010; Dumbrava, 2016). The current work shares some conceptual overlap with

these verified software projects, and throughout the work will draw attention to these

connections.

Knowledge Representation

Despite the strong connections between logic and programming provided by type theory,

very little existing work fully explores the practical application of type theory to the

task of knowledge representation and AI. One notable exception is K-DTT (Barlatier

and Dapoigny, 2012), an ontology language based on dependent type theory. The core

aspect of this work is the adoption of a constructive logic with proof theoretic semantics

as a basis for representing ontological structures. Again, there is some conceptual

overlap with this approach and the current work, and the K-DTT system is discussed

further in §3.4.3.
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2.3 Category Theory

2.3.1 Overview

What is Category Theory?

Category theory is a branch of mathematics concerned with the algebraic study of

structure. It can be seen as the abstract algebra of functions. It originated in algebraic

topology but has since become a fundamental component of mathematical foundations,

logic and computer science.

It plays a smaller role than type theory in the current work. However, it has deep

connections with type theory and as such has many applications within computer sci-

ence. Some of these applications have considerable conceptual overlap with the current

work. In this section, we present the minimal background required for understanding

these connections so that our work may be compared with these other areas.

Why is it relevant?

Category theory provides provides a framework for formalising many other aspects of

mathematics and has close connections with both type theory and systems of logic.

As such, it has many applications in computer science (Goguen, 1991) as a formal

language for the abstract description of systems. Category theory provides a way of

understanding patterns in systems. The use of category theory in formal specifications

provides a high degree of conceptual hygiene and allows many seemingly unrelated

systems to be meaningfully compared and combined.

Many concepts from category theory have correspondences in functional program-

ming. It is used to understand type structures in functional programming languages.

Most famously, the notion of Cartesian closed category has been found to correspond

with STT (Lambek, 1980). Indeed, type theory can be seen as a formal calculus for

category theory. Both lambda calculus and categories provide languages for specifying,
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manipulating and calculating with mathematical functions.

2.3.2 Prerequisites

Category theory uses the abstract (primitive) notions of object and morphism to de-

scribe collections of entities and their structural relationships. These descriptions, called

categories, are often regarded as directed graphs, with objects as vertices and morphisms

as edges. The defining characteristic of a category however, is that the relationships ex-

pressed by the morphisms must be reflexive (every object is related to itself), transitive

(relationships can be composed) and associative (the order of composition is unimpor-

tant). In this section, we give informal definitions of two concepts from category theory,

namely category and functor, which will be required in order to understand what follows.

For more formal definitions of the concepts we refer the reader to Awodey (2010).

Category

The fundamental concept from category theory is that of the category itself. A category

consists of a collection of objects and a collection of ‘arrows’ connecting those objects,

called morphisms. Each morphism has a domain and codomain which are objects of the

category. For each object there is a specific morphism called the identity morphism,

whose domain and codomain is that object. In addition, there is a partial binary

composition operation on morphisms; given two morphism where the codomain of one is

the same object as the domain of the other, we can compose them to create a morphism

from the domain of the first to the codomain of the second. This composition operation

must satisfy two laws: it must be associative and the identity morphisms are units.

Functor

A functor is a structure preserving map between categories. It maps objects of the

domain category to objects of the codomain category, and morphisms of the domain

category to morphism of the codomain category in such a way as to preserve the iden-
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tity and composition of morphism. Functors in category theory are a very powerful

abstraction. They can be thought of as particular ‘diagrams’ in the codomain category

whose ‘shape’ is determined by the domain category. In other words the shape of the

first category is rendered in the second. Functors can also be though of as morphisms

in a category of categories, in which the objects are categories. A final level of abstrac-

tion enables functors themselves to be viewed as objects in categories whose morphisms

are called natural transformations. The precise ways in which these constructions are

defined are not required for the current work, however we allude to them here to give

the reader a sense of the richness and power of the abstractions of category theory.

Example

The canonical example of a category is the category Set in which the objects are sets and

the morphisms are functions between sets. Composition of morphisms is given by the

standard composition of set functions, and so by definition satisfies the laws of identity

and associativity. The category Set has additional interesting structure. For example,

given any two sets, both the Cartesian product and the set of functions between them is

also a set. These two structural aspects of sets are merely specific instances of the more

general notions of product and exponential constructions in category theory. Categories

which allow for both these constructions possess what is referred to as Cartesian-closed

structure. It is these kinds of constructions in category theory which bare a close

correspondence with certain structures in type theory and logic. Again, the formal

details of these constructions and their type-theoretic and logical counterparts are not

required for an understanding of this work. However, we want to be emphatic regarding

the importance of the connection; one desired outcome of the type-based approach to

knowledge representation presented in this thesis is to provide a basis from which insight

from category theory can be utilised in future work. In the next section we describe

two fields of research in which category theory has been applied which bare a strong

resemblance to the current work.
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2.3.3 Relevant Applications of Category Theory

Information Systems

Category theory has been applied in the areas of information science and the design of

databases. In particular, The Functorial Data Model (Spivak, 2012) uses a variety of

categorical constructions to formalise various aspects of relational database languages.

The basic idea is that database schemas can be specified as categories in which the

objects of the category are database tables or data types. Each column of a table

corresponds with a morphism from that object to either another table (foreign keys)

or to a data type object. Instances of these databases schemas are set-valued functors,

i.e. functors which map every object in the schema to a set, and every morphism to

a set function. This categorical framework provides many advantages over other ways

of specifying database languages. Firstly, database schemas in this language integrate

better with programming languages, due to close connection between categories and

lambda calculi. Secondly, categorical database schemas have available to them the full

formal power of category theory for defining schema mappings as functors. This in

turn leads to the notion of functorial data migration (Spivak, 2012), whereby functors

mapping between schemas give rise to canonical transformations between instances

of those schemas. Ontology Logs (Spivak and Kent, 2012) use the Functorial Data

Model as basis for a knowledge representation framework, in which the database schema

categories are viewed as simple ontologies. Ontology Logs have many aspects in common

with the type-based approach to knowledge representation presented in this work, and

so is discussed in more detail in §3.4.4.

Music Representation and Analysis

Category theory has been extensively applied to the study of music by the mathemati-

cian and musicologist Guerino Mazzola. The Topos of Music (Mazzola, 2012) outlines

in considerable detail, a method for applying category to the representation, analysis
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and manipulation musicological knowledge. It uses a specific category as the formal

basis for defining a representation language for music consisting of two kinds of entity:

Forms and Denotators. Forms represent musical concept spaces, and correspond with

functors from the category of modules to the category of sets. Denotators represent

(generalised) points in those spaces, and correspond with morphisms in the category

of modules. The precise formal set up is highly sophisticated and not required for

understanding of the current work. Instead, we restrict ourselves to a high-level dis-

cussion of The Topos of Music regarding two remarkable aspects. Firstly, as the work

constitutes a comprehensive and highly sophisticated examination of many aspects of

music representation and formal analysis, it is remarkable how little it is referred to in

the broader music research community. This is in part due to the complexity of the

mathematics involved. However, there few aspects of music representation and analysis

which are not addressed in some way throughout the work, and so there is a lot of po-

tential for comparison with other work which has not been carried out. Secondly, it is

remarkable how, throughout Mazzola’s work, virtually no connection with type theory

is drawn. Mazzola remarks on the appropriateness of the object-oriented programming

paradigm as medium for implementing Forms and Detonators, and indeed the partial

implementation Rubato Composer (Milmeister, 2014) is implemented in Java. However,

the connection between functional programming languages and categorical structures

of the kind used by Mazzola are reasonably well understood. It seems reasonable to

believe that careful examination of the theory of Forms and Denotators from the per-

spective of type theory may reveal close connections to other areas of computer science

and programming language theory. Whilst this kind of examination is not included

within the scope of the current work, we do endeavour to address where possible the

overlap and potential scope for further exploration. In addition, we provide a more

detailed discussion of the Rubato Composer system in §4.3.

39



2.4 Conclusions

In this chapter we have introduced the topics of type theory and category theory and

highlighted their connections with the topics of this thesis. We have given an overview

of two applications of type theory, namely programming languages and verified software,

and two applications of category theory, namely information systems and mathematical

music theory, with strong relevance to the current research. The advantages of type

theory as a formal specification language have been used extensively in computer sci-

ence from the simple type-safety of programming languages to large verified software

projects. The advantages of category theory as a high-level conceptual framework for

understanding make it a useful organisational tool in software development. In the cur-

rent work, category theory will play a subservient role to type theory although many

aspects are expressible in both formalism.
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Chapter 3

Knowledge Representation and

Reasoning

3.1 Introduction

What is Knowledge Representation?

Knowledge Representation is a field of Artificial Intelligence concerned with formal

systems for representing knowledge in computers. It is a predominantly theoretical

practice, drawing on disciplines such as information science, cognitive psychology, math-

ematical logic and metaphysics. The aim is to represent information in a way such that

computer systems can use it to solve problems. The use of represented knowledge to

solve tasks is often referred to as automated reasoning (Brachman and Levesque, 2004).

Why is it relevant?

The ability of computer systems to share and automatically reason with information is

the main motivation behind the practice, as well as the assertion that “better knowledge

can be more important for solving a task than better algorithms” (Meghanathan et al.,

2013, pp. 439). The relevance of knowledge representation in music has been widely
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acknowledged (Balaban, 1996; Wiggins and Smail, 2000; Fields et al., 2011) and many

systems and technologies have been used as music representation methods (Wiggins

et al., 1989; Marsden, 2000; Abdallah et al., 2006).

Chapter Outline

In this chapter we give a high-level overview of the issues and existing systems in the

field of knowledge representation, identifying those aspects which will be of particular

importance when considering music. §3.2 takes a closer look at the principles of knowl-

edge representation from the perspective of AI systems. §3.3 discusses interoperability

of representations, describing two distinct approaches. §3.4 contains a survey of ex-

isting knowledge representation technologies. §3.5 gives a more detailed examination

of knowledge representation on the Semantic Web. §3.6 summarises the chapter and

states the main conclusions.

3.2 Definition and Requirements of Knowledge

Representation

In this section we clarify the definition of knowledge representation, and in doing so

discuss some of the fundamental aspects of the field. The difficulty in defining knowledge

representation stems from the difficulty of defining Knowledge itself. Knowledge is often

defined by its opposition to other terms such as data and information (Ackoff, 1989;

Rowley, 2007), however these definitions are informal, and introduce philosophically

thorny terminology. Brachman and Levesque (2004) regard knowledge as propositional;

a relationship between a knower and a logical proposition. Wiggins (2000) regards

knowledge representation in a technical sense by its opposition to data encoding in the

sense of Fisher et al. (2006).

Davis et al. (1993) give perhaps the most useful definition of knowledge represen-

tation (KR) in terms of five roles. The roles define what KR is from a number of
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different perspectives. From each one of these perspectives, it is possible to, at a high

level, distinguish a number of particular requirements which should be considered in

the design of knowledge representation systems. In this section we examine each one

of Davis’ roles (with a sub-section for each), highlighting what we believe to be their

consequences from the perspective of system requirements. This section is intended to

lay the groundwork for the more detailed survey of existing knowledge representation

systems presented in §3.4, and the discussion of the music knowledge representation

presented in Chapter 4.

3.2.1 Role I: A KR is a Surrogate

Represented knowledge exists internally to some agent in approximation of some por-

tion of reality, allowing the agent to reason by acting on the representation rather than

reality itself. The intended identity (meaning or denotation) of a representation, that is

to say, the thing that it is a surrogate for, is often formalised through the use of a formal

semantics, which defines the connection between the representation and a mathematical

model of a conceptualisation. A formal denotational semantics constitutes a transla-

tion from one language (the knowledge representation language) to another (typically

mathematics) in which it can be better understood in some sense. It is therefore an

important aspect of any knowledge representation formalism that it be explicit about

its denotation according to some mathematical model.

3.2.2 Role II: A KR is a Set of Ontological Commitments

A representation system must select certain aspects of reality to capture and omit oth-

ers. These choices constitute what Davis refers to as ontological commitments. They

can be understood as an answer to the question “How should we view the world?” The

ontological commitment of a representation system is accumulated in layers, starting

at the level of the modelling primitives of the language and accrued through the def-

inition of vocabulary terms for a specific domain. Davis’ use of the term “ontological
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commitment” differs considerably from how it sometimes used in the knowledge engi-

neering community (Guarino and Oberle, 2009). The word ‘ontology’ is widely used

in computer science to refer to formal models which specify how we should view the

world. It is most commonly defined as an “explicit specification of a conceptualisation”

(Gruber, 1993, p. 1). There has been some work dedicated to the clarification of this

definition and surrounding terminology (Guarino and Oberle, 2009). Gruber (1993)

used the notion of conceptualisation from Genesereth and Nilsson (1987) who defined

it as a set-theoretic, extensional relational structure. Guarino and Giaretta (1995) pro-

vide an alternative, intentional definition in terms of possible worlds. In this set up,

ontological commitment is defined as “a partial semantic account of the intended con-

ceptualisation of a logical theory” (Guarino and Giaretta, 1995, p. 31). It is therefore

an important aspect of knowledge representation formalisms that the layers ontological

commitment of a system can be adequately controlled through the use of dedicated

ontology languages.

3.2.3 Role III: A KR is a Fragmentary Theory of Intelligent

Reasoning

A KR system explicitly or implicitly utilises or embeds a theory of how reasoning is

performed by intelligent agents via the specific inferences which it supports. Davis

et al. (1993) considers this role in terms of three parts: the fundamental conception

of intelligent reasoning, the set of sanctioned inferences, and the set of recommended

inferences. Theories of intelligent reasoning usually originate in different academic disci-

plines, including mathematics (logical deduction), psychology (frames and prototypes),

neuroscience (neural networks) and statistics (causal networks). A knowledge represen-

tation should, therefore, be explicit in defining the modes of reasoning which it sup-

ports, so that the behaviour of any inference engine be transparently understandable.

In this thesis we will primarily focus on methods of knowledge representation based on

mathematical logic. These methods constitute formal languages whose meaning can
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be understood in terms of logical systems and so reasoning with these representations

therefore amounts to some form of deduction.

3.2.4 Role IV: A KR is a Medium of Efficient Computation

Reasoning in machines is, by definition, a matter of computation. As such, a knowledge

representation language is a programming language; a knowledge base is a program

which must be parsed, interpreted or compiled by the computer system that is to

reason with it. A central part of programming language specification is their formal

semantics. There are many ways of defining the semantics of programming languages,

including denotational, operational and axiomatic semantics. This role is connected

to Role III by substantial technical consequences. Theories of intelligent reasoning,

such as rule-based deduction or frames, each come tethered to certain paradigms and

methods of computation, for example forward and backward chaining or classification.

An important aspect of the design of knowledge representations is therefore that the

connection between representation and computation (reasoning) be explicitly defined,

via formal methods such as those used in the theory of programming languages.

3.2.5 Role V: A KR is a Medium of Human Expression

As with any programming language, a knowledge representation language must act as

a form of communication between human programmers and machines. Two impor-

tant aspects of programming languages are firstly, what ideas can be expressed, and

secondly how intuitively and concisely these ideas can be expressed. This role is par-

ticularly divergent from Role IV; a medium of efficient computation is not necessarily

a good medium of human expression. The design of programming languages inevitably

involves striking a balance between human and machine readability. Typical program-

ming systems involve layers of languages including low-level languages such as assembly,

mid-level languages such as C, and high-level or domain-specific languages. The au-

tomation of translating between these different levels (compilation) is a key aspect of
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the design of software development tools. It is therefore important for the design of

knowledge representation systems, to carefully control the relationships between high-

level, user-friendly languages, and low-level, machine-usable encodings of data.

3.2.6 Summary

The roles help to clarify the definition and goals of knowledge representation, and pro-

vide a useful framework within within which to compare different technologies. Under-

standing knowledge representations in terms of these roles helps to design systems which

better meet the requirements, as well as affording greater interoperability between sys-

tems, via the combination of different languages and modes of reasoning (Davis et al.,

1993).

3.3 Conceptual Interoperability

Interoperability is the ability of computer systems to share information and function-

ality. It is important in information systems used for scientific research in order to

facilitate the sharing of knowledge between researchers. It is particularly important in

computer-based music research due to the significant benefits afforded by the sharing

and integration of knowledge from the different constituent disciplines. In this sec-

tion we attempt to clarify the definition and important aspects of interoperability in

information systems, and review a number of methods employed.

3.3.1 Levels of Interoperability

The Levels of Conceptual Interoperability Model (LCIM: Tolk and Muguira, 2003;

Wang et al., 2009) identifies six levels which characterise the different ways in which

information systems can share understanding. These levels are defined as follows:

Level 0: No Interoperability Systems are centralised and isolated. No com-

munication is possible.
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Level 1: Technical Interoperability A communication protocol exists al-

lowing systems to share bits and bytes.

Level 2: Syntactic Interoperability A common data format exists allowing

systems to share structured data.

Level 3: Semantic Interoperability A common reference information model

(ontology) is used allowing systems to share the meaning of structured data.

Level 4: Pragmatic Interoperability A common set of data processing

methods and procedures is used allowing systems to share functionality.

Level 5: Dynamic Interoperability A common protocol for state and effects

is used allowing systems to communicate synchronously.

Level 6: Conceptual Interoperability A common conceptual model is used

in which a full and formal specification of the problem domain is given.

The LCIM was intended to give a systems engineering perspective to the task of

modelling and simulation (Wang et al., 2009) and has been successfully applied to

the development information systems such as digital libraries (Kostelic, 2017). The top

level, conceptual interoperability, is highly desirable from the point of view of knowledge

representation as it allows information system components, such as data schemas and

ontologies, to be composed (Wang et al., 2009). Next, we examine two contrasting

approaches to conceptual interoperability in ontology-based information systems.

3.3.2 Ontology Alignment

Ontology alignment refers to methods of specifying the formal relationships between on-

tologies. It constitutes a bottom-up approach to conceptual interoperability, introduc-

ing ad hoc methods of integrating existing information. Here, we examine approaches

to ontology alignment based on category theory.
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Cafezeiro and Haeusler (2007) use category theory to formalise various ontology

operations such as alignment, merging, integration and matching. The method involves

defining a category of ontology structures in which certain universal constructions can be

used to combine and decompose ontologies. In this approach, the categorical definition

of ontology structure is very basic, and morphisms of ontology structures do not preserve

the logical content of ontology axioms. Zimmermann et al. (2006) use a more expressive

category-theoretic notion of ontology to define a category of ontologies. They formalize

various kinds of alignments as category-theoretic structures which form the basis of an

algebraic language of ontology operations. These two approaches treat ontologies as

(set-theoretic) objects of a category. An alternative approach to ontology alignment is

that of the Functorial Data Model (Spivak, 2012) and Ontology Logs (Spivak and Kent,

2012) (see §2.3 for an infromal overview), in which schemas or ontologies are defined as

categories and their alignments are defined via functors. As conceptual links between

ontologies, functors are much richer than the morphisms used by Cafezeiro and Haeusler

(2007) as they preserve logical structure. (Spivak and Kent, 2012) demonstrates how

functors can be used to define systems of interconnected ontologies and, in doing so,

shows how these systems can be used to capture Sowa’s Lattice of Theories (Sowa,

2000) and Information Flow (Barwise and Seligman, 1997). The afforded conceptual

interoperability is a considerable advantage of the categorial approach, and a more

detailed examination of Ontology Logs is given in §3.4.4.

3.3.3 Upper Ontology

Upper ontologies are high-level, domain-neutral ontologies, designed to guide the devel-

opment of interoperable, non-overlapping domain ontologies. It constitutes a top-down

approach to conceptual interoperability, prescribing a common ontology architecture.

Here, we examine three existing upper ontologies, and discuss their general suitability

to the domain of music.

The Basic Formal Ontology (BFO: Arp et al., 2015) was developed to support the
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design and integration of data models for bio-informatics. It consists of a relatively

small taxonomy of classes, developed from extensive and systematic ontology research.

It has been highly successful in achieving interoperability of information, overseeing a

suite of sub-ontologies each capturing a different corner of scientific research (Smith

et al., 2007). However, it is highly focussed on representing objective reality from a

scientific point of view; it contains no top-level classes for capturing entities which have

subjective existence, such as perceived musical sounds. This is a disadvantage from the

point of view of music representation, as much of the musical domain is distributed

across perceptual, cognitive and physical realities (see Chapter 4).

The Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE:

Gangemi et al., 2002) aims at capturing high-level concepts and relations from a more

human cognitive point of view. It has much in common with BFO. Despite catering

more towards descriptive representations of cognitive artefacts, it has clear bias towards

the representation of linguistic concepts. From the perspective of music, linguistic con-

cepts are insufficient as a basis for knowledge representation, as many musical concepts

are linguistically ambiguous and tied to the perception of sounds.

The Suggested Upper Merged Ontology (SUMO: Niles and Pease, 2001) is another

successful and widely used ontology project. However, it is less suitable than either BFO

or DOLCE as an architecture for interoperable domain ontologies as it does not cleanly

separate domain knowledge from the high-level concepts. For example, it contains

descriptions of concepts from mathematics and biology. This means it cannot cleanly

support the top-down method of conceptual interoperability (Arp et al., 2015).

3.4 Knowledge Representation Systems

In this section we review a number existing knowledge representation technologies. We

examine each of them with reference to the five roles of Davis et al. (1993) and associated

requirements given in §3.2. In particular, we examine their representational semantics,

modelling primitives, their computational semantics and their expressive power.
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3.4.1 KIF and FOL-Based Representations

The Knowledge Interchange Format (KIF: Genesereth, 1991) is a knowledge represen-

tation language based on classical first-order logic (FOL). KIF uses a lisp-like syntax

(McCarthy, 1960) to encode information about objects, functions and relations. The

meaning of KIF (Role I) is given by a model-theoretic semantics. The ontological com-

mitment (Role II) is controlled by definitions of specific objects, functions and relations.

The fundamental conception of intelligent reasoning (Role III) is given as a logical en-

tailment relation, defined via the model-theoretic semantic. This implicit theory of

reasoning is realised computationally by inference engines which typically perform for-

ward and backward chaining and resolution. However, the way this is performed is not

strongly guided by the representation. In addition, FOL-based representations have

limited automated reasoning due to their undecidability. This can be addressed by re-

stricting the language. Description Logics (DLs: Baader et al., 2007) are particular sub-

sets of FOL with syntax aimed at capturing clear and concise descriptions of concepts.

In this way, DLs sacrifice the logical expressiveness of FOL in favour of tractability

and decidability of reasoning methods. DLs form the basis of knowledge representation

languages on the semantic web (see §3.5). As for roles IV and V, KIF is neither a

programming language nor is it intended to be a human language. Its primary purpose

is as a concrete format for information exchange (Genesereth, 1991). As a medium

of human expression, KIF is highly expressive, being able to represent arbitrary FOL

formula, however it is not well suited to higher-level conceptual modelling (Corcho and

Gomez-Perez, 2000), requiring augmentation with additional ontology languages such

as Ontolingua (Gruber, 1992).

KIF has a number of related descendants. Common Logic (CL)1 is an abstract

syntax for FOL formula with a number of specific ‘dialects’. Defining a language in

this way has the advantage that it separates the logical meaning of represented knowl-
1The ISO standard that defines Common Logic is found at

https://www.iso.org/standard/39175.html
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edge from the concrete syntax used to express it. SUO-KIF is a variant of KIF that

is used as the language underlying SUMO (Niles and Pease, 2001), and includes ex-

plicit language constructs to improve human-usability. Ontolingua (Gruber, 1992) is an

ontology language built upon KIF and the Frame Ontology (Gruber, 1993), which intro-

duces object-oriented descriptions of ontology components to create a more high-level,

user-friendly modelling language.

Many other knowledge representation systems are based on FOL. Prolog (Bratko,

2012) is a logic programming language which uses rules in the form of Horn clauses.

Datalog (Huang et al., 2011) is a subset of Prolog for defining and querying deductive

databases. The Rule Markup Language (RuleML: Boley et al., 2001) is a subset of

Datalog for for modelling production and business rules. The Rule Interchange Format

(RIF: Kifer, 2008) and The Semantic Web Rule Language (SWRL: Horrocks et al., 2004)

are both further restrictions of RuleML for integrating rules with semantic web ontology

languages based on description logic. These languages are intended to provide common

formats for the exchange of knowledge between information systems and as such do not

provide the high-level modelling constructs of ontology languages (Corcho and Gomez-

Perez, 2000). All these FOL-based representations are untyped, or more precisely,

singly-typed (Jacobs, 1999). This inhibits the integration of represented knowledge

with programming language data types (Cook and Ibrahim, 2006). In KIF and related

languages, functions are understood as special types of relations. As such, they do not

naturally support the representation of mathematical knowledge or algebraic theories2.

This will turn out to be a significant and important aspect of musical knowledge,

in which the algebraic structure of concepts is a central part of reasoning with and

manipulating the representation.
2https://www.w3.org/TR/owl2-dr-linear/ is a proposed extension to OWL (Motik et al., 2009) for

reasoning with the algebraic properties of numbers.
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3.4.2 KL-ONE and Object-Oriented Representations

Frames (Minsky, 1974) are a general purpose knowledge representation method designed

as data structures for representing stereotyped situations. A frame consists of a number

of labelled fields called slots into which information can be put about the situation.

Slots may contain data values, procedures or other frames. The frames paradigm was

proposed primarily as a theory of intelligent reasoning which focuses on the organisation

of concepts (Davis et al., 1993). However, they suffered initially from a lack of formal

semantics and vague definitions of their components (Woods and Schmolze, 1992).

KL-ONE (Brachman, 1978) is an ontology language based on the frame paradigm.

The aim was to marry the formality of FOL for automated reasoning with the or-

ganisational power of frames. The basic modelling primitive is the Concept. The local,

internal structure of concepts is captured by roles (labelled slots) and structural descrip-

tions which capture complex relationships and constraints amongst roles. Collections

of concept descriptions can be understood as structured inheritance networks (with

multiple inheritance). The expressive power of the concept description formalism can

be understood in terms of FOL (Schmolze and Isreal, 1983), and as such supports clas-

sifiers which perform automatic deduction and validation (Schmolze and Lipkis, 1983).

However, Brachman and Schmolze (1985, pp.192) acknowledges that “The need to han-

dle the various possible relations among Roles makes the technical details of Structural

Descriptions a bit messy.”

KL-ONE influenced many subsequent knowledge representation systems (Woods

and Schmolze, 1992). The most comprehensive and expressive of these is the LOOM

system (Bates and MacGregor, 1987). LOOM incorporates a large number of repre-

sentational features including production rules and procedural attachments, making it

extremely powerful. However, its complexity makes it daunting as a solution for many

applications. In addition, many of its representational features, such as effects, are

not easily specified formally for the purposes of pragmatic interoperability (see §3.3.1).

Frame Logic (Kifer and Lausen, 1989) is a syntactic extension of FOL with object
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oriented modelling constructs. It is less expressive than LOOM, but enjoys a formal

logical semantics (Corcho and Gomez-Perez, 2000).

3.4.3 K-DTT and Type-Theoretic Representation

K-DTT (Barlatier and Dapoigny, 2012) is an ontology language based on dependent

type theory. Ontological components are represented by dependent types, while indi-

viduals are represented by proof objects. The system consists of two layers. The lower

layer is the is a type theory called the Extended Calculus of Constructions (ECC: Luo,

1989) and provides the logical basis. The upper layer defines various ontological primi-

tives, such as classes, relations, properties and roles, as syntactic classes of terms from

the lower layer.

The resulting ontology language is capable of formally capturing many ontological

constructs and meta-properties of ontology components such as roles (Barlatier and

Dapoigny, 2012), contexts (Dapoigny and Barlatier, 2010a) and part-whole relations

(Dapoigny and Barlatier, 2010b). A notable feature of the approach is that the truth

of logical statements is associated with formal proofs. This constitutes a departure

from classical FOL approaches in which the theory of reasoning is based upon a system

of constructive logic with a proof-theoretic semantics, rather than a model-theoretic

one. This leads to a system which adopts an intermediary position between open and

closed-world assumptions called the regular world assumption (Barlatier and Dapoigny,

2012).

The type-theoretic basis of K-DTT provides solutions to many formal problems

in the areas of ontology. However, it has some disadvantages. For example, K-DTT

uses type universes (sorts)and the cumulativity relation (see §2.2) to model upper-level

classes and class subsumption, respectively. However, the universe hierarchy in ECC is

linear. It is therefore not clear how, for example, K-DTT could be used to axiomatise

domain-specific disjoint subclasses of upper-level classes. Secondly, representing indi-

viduals as variable declarations in type contexts prevents reasoning about the identity
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of individuals; the structural rules of ECC do not distinguish between two distinct

variables of the same type.

3.4.4 Ologs and Category-Theoretic Representations

Ontology Logs (Ologs: Spivak and Kent, 2012) are a method for representing ontologies

based on the Functorial Data Model Spivak (FDM: 2012). The modelling primitives

are types (objects), aspects (functions) and facts (equations), which are understood as

generators for categories. Ologs constitute a simple knowledge representation method

which inherits all of the simplicity and functionality of the FDM, including instance def-

initions (as set-valued functors), functorial data migration and programming language

integration (Spivak, 2012). Ologs are intended to be subjective world views, however

the formalism does not include any higher-level structuring of ontologies. However, the

category-theoretic basis affords conceptual interoperability via functors (see §3.3.2).

The categorical approach constitutes a significant paradigm shift compared to many

alternative knowledge representation systems. The basis of the shift is the use of types

and functions as modelling primitives rather than sets and functions. The Olog method

is limited in two respects. Firstly, the Olog formalism is logically equivalent to multi-

sorted equational logic (Jacobs, 1999), which is insufficient for some domains. However,

Ologs are, in principle, able to internalise more expressive logical structure through the

incorporation of sub-object classifiers into categorical models (Spivak and Kent, 2012),

which essentially embeds a logical system, such as a boolean logic, as an algebraic

theory in a category. Secondly, software implementations of the FDM for working

with categorical data3 are relatively primitive standalone applications, and have not

been incorporated into more general software development ecosystems. Finally, the

Olog formalism does not internalise a notion of proof and functional programming like

K-DTT does.
3http://categoricaldata.net/fql.html
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3.4.5 Conceptual Spaces

The theory of conceptual spaces (Gärdenfors, 2000) is an alternative approach to knowl-

edge representation, developed as a meta-theory of cognitive representation on the same

level as the symbolic or connectionist approaches. The theory of reasoning it embodies

is aimed at capturing semantic similarity, and concept creation and combination. The

modelling primitives are geometric spaces, regions and points. A conceptual space is

comprised of a number of quality dimensions, intended to capture perceived aspects of

objects. Particular individuals are identified with points in conceptual spaces; a collec-

tion of values, one for each quality dimension. The theory of conceptual spaces nicely

incorporates many cognitive theories such as similarity, concept formation, natural con-

cepts and prototype theory, via geometric methods.

Adams and Raubal (2009a) give a specification for a metric conceptual space alge-

bra, including a structural description of the conceptual space representation and core

operations for inclusion of points in regions, similarity operations between instances and

concept regions and concept combination operations. This framework for working with

conceptual spaces forms the basis for the Conceptual Space Markup Language (CSML)

(Adams and Raubal, 2009b), a concrete format for representing geometric knowledge

bases.

The perceptual and cognitive aspect of conceptual spaces means that they have

limited applicability in some knowledge representation applications. However, they are

attractive for application to music because music is fundamentally a perceptual and

cognitive subject. Many aspects of music fit the paradigm of spaces and points. More

generally, it is the formalisation of perceived aspects of objects as algebraic structures

which makes the theory highly relevant to music knowledge representation.
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3.5 Knowledge Representation on the Semantic

Web

The Semantic Web is a collection of W3C standards and technologies aimed at sup-

porting the publishing and reuse of information on the web. A large amount of the

current research in knowledge representation and information systems is focussed on

the Semantic Web due to the benefits afforded by linked open data. Many music re-

searchers have also sought to harness the power of Semantic Web as platform for sharing

knowledge (Raimond, 2008; Fields et al., 2011; Wissmann, 2012). These music-specific

endeavours are discussed in detail in §4.4. In this section we review the core Semantic

Web technologies, RDF (Lassila and Swick, 1999) and OWL (Motik et al., 2009), and

consider their general limitations as knowledge representation languages.

3.5.1 Technologies and Standards

The Resource Description Framework (RDF: Lassila and Swick, 1999) is a data model

and a declarative knowledge representation language. The RDF data model structures

information about web resources as collections of triples called graphs. RDF graphs

support querying via the SQL-like query language SPARQL4. The RDF language re-

gards triples as assertions of atomic propositions and supports logical entailment via a

model theoretic semantics. The RDF5 and RDF Schema (RDFS)6 vocabularies provide

terms which can be used as simple ontology languages. Each vocabulary supports a

different entailment regime via a corresponding extension to the model theoretic se-

mantics7. RDF is a uniform solution for representing linked data, however it lacks

expressive power as a knowledge representation language.

The Web Ontology Language (OWL: Motik et al., 2009) is a family of knowledge
4http://www.w3.org/TR/sparql11-overview/
5https://www.w3.org/TR/rdf-concepts/#section-URIspaces
6https://www.w3.org/TR/rdf-schema/
7https://www.w3.org/TR/rdf11-mt/
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representation and ontology languages based on description logics, which add greater

expressive power to that provided by the RDF modelling languages. OWL 2 DL8

is based on the SROIQ(D) description logic profile (Baader et al., 2007) and is the

most expressive of the languages. It has two different semantics: the Direct Seman-

tics9 directly corresponds with the standard description logic semantics, while the RDF

Semantics10 is given as extension to the RDFS semantics. OWL 2 DL supports auto-

mated reasoning, and a number of dedicated reasoners have been developed including

FaCT++ (Tsarkov and Horrocks, 2006), Hermit (Motik et al., 2009) and Pellet (Sirin

et al., 2007).

3.5.2 Relevant Existing Ontologies

Meta-Data and Provenance

There exist a wide variety of RDFS and OWL ontologies which are commonly used in

research communities. Vocabularies such as The Simple Knowledge Organisation Sys-

tem (SKOS)11, The Dublin Core Metadata Initiative (DCIM)12, The Friend of a Friend

Vocabulary (FOAF)13 and the PROV Ontology14 are used extensively for structuring

metadata and provenance information.

OWL Time

One ontology that is relevant to the discussion of music is the OWL Time ontology15. It

provides a vocabulary for representing the temporal structure of information including

temporal entities, such as instants and intervals, and the temporal relations of Allen

(1984). However, the semantics of the temporal relations, in terms of the algebraic
8https://www.w3.org/TR/owl2-syntax/
9https://www.w3.org/TR/owl2-direct-semantics/

10https://www.w3.org/TR/owl2-rdf-based-semantics/
11https://www.w3.org/2004/02/skos/
12http://dublincore.org/schemas/rdfs/
13http://xmlns.com/foaf/spec/20140114.html
14https://www.w3.org/TR/prov-o/
15https://www.w3.org/TR/owl-time/
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properties of the temporal values of entities, is not constrained by the axioms of the

ontology. The ontology includes a class of Temporal Reference Systems but does not

provide any formal definition of the concept. The fundamental unconstrainedness of the

OWL Time ontology is a symptom of a more general limitation of OWL in capturing the

algebraic properties of data types. Ma et al. (2016) propose an ontology which captures

semantic specifications of data types. However, the focus is on the high-level human

interpretation of data values rather than their computational or algebraic properties

for the purposes of reasoning.

Conceptual Spaces on the Semantic Web

Raubal et al. (2010), acknowledging this lack of expressive power, uses CSML to demon-

strate the utility of conceptual spaces as knowledge representation on the semantic web.

The introduction of conceptual spaces, with explicit geometric semantics, solves, albeit

in a application-specific way, the problem of representing algebraic structures in con-

junction with OWL ontologies.

3.5.3 Limitations of The Semantic Web

Logical Expressivity

OWL only works well for binary relations. A common solution to this problem is to

represent associations as concepts (Jacobson et al., 2009); an n-ary relationship between

entities is itself represented as an entity which is then associated with its relata by binary

relations. The problem with this solution is that there exists no standard way of going

about it. As a result different models capture n-ary relations in different non-compatible

ways16.

OWL 2 DL requires that the sets of classes, properties and individuals be disjoint.

This means, for example, that classes cannot be made instances of meta-classes and

relations cannot associate individuals with classes. OWL 2 DL under the Direct Se-
16see https://www.w3.org/TR/swbp-n-aryRelations/ for a discussion of different approaches.
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mantics17 allows “punning”18, whereby the same name can be used for a class and an

individual or property. However, these different uses are treated completely separately

in the Direct Semantics, meaning that individuals representing the same entity are not

necessarily interpreted as equivalent classes. OWL 2 Full under the RDF Semantics19

removes these restrictions but has no reasoning support.

The Open World Assumption

The Semantic Web represents knowledge using the Open World Assumption (OWA),

meaning information is assumed to be incomplete by default. Whilst this allows models

and knowledge bases to be extended without invalidating any previous conclusions,

some problems are inherently closed world. For example, consider a knowledge base

which represents the notes of a piece of music. In an open world, asking questions

which inherently quantify over all the notes of the piece will not necessarily give the

desired result as the absence of any involved information is not enough to deduce that

the answer is ‘no’. This can be mitigated by incorporating concept closures axioms

into logical models (Rector et al., 2004). However, this is generally non-trivial and

can require a large number of additional axioms. In the case of the musical piece

example we would require an axiom to close the concept of the piece which explicitly

enumerated every single one of the notes. Another solution is provided by SPARQL

Inferencing Notation (SPIN)20, a W3C member recommendation for representing rules

and constraints by encoding them as SPARQL queries. This has the disadvantage that

the logical meaning of the constraints is not contained within the ontology.

Representing Structured Objects

OWL has the tree model property (Vardi, 1996), which is exploited by automated

reasoners for decidable model-checking. However, it means that certain things cannot
17https://www.w3.org/TR/owl2-direct-semantics/
18https://www.w3.org/2007/OWL/wiki/Punning
19https://www.w3.org/TR/owl2-rdf-based-semantics/
20http://spinrdf.org/
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be modelled easily. In particular structured objects, that is objects consisting of a

number of interconnected parts, cannot be expressed in OWL (Motik et al., 2008;

Wissmann, 2012). Ontologies of domains which include such objects are often left

under-specified and so do not support the desired inferences. The SWRL rule language

can be used to axiomatise such structured objects but the combination of SWRL and

OWL is undecidable (Parsia et al., 2005). Motik et al. (2008) proposed a solution to

the problem by an extension to OWL called Description Graphs. However, these have

not yet been standardised and no tool support exists.

Restriction Semantics

The semantic web represents knowledge using restrictions. Restrictions are axioms of

a logical theory which restrict the number of permissible models and so increase the

number of valid inferences that can be made. Constraints on the other hand are not

axioms of the logical theory but instead capture properties which prevent invalid values

being inserted into the model. A basic example of the difference is the domain and range

properties of the RDF schema vocabulary. A model specifying that the domain of a

property P is the class C allows a reasoner to infer that any individual with that property

is of class C; it does not prevent P-property assertions being made on individuals who

are not explicitly of class C. The distinction is subtle but is an important feature of

Semantic Web modelling languages. The lack of constraints is most noticeable when

trying to reconcile linked data models and other database schemas or data structures in

programming language (Cook and Ibrahim, 2006). Database systems typically include

mechanisms for data integrity constraints whilst programming languages constrain data

via type systems.

Programming Language Integration

The lack of constraints in the fundamental barrier between the integration of semantic

web technologies and programming languages. Semantic Web knowledge bases cannot
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be fitted with data integrity constraints. For example, aggregate data structures such

as lists cannot be enforced using Semantic Web technologies. The RDF vocabulary

includes terms for their description but their use is not compatible with OWL. The

OWL list ontology axiomatises list structures but their is no standard tool support and

the lack of constraints means their use in processing applications is limited. They are

mainly intended for reasoning about sequences, rather than providing data structures

for data processing applications.

No Conceptual Interoperability

Finally, the semantic web is limited in the level of interoperability it provides. The

variety of different entailment regimes and OWL profiles means that these technologies

do not entirely guarantee semantic interoperability. In addition, the lack of formal

meta-modelling makes it difficult to achieve the level of conceptual interoperability.

Ontologies are designed across the semantic web in ad hoc ways to model overlapping

domains. Integrating information annotated with these ontologies, as any researcher

involved in semantic web will attest, takes considerable manual effort. Many tools exist

to assist integration of ontologies (McGuinness et al., 2000; Fridman and Musen, 2000),

however these tools are not fully automated, requiring input from the user about the

best way to proceed. The resulting alignments are as ad hoc as the original ontologies.

Upper ontology is a less ad hoc method as it guides the design of non-overlapping

domain ontologies (see §3.3.3).

3.6 Summary and Conclusions

In this chapter we have introduced the key aspects of knowledge representation and

reasoning including its roles in AI systems and the notion of conceptual interoperability.

We reviewed a number of existing technologies and examined them in terms of these

key aspects.

The majority of knowledge representation systems are based on singly typed FOL,
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and support inference via a model-theoretic semantics. Amongst the reviewed systems

there are three which clearly depart from this FOL approach:

The multi-sorted equational logic of the Olog language recognises the functional

nature of databases and, as such, integrates much better with programming languages.

However, the formalism as it is proposed lacks sufficient development and expressive

power.

Conceptual spaces model algebraic structures which serve as frameworks reasoning

about the formation and combination of concepts. Although they have limited applica-

bility, they are tempting as an approach to music knowledge representation as we will

discuss in Chapter 4.

The proof theoretic approach of K-DTT is attractive as an approach to expressive

knowledge representation as reasoning is no longer limited by the ability to construct a

model. However, the K-DTT formalism is limited by its focus on modelling ontological

structures. In addition, certain aspects of the formalism seem a bit vague an impractical.

The semantic web has many attractive features. However, it lack adequate expres-

sive power and does not easily integrate with programming languages.
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Chapter 4

Computer Representation of Music

4.1 Introduction

This chapter reviews the literature relating to the main topic of the thesis, namely

computer representation of music. There are many existing representation systems and

much work has been done examining the issues and challenges of music representation,

e.g. Dannenberg (1993); Balaban (1996); Wiggins (2000).

The Challenge of Music Knowledge Representation

In this thesis we examine music representation from the perspective of knowledge rep-

resentation. The domain of music presents a number of challenges from the point of

view of knowledge representation. In this chapter we examine these challenges in order

to ascertain the requirements of a general purpose knowledge representation system for

music. In doing so we consider two fundamentally important questions:

1. What are we trying to represent?

2. What is the purpose of the representation?
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Chapter Outline

§4.2 examines the important issues in the topic of music knowledge representation

relating to the two questions stated above, and proposes a number of requirements for

general purpose music representation systems. §4.3 surveys a number of existing music

representation methods and examines them in terms of the requirements. §4.4 focusses

on existing approaches to representing music on the Semantic Web. §4.5 focusses on one

particular representation system, CHARM (Wiggins et al., 1989), which comes closest

to meeting the requirements we have identified.

4.2 Issues and Requirements of Music

Representations

4.2.1 What Are We Trying to Represent?

It is commonly agreed that music as an entity is hard to define. The question of what

it is we are trying to represent requires careful consideration. Babbitt (1965) identified

three domains of music representations based on the portion of reality to which they

refer:

Acoustic Music exists as a pressure wave in the air. The acoustic domain

encompasses representations of physical sounds, such as digital audio signals

and their features.

Graphemic Music exists in the form of physical information artefacts. The

graphemic domain encompasses representations of notated music such as scores

and tablature.

Auditory Music exists in the mind. The auditory domain encompasses rep-

resentations of perceived music. This is the primary domain of music and the

most difficult to access.
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Wiggins (2000) considers whether these domains are complete or the most useful

for some representations, in particular pondering where in the domains the intention of

the composer is found. A more detailed examination of musical ontology was given by

Mazzola (2012) who considers facts of music as being identified with coordinates in a

three dimensional space. The dimensions are their coordinate values are as follows:

Reality Physical-Mental-Psychological

Communication Creator-Work-Listener

Semiosis Significant-Signification-Significate

The Reality dimension is comparable to Babbitt’s view, however Mazzola’s Physical

coordinate subsumes both Babbitt’s Acoustic and Graphemic domains, whilst the Men-

tal and Psychological coordinates distinguish between objective mathematical or logical

facts and subjective emotional states. The Communication dimension distinguishes be-

tween the creator’s intention, such as a prescriptive score or compositional germ, and

the listeners experience, such as a perceived sound or performers interpretation of a

score, mediated by the neutral level of Work, which subsumes the objective existence

of music. The Semiosis dimension acknowledges the semiotic structure of music in the

sense of Barthes (1967).

4.2.2 What Is the Purpose of the Representation?

An alternative way to approach the design of music representations is to consider their

purposes. Wiggins et al. (1993) identifies three broad purposes of representations from

the point of view of the user:

Record The user wants to accurately document the musical object.

Analysis The user wants to extract information from and/or about the musical

object.
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Generation The user wants to build new musical objects from scratch or by

transformation of existing objects.

In addition, Wiggins et al. (1993) propose two orthogonal dimensions along which

music representations can be evaluated in terms of the levels of detail which they

accommodate:

Expressive Completeness The degree to which the original object can be

recreated from the representation.

Structural Generality The degree to which the structure of the object can be

explicitly represented.

Wiggins et al. (1993) give a survey of nine different representations, evaluating

each in terms of expressive completeness and structural generality. They conclude that

systems which maximise both are more generally useful.

4.2.3 General Requirements

On the basis of our examination of these two questions, we now set out what we believe

to be five requirements for general purpose music knowledge representations. These

requirements are as follows:

1. Multiple Domains of Representation

2. Multiple Levels of Abstraction

3. Multiple Hierarchies of Musical Objects

4. Abstract Algebraic Specification of Data Types

5. Formal Description Languages
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Multiple Domains of Representation

Having ascertained that music as a domain of representation is highly complex, high-

level examination of musical ontology, in the manner of Babbitt (1965); Mazzola (2012),

is essential in the design of more precise representations. Therefore, a general pur-

pose music representation system will have an explicit notion of ontological

domain and accommodate multiple domains of representation. In particular

it must separate music-generic entities from domain or application-specific descriptions

(Fields et al., 2011). Considering music representations in these terms clarifies their

meaning and ontological commitment in the sense of Davis et al. (1993) (§3.2). How-

ever, a representation system should make only a minimum of ontological commitments

and not prescribe any detailed classification of the musical universe, instead allowing

the users to formally express their specific viewpoint alongside other viewpoints.

Multiple Levels of Abstraction

In each domain it is possible to view music at many different levels of detail (Dannen-

berg, 1993). For example, representations of the acoustic domain may be regarded at

the level of digital sample, at the level of extracted features, or at the level of entire au-

dio recordings. Representations of the auditory domain may be regarded at the level of

perception or at higher-level cognitive structures. These different levels of abstraction

are all involved in various music research tasks. Therefore a general purpose music

representation system will accommodate multiple levels of abstraction. An

important feature of representations is the precise specification of the specific level of

detail it provides. The notion of musical surface refers to the lowest level of detail

considered for a certain task (Nattiez, 1975; Huovinen and Tenkanen, 2007; Wiggins,

2000). Therefore, a general purpose music representation system will have an

explicit notion of musical surface and allow users to give precise definitions

of new musical surfaces to suit a given application.
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Multiple Hierarchies of Music Objects

Musical objects at different levels of abstraction may be hierarchically related; collec-

tions of entities on one particular musical surface may be regarded as a single structural

unit at a higher level of abstraction. This relationship is characterised by compositional

containment. Many authors have acknowledged the importance of hierarchy in music

(Lerdahl and Jackendoff, 1985; Marsden, 2005; Alvaro et al., 2005), and particularly that

musical knowledge is multiple-hierarchical (Balaban, 1996; Smaill et al., 1993; Wiggins,

2000). That is, the same low-level entities can be viewed at higher levels of abstraction

in multiple different ways. This multiplicity of viewpoints is essential for the meaningful

analysis of manipulation of music in computer systems. Therefore, a general purpose

music representation system will accommodate multiple-hierarchies of mu-

sical objects. In addition, Wiggins (2000) argues that there exist other relationships

between the entities of musical hierarchies which are not characterised by compositional

containment. Such annotations might include structural relationships, such as in Ock-

elford (2005), or co-reference annotations between entities of different musical domains

(Wiggins, 2000).

Abstract Algebraic Specification of Data Types

Many music analysis tasks require comparison or transformation of musical objects from

the perspective of particular characteristics, such as pitch, timbre or loudness (Lewin,

1987; Tymoczko, 2011; Martorell, 2015). Representations of these characteristics must

come with an explicit notion of equality and the algebraic operations which capture

their behaviour under transformations. In software development such representations

are specified via algebraic specifications of abstract data types (Dale and Walker, 1996).

Abstract data types allow for the precise behaviour of data to be defined independently

of the concrete format in which it is encoded. This is particularly important for mu-

sic in which there are numerous different but equivalent ways of encoding the same

information (Wiggins, 2000). Therefore, a general purpose music knowledge rep-
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resentation system will explicitly represent the abstract algebraic structure

of musical data types. In addition, the representation system must allow users to

provide their own specifications; the representation must acknowledge the multiplicity

of musical viewpoints and not prescribe any fixed set of data type specifications.

Formal Description Language(s)

In order for a representation to meet the level required for knowledge representation,

it must be possible to give formal descriptions of the structure and characteristics of

entities (Balaban, 1996). Therefore, a general purpose music knowledge repre-

sentation system will include a formal description language for expressing

specifications for musical entities. Expressions of the language must encompass

structural properties of musical entities and relationships which exist between them.

In addition, these descriptions must be in a form such that a computer can automati-

cally verify whether an entity satisfies the description, and perform more sophisticated

automated reasoning and manipulations tasks. The language should be able to make

reference to all the other representational features of the system. In particular, this

will involve the algebraic properties of the data types which are used to characterise

musical objects. A crucial feature is that the language be extensible in order to accom-

modate the new data types, musical surfaces and ontological domains. Extensions to

the language will involve the introduction of new terminology via formal definitions in

the language.

4.2.4 Summary

Our description of these requirements repeatedly highlights extensibility as an impor-

tant feature of representations. Many authors have acknowledged the need for highly

extensible representation systems due to complexity of music and the multiplicity of

potential conceptualisations (Dannenberg, 1993; Balaban, 1996; Wiggins, 2000).

Representation systems which meet these requirements will, we argue, be highly
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expressively complete and structurally general. Expressive completeness is born out of

the flexibility of abstract data types; it allows the user to represent anything by way of

precisely choosing the mathematical properties which are required of it (Wiggins et al.,

1993). A high level of structural generality is afforded through the ability to represent

arbitrarily complex hierarchies with explicit association annotations, each fitted with a

formal description of the structures or relationships which they represent. The ability

to explicitly represent the formal properties of the hierarchical entities and associations

is contingent on the expressive power of the description language.

Many other aspects of music representation are subsumed by the requirements.

For example, the kinds of musical knowledge identified by Raimond (2008), namely

editorial, musicological and work-flow. Editorial information, such as musical works,

composers and dates, is catered for by the expressive completeness of abstract data

types. Such bibliographic data is not normally required to posses mathematical struc-

ture, however the ability to explicitly name the type of such information and specify

how it is accessed is important for the transparency of the representation. Musicologi-

cal knowledge, such as rhythmic or harmonic analyses, is catered for by the structural

generality. For example, the structure of the piece could be represented by a hierar-

chical configuration of entities capturing individual notes, rhythmic or metrical units,

motifs, chords, harmonic progressions, movements, entire works and corpora. Anno-

tations on this hierarchy could be used to represent relationships such as repetitions,

transpositions, or other musical similarities. Work-flow information, that is “know-how

for deriving new information by combing music processing tools and with existing in-

formation” (Raimond, 2008, p.13), can be represented by associations between entities

which are fitted with formal descriptions of the process by which one was derived from

the other.

Finally, we argue that the diversity of music research tasks can be unified under

examination of the representational requirements. In particular, we argue that many

research tasks can be formalised as a mapping between representations in different do-
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mains and different levels of abstraction. For example, “the problem of music descrip-

tion” (Sturm et al., 2014) can be though of as mapping from low-level representations

in the acoustic domain to high-level representations in the auditory domain. Models

of music perception and cognition (Wiggins, 2007) involve mappings in the auditory

domain from low-level (perceptual) representations to high-level (cognitive) represen-

tations of the experienced structure. Finally, many musicological research tasks involve

mapping from low-level graphemic representations to mid- or high-level graphemic or

auditory representations so as to allow for the comparison of historical scores which use

disparate notational conventions (Lewis et al., 2011). All tasks can benefit from for-

mal, abstract definition of the process embodied in the system and rigorous treatment

of data. Having a unified view of music representation can facilitate this on a wider

scale.

4.3 Music Representation Systems

In this section we give a survey of existing representation systems for music. Rather

than endeavour to give a comprehensive survey of all of the different approaches and

systems which exist, we organise our survey according to three general paradigms or

applications: encoding formats, programming languages and knowledge representation

systems. For each of these categories we focus on a few prevalent examples which exem-

plify the paradigm. We discuss each system in terms of its advantages and disadvantages

according to the requirements outlined in §4.2. In the case of music programming lan-

guages, we consider a further subcategory, namely music calculi. Here, we give special

attention to three music-specific languages implemented as libraries for the functional

programming language Haskell. These systems warrent special examination due to the

close connections they bare to the type-based framework presented in this these. Our

survey constitutes an update on the survey of Wiggins et al. (1993), and inherits much

of the organisational structure, but instead focusses on systems which have emerged

subsequently.
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4.3.1 Encodings Formats

There exist many different encoding formats for music, most centred around simple,

machine readable score representations e.g. DARMS (Erickson, 1975), Humdrum/Kern

and MusicXML (Good, 2001). These formats possess little of the formal requirements

of knowledge representation as they primarily focus on the syntactic and structural

aspects, rather than the meaning and computational properties of the representation.

However, in this section we discuss three prevalent encoding formats, each of which is

worthy of examination due their widespread application in music research.

Midi

MIDI1 is a binary protocol originally designed as a control format between digital

keyboards and synthesisers. The MIDI file format has since become a popular method

of exchanging basic note-level information in the form of piano-roll representations. It

permits a very limited level of structure representation through the use of tracks and

channels. Despite its popularity as a format for digital musicology, it fails to meet the

formal requirements of knowledge representation. MIDI files consist of a sequence of

messages which include note-on and note-off commands indexed by the keyboard key

number they correspond to. Extracting a piano-roll representation from this sequence

of messages involves an algorithm with marries sequential pairs of these messages for

each key. However, this is not always possible; valid MIDI files may contain sequences

of note-on and note-off messages which do not make musical sense. In general, the

‘meaning’, of MIDI representations is not explicitly defined; it could be used to encode

any sequence of parameter information (for example, lighting controls), and often, the

ability to use a MIDI file properly depends on implicit knowledge about how the file

was encoded. Our inclusion of MIDI in this survey, is intended to highlight the kinds

of representation aspects which need to be made precise when considering music from

the perspective of knowledge representation.
1https://www.midi.org/specifications
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MEI

The music Encoding Initiative (MEI: Roland, 2002) is an XML-based score encoding

format, and is widely used in the support of complex musicology projects (Crawford

and Lewis, 2016). It consists of a large and loosely structured XML schema, which

aims to provide a single comprehensive format for a wide variety of different applica-

tions. The loose structuring of the schema means that a lot of information is optional,

allowing the user flexibility in choosing particular aspects of the music to encode. The

representation can also be specialised by defining smaller and more tightly structured

schema subsets and extended via user defined parameters. This flexibility and exten-

sibility is an important advantage of MEI and exemplifies design principles required

for a general purpose music knowledge representation. In addition, the schema level

of the representation makes the distinction between four ontological domains: logical

(the musicological structure of the score), visual (the graphical structure of the engrav-

ing), analytic (annotations and commentary) and gestural (the expressive structure of

a performance). This explicit representation of ontological domain distinguishes MEI

from almost every other representation system. However, the analytical information it

can express is limited to simple relationships between XML elements, and the meaning

of these annotations is not formally defined. MEI is also limited by its commitment to

the XML format. Firstly, it is only possible to explicitly represent a single hierarchy

of musical objects. The representation of secondary hierarchical information, such as

beams which cross bar lines, is done using XML attributes which point between ele-

ments. This fundamental deficit makes MEI, and XML in general, inappropriate as

a general purpose music representation system (Wiggins et al., 1993). Secondly, the

types of attribute values are taken from XML Schema and are not defined by their

algebraic properties, instead being defined by their syntactic encoding. This precludes

the explicit representation of the mathematical properties of musical attributes. In

summary, MEI posses a large number of desirable qualities from the point of view of

music knowledge representation, such as flexibility and extensibility, but has limited
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structural generality and expressive completeness by the singly-hierarchical nature of

XML and the lack of algebraic specifications of data types.

JAMS

JSON Annotation Music Specification (JAMS: Humphrey et al., 2014) is a JSON for-

mat for representing music and audio feature data, and is widely used in the Music

Information Retrieval (MIR) community (Nieto and Bello, 2015; Mcfee et al., 2016). A

JAMS Object contains the audio file metadata (about the track; identifiers, duration

in seconds, etc.) and a list of Annotation objects, each containing some information

about the content of the audio file. The motivation behind the development of JAMS

was to provide a common encoding format for the sharing of feature data and music

analysis. However, it is worthy of examination in this survey because aspects of its

general design and representation features are generalisable to other kinds of musical

information. Firstly, the internal structure of an Annotation object is comparable to

other event-based representations (Alvaro et al. (2005), for example); they contain time

and duration values which describe the segment of audio being annotated, a namespace

which describes the type of the annotation, and a list of data observations, each of which

consists of a time, a duration and a value. The notable feature of this representation

is that the type of the value of a data observation is determined by the namespace of

the Annotation object. The JAMS documentation provides a number of namespace

definitions each capturing a particular type of musical attribute such as pitch, onset,

chord label and key signature. The explicit representation of type information within

a more general purpose structure is an extremely flexible and extensible approach, and

one which is particularly required for music, where the variety of possible musical an-

notations is limitless. It is this general approach which we adopt in Chapter 5 for the

representation of musical attributes.
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4.3.2 Programming languages

Over the years, many programming languages have been developed to address many

different music analysis and composition applications. There are a wide variety of ap-

proaches to the design of such languages, each influenced by the specific purpose of

the language. Loy and Abbott (1985) give a survey of a large number of program-

ming languages, distinguishing those whose design is focussed around the bottom-up

structuring of musical material from the acoustic level, and those whose focus is on

the high-level control of abstract musical structures. Wiggins et al. (1993) identify one

particularly important aspect of music programming languages from the perspective of

knowledge representation, namely, the distinction between declarative and procedural

programming paradigms. They judge that declarative languages are more suitable for

knowledge representation, as knowledge represented as procedures can be obscured by

the operational semantics of the language. In this section we examine two recent mu-

sic programming languages, namely Music21 (Cuthbert and Ariza, 2010) and Rubato

Composer (Milmeister, 2014), and discuss the advantages and disadvantages from the

perspective of knowledge representation. In addition, we examine a particular kind

of music programming language, namely music calculi, and discuss three particular

examples which are implemented in the functional programming language Haskell.

Music21

Music21 (Cuthbert and Ariza, 2010) is a python tool kit for searching, analysing and

manipulating musical score representations. Its underlying representation is defined us-

ing the Python class system. Atomic objects, such as notes and chords, are represented

as Python objects, with their internal properties accessed by methods of their class.

It allows for the representation of higher-level musical structures via the Stream class,

which captures ordered collections of atomic entities and other streams. As such, it is

capable of representing sophisticated hierarchical configurations of musical objects. In

addition, it supports multiple hierarchies, as individual objects can be made elements
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of more than one stream object simultaneously. However, control of these multiple-

hierarchical structures is limited by the fact that it depends on object pointers, which

are not directly accessible in the Python language.

Music21 has become a popular tool in the musicological community due to the ex-

tensibility and flexibility of the Python language, allowing users to define and share

new classes and operations to suit varied applications. However, it has a distinct dis-

advantage from the perspective of knowledge representation, which is best explained

via the parallel between object-oriented programming languages and knowledge rep-

resentations based on frames (Minsky, 1974). The fundamental difference lies in the

intended purpose of the representation. In frame languages, objects are used to explic-

itly structure and connect the concepts of a domain so as to make explicit the ontology

of the problem. In programming languages, objects are used to bundle together data

and methods to enable efficient management of complex programs. As such, Music21

does not explicitly represent its ontology of musical objects and parameters. Rather,

this information is implicit in the class definitions, which hard-code representations

and bundle them with the methods which provide programming support. As a result,

much of the knowledge represented by Music21 programs is obscured by the opera-

tional semantics of the underlying language; it is only accessible via the running of the

program, and so it not generally available for reasoning with. This is not to say that

object-oriented programming is incompatible with knowledge representation. We take

the view that object-oriented languages such as Music21 can be seen as specialised im-

plementations of more abstract knowledge representations. Indeed, it is highly desirable

that a general purpose music knowledge representation should support such languages

for music programming. The system proposed in this thesis (Part II) is intended to do

just that.
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Rubato Composer

Rubato Composer (Mazzola, 2006; Milmeister, 2014) is a Java tool-kit for analysis

and composition of music. The system has two purposes. Firstly it is a applica-

tion development environment for mathematical musicologists, with proficiency in the

Java language, to build modular program units. Secondly, it is a high-level graphical

programming environment aimed at composers and analysts, without mathematical

knowledge, for exploring the use and combination of the modular elements build by

developers. The underlying representation of the system is a partial implementation

of the Forms and Denotators system (hereafter Denotator theory) of Mazzola (2012)

based on category theory (see §2.3.3). As such it is highly expressive, allowing for the

representation of complex musical structures and transformations between them. The

entities of the representation are Java objects representing Denotators, which are stored,

at runtime, in a repository which is organised into several different namespaces. All the

entities of the representation can be serialised as XML for efficient storage exchange

between users of the system. The substantial expressive power of the system is born

from the underlying sophistication of the category-theoretic basis. It demonstrates how

a layered approach to music programming languages and representation in general can

be used to provide users with powerful high-level tools and components, whilst hiding

the underlying complexity of the low-level formalism. This is a design principle which

we adopt through the development of the type-based framework presented in Part II.

There are however, two aspects of both Rubato Composer and Denotator theory,

which we believe make it less suitable as a general purpose music knowledge repre-

sentation. The first aspect is that Denotator theory does not support the algebraic

specification of abstract data types (requirement 4, §4.2). Atomic musical parameter

spaces must be defined in terms of the algebraic structure of a mathematical module.

Mazzola’s motivation for this is the acknowledgement of the importance of, not only

parameter values, but also the algebraic operations which relate them. Mazzola (2012,

p.70), on the justification for selection of modules, says: “One could require that a
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determinate structural instance (such as additive closure of modules) has to play a

musical or musicological role in all situations where the structure is present. However,

such a requirement would be too restrictive since mathematics should make available

to music what may possibly happen in music, and not what happens in any case.”

This argument is perhaps more valid in the context of mathematical musicology, how-

ever, we argue that for the purposes of music knowledge representation, the designer of

the representation should be able to explicitly describe the specific ‘theory’ to which

they are committing, rather than have it prescribed and choosing how to selectively

apply it. This is a subtle distinction, but one that is an important aspect of the ap-

proach taken in this thesis; we use a sophisticated mathematical basis to provide users

with a representation which is entirely comprehensive from a descriptive perspective.

This is in contrast to a representation which embeds one specific theory of music that

is designed to be comprehensive from a definitive perspective. The second aspect is

that the system does not directly support logic-based descriptions and automated rea-

soning. Whilst the underlying category-theoretic machinery is capable of formalising

logical systems (Mazzola, 2012, ch.18), Denotator theory does not come equipped with

a human usable language for formally describing the logical properties of musical struc-

tures (requirement 5, §4.2). Instead, these properties must be implicitly encoded in the

definitions of functors and module morphism (Mazzola, 2012, ch. 7). We argue that

such a means of representing structural descriptions is, in general, less intuitive and

user-friendly that a logic-based language, such as that presented in this thesis (Chapter

6).

Music Calculi

We now discuss a specific category of music programming languages calledmusic calculi.

Orlarey et al. (1994) propose an approach to the design of music programming languages

based on lambda calculus. The basis of the idea is as follows: “Instead of building

suitable music data structures and functions on an actual programming language, we
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suggest to build suitable programming languages on music data structures” (Orlarey

et al., 1994, p.243). They describe a music calculi in which event and score objects

are defined syntactically as terms of lambda calculus. These definitions are recursive,

allowing score objects to be composed of both events and other scores. The different

ways in which the objects can be composed is captured by the syntactic rules of the term

language. This definition of terms is similar to that of grammar based representations,

such as Bel and Kippen (1992). The distinguishing characteristic of the approach,

however, is that the lambda calculus embeds a notion of function abstraction and

computation, allowing the user to define operations which construct new objects from

old.

A more expressive example of a music calculi is the Musical Structures system (Bal-

aban, 1988, 1996). Atomic Music Structures are defined syntactically as pairs consisting

of pitch and duration values, annotated with a temporal onset. More complex music

structures can be constructed via the composition of existing structures. This approach

simultaneously captures the hierarchical and temporal characterisics of music, and, in

principle, allows for a great deal of structural generality and expressive completeness

due to the open-endedness of the symbols used (Wiggins et al., 1993). A significant

disadvantage to Balaban’s approach, however, is that it fails to explicitly represent

abstract algebraic properties of the musical parameters used. Temporal onsets are rep-

resented according to the real line, however, Wiggins et al. (1993, p.15) note that “. . . it

is rare that musicians think in those terms. An improvement would be to use an algebra

with the relevant properties of the real number, but with abstract syntax.” This view is

motivated by the desire to make precise the algebraic aspects of music which are being

represented.

More recent work in the area of music calculi consists of domain-specific languages

(DSLs) in the functional programming language Haskell. Haskore (Hudak, 1996) defines

a representation of musical scores as recursive Haskell data types. This approach is

similar to that of Orlarey et al. (1994) and Balaban (1988), however it is distinguished
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by the use of a typed host language; the data types and their operations are defined

in a typed lambda calculus rather than defining an untyped one, such as Orlarey

et al. (1994). A subsequent update to the Haskore system was Euterpea (Hudak,

2011) which added a great deal of expressive power and functionality to the original

Haskell library. This library demonstrates how sophisticated analysis and manipulation

of music can be achieved via (recursive) functional programs. A disadvantage of the

approach, however, is that, again, the algebraic properties of musical attributes are

not abstractly defined, but rather hard-coded in to the implementation. A separate

attempt at developing a Hakell music library was the Music Suite (Hoglund, 2014). This

approach is distinguished from Haskore and Euterpea in that it allows the user to define

their own kinds of atomic musical entities. In addition, it provides abstract notions of

musical parameter spaces which are parametric in the concrete type which encodes

the value. In this sense, the Music Suite comprises a family of related music calculi,

with a high level of extensibility and clean abstraction discipline. One disadvantage is

shared by all these representations. From the perspective of knowledge representation,

it is often desirable to be able to uniquely identify particular entities within a more

complex structure. However, this is not possible in these functional DSLs without

explicitly using a function which recursively traverses the data structure to the desired

object. Furthermore, these functions are not invariant under transformation of the

representation. This effectively means that the identity of the individual components

of a representation is lost. The type-based framework presented in this thesis provides a

solution to this problem in a functional setting, by defining a meta-level data structure

which explicitly includes a type of identifiers.

4.3.3 Music Knowledge Representations

A large number of music representation systems have been developed which make use

of dedicated knowledge representation technologies. In this section we review four rep-

resentative examples, highlighting the advantages and disadvantages of each approach.
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HARP

Hybrid Action Representation and Planning (HARP: Camurri and Frixione, 1992; Ca-

murri et al., 1994) is a model of musical knowledge based on a twofold formalism. This

formalism consists of an object-oriented programming environment for managing con-

crete representations of musical material and processing algorithms, and a high-level

symbolic system based on KL-ONE (Brachman, 1978; Brachman and Schmolze, 1985,

see §3.4) extended with concepts which capture temporal entities. The HARP model

defines two basic musical entities as top-level concepts: the music action and the com-

positional action. Music actions represent abstract musical material at arbitrary levels

of detail. They can can be composed using dedicated temporal relations, as well as

related to concrete instances of sounds or scores. Compositional actions represent pro-

cesses which manipulate music actions. They are defined via the types of music action

which they take as input and produce as output, and can be associated with concrete

instances of procedural algorithms in the object-oriented environment.

The system is intended to aid in the high-level manipulation of diverse kinds of

musical material. It is highly general, relying on the user to define specific subclasses

of music action and compositional action to achieve the desired functionality. As an

approach to knowledge representation, it is notable due to the advantages afforded by

the division of knowledge into different subsystems: the architecture maintains strict

separation between the high-level relationships between abstract musical objects and

the concrete instantiations of these objects along with the algorithms which process

them. However, a distinct disadvantage of the system is that the precise meaning of

the representation at the abstract level is obscured by the specific technologies used to

implement the concrete level. The system presented in this thesis provides an alter-

native approach to this separation, whereby abstract data types are used to separate

implementation detail from the abstract computational properties of musical entities.
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EV-Meta Model

The EV meta model (Alvaro et al., 2005) is a frame-like system for music representation

in computer-aided composition tools. The model is centred around the representation

of time-based events at many different levels of abstraction. Events can be fitted with

parameters, which capture the properties of the musical object, and a collection of sub-

events, allowing for the representation of hierarchical musical structures. The approach

is notable for its high-level conceptual foundation. The event representation is entirely

general, allowing for the representation of arbitrary kinds of musical object via specific

parameters. The values of parameters can in turn be represented by dynamic objects

whose static value is a function of time. The ability to combine dynamic objects in

recursive structures makes the representation highly expressively complete. However,

there are two distinct disadvantages of the system. Firstly, the representation only

supports a single hierarchy of musical events. In addition, the sub-events of an event

must share the same object structure i.e. they must be the same kind of entity. This

precludes the representation of events consisting of, for example, a collection of chords

and notes. Secondly, the system does not support logic-based description of event struc-

tures in the style of KL-ONE structural descriptions (Brachman and Schmolze, 1985,

see §3.4). Despite these disadvantages, the model epitomizes an important requirement

of music representations, namely the provision of a general purpose scheme which can

be specialised according to the requirements of the user. This is a design principle

which is central to the framework presented in Part II.

Temporal Logic

Marsden (2000) gives a detailed analysis of a large number of approaches to music

representation involving temporal logic. He gives a comprehensive discussion of the

relevant aspects including a number of different approaches to ontology centred around

either points, periods or events. The work provides some considerable insights into

the theory and technical aspects of temporal logic approaches to the representation
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of music. However, there are two aspects of the representations discussed which limit

their suitability as bases for general purpose music knowledge representations. Firstly,

as noted by Wiggins (2000), the need for special temporal logic-based representations

is not strictly necessary when working within a typed logic; the same knowledge can be

represented by defining, at an abstract level, the types of temporal entities and their

algebraic structure. One aspect of the temporal logic approach which is, however, not so

easily captured by abstract data types, namely indeterminate sequences of entities and

under-constrained representations. For example, using temporal logic, it is not possible

to represent a set of temporal constraints which capture a class of possible concrete

structures, without declaring their their temporal values. A second disadvantage is

related to a technical issue regarding the representation of musical entities. When

dealing with point and period ontologies, Marsden, represents musical objects without

explicitly naming them; their existence is only implied via the truth of certain logical

propositions. For example, the proposition ‘sounding(C,w,y)’ Marsden (2000, p. 38))

indicates that a ‘C’ is sounding between time points w and y; the identity of the extant

musical object is not explicitly represented. This presents problems from the point

of view of knowledge representation, as we cannot make statements about particular

entities, such as individual notes or pieces of music. When dealing with an event-based

ontology, Marsden (2000, p. 61) does “distinguish between identity and the temporal

relation of equality: in the case of periods, x = y means that x and y refer to the same

period; it is possible for two events to be temporally ‘equal’ but to be different events.”

In this way, a musical object is represented as an event, and we can make statements

about it directly. For example, the proposition ‘C(x)’ represents the fact that the event

x is an instance of a tone whose pitch is C. This approach, whereby extant musical

objects are given names to which descriptions of the objects are are associated, is the

basis of the constituent structure representation described in Chapter 5.
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Conceptual Spaces for Music

The theory of conceptual spaces (Gärdenfors, 2000, see §3.4) is attractive as a basis for

representations of music based in the auditory domain. Forth et al. (2010) illustrate

how a representation of musical melody might be constructed using conceptual spaces

consisting of quality dimensions for pitch, interval, onset and inter-onset interval, and

higher-level abstractions such as melodic contour and harmonic function. In addition,

they give a more detailed conceptual space formalism of musical meter, highlighting the

complexities involved in the selection and specification of the relevant quality dimen-

sions. This work demonstrates how perceptually valid representations of music can be

achieved via the definition of conceptual spaces with appropriate quality dimensions,

normalised according to empirical evidence.

Chella (2015) also applies conceptual spaces to music, suggesting a cognitive archi-

tecture for music perception. The architecture consists of a subconceptual area con-

cerned with the processing of sensory data, a conceptual area in which sensory data is

organised into conceptual spaces, and a linguistic area in which symbols are assigned

to perceived entities, allowing them to be described in terms of a logical language. The

linguistic area is a hybrid knowledge representation, similar to that of HARP (Camurri

and Frixione, 1992, see above), consisting of a terminological component for the descrip-

tion of concepts, and an assertional component that stores information about particular

instances of concepts. This architecture is notable as it gives an explicit account of the

connection between conceptual spaces and logical languages.

From the perspective of general music knowledge representation, accurate represen-

tations of the auditory domain open up exiting possibilities for computational explo-

ration of music perception and cognition and models of musical creativity. The added

ability to connect these representations with higher-level knowledge representation lan-

guages for more general purpose information management is a principle advantage of

the approach presented in this thesis. The representation of musical parameters as

abstract data types can be seen as a generalisation of the notion of quality dimension
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in the theory of conceptual spaces. As such, our framework is a suitable basis for users

who wish to represent their own conceptual space formalisms.

Semantic Web Ontologies

A large number of representations of music have been developed using Semantic Web

modelling languages. Due to popularity and relevance of Semantic Web in current

research endeavours, a detailed examination of the various music-based ontologies will

be given in the following section.

4.4 Music Representation on the Semantic Web

The Semantic Web has been used extensively for the representation of music and related

information for a wide variety of tasks. In this section we survey seven existing models

and methods of music representation from the literature, examining the advantages and

disadvantages of each. Six of these methods are OWL ontologies which model musical

information from the point of view of a certain task. The seventh is an approach to the

representation of work-flow information, (Raimond, 2008) which incorporates aspects of

both ontology and other Semantic Web technologies, the details of which are described

in the relevant paragraphs. We summarise with a broader discussion of the various

approaches and particularly highlight diversity and commonality of the models at the

meta-conceptual level. Throughout this section, and the rest of the thesis, we use

the notation “namespace:fragment_identifier” to refer to the classes and relations

defined in the different OWL ontologies, where namespace is the conventional prefix

abbreviation for the namespace URI of the ontology, and fragment_identifier is

the name of a specific vocabulary term, usually an OWL class or property. For each

ontology we specify the prefix used, where necessary.
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The Timeline Ontology

The Timeline Ontology (Abdallah et al., 2006, prefix: tl) was developed to support the

structuring and organisation of temporal relationships between musical entities. The

ontology defines the tl:Timeline class, for modelling linear and coherent sections of

time which can either be abstract or concrete. Temporal entities, such as instances

of the tl:Instant and tl:Interval classes, are associated with a time line via the

tl:timeline property. Time lines themselves are associated with coordinate systems

(defined by XML-Schema datatypes) via specific sub-classes of tl:Timeline. Temporal

entities defined on a time line can be linked with a literal value defining its coordinates

whose type is restricted by the coordinate system of the time line. The temporal entity

classes are taken from The OWL Time Ontology2 and therefore inherit the structure

of the model including temporal relations.

There are two crucial advantages to the model. Firstly, the tl:Timeline class serves

as an explicit representation of a particular musical parameter space. Information rep-

resented using the ontology is explicitly labelled with the coordinate system or space in

which it is structured. Although the model was developed specifically to deal with time,

it is potentially generalisable; music is a domain with many dimensions comparable to

time such as pitch and loudness. Secondly, the time line concept acts as a structuring

mechanism, grouping together entities whose temporal coordinates are directly compa-

rable. This, we argue, is part of the function of a musical surface (see §4.2), on which

coexisting entities constitute the basis for musical analysis. Although the underlying

logical basis of OWL is not sufficiently expressive to capture the algebraic properties of

time lines, these two aspects of The Timeline Ontology are directly comparable to the

approach of the current work.
2https://www.w3.org/TR/owl-time/
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The Event Ontology

The Event Ontology (Raimond et al., 2007, prefix: event) was developed as a general

purpose model for capturing a variety of different aspects of music. It is primarily used

as a part of The Music Ontology (Raimond et al., 2007, discussed next) to structure

complex interconnected information about musical works. The ontology defines the

event:Event class, for modelling arbitrary space/time regions which can be linked to

addition information including factors (things involved in an event), agents (people

involved in the event) and products (things produced by events). This event-reification

approach allows for a great deal of flexibility and extensibility, as new information can

be attached to an existing events as and when it is available. The Timeline Ontology is

used to add temporal structure to events by linking them with instances of tl:Instant

or tl:Interval.

The main advantage of the model is that it is entirely general, providing a meta-level

concept which subsumes many types of musical entity. It supports the development

of more domain-specific models of musical objects which benefit from a high-degree

of top-down conceptual interoperability (see §3.3). In addition, the model supports

multiple-hierarchical event decomposition; events can be associated with sub-events via

the event:sub_event property. These aspects of the model are highlighted due to

their close correspondence with the approach to modelling musical objects presented in

Chapter 5.

The Music Ontology

The Music Ontology (Raimond et al., 2007, prefix: mo) is an ontology for annotating on-

line collections or recorded music in the form of audio files. It captures basic editorial in-

formation by extending the FRBR model with four top-level classes: mo:MusicalWork,

mo:MusicalManifestation, mo:MusicalExpression and mo:MusicalItem. The ontol-

ogy also models the music creation work-flow through a number of specific event:Event

subclasses such as mo:Composition, mo:Performance and mo:Recording. The ontol-
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ogy constitutes a high-level information management model, which despite being pri-

marily aimed at capturing knowledge about recorded pop music and MIR tasks, is able

to capture the general conceptual connections between musical works and their concrete

expressions, providing a strong basis for more domain-specific knowledge representation.

The notable feature about the ontology is that the high-level classes can be viewed

as offering a comparable kind of classification to that of Babbitt’s domains (Babbitt,

1965), albeit with a specific focus on recorded music, and omitting the auditory domain.

Also of note is that all of these top-level classes are subclasses of the meta-concept

event:Event. The approach to music representation presented in this thesis can be

viewed as a generalisation these aspects of the model, which can incorporate information

which is not necessarily centred around record audio files.

The Audio Features Ontology

The Audio Features Ontology (Allik and Sandler, 2016, prefix: afo,) provides a frame-

work for representing information about audio features and extraction methods. It

provides a common format for sharing audio feature data, as well as a model for repre-

senting computational extraction work-flows. The core of the model captures four levels

of abstraction: The afo:AudioFeature class captures abstract conceptualisations of an

audio feature type; the afo:Model class captures computational models of audio feature

extraction methods; the afo:FeatureExtractor class captures concrete implementa-

tions of extraction methods from a specific software tool; and the afo:Instance class

captures concrete extraction instances on a particular operating systems or hardware

platform. The afo:AudioFeature class is a subclass of event:Event. Instances of

the class are associated with computational models of the extraction work-flow which

are in turn associated with sequences of operations. Operations are further classified

as transformations, filters or aggregations. The Audio Feature vocabulary provides a

large number of terms representing features, models and operations which are present

in various feature extraction tools.
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The ontology is notable because it models an explicit distinction between the ab-

stract type of an audio feature and the concrete implementation details about how it

was extracted. This distinction underpins the notion of an abstract data type, and is

a fundamental motivation behind the abstract representation system presented in Part

II. The use of it in the Audio Features Ontology is an acknowledgement of multiplicity

of different implementations of software tools which perform feature analysis. However,

the core principle is widely applicable to music representation as there exist multiple

different ways of encoding musical parameters, such as pitch and time, which are often

equivalent.

The Segment Ontology

The Segment Ontology (Fields et al., 2011, prefix: seg) was developed to provide

a music-generic model of structural segmentations of a music piece. It defines the

seg:Segment class as a subclass of tl:Interval. The model is an acknowledgement of

segments as a general purpose abstraction used in musical analysis. Fields et al. (2011)

use the Similarity Ontology (Jacobson et al., 2009) to link music-generic segmentations

of a musical signal, with application-specific annotations such as labels and audio feature

data. The Similarity Ontology (Jacobson et al., 2009) models similarities between

entities as an OWL class, rather than a relation. This approach provides an anchor

point for attaching additional information about the provenance of the association along

with information about the computational process by which it was computed.

This approach was motivated by the desire to model a strict separation between

music-generic information, such as the segments of a piece, and application specific

information about those segments. The notable feature of this approach is its funda-

mental difference to that of The Event Ontology. The Event Ontology uses arbitrary

resources to represent music-generic entities and describes their temporal characteris-

tics by linking them with temporal entities. Conversely, the Segment Ontology uses

temporal entities themselves to represent music-generic entities, and links them with
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additional information via the Similarity ontology.

Chord Sequences

The ontologies discussed up to this point have each aimed at capturing fairly general

and high-level musical information. We now examine one attempt which has been

made to use the OWL language to axiomatise more sophisticated musicological struc-

tures. The Music Entity Ontology (MEO: Wissmann, 2012, ch.7) defines an ontology

of ‘musical entities’, including Pitch, Duration, Note, Interval and Chord. Notes

are described by pitch and duration characteristics, whilst Chords are modelled using

containment relations contains and containedIn, which capture the constituent notes

of a chord. Sequences of chords are captured using a model of sequential patters called

SEQ (Wissmann, 2012, ch.8), based on the OWL List Ontology3.

It is highly successful in allowing automated tools to reason with chord sequence

information, demonstrating how this supports both analysis and querying (Wissmann,

2012, ch.13). However, there are two major disadvantages to the model from the per-

spective of our requirements of music representation. Firstly, it is highly domain-specific

and is not applicable to different music analysis contexts. For example, it focusses on a

particular concrete representation of pitch, which is only applicable to particular forms

of music, i.e. equal tempered, diatonic, western tonal music. This is done via specific

sub-classes of the class Note, such as MIDINote and ScoreNote. This means that, in

principle, the model could be extended to include other representations of pitch. How-

ever there are no axioms that model the structural or algebraic aspects that are common

to these various representations, nor any way of separating music-generic information

from domain-specific representations, in the manner of Fields et al. (2011). Secondly,

the model is not structurally general. This was, of course, not the intended purpose of

the model; it was intended to address a very specific problem i.e. chord sequence pat-

ters. However, the details of why it is not generalisable are highly relevant to the reasons

why OWL is, in general, not a suitable basis for music knowledge representations which
3https://w3id.org/list
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meet our intended requirements. Firstly, the representation of simultaneities using a

containment relations is not capable of expressing multiple hierarchies. This is because,

in order to enable efficient reasoning, the model defines the sibling relation which cap-

tures when two notes are contained within the same chord. This relations is then used in

an axiom which says that the relation composition sibling ◦ containedIn is a subset

of the relation containedIn. This explicitly prohibits the modelling of chords which,

for example, share one underlying note; any siblings of the shared note will also auto-

matically be containedIn both chords. This work highlights the challenges involved

in the axiomatisation of musicological structures using description logics. It shows how

sophisticated reasoning can be achieved for a particular specialised domain, using large

ontologies, but these approaches are not generalisable. This, we argue, means that

music requires a more expressive logical basis, and serves to motivate the type-based

approach presented in Part II.

Work-flows: N3-Tr

Raimond (2008) proposed a method for representing information about music process-

ing work-flows on the Semantic Web. The ability to explicitly document computational

methods of analysis is an important part of reproducible research, and is a crucial step

towards conceptual interoperability in computational musicology. The system proposed

by Raimond (2008) consists of a logic called “N3-Tr”, which is based on concurrent

transaction logic (Bonner and Kifer, 1994). Expressions of the logic can be used to

describe, at an abstract level, algorithms for music processing, with the stages executed

concurrently or sequentially on some database. The precise details of this logic are

unimportant for the purposes of this discussion. However, the notable aspect of the

approach is how it is represented for the Semantic Web. Raimond (2008, ch. 5) defines

a small Semantic Web vocabulary of terms which capture the abstract syntactic struc-

ture of formulae of the N3-Tr logic. This vocabulary is used in conjunction with the

Notation34 (N3) serialisation format for RDF to encode logical formulae as linked data
4https://www.w3.org/TeamSubmission/n3/
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graphs. The N3 format allows for the representation of RDF graph-literals, which Rai-

mond (2008) uses to encode atomic formulae. Jacobson et al. (2009) demonstrates how

N3-Tr representations of music processing work-flows can be used to augment the Sim-

ilarity Ontology, by attaching to similarity annotations, a description of the algorithm

which was used to compute the similarity. This method of embedding in RDF, formulae

of a more expressive logical system, is the basis of our approach to the Semantic Web

implementation of the type-based framework presented in Chapter 8.

Summary

The large body of work in music representation on the Semantic Web reflects the desire

of music researchers to harness the considerable power of linked open data. It is for

this reason that the implementation of the representation framework presented in this

thesis incorporates Semantic Web technologies. Our survey or existing approaches to

music representation on the Semantic Web has highlighted several broad patterns in the

various models at the meta-conceptual level. In addition is has highlighted a particular

conceptual incompatibility between the Segment and Event ontologies. One common

pattern in existing models is the use of reification to circumvent the expressive limita-

tions of the Semantic Web modelling languages and create stable, extensible information

models. Event reification (Raimond et al., 2007) and association reification (Jacobson

et al., 2009) exemplify this approach, and are comparable to earlier approaches from

semantic networks, such as Conceptual Graphs (Sowa, 1976). In addition, the Time

Line OntologyAbdallah et al. (2006) reifies the concept of a space or coordinate system

used to structure musical entities, while the N3-Tr system Raimond (2008) reifies log-

ical formula. We draw attention to these aspects here as these notions are generalised

and subsumed by the approach to reification of type-theoretic expressions taken in §8.3

and §8.4.
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4.5 The CHARM System

Common Hierarchical Abstract Representation of Music (CHARM:Wiggins et al., 1989;

Harris et al., 1991; Smaill et al., 1993) is a proposal for a general purpose music represen-

tation system built from abstract data types. The representation framework presented

in this thesis is heavily influenced by the insight provided by CHARM, as it comes the

closest to fulfilling the requirements for a general purpose music knowledge represen-

tation systems described in §4.2. We begin this section by giving an overview of the

system and describing previous work that has been done in demonstrating the power

of the abstract approach. We then describe one attempt which has been made at an

implementation of CHARM, namely AMusE (Lewis et al., 2011), and discuss why it

falls short of completely realising the core principles. We conclude this section with

discussion of how the original CHARM work could be usefully developed and, in doing

so, provide motivation for the type-based representation framework presented in Part

II.

4.5.1 Overview

Wiggins et al. (1989) propose a representation of note-based musical material based

on abstract data types. They give an algebraic specification of the pitch and time

dimensions of musical structures, which captures the structure implicit in many other

representations. The specification of time is given in terms of sets, functions and rela-

tions, observing that the set of durations forms a linearly ordered commutative group

under addition. Similar treatment is given to the pitch dimension, while other musical

dimensions are left for future work. The basic representation consists of a set of event

tuples of the form

〈identifier, pitch, time, duration, timbre〉,

where the identifier is the unique name of the event and pitch, time, duration and
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timbre are values taken from an appropriate abstract data type. The values of events

are accessed by dedicated destructor operations. For example, the operation getPitch

takes and identifier and returns the pitch component of the corresponding event. This

representation has much in common with conceptual spaces (Gärdenfors, 2000), where

each abstract data type can be seen as representing a quality dimension of a musical

conceptual space, and each destructor operation as capturing a projection operation.

In addition to the basic event representation, Wiggins et al. (1989) describe the

constituent representation, a mechanism for structuring basic musical material hierar-

chically. Constituents are used to delimit groupings of basic musical events and other

constituents in order to represent any higher-level musical structures of interest to the

user. Harris et al. (1991) describe this constituent mechanism in more detail. They

specify constituents, at the abstract level, as pairs of the form

〈Properties/Definition, Particles〉,

where Properties/Definition is a formal description of the structure denoted by the

constituent and Particles is the set of basic events or other constituents of which the

constituent is composed. Harris et al. (1991) distinguish between a constituent’s struc-

tural Properties, which are derivably true and can be checked, and properties assigned

by the user which are true by Definition. The structural Properties component of

a constituent is further broken down as a pair

〈spec, environment〉,

where spec is a logical specification of the structure of the constituent’s particles and

environment is a (possibly empty) set of key-value pairs which allow the user to attach

values of abstract data types to constituents. These values can be retrieved by applying

the destructor operations, such as GetPitch, to the constituent.

Harris et al. (1991) propose an implementation of the spec component using first-
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order logic. They give a number of examples of constituent specifications including

stream (Harris et al., 1991, p. 9), which describes a contiguous sequence of events in

time. Stream is defined as follows:

stream↔ ∀p1.¬∃p2. p1 , p2 ∧
getTime(p1) 6 getTime(p2) ∧
getTime(p2) < (getTime(p1) + getDuration(p1))

This definition uses the destructor operation GetTime for accessing the onset times of

basic objects, the operation + and the relations 6 and < from the abstract data type for

time, and the standard logical connectives. The range of significance of the quantifiers

is the set of particles of the constituent.

4.5.2 Applications

Wiggins et al. (1989) illustrate how the representation can be used in practise with two

examples. First, an implementation of Steedman’s rhythmic analysis procedure (Steed-

man, 1977) applied to the first two bars of Mozart’s Variations on “Unser dummer

Pobel meint”. Second, an implementation of Ruwet’s paradigmatic analysis algorithm

(Ruwet, 1972) applied to Debussy’s Syrinx in the manner of Nattiez (1975). Harris

et al. (1991) give further details of the former of these examples including the logical

specification for a particular kind of rhythmic unit called a dactyl (Harris et al., 1991,

p.15), which captures event sequences of the form “long-short-short”. Smaill et al.

(1993) elaborate on the second of the examples, describing the algorithm in more de-

tail and showing how the output of the analysis can be represented as a collection of

constituents. In addition, Smaill et al. (1993) give a comprehensive illustration of the

power and flexibility of the abstract data type approach. They show that the analysis

program produces the same results when applied to two different concrete encodings

of the same musical piece. This is an extremely powerful advantage of CHARM. The

ability to process representations using programs specified at an abstract level, in terms
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which capture the musical meaning of the analysis process independent of irrelevant im-

plementation and encoding details, is a large step towards conceptually interoperable

tools for computational musicology. In addition, Smaill et al. (1993) apply their analy-

sis program to a piece which uses an entirely different pitch system, demonstrating how

the level of the abstraction captured by the specification for pitch is not specific to any

notational convention or tuning system.

4.5.3 The AMusE Implementation

Only one serious attempt has been made at an implementation of CHARM: Lewis

et al. (2011) introduce the AMusE system, a collection of abstract classes that form

a framework into which concrete implementations of musical concepts can be plugged.

Implemented in LISP (SBCL), and based on the abstract data types of Wiggins et al.

(1989), AMusE has demonstrated the advantages of abstract representation through

allowing independent tools for analysis and visualisation to operate on varying kinds of

underlying representation (Lewis et al., 2011).

However, AMusE is not a full implementation of CHARM. The constituent mecha-

nism is underdeveloped, only allowing constituents that are defined by two time points,

with limited scope for formally specifying their intrinsic properties. Another aspect

that further removes it from CHARM is the precise nature of the abstraction used.

For example, AMusE does not fully and cleanly decouple the concepts of pitch, pitch

implementation, and pitched event. Rather, these concepts are subsumed in a large and

rather complex hierarchy of classes. While the practical reasons for doing this were

driven by the nature of the platform and the intended use of the system, this tower of

abstraction presents new users with a substantial challenge, in comparison to say, the

relative conceptual simplicity of the ML signatures and structures used by Smaill et al.

(1993).
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4.5.4 Scope for Development

The work on CHARMmakes vital progress towards more general purpose and interoper-

able music representations. However, there has been little uptake of the core principles

and ideas within the music research community. One possible reason for this is that

work to date has not included a full specification of the technical and logical details

of the representation. In this section, we examine these details, highlighting their im-

portance from the perspective of knowledge representation, and propose two ways in

which CHARM could be developed to add formal clarification.

The CHARM Interface

The first aspect of CHARM which could benefit from formal clarification is regarding

the precise behaviour of events and constituents with respect to the interface operations.

The work to date does not include a full specification of the interface. The most detailed

description is given by Harris et al. (1991), who informally give three requirements of

implementations. Firstly, they require that “[e]ach member of a concrete event structure

is associated with a unique Identifier, for efficient reference by software routines”

(Harris et al., 1991, p. 6). Secondly, they require implementations to define operations

for accessing the values of events, and a PutEvent operation which takes an event tuple

and returns the identifier associated with it (Harris et al., 1991, p. 6). They also require

that “constituents have appropriate typing and destructor functions, as for events”

(Harris et al., 1991, p. 10), and suggest informally, that the interface operations be

used in conjunction with a database containing the constituent structure (Harris et al.,

1991, p. 6). Thirdly, they propose that default values be built into the implementation

of the destructor operations to ensure that, when applied to constituents which do not

provide a value in their environment, they return a value which is meaningful to the

implementer (Harris et al., 1991, p. 11).

This description leaves two things under-specified at the abstract level. Firstly, it

does not explicitly define identity and equality of entities; they are implicit from the
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description but not formally defined at the specification level. We take the view that

identifiers are, rather than an implementation detail, a core part of the represented

knowledge. A development of CHARM could include an abstract type of identifiers,

which explicitly captures identity of entities as equality of identifiers. This would ensure

that all implementations of CHARM share a common understanding of the identity and

equality of the represented entitles at the abstract level.

Secondly, the behaviour of the interface operations is not fully defined. In partic-

ular, what should happen when a destructor operation is passed an identifier which

does not correspond with any entry in the database? This aspect may seem like an

implementation detail, however it has significant consequences when considering the

precise meaning of the constituent specification language, in which the interface opera-

tions are among the non-logical symbols. Consider, for example, the logical expression

GetTime(e1) < GetTime(e2), where e1 and e2 are event identifiers and < is the order-

ing relation from the abstract data type for time. What would the meaning of this

expression be if, for example, the event e2 did not exist? Should it be false? Should

it cause an exception to be thrown? Or is it not even a well-formed proposition of the

language? In order for CHARM to be a precise knowledge representation formalism, we

must provide an answer to this question, so that checking procedures and automated

reasoners may have the same behaviour independently of the implementation used. One

approach is to give algebraic specifications for events, constituents and whole structures,

in the manner used for the other abstract data types. These would provide a mathe-

matical reference for implementations of CHARM, and strengthen the meaning of the

constituent specification logic.

Finally, there is a disadvantage to the default value approach: it potentially allows

two different implementations to exhibit different behaviour when applied to identical

data. In our quest for conceptual interoperability, this is something which we would

like to avoid. We propose instead, that the destructor operations be partial functions,

and that their partiality be captured abstractly at the specification level.
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Constituent Specifications

The second area of CHARM which could benefit from formal clarification is the logical

language of constituent specifications. We would like this language to be defined at

the abstract level, with a formal meaning which is independent of any implementation

of the interface. The ultimate goal is to allow users to define and share sophisticated

logical descriptions of musical structures, which can be used in software applications

for data integrity checking and automated reasoning.

There are two aspects of the language in particular which require special attention.

The first is regarding the nature of the quantifiers. Harris et al. (1991, p. 10) give an ex-

ample of a specification, the slice, which, rather than quantifying over the constituent’s

particles, quantifies over the elements of an abstract type. This mixing of quantification

over arbitrary abstract types and identifiers makes the language complex from both a

theoretical and technical perspective. For example, it is not, in general, possible, at the

mathematical level, to prove or disprove (decide) the existence of a particular element

of an arbitrary abstract type using its interface alone. Any formal definition of a logi-

cal language must explicitly define the range of significance of its quantifiers, and any

means by which this range may be bounded. The type-based framework presented in

this thesis provides a uniform solution to this problem, in which the range of significance

of any quantifier is a specific type.

A second aspect of the language is that the example specifications given by Harris

et al. (1991) are not defined as logical predicates over constituents. Instead, they are

defined as constants whose truth value is dependent on the object to which they are

attached. This is more in the manner of the frame paradigm of knowledge representation

(Minsky, 1974, see §3.4), where a constituent is a frame and the specification is a

procedural attachment which will evaluate to either true or false for any particular frame

to which it is attached. The disadvantage of this approach is that it prohibits the reuse

and composition of specifications. For example, how could we give a specification for ‘a

stream of chords’ by reusing existing specifications for stream and chord. Representing
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the definitions of specifications as predicates mitigates this problem. A representation

of stream as a logical predicate would look as follows:

stream(x)↔∀p1 ∈ GetParticles(x).
¬∃p2 ∈ GetParticles(x).
p1 , p2 ∧
GetTime(p1) 6 GetTime(p2) ∧
GetTime(p2) < (GetTime(p1) + GetDuration(p1))

Here stream is a unary predicate over constituents, in which the quantifiers are

explicitly bounded to the set of particles of the argument. We can now write a specifi-

cation for ‘a stream of chords’ as follows:

stream_of_chords(x)↔stream(x)∧
∀p ∈ GetParticles(x). chord(p)

Notice how we are able to apply the predicates stream and chord to the particles

or sub-constituents of a constituent inside the definition of its specification. This ex-

ample serves to highlight the kind of composability we would like to achieve. This

is an important feature of knowledge representation systems, particularly in complex

domains such as music, where the descriptions of sophisticated structures could be-

come extremely large. The specification logic defined in Chapter 6 as a part of the

type-based framework defines specifications as predicates for exactly this reason, al-

lowing complex structural descriptions to be built from simple equational properties of

constituent structures.

Summary

The two areas of CHARM discussed above are both important from the perspective

of knowledge representation, and require rigorous formalisation if we to reach the

“. . . eventual situation where any researcher in computer music could use any program
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with his of her chosen representation system, limited only by the suitability of the pro-

gram for computation over the data represented” (Smaill et al., 1993, p. 1). Moving

CHARM towards a fully specified, implementation independent knowledge represen-

tation system is a crucial first step. The type-based framework presented in Part II

inherits much of the initial groundwork laid by CHARM, and builds upon it to provides

formal solutions to the aspects discussed in this section.

4.6 Summary and Conclusions

The challenge of designing a general purpose music knowledge representation system

stems from both the ontological complexity of music as an domain, and from the diver-

sity of different application requirements. Existing representations tend to be tailored

to a specific application and are in general not directly interoperable, either syntacti-

cally or conceptually. Approaching music representation from the meta-conceptual level

is essential in unifying different activities. In this section, we have identified five meta-

conceptual requirements for general purpose music representations, and have surveyed

a number of existing systems, highlighting how the variously address these require-

ments. In particular, many representations focus of some kind of musical event whose

properties commonly include pitch and onset values. However, most representations

are limited regarding the higher level structures which they can explicitly capture, and

often espouse syntactic data encoding over semantic knowledge representation.

The Semantic Web is an attractive solution for knowledge representation in the field

of music, and many ontologies and methods have been developed for specific purposes.

However, these ontologies tend to be designed with a specific research application in

mind, even when their intended domain is broad. In addition, the different fundamen-

tal perspectives of musical ontology, especially with regard to time, have given rise to

different high-level models which are not conceptually interoperable. Finally, the ex-

pressive limitations of semantic web modelling languages prevent the axiomatisation of

many kinds of musicological knowledge. Specifically, the open world assumption and
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restriction semantics of OWL force knowledge engineers to adopt complex solutions

to the modelling of music which often stray outside the realms which are naturally

accommodated by description logics.

The CHARM system is a strong attempt at unifying representation approaches. The

abstract data type approach to modelling musical attributes is a key step in promoting

interoperability between representations. However, the unfinished or underspecified

aspects of the original CHARM work make it hard to directly implement.

The importance of types in the design of interoperable information systems is high-

lighted when considering a complex domain such as music. The widespread use of

singly-typed FOL-based knowledge representations results in the limited applicability

of existing technologies to the design of general purpose music representation systems.

In the next part, we present an approach to music knowledge representation using

type-based methods of specification which attempts to remove some of the limitations

of existing approaches.
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Part II

A Framework for Music

Representation
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Summary

In this part we describe a type-based framework for music knowledge representation.

The purpose of the framework is to provide music researchers with a formal basis on

which to store, access and manipulate musical information in a uniform way. The frame-

work consists of two parts. The first part (Chapter 5) is a multiple-hierarchical abstract

information model called the constituent structure. The second part of the framework

(Chapter 6) is a logical language which can be used to express the structural properties

of the represented information. The framework is entirely general, incorporating diverse

kinds of information through a fixed type system. The different information require-

ments of research tasks can be incorporated by extending the framework (Chapter 7)

with new types and specification definitions predicated upon these types. The frame-

work allows users to integrate and reason with diverse kinds of musical information in

a controlled way and thus affords greater interoperability between computer systems

for music research.
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Chapter 5

The Constituent Structure

Representation

5.1 Introduction

In this chapter we describe the constituent structure representation of music. A con-

stituent structure is an abstract, multiple-hierarchical information model. Nodes in

the hierarchy represent musical objects and can be fitted with attribute values that

capture their inherent characteristics. The type of attribute information is defined

through specifications of abstract data types. The hierarchical relation between nodes

represents the compositional containment of musical objects. This structure provides

a high-level framework which generalises many existing music representation systems

and allows simple information to be integrated with with sophisticated structural and

analytic annotations.

5.2 Conceptual Basis of the Representation

In this section we introduce the constituent structure representation by outlining the

conceptual and ontological foundations on which it is based. The conceptual basis of
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the representation consists of four ontological assumptions. These are intended to be

as general as possible, favouring pragmatism and generality over any claim as to a

definitive musical ontology.

Musical Objects

First, we presuppose that the musical universe can be usefully decomposed into a do-

main of discrete musical objects. We use the term musical object here in the broadest

possible sense: the perceived sound objects of performed music; the physical sound

objects of recorded audio; the graphemic objects (from Babbitt’s graphemic domain,

discussed in §4.2) of a musical score; these are all examples of the kinds of musical

object which may participate in human conceptualisations of music. We emphasise

‘usefully’ as the manner of decomposition to highlight that this conceptualisation is a

pragmatic one, serving the conceptual needs of the user. That is, we do not assume that

musical objects define music. Rather they are atomic entities, used in the conception

of structure, to which which further description can be assigned. Truthful decomposi-

tion of the musical universe, of the kind involved in the philosophical research field of

formal ontology (Guarino, 1998), is a job for music ontology proper, and, we argue, not

required for a general purpose music knowledge representation system.

Hierarchy

Second, we presuppose that the domain of musical objects is hierarchically structured.

This assumption should not be controversial: the importance of hierarchy in musical

ideation is widely acknowledge (see §4.2.3). This inherent hierarchy is characterised

by the relationship between part and whole i.e., a musical object can be viewed as a

composite of smaller structural units at lover levels of abstraction or alternatively (and

simultaneously) as a component of a larger structural unit at some higher level of ab-

straction. In either case, the existence and identity of a musical object is inextricably

tied to the existence and identity of its parts; the whole is understood to exist conse-
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quently, born from the individual characteristics and mutual juxtaposition of the parts.

For example, a perceived sound event might be regarded as a part of a larger perceived

or cognitively ordained structure such as a melodic phrase or harmonic texture, or as a

fusion or smaller perceptual contributions. A musical glyph might be decomposed into

a collection of smaller graphemes, or regarded as a component of a higher level syntag-

matic unit such as a bar. A physical sound might be decomposed into a simultaneity of

separate sound sources or succession of smaller segments, or regarded as an element of

a larger structure such as a multi-track recording or digital music archive. We assume

nothing about this hierarchy, other than it is acyclic i.e., we assume that no musical

object can be part of itself.

Musical Spaces

Third, we presuppose that musical objects are understood through their identification

with points in ‘musical spaces’. We use the term ‘musical space’ here in the broadest

possible sense: pitch, duration, loudness, frequency, amplitude, waveform, chord type,

music glyph, melodic contour, style, genre; these are all examples suggestive of musical

spaces, or particular dimensions of composite spaces, wherein musical objects can be

located. For example, physical sound objects may be identified with points in frequency

or waveform space. Perceived sound objects may be identified with points in pitch or

timbre space. A musical glyph may be identified with a point in a space of symbols

belonging to a certain notational convention or in a Cartesian plane representing its

location on the page. We emphasis ‘understanding’ for the role of musical spaces to

highlight the descriptive (rather than definitive) nature of this conceptualisation.

Reasoning

Fourth, we presuppose that the structure of musical spaces forms the basis for reasoning

and manipulation of the musical objects which they describe. As such, we regard

musical spaces as ‘theories’; particular abstract models of some aspect of the musical
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universe which serve as conceptual foundations for the formal analysis of objects. For

example, the space of perceived pitch may have an interval structure, allowing pairs

of points to be uniquely identified with a pitch interval. A space of musical symbols

might be regarded purely as a discrete space with no structure other than nominal

identification of points. We do not presume that musical spaces necessarily coincide

with any particular mathematical spaces. For example, musical spaces need not be

metric or ordered (though some may be). We only assume, as a minimum requirement,

that their points be nominally identifiable so that musical objects identified with equal

points can be judged equivalent in some respect.

5.3 Concepts and Terminology

Having outlined our ontological assumptions, we now informally describe the con-

stituent structure representation by introducing the terminology and concepts which

realise the conceptual basis. In particular we introduce the concept of a constituent.

The term ‘constituent’ is taken from the work on CHARM (Wiggins et al., 1989), de-

scribed in §4.5, but is defined slightly differently here. A detailed comparison of the

constituent structure representation and CHARM is given in §5.6.

Constituents

Our representation treats the melange of latent hierarchically related musical objects

in a completely general and uniform way. Every extant musical object is designated

a representative called a Constituent. Constituents are formed from finite collections

of other constituents to form multiple-hierarchical structures. We place no restriction

on the sorts of musical objects that constituents can represent. Anything identifiable

in the process of human conceptualisation should be representable. For example, a

written text ‘about’ music, a compositional germ imagined in the mind of a composer,

an emotion elicited in the mind of a listener, the physical movements of performers,

the molecules of an instrument; these could all be constituents. Although we know of
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no representation system which handles, or even aims to handle, such diverse entities,

it is clear that the human mind does so with ease, conjuring musical objects whenever

the discourse requires them. The generality and flexibility of constituents is intended

to capture the ad hoc nature of human conceptualisation of music. We prescribe no

essential characteristics or ontological classification of constituents or the relationships

which exist between them (other than the fundamental hierarchical relation); they are

raw entities composed of other entities that can be refined with additional information.

Abstract Data Types

Musical spaces are given a similarly general treatment: each space is represented by

an algebraic specification of an abstract data type (Dale and Walker, 1996). The points

in the space are the values of the type, and any additional structure that the space

bares must be formally captured in the specification by adequate operations, predicates

and axioms. Our system does not prescribe any fixed set of abstract data types, nor

any operations which they must have, other than a decidable equality operation. The

purpose of the abstract data type specifications is two-fold. Firstly, the specification

provides an abstract interface which separates the logical and computational properties

of the data from the irrelevant (and possibly complex) implementation details. This

allows applications which use the interface to operate on different underlying encoding

formats. Secondly, the specifications provides formal documentation of the specific

‘theory’ which is being used to describe musical objects. Making this theory explicit

affords greater transparency and conceptual interoperability between systems which

process the information.

Attributes

Constituents are identified with elements of abstract data types via Attributes. An

attribute is a named connection between a constituent and a value. The name of the

attribute connection identifies a particular aspect or quality of the represented object.
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Each attribute name is uniquely associated with an abstract type representing a musical

space. The value of an attribute connection is an element of the abstract type associated

with the attribute name. Attributes can be thought of as explicitly representing a

projection of a musical object into a musical space. We take the view that the piecemeal

ascription of attributes to extant musical objects is sensible as an approximation of

human conceptualisation of music, which is fluid and ad hoc, depending on context,

musical aptitude, cultural sensibilities, specific activity and the passage of time.

Constituent Structures

A hierarchical collection of constituents along with their attribute connections is a Con-

stituent Structure and forms the basis of our representation framework. The modes of

analysis and manipulation of a constituent structure are determined by the attributes of

the constituents and the algebraic properties of the types of their values. The generality

of this structure is an acknowledgement of the multiplicity of potential music conceptu-

alisations, allowing them to coexist and be applied in a modular way to specialise the

representation depending on the requirements of the user.

5.4 Structural Specification

In this section we give a structural description of the constituent structure representa-

tion. The constituent structure representation is described as a class of set-theoretic

structures which capture the fundamental properties of the conceptualisation. Our

aim is to make explicit the semantic basis for the representation in a static way. This

will support and aid the understanding of the functional model given in the following

section, which aims to capture the computational behaviour of the representation.

The components of a constituent structure form a tuple 〈C,H,A,R,M〉, where C

is the set of constituent musical objects, H is the hierarchical relation between the

constituents, A is a set of attribute names, M is a collection of musical spaces and R

is a map from constituents to tuples of points in musical spaces.
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H ⊂ C × C is a binary relation on C, such that (C,H) forms a (simple) di-

rected acyclic graph (DAG). The graph (C,H) captures the hierarchical structure

of the domain, where (c, c′) ∈ H indicates that c′ is a part of c. We call the set

P (c) := {p ∈ C|(c, p) ∈ H} the particles of c. The set Sub(c) := {c′ ∈ C|(c, c′) ∈ H+}

is the set of sub-constituents of c, where H+ is the transitive closure of H. The exclu-

sion of directed cycles reflects the ontological premise that no musical object can be a

sub-constituent of itself.

The set A of attribute names can be thought of as the set of perspectives which

link constituents to their attributes. Alternatively we think of A as the set of keys

that can be used for attribute key-value pairs. The set of locations in musical space

M = (Ma)a∈A is a family of sets indexed by A, where Ma is the subspace or dimension

indicated by the perspective a. Alternatively Ma is the set of permissible values for

attribute key-value pairs whose key is a ∈ A. Attribute key-value pairs are therefore

elements of the disjoint union ∐a∈A Ma := {(a, v)|a ∈ A ∧ v ∈Ma}.

The map R : C → ∏
a∈A Ma ∪ {null} assigns to each element c ∈ C a tuple R(c) =

(va)a∈A where each va is either an element of Ma or is null. We can think of R in a

number of different but equivalent ways: (i) R(c) ⊂ ∐a∈A Ma can be thought of as a set

of attribute key-value pairs such that no two elements have the same key. (ii) R can be

thought of as a family of partial maps (geta)a∈A where geta : C ⇀ Ma maps a subset

of C to values v ∈ Ma (intuitively, a projection operation). (iii) R can be thought of

as a table with a row for each c ∈ C and a column for each attribute a ∈ A, in which

each cell Rc,a is either an element of Ma or is null.

This model is useful for understanding the semantic identity of the constituent struc-

ture representation, however it is insufficient as a basis for a computer implementation

of the system. In practise we need a symbolic representation for the components of the

structure as well as operations for manipulating them in application software. In par-

ticular, computers do not deal well with sets and set maps. We must therefore consider

how this semantic structure may be adequately implemented as a concrete information
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structure in a computer system. For this we observe the following: any constituent

c ∈ C can be represented as a tuple

〈identifier, particles, attributes〉,

where identifier = c, particles = P (c) and attributes = R(c). Any constituent

structure can therefore be represented as set of such tuples. This representation of

constituents is a simpler version to that presented by Harris et al. (1991) and captures

the identity and attributes of constituents. A constituent identifier will typically be

a ‘string’ or ‘database id’. Therefore, a constituent structure can be thought of as

an associative array (finite map) from identifiers to pairs 〈particles, attributes〉 which

satisfies some extra constraints. This perspective forms the basis of the functional model

of constituent structures given in the next section, where constituents and structures

are defined as abstract types.

5.5 Functional Specification

In this section we give a function specification of the constituent structure represen-

tation in dependent type theory. Our aim is to capture the computational behaviour

of the representation at an abstract level which can be used as a specification for im-

plementations of the system. The specification is given in the Calculus of Inductive

Constructions using the syntax and notational conventions described in §2.2.3. The

core of the model are four abstract types: UCI of constituent identifiers, AN of attribute

names, COBJ of constituent objects and STRUC of constituent structures. For each

of these types we specify functional interfaces, including operations and logical axioms

which constrain their behaviour.

112



5.5.1 Constituent Identifiers

UCI : Set is the type of universal constituent identifiers. Terms of this type x : UCI are

symbolic names which can be used to uniquely identify constituents. Ontologically, we

think of identifiers as references to extant musical objects. Computationally, we think

of this type as a type of pointers to data structures containing information about these

objects. Identifiers can be freely duplicated and stored in data structures, however

simple existence of an identifier is not sufficient for it to be dereferenced. Dereferencing

is specified as an operation in the constituent structure interface (§5.5.4). We do not

define any operations on identifiers except testing for equality which is a pure compu-

tation. The set of constituents C from the previous section is represented functionally

in the type fset(UCI).

5.5.2 Attribute Names and Types

AN : Set is the type of attribute names and is the functional analogue of the set A in the

previous section. Elements of the type are symbolic names which are used to identify

attribute projections for constituents. In addition we define the function typ : AN→ AT

which maps attribute names a : AN to attribute types typ(a) : AT where the type AT

is defined to be the type universe Set. In this way the family M becomes the type

universe Set with the indexing captured by the function typ. Attribute key-value pairs

can therefore be represented in the dependent sum type Σa : AT.typ(a).

5.5.3 Constituent Objects

COBJ : Set is the type of constituent objects. Terms of this type c : Con are symbolic

representations of pairs 〈particles, attributes〉. Ontologically, we think of a constituent

object as consisting of a set of other constituents and a collection of attributes. Com-

putationally, we think of the type as the type of data structures which are the returned

as a result of dereferencing an identifier.
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Operations

The operations defined on constituent objects are shown in Table 5.1. The constructor

delimit takes a set of identifiers and returns a constituent object. The operation particles

extracts the set of particle identifiers of the constituent object. The operations get and

set lookup and modify respectively the constituent’s attribute values. These operations

are dependently typed; the argument a : AN determines the type of values which

are retrieved or set. The partiality of the get operation is captured by the option

type constructor. Note that the set operation is a pure function i.e. it returns a new

constituent object with a modified environment.

Table 5.1: Constituent object operations

delimit : fset(UCI)→ COBJ
particles : COBJ→ fset(UCI)

get : Πa : AN.COBJ→ option(typ(a))
set : Πa : AN.typ(a)→ COBJ→ COBJ

Axioms

Table 5.2 specifies the axioms which the operations in Table 5.1 must satisfy.

particles_delimit specifies that the set of identifiers delimited by a constituent object are

the particles of that object. get_delim specifies that a newly delimited set of identifiers

has no attributes. particles_set specifies that setting attributes does not modify the

particles. get_set_same specifies that, for two equal attribute names a = a′, getting a

after setting a′ returns the value that was just set. get_set_other specifies that, for two

different attribute names a , a′, getting a after setting a′ is the same as just getting

a. These axioms ensure that the operations respect the structure of R(c) described in

§5.4.
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Table 5.2: Constituent object axioms

particles_delimit : ∀ps.particles(delimit(ps)) = ps

particles_set : ∀a v c.particles(set(a, v, c)) = particles(c)
get_delimit : ∀ps a. get(a, delimit(ps)) = None

get_set_same : ∀a a′ v c. a = a′ → get(a, set(a′, v, c)) = Some(v)
get_set_other : ∀a a′ v c. a , a′ → get(a, set(a′, v, c)) = get(a′, c)

5.5.4 Constituent Structures

STRUC : Set is the type of constituent structures. Terms of the type s : STRUC are

symbolic representations constituent structures. Ontologically, we think of a constituent

structure as describing a collection of musical objects, their attributes and hierarchical

relationships. Computationally, they are associative arrays: assignments or bindings of

constituent identifiers to objects.

Operations

The operations defined for structures are shown in Table 5.3. The constant empty

denotes the empty structure. The operation insert takes an identifier, a constituent

object and a structure and returns a new structure in which the identifier is bound to

the object. The operation lookup takes an identifier and a structure and returns either

some constituent object or None. The operation domain takes a structure and returns

the finite set (C) of identifiers on which it is defined. Note that the insert operation is

pure and overwrites any existing constituent binding.

Axioms

Table 5.4 defines the axioms which the operations in Table 5.3 must satisfy.

lookup_empty specifies that the empty structure empty contains no constituents.

lookup_insert_same and lookup_insert_other are similar to those for get and set in

Table 5.2 and express the compatibility of the lookup and insert with the view of struc-
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Table 5.3: Constituent structure operations

empty : STRUC
insert : UCI→ COBJ→ STRUC→ STRUC

lookup : UCI→ STRUC→ option(COBJ)
domain : STRUC→ fset(UCI)

tures as finite maps. domain_lookup specifies that the set of identifiers returned by the

operation domain contains only those identifiers which are bound to values.

Table 5.4: Constituent structure axioms

lookup_empty : ∀x. lookup(x, empty) = None
lookup_insert_same : ∀x, x′, c, s. x = x′ → lookup(x, (insert(x, c, s))) = c

lookup_insert_other : ∀x, x′, c, s. x , x′ → lookup(y, insert(x, c, s)) = lookup(y, s)
domain_lookup : ∀x, s. x ∈ domain(s)↔ lookup(x, s) , None

Note that the hierarchical relation H is only implicit in this model, arising from

the construction and insertion of constituents. In addition, the specification does not

enforce the acyclicity of constituent structures, nor does it enforce that constituent

structures contain complete information i.e., that constituents inserted into a structure

have particles that are already bound. The reason for this is that, in distributed in-

formation systems, individual documents may only contain partial information, relying

on the universality of identifiers to link them. It is therefore desirable that we are able

to consider such partial information as well-typed. In §6.2.3 we specify the acyclically

and completeness of structures as a logical invariant over constituent structures.

5.6 Summary and Conclusions

In this chapter we have formally defined a representation of music. We have described

the conceptual basis and given both a structural and functional specification of the
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representation. We now summarise the core features.

The representation is abstract: The functional specification uses abstract

data types, defined by their functional behaviour. This means that any con-

crete encoding format can be used to implement the representation so long as it

can be adequately interpreted via the structural description (§5.4) and supports

implementations of the functional behaviour (§5.5).

The representation is music-generic: The conceptual basis of the represen-

tations is entirely general, subsuming many exiting representations of music. It

can be seen as a meta-conceptual framework, into which domain-specific repre-

sentations can exist side by side.

The representation is extensible: The representation is parametric in the

types of constituent attribute information. As such, the different representa-

tional requirements of music researchers are accommodated through the intro-

duction of new ADT specifications.

The representation is highly expressively complete: The ability to ac-

commodate arbitrary data types means that the representation is as expressive

as CIC itself.

The representation is highly structurally general: The ability to repre-

sent multiple hierarchies of musical objects with attribute data makes the model

capable of expressing arbitrarily complex structures.

The representation generalises many existing approaches. For example, the attribute

mechanism separates the name of the attribute from its value (or filler) in the style of

KL-ONE ontology languages (Brachman and Schmolze, 1985) and the attributive/ref-

erential distinction (Donnellan, 1966). In addition, attributes can be seen as viewpoints

in the manner of Conklin and Witten (1995), with canonical projections given by the

functional interface. The abstract data type approach subsumes the conceptual space
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approach (Gärdenfors, 2000), as conceptual spaces and their components can be defined

as algebraic specifications and encoded in CIC.

An important aspect of the type-based approach is that it supports the axioma-

tisation of further operations on constituent structures. Some examples of additional

operations might include equality, subsumption, merging and intersecting, retrieving all

sub-constituent identifiers of a given constituent, or extracting the downward closure

of a set of identifiers. These and many more could be adapted from the Coq standard

library module for finite maps1.

The crucial aspect of the representation which sets it apart from existing methods

is the functional specification given in CIC, which captures the algebraic properties

of the representation. This can be used as a basis for integrating the representation

into functional programming languages. For example, we could write high-level func-

tional programs for manipulating constituent structures using state and option monads

(Wadler, 1992). CIC supports the representation of functional data types such as those

of Hudak (2011) and grammars such as Bel and Kippen (1992) using higher-order

abstract sytanx. Having a functional specification of constituent structures makes it

possible to define mappings to and from these other representations.

The functional model can be viewed as a low-level basis upon which more sophisti-

cated data manipulation languages can be defined. It is also possible to define higher-

level languages for manipulation of imperative constituents structures using higher-

order abstract syntax in CIC, and define their operational semantics in terms of the

functional model. In this approach the functional model is used as the type of system

or memory states. This is the approach taken by Chlipala (2011).

The formal and technical advantages of using type theory stem the property of

equational reasoning. In particular, this will be used in the next chapter as the basis

of a specification logic.

We conclude this chapter with a comparison of our representation with the CHARM

system, its closest conceptual neighbour. The key similarities are in the use of abstract
1https://coq.inria.fr/library/Coq.FSets.FMapInterface.html
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data types for modelling musical parameter spaces and the representation of multiple

hierarchies of constituent entities. Our main addition to the original work is the fully

specified functional model of constituent structure behaviour. The core difference of

our system is that it uses type theory as a specification language and logical basis.

This does not make it incompatible with the original work, but rather generalises it.

In addition, there are a number of minor but fundamental conceptual differences which

are as follows:

1. Our specification is given in dependent type theory with emphasis on the func-

tional behaviour of components. This is deliberately to encourage the full sepa-

ration of logical specification and implementation. The previous work emphasises

the structure of entities which influences the implementation. By fully specifying

the functional behaviour of entities we can recover the original structural and

syntactic notions.

2. We do not differentiate between a basic representation and the constituent mecha-

nism. Instead, every entity is a constituent with a possibly empty set of particles.

The reason for this is that is that we do not wish to prescribe any kind of atomic

entity. This allows the user of the representation greater flexibility in tailoring

the representation to their needs as well as inviting greater integration of repre-

sentations at different levels of detail.

3. We do not prescribe any inherent attributes of constituents. Instead, any con-

stituent can be fitted with any attribute. This is in contrast to the original in

which a fixed abstraction was used to represent atomic entities. The reason for

this is firstly that it allows for the integration of representations at varying degrees

of expressiveness without the need for conversion tools, and secondly to allow for

the representation of partial information in which certain attributes might be

unknown.

4. Instead of default values we use the option type constructor to capture the par-
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tiality of operations on representation components. We argue that this is a more

rigorous approach to the design of information systems and a more natural way

of specifying systems behaviour in the vast majority of concrete cases.
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Chapter 6

A Specification Logic for

Constituent Structures

6.1 Introduction

In this chapter we define a specification logic for expressing the properties of constituent

structures and their components. The language constructs are defined in CIC and

depend on the functional model of constituent structures given in Chapter 5. We define

three types which capture the different kinds of expressions in the language: SPROP

of structure invariants, CSPEC of constituent specifications and CREL of constituent

relations.

Each of these types captures a kind of constructive predicate i.e., a type of Prop-

valued functions. SPROP is the type of unary predicates over constituent structures

and captures equational invariants of constituent structures. We define a number of

operations for combining SPROPs which together form an expressive logical language.

This language of invariants forms the basis for defining the types CSPEC and CREL

of constituent specifications and relations, respectively. CSPEC is the type of unary

SPROP-valued predicates over constituents and CREL is the type of binary SPROP-

valued predicates (relations) over constituents. These types capture intrinsic structural
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properties of named constituents and their relationships in a formal way.

The logical symbols of the language are defined using the notion of pointwise lifting

of an operation. Specifically, given two types A and B and some n-ary m : Bn → B,

we can lift the operation m to create an n-ary operation [m]A : (A→ B)n → (A→ B)

on functions f from A to B. This operation is defined pointwise i.e. [m]A(f1, ..., fn) =

λa.m(f1(a), ..., fn(a)). We denote lifting with square brackets and also use subscripts

A to indicate the type of functions to which the operation has been lifted. In addition,

elements (nullary operations) b : B can be lifted to constant functions [b]A := λ_.b. We

use underscores _ instead of variables to indicate that the function is constant i.e., the

abstracted variable is not free in the body of function. Our specific use of pointwise

lifting is in regard to logical predicates P : A → Prop, where the operations on Prop

are the standard inductive definitions of the logical connectives in CIC.

6.2 Structure Invariants

SPROP := STRUC→ Prop is the type of structure invariants (unary predicates over

structures). These predicates express properties of the information contained in con-

stituent structures via the equational properties of the functional model (§5.5). El-

ements of the type φ : SPROP are lambda terms and applications φ(s) are logical

propositions (dependent types of sort Prop) corresponding with the assertion that the

invariant φ holds of the structure s.

6.2.1 Atomic Structure Invariants

Table 6.1 defines two atomic structure invariants. x
a7→ v asserts that a structure

contains a constituent named x with attribute a : AN of value v : typ(a). x� y asserts

that a structure contains a constituent named x whose set of particle identifiers contains

y. We also write y � x to mean y is part of x as well as (p�) to mean λx.p� x.
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Table 6.1: Atomic structure invariants

x
a7→ v : SPROP := λs.∃c.lookup(x, s) = Some(c) ∧ get(a, c) = Some(v)

x� y : SPROP := λs.∃c.lookup(x, s) = Some(c) ∧ y ∈ particles(c)

6.2.2 Logical Operations on Structure Invariants

We can compose structure invariants by pointwise lifting of the propositional con-

nectives defined in Prop. We use the subscript S to indicate the type of these lifted

operations. Table 6.2 defines the lifted connectives. [P ]S : SPROP is the lifting

of a proposition P : Prop to the constant function λ_.P . The quantification op-

erations [∀]S, [∃]S : (T → SPROP)→ SPROP each take a T -parametrized invariant

ϕ : T → SPROP and return an invariant in which the formal parameter of ϕ is bound

by the ∀ and ∃ type constructors, respectively. For readability, we sometimes omit the

subscript S when the type of the operation is clear from the context. In addition we

write [∀]x.φ as a short-hand for [∀]S(λx.φ).

Table 6.2: Logical operations on structure invariants

[>]S := λ_.>
[⊥]S := λ_. ⊥

φ[∧]Sψ := λs.φ(s) ∧ ψ(s)
φ[∨]Sψ := λs.φ(s) ∨ ψ(s)
φ[→]Sψ := λs.φ(s)→ ψ(s)

[¬]Sφ := λs.¬φ(s)
[∀]Sϕ := λs.∀t.ϕ(t)(s)
[∃]Sϕ := λs.∃t.ϕ(t)(s)
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6.2.3 Well-Formedness of Constituent Structures

Table 6.3 defines the invariant WF : SPROP which captures two specific properties of

constituent structures: acyclicity and completeness. Acyclicity means the constituent

hierarchy contains no directed cycles i.e., it ensures (C,H) is a DAG. Completeness

means that every constituent identifier appearing in the particles of bound constituent

objects are also bound in the structure. The well-formedness property is defined in-

ductively by the axioms WF_empty and WF_insert. WF_empty states that the empty

structure is well formed. WF_insert states that inserting the pair (x, c) into any well

formed structure s yields a well formed structure if the identifier x is unbound in s and

the particles of c are all bound in s.

Table 6.3: Well-formedness of constituent structures

WF : SPROP
WF_semp : WF(semp)
WF_insert : ∀x c s.WF(s)→ particles(c) ⊆ domain(s)

→ x < domain(s)→ WF(insert(x, c, s))

6.3 Constituent Specifications

CSPEC := UCI→ SPROP is the type of constituent specifications: unary SPROP-valued

predicates over constituents. Elements of the type Φ : CSPEC are lambda terms and

applications Φ(x) are structure invariants (themselves lambda terms). We can think

of constituent specifications as defining classes (unary predicates) of constituents, for

which membership is specified in terms of structure invariants.
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6.3.1 Atomic Constituent Specifications

Atomic constituent specifications can be constructed by simple lambda abstraction over

identifiers appearing in structure invariants, for example, λx.x a7→ v. Table 6.4 defines

two atomic specifications. 〈a〉 asserts that a constituent contains some value for the

attribute named a. element asserts that the constituent has an empty set of particles.

Table 6.4: Atomic constituent specifications

〈a〉 : CSPEC := λx.[∃]v.x a7→ v

element : CSPEC := λx.[∀]p.[¬]x� p

6.3.2 Logical Operations on Constituent Specifications

As before, we can compose constituent specifications by pointwise lifting of the logical

connectives defined on structure invariants. We use subscript C to indicates the type of

the lifted operations, but sometimes omit this when the type is clear from the context.

[φ]C : CSPEC is the lifting of a structure invariant φ : SPROP to the constant function

λ_.φ. Table 6.5 defines the lifted logical operations for constituent specifications.

Table 6.5: Logical operations on constituent specifications

[>]C := λ_.[>]S
[⊥]C := λ_.[⊥]S

Φ[∧]CΨ := λx.Φ(x)[∧]SΨ(x)
Φ[∨]CΨ := λx.Φ(x)[∨]SΨ(x)

Φ[→]CΨ := λx.Φ(x)[→]SΨ(x)
[¬]CΦ := λx.[¬]SΦ(x)

[∀]C := λΦ x.[∀]St.Φ(t)(x)
[∃]C := λΦ x.[∀]St.Φ(t)(x)
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6.3.3 Quantification Over Constituent Particles

Often it is desirable to capture properties of constituents which quantify over the ele-

ments of their particle sets (rather than a type). This can be achieved using the oper-

ations already defined as follows: [∀]p.(p�)[→][Φ(p)] : CSPEC is a specification which

asserts that every particle p of a constituent satisfies some specification Φ : CSPEC.

However, specifications of this kind do not compose very easily, as each nested quanti-

fier must be qualified by (p�)[→]....

Table 6.6 defines two operations ∀Parts and ∃Part specially for quantification over

particles which hide the (p�)[→] component. In this way we can write specifications

in a more concise and natural way. For example,

∀Parts p1.[¬]∃Part p2.[[p1 , p2]S[∧]SR(p1, p2)]C : CSPEC

is a specification with nested particle quantification which asserts that no two distinct

particles of a constituent are related by R. Note that we write ∀Parts p1.Φ as a short-

hand for ∀Parts(λp1.Φ).

Table 6.6: Operations for the quantification over constituent particles

∀Parts : (UCI→ CSPEC)→ CSPEC := λΦ.[∀]p.(p�)[→]Φ(p)
∃Part : (UCI→ CSPEC)→ CSPEC := λΦ.[∃]p.(p�)[∧]Φ(p)

6.3.4 Relations Between Constituents

CREL : UCI→ UCI→ SPROP is the type of constituent relations: binary SPROP-valued

predicates over constituents. One such relation we have already introduced: the atomic

hierarchical relation (�) : CREL between constituents is defined in terms of the basic

operations on constituent structures. Other relations can be formed by nested lambda

abstractions over identifier variables in arbitrary structure invariants.
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Table 6.7: Atomic constituent relations

AttRel(a)(R) : CREL := λx y.[∃]v1 v2.x
a7→ v1[∧]y a7→ v2[∧][R(v1, v2)]

PartRel(R) : CREL := λx y.[∃]l1 l2.elements(x, l1)[∧]
elements(y, ly)[∧]
PairWise(R, l1, l2)

Table 6.7 defines two atomic constituent relations. AttRel(a) : (typ(a) → typ(a) →

Prop) → CREL is an atomic relation constructor which takes a relation R on at-

tribute values of type typ(a) and returns a constituent relation which asserts that

two constituents x and y have attribute values v1 and v2 which are related by R.

PartRel : CREL→ CREL is a relation constructor which takes a constituent relation R

and returns a new constituent relation which asserts that the particles of the con-

stituents can be represented as lists which are pairwise related by R. The structure

invariant elements(x, l) asserts that the particles of a constituent x can be represented

by the functional list l : list(UCI), and the structure invariant PairWise(R, l1, l2) asserts

that the elements of two lists of identifiers are pairwise related by the constituent rela-

tion R. The definitions of these two structure invariants are defined using the inductive

structure of functional lists. However, their definitions are omitted as they are not es-

sential in understanding the definition of PartRel. As before, constituent relations can

be composed by lifting structure invariants (and constituent specifications) and their

corresponding connectives. We use the subscript R to denote the pointwise operations

on relations.

6.4 Summary and Conclusions

In this chapter we have defined a specification logic for constituent structures. It

constitutes a highly expressive language for giving structural descriptions of constituent

structures. The origin of its expressive power is the underlying constructive logic of CIC
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and in the next chapter it will be used to axiomatise sophisticated musical structures.

The expressive power of the language comes at a cost from the perspective of the

knowledge engineer. Firstly, as with any expressive language, there is more than one way

to construct equivalent statements. This fosters potential overlap and redundancy in

knowledge bases which use the language. Secondly, the kind of global, fully automated

reasoning, such as that afforded by description logic languages, is not possible.

The former issue is mitigated by the fact that the logic is constructive with a proof-

theoretic semantics. This means that it is possible to construct proofs of the equivalence

of two statements. These proofs, being functional programs, can be used as functions

which actually transform a proof of one statement into a proof of the other.

The later issue requires paradigm shift in the practise of knowledge representation

and reasoning. Traditionally, knowledge representation languages are created in order

to support off-the-shelf reasoning procedures (such as classifiers), often at the expense

of the expressive power of the language. In the type-theoretic setting, the process of rea-

soning is equatable to type-based theorem proving. As such, in the constructive setting

the knowledge engineer must take up responsibility for defining automated procedures

for constructing and manipulating proofs. Rather than using black box reasoners with

complex implementations, the knowledge engineer can use proof assistants (such as

Coq) to implement functional decision procedures or perform tactic-based proof search.

This shift in thinking, from set-theoretic, model-based systems to constructive type-

theoretic, proof-based systems, requires a significant level of commitment from the re-

search community. However, the advantages of such an approach are are being demon-

strated in the verified-software and programming language communities with the de-

velopment of ecosystems for software development and formal verification (Chlipala,

2013).
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Chapter 7

Extensions to the Framework

7.1 Introduction

In this chapter we present six extensions to the representation framework described in

the Chapters 5 and 6. The purpose of these extensions is to demonstrate how the type-

based framework supports two crucially important aspects of our approach to music

representation: Firstly, how knowledge engineers may use the type-based method of

abstract representation to design representations to suit their specific conceptualisation

of musical aspects. Secondly, how constituent structures and the specification logic

can be extended with new operations and definitions to allow for the expression of

additional representational features.

Chapter Outline

§7.2 describes how note-like events can be represented via specification of abstract data

types for pitch and time, as well as higher-level temporal structures. §7.3, §7.4 and §7.5

describe extensions whereby particular properties and characteristics of constituents can

be explicitly represented and reasoned with. §7.6 describes how arbitrary associations

between constituents may be represented. §7.7 describes an extension to the syntax of

the specification logic which allows for concise descriptions of structured objects.
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7.2 Representing Note-Like Events

In this section we propose abstract data type representations of pitch and time and

show how they can be used in specifications for higher-level musical structures. Pitch

and time are two fundamental dimensions of musical structure and are used in many

applications. Conceptually, we regard these aspects of music as musical spaces. The

abstract data type representation constitutes a formal theory of the nature of these

spaces. It is important to stress here, that the abstract representations presented here

are not intended to be definitive of either pitch or time, but are merely indented to

illustrate the method by which specific conceptualisations of these aspects of music can

be can be made formally explicit.

7.2.1 Abstract Data Type Specifications for Pitch and Time

Our specifications follows that of Wiggins et al. (1989), in which pitch and time are each

considered to be linearly ordered interval dimensions characterised by a type of points

and a type of intervals. Intervals in each space form linearly ordered abelian groups

under addition, and can act on points as a mode of transformation. This representa-

tion is close to the mathematical notion of an affine space and forms the basis of the

generalised interval system of Lewin (1987). In this section we present the operations,

predicates and axioms for the pitch abstract data type. The time abstract data type

specification is taken to be the same modulo the renaming of the components (Wiggins

et al., 1989; Harris et al., 1991).

Operations

Table 7.1 shows the types and operations for the pitch abstract data type. The spec-

ification includes the types Pitch and Interval for pitches and intervals, respectively,

boolean comparison operations for equality and ordering on both pitches and intervals,

the group operations on intervals, and operations diffp and shiftp for calculating the
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interval between two pitches, and shifting a pitch by an interval, respectively. We use

the subscripts p and i to indicate that these operations apply to pitches or intervals.

Table 7.1: Types and operations of the pitch abstract data type

Pitch : Set
Interval : Set

eqbp : Pitch→ Pitch→ bool
eqbi : Interval→ Interval→ bool
ltebp : Pitch→ Pitch→ bool
ltebi : Interval→ Interval→ bool
addi : Interval→ Interval→ Interval
invi : Interval→ Interval

zeroi : Interval
diffp : Pitch→ Pitch→ Interval

shiftp : Interval→ Pitch→ Pitch

Predicates

In addition to the operations, we require type-level predicates for capturing equations

and inequalities between pitches and intervals. For this we require Prop-valued relations

on Pitch and Interval for equality and ordering. Table 7.2 shows these relations. These

predicates can be used to define other relations amongst pitches and intervals. For

example, gtp := λp1 p2.¬ltep(p1, p2) is the ‘greater than’ relation on pitches, defined as

the logical negation of ‘less than or equal’.

For readability we use standard symbols for the equality and ordering relations

of types with a subscript to indicate their type. For example, we write p1 =p p2 as

short-hand for eqp(p1, p2), and p1 6p p2 for ltep(p1, p2).

Axioms

Table 7.3 shows the axioms that the operations and predicates must satisfy. The equal-

ity relations on pitches and intervals must be equivalence relations: they must be reflex-
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Table 7.2: Predicates of the pitch abstract data type

eqp : Pitch→ Pitch→ Prop
eqi : Interval→ Interval→ Prop
ltep : Pitch→ Pitch→ Prop
ltei : Interval→ Interval→ Prop

ive, symmetric and transitive (axioms 7.3.1 to 7.3.6). The ordering relations on pitches

and intervals must be total orders: they must be reflexive, transitive and antisymmetric

(axioms 7.3.7 to 7.3.12). In addition we require that the boolean comparison operations

be compatible with type-level relations (axioms 7.3.13 to 7.3.16). This ensures that or-

dering relations are total and that equality is decidable. The operations on intervals

must satisfy the axioms of an abelian group: the addi operation must be commutative

and associative; the constant zeroi must be the unit for the addi operation; and the

invi operation must return the inverse interval (axioms 7.3.17 to 7.3.20). Finally, we

require that the diffp and shiftp operations behave as expected with respect to the group

structure of intervals (axioms 7.3.21 to 7.3.24).

7.2.2 Note-Like Constituents

Armed with these abstract data types for pitch and time, we can define constituent

specifications in the specification logic which capture note-like constituent objects. We

assume that the type AN is inhabited by three constants Onset, Duration and Pitch,

with typ(Onset) = Time, typ(Duration) = TimeInterval and typ(Pitch) = Pitch. We

can now define constituent specifications which describe constituents which have these

particular attributes as follows:

Temporal : CSPEC := 〈Onset〉[∧]C〈Duration〉
Note : CSPEC := Temporal[∧]C〈Pitch〉.

Temporal captures constituents with onset and duration attributes, while Note cap-
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Table 7.3: Axioms for the pitch abstract data type

eqp_reflexive : ∀p.p =p p (7.3.1)
eqp_symmetric : ∀p q.p =p q → q =p p (7.3.2)
eqp_transitive : ∀p q r.p =p q → q =p r → p =p r (7.3.3)

eqi_reflexive : ∀i.i =i i (7.3.4)
eqi_symmetric : ∀i j.i =i j → j =i i (7.3.5)
eqi_transitive : ∀i j k.i =i j → j =i k → i =i k (7.3.6)

ltep_reflexive : ∀p.p 6p p (7.3.7)
ltep_transitive : ∀p q r.p 6p q → q 6p r → p 6p r (7.3.8)

ltep_antisymmetric : ∀p q.p 6p q → q 6p p→ p =p q (7.3.9)

ltei_reflexive : ∀i.i 6i i (7.3.10)
ltei_transitive : ∀i j k.i 6i j → j 6i k → i 6i k (7.3.11)

ltei_antisymmetric : ∀i j.i 6i j → j 6i i→ i =i j (7.3.12)

eqbp_compat : ∀x y.x =p y ↔ eqbp(x, y) = true (7.3.13)
eqbi_compat : ∀x y.x =i y ↔ eqbi(x, y) = true (7.3.14)
ltebp_compat : ∀x y.x 6p y ↔ ltebp(x, y) = true (7.3.15)
ltebi_compat : ∀x y.x 6i y ↔ ltebi(x, y) = true (7.3.16)

addi_commutative : ∀x y.addi(x, y) = addi(y, x) (7.3.17)
addi_associative : ∀x y z.addi(x, addi(y, z)) = addi(addi(x, y), z) (7.3.18)

zeroi_identity : ∀x.addi(x, zeroi) = x (7.3.19)
invi_inverse : ∀x.addi(x, invi(x)) = zeroi (7.3.20)

shiftp_identity : ∀p.shiftp(zeroi, p) = p (7.3.21)
shiftp_associativity : ∀i1 i2 p.shiftp(i2, (shiftp(i1, x)) = shiftp(addi(i1, i2), p) (7.3.22)

weylp_1 : ∀x y.shiftp(diffp(x, y), x) = y (7.3.23)
weylp_2 : ∀x y z.addi(diffp(a, b), diffp(b, c)) = diffp(a, c) (7.3.24)
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tures pitched temporal entities.

We can also define more expressive structure invariants as SPROP-valued relations

between constituent identifiers and attribute values as follows:

event(x, t, d) : SPROP :=x Onset7→ t[∧]x Duration7→ d

note(x, t, d, p) : SPROP :=event(x, t, d)[∧]x Pitch7→ p

This kind of representation is close to the logical relation representation suggested in

Harris et al. (1991). The difference is that the expressions capture structure invariants

whose truth is associated with a constructive proof, rather than being asserted as a

logical axiom into a knowledge base.

7.2.3 Temporal Relations

We can use these invariants to capture the basic temporal relations defined by Allen

(1984). We begin by defining an operation which constructs a period relation from four

point relations, which specify the pairwise order between onsets and end points of the

participating events. The operation is defined as follow:

TempRel(a, b, c, d) : CREL := λx y.[∃]t1 t2 d1 d2.

event(x, t1, d1)[∧]event(y, t2, d2)[∧]
[ a(t1, t2)∧
b(t1, shiftt(d2, t2))∧
c(shiftt(d1, t1), t2)∧
d(shiftt(d1, t1), shiftt(d2, t2)) ],

where a, b, c and d are of type TimePoint→ TimePoint→ Prop. The TempRel operation

can be used to construct the period relations of Allen (1984) in a manner akin to the

‘point notation’ used by Marsden (2000, p. 59), as follows:
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equal := TempRel(=t, <t, >t,=t)
precedes := TempRel(<t, <t, <t, <t)

meets := TempRel(<t, <t,=t, <t)
overlaps := TempRel(<t, <t, >t, <t)

starts := TempRel(=t, <t, >t, <t)
during := TempRel(>t, <t, >t, <t)

finishes := TempRel(>t, <t, >t,=t)

The advantage of having the relations defined in this way, is that we can easily

construct new relations, for example, a relation which captures any non-overlapping

pair of events symmetrically.

7.2.4 Temporal Structures

We now demonstrate how the temporal relations can be used to define various higher-

level temporal structures. We define three such kinds of structure: sequence, stream

and chain. A sequence is a temporal collection whose particles are totally ordered by

their onset attributes. A stream is a sequence which, in addition, contains no particles

which overlap in time. Finally, a chain is a stream in which the end time of each particle

is equal to the onset of the next. These specifications are defined as follows:

Sequence : CSPEC :=TemporalCollection[∧]
∀Partsp1.

[¬]∃Partp2.

[p1 , p2][∧]starts(p1, p2)
Stream : CSPEC :=Sequence[∧]

∀Partsp1.

[¬]∃Partp2.

[p1 , p2][∧]overlaps(p1, p2)
Chain : CSPEC :=Stream[∧]

∀Partsp1 p2.precedes(p1, p2)[→]
∃Partp3 p4.meets(p1, p3)[∧]meets(p4, p2)
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Here, we have demonstrated how various abstractions of musical objects can be

described formally using the specification logic, in conjunction with appropriate spec-

ifications of abstract data types. In particular, the Stream specification is logically

equivalent to the definition given in Harris et al. (1991, p. 9). The use of these differ-

ent abstractions will depend on the particular context. Many representations of music

explicitly represent chains as syntactic sequences of symbols or specific data structures

(Cuthbert and Ariza, 2010), whist streams are often required for particular analysis

methods (Harris et al., 1991).

7.3 Representing Extrinsic Properties of

Constituents

There exist properties of constituents which may not be defined in terms of invariants

over structures. Rather, they are true by fiat and assigned by the user of the repre-

sentation. For accommodating this kind of property, we introduce the type EP : Set of

extrinsic properties. This type is a parameter to the existing representation framework.

Elements of the type e : EP are symbolic labels which can be explicitly attached to

constituent objects. Constituents may be annotated with multiple such properties. We

do not define any operations on the type EP except equality checking.

Constituent object are associated with extrinsic properties by extending the con-

stituent object interface (Table 5.1) to include operations for adding and retrieving

labels. Table 7.4 gives these operations. add_ep adds an extrinsic property label to

the constituent object, while get_ep retrieves the set of extrinsic properties which are

associated with a constituent object.

Table 7.4: Operations for extrinsic properties

add_ep : EP→ COBJ→ COBJ
get_ep : COBJ→ fset(EP).
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Table 7.5 gives the axioms which these operations must satisfy. get_ep_delimit

asserts that a newly delimited set of particles has no assigned extrinsic properties.

get_ep_add_ep asserts that adding an extrinsic property e to a constituent object c,

adds the value e to the set of properties get_ep(c). get_ep_set asserts that modifying

a constituents attributes does not affect the set of extrinsic property labels associated

with it.

Table 7.5: Axioms for extrinsic properties

get_ep_delimit : ∀ps. get_ep(delimit(ps)) = ∅
get_ep_add_ep : ∀e c. get_ep(add_ep(e, c)) = get_ep(c) ∪ {e}

get_ep_set : ∀a v c. get_ep(set(a, v, c)) = get_ep(c)

Extrinsic properties can be incorporated into the description language by adding

the following definition of an atomic structure invariant:

x =def e : SPROP := λs.∃c.lookup(x, s) = Some(c) ∧ e ∈ get_ep(c)

This invariant asserts that the constituent named x is labelled with the extrinsic

property e. We can now incorporate information about the explicit labelling of extrinsic

properties of constituents with the structural specifications of their intrinsic properties.

7.4 Explicit Annotation of Musical Surface

Here, we propose an extension to the representation which introduces the notion a

musical surface. Wiggins (2000) suggests that explicit representation of musical surface

allows collections of kindred entities to be grouped together to identify a common basis

for analysis. In this section we propose such a mechanism and suggest how it might be

used to support the kinds surface-based reasoning suggested by Wiggins (2000).

We start by introducing the abstract type MS : Set of musical surfaces as a parameter

to the representation system. Elements of the type m : MS are symbolic labels which
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can be explicitly attached to constituent objects. As such, the operations and axioms for

musical surfaces follow the exact pattern as those of extrinsic properties, with operations

for adding and retrieving surface annotations, and axioms to ensure the operations

behave as expected.

Table 7.6 defines three atomic specifications for musical surfaces. AtSurface(x,m) :

SPROP asserts that the constituent named x is labelled with the musical surfacem. The

constituent specification At(m) : CSPEC asserts that a constituent is labelled with the

musical surface m. The constituent specification SurfaceStructure(m) : CSPEC asserts

that all the particles of a constituent are at a particular musical surface m.

Table 7.6: Atomic specifications for musical surfaces

AtSurface(x,m) : SPROP := λs.∃c.lookup(x, s) = Some(c) ∧m ∈ get_ms(c)
At(m) : CSPEC := λx.AtSurface(x,m)

SurfaceStructure(m) : CSPEC := ∀PartsAt(m)

These extensions to the specification language allow for two additional representa-

tional features to be captured that allow for more sophisticated reasoning with musical

surfaces. Firstly, the type of musical surfaces may have more structure than simply

discrete elements. For example, there may exist a relation on musical surfaces which

captures how entities on different surfaces can be hierarchically related. Given such a

relation < : MS→ MS→ Prop as a parameter, we can construct a specification that

captures when a constituent adheres to the specific relation on musical surfaces, as

follows:

At(m)[∧]SurfaceStructure(m′)[∧][m < m′].

Secondly, musical surfaces may be explicitly associated with specific attribute

types which capture how the surface relates to musical spaces. Given an operation

SAtts : MS→ fset(AN) mapping musical surfaces to finite sets of attribute names, we
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can construct a specification which captures when a constituent realises this interpre-

tation of musical surface, as follows:

At(m)[∧][∀]a.a ∈ SAtts(m)[→]〈a〉(x).

Specifications such as these can be combined to describe sophisticated music infor-

mation structures, distributed across different explicitly defined musical surfaces.

7.5 Representing The Ontological Domain of

Constituents

As discussed in Chapter 4, the notion of ontological domain of musical objects is a useful

tool for sharpening the discourse of music. In this section we propose a representation

of ontological domain of constituents which allows for the generation of specifications

which capture user defined ontological axioms.

We start by introducing the abstract type OD : Set of ontological domains. Elements

of this type o : OD are symbolic labels which can be used to explicitly label constituent

objects. Again, the requisite extension to the constituent object interface follows the

exact same as for extrinsic properties and musical surfaces.

Table 7.7 defines three atomic specifications which capture the description of onto-

logical domain, and follow the exact pattern as for musical surfaces.

Table 7.7: Atomic specifications for ontological domains

InDomain(x, o) : SPROP := λs.∃c.lookup(x, s) = Some(c) ∧ o ∈ get_od(c)
In(o) : CSPEC := λx.InDomain(x, o)

DomainStructure(o) : CSPEC := ∀PartsIn(o)

We can use these language extensions to incorporate specific kinds of constituent

properties. In particular, it may be useful to capture a constraint which asserts that
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hierarchically related constituents inhabit the same domain. This can be captured by

the following specification:

DomainStructure(o)[∧]In(o).

7.6 Representing Associations Between

Constituents

As well as representing multiple hierarchies of discrete constituent entities, we would

also like to be able to annotate these structures with arbitrary connections between

nodes in the hierarchy. Here we describe a simple extension to our framework which

introduces a new kind of information object: the constituent association. A constituent

association is a directed connection between constituents, which can be described by

attributes and intrinsic properties in exactly the same way as constituents themselves.

7.6.1 Association Objects

We introduce the types UAI : Set and AOBJ : Set of universal association identifiers

and association information objects, respectively. Elements l : UAI are symbolic names

which are used to uniquely refer to elements q : AOBJ. These types are the exact

analogue of those for constituents.

Operations

Table 7.8 shows the operations defined on constituent association objects. The con-

structor assoc takes a pair of constituent identifiers and returns an association object

between them. The operations source and target extract the source and target con-

stituent identifiers respectively, and the get and set operations are the analogue of

those for constituent objects from Table 5.1. Like constituent objects, the specification

for association objects is parametric in the types AN and AT, and the function typ.
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Table 7.8: Association object operations

assoc : UCI→ UCI→ AOBJ
source : AOBJ→ UCI
target : AOBJ→ UCI

get : Πa : AN.AOBJ→ option(typ(a))
set : Πa : AN.typ(a)→ AOBJ→ AOBJ

Axioms

Table 7.9 shows the axioms which the operations of Table 7.8 must satisfy. source_assoc

and target_assoc assert that the operations source and target behave as expected with

respect to the constructor assoc. The other three axioms are the analogues of those for

constituent objects from Table 5.2.

Table 7.9: Association object axioms

source_assoc : ∀x y. source(assoc(x, y)) = x

target_assoc : ∀x y. target(assoc(x, y)) = y

get_assoc : ∀x y a. get(a, assoc(x, y)) = None
get_set_same : ∀a a′ v q. a = a′ → get(a, set(a′, v, q)) = Some(v)
get_set_other : ∀a a′ v q. a , a′ → get(a, set(a′, v, q)) = get(a′, q)

7.6.2 Constituent Structures with Associations

An extension to the constituent structure interface (Table 5.3) to include operations for

inserting and retrieving associations would follows the exact pattern as for constituents.

We must also include an operation analogous to the domain operation which returns

the finite set of association identifiers bound in the structure, as well as axioms which

which ensure that constituent and association operations behave together as expected.

With this extended constituent structure interface we can extend our description

language with two additional atomic structure invariants involving associations. Table
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7.10 shows the definitions of these invariants. x
l⇒ y asserts that association l is a

connection between constituents x and y. l a7→ v asserts that the association has a value

v for the attribute named a.

Table 7.10: Atomic structure invariants for associations

x
l⇒ y : SPROP := λs.∃q.lookup(l, s) = Some(q) ∧ source(q) = x ∧ target(q) = y

l
a7→ v : SPROP := λs.∃q.lookup(l, s) = Some(q) ∧ get(a, q) = Some(v)

7.6.3 Association Specifications

Logical specifications for associations can be defined in the same way as for constituents.

ASPEC := UAI→ SPROP is the type of association specifications. As we have already

developed adequate machinery for specifying relations between constituent (§6.3.4),

we need only define an operation which constructs association specifications from con-

stituent relations R : CREL. We define this operation as follows:

Assoc : CREL→ ASPEC := λR l.[∃]x y.x l⇒ y[∧]R(x, y)

Composition of association specifications can be done by pointwise lifting of the

structure invariant connectives, using the subscript A to indicate the type.

7.6.4 Summary

Associations allow us to reify connections or latent relationships that exist between

constituents and attach information to them. This is a highly general idea which has

many practical representational consequences. We briefly mention two here. Firstly,

as with constituents, the representation of associations could be extended to support

other types of information such as extrinsic properties, musical surfaces or ontological

domains. In particular we might want to identify a specific class of association which
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represents a connection between different ontological domains, such as the co-reference

relationship posited in Wiggins (2000). Secondly, the representation of associations as

a distinguished type of information object connecting other objects, could be extended

to higher-order; we could, for example, define a type of secondary association which

connects (primary) associations. This general idea underpins certain meta-theoretical

approaches to musical structure such as Ockelford (2005).

7.7 Representing Structured Objects: Layouts

Our final extension to the framework demonstrates how new logical connectives can be

defined to enable more concise descriptions of structures. Layouts capture the type of

predicates over finite sets constituent identifiers. The principal layout connective is a

conjunction operation which assures that each of the conjuncts holds for disjoint parts

of the set, similar to the separating conjunction from separation logic (Reynolds, 2002).

For example, there exist certain kinds of musical structure which consist of a finite

number of particle elements lying in specific relation to one another. Consider the

definition of dactyl from Harris et al. (1991). A specification for this structure in our

description language might be as follows:

dactyl : CSPEC := ∃Part p1 p2 p3.

[ meets(p1, p2) [∧]
meets(p2, p3) [∧]
AttRel(Duration, >d, p1, p2) [∧]
AttRel(Duration,=d, p2, p3) ] [∧]C
∀Parts p4. [p4 = p1 ∨ p4 = p2 ∨ p4 = p3 ]

This definition uses the attribute name Duration, the relations >d and =d on

typ(Duration), and the constituent relation meets : CREL, defined in §7.2.

Specifications like this do not easily scale, as given n existentially quantified parti-

cles we must universally quantify over an (n + 1)th and assert the disjunction of
(

n
2

)
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equalities. In other words a specification for some hex-chord would need to include 15

equality assertions. This problem occurs when quantification allows for the aliasing of

logical variables which range over the type of identifiers. To avoid this we introduce the

type Layout := fset(UCI)→ SPROP of SPROP-valued predicates over finite sets of con-

stituent identifiers. Table 7.11 defines three layout constructors. Emp asserts that a set

of identifiers is empty. x <: Φ asserts that a set of identifiers contains only one identifier

x which satisfies the specification Φ. L1 ∗L2 is the layout conjunction operation, which

asserts that a set of identifiers u can be split in to two disjoint parts u1 and u2 which

satisfy L1 and L2 respectively. The predicate splits(u1, u2, u) := u1∩u2 = ∅∧u1∪u2 = u

captures the notion of splitting of a finite set. The other logical operations on layouts

can be defined via pointwise lifting, and use the subscript L.

Table 7.11: Layouts constructors

Emp : Layout := λu.[u = ∅]
x <: Φ : Layout := λu.[u = {x}][∧]Φ(x)
L1 ∗ L2 : Layout := λu.[∃]u1 u2.[splits(u1, u2, u)][∧]L1(u1)[∧]L2(u2)

Finally we need an operation which turns a layout into a constituent specification.

For this we define {L} : CSPEC := λx s.∃c.lookup(x, s) = Some(c) ∧ L(particles(c), s)

which asserts that the layout L holds of the particles of a constituent x. We can now

rewrite the specification of dactyl from above in a more concise form using layouts:

dactyl : CSPEC := [∃] p1 p2 p3.

{ p1 <: [>]
∗ p2 <: meets(p1)[∧] AttRel(Duration, >d, p1)
∗ p3 <: meets(p2)[∧] AttRel(Duration,=d, p2) }

144



7.8 Summary and Conclusions

In this section we have outlined six extensions to the constituent structure representa-

tion from Chapter 5 and constituent specification logic from Chapter 6. These exten-

sions were specifically motivated by the requirements identified in §4.2 and demonstrate

how the constituent structure representation and specification logic provide a strong

basis for developing more precise representational features. The features suggested in

this sections are not to be viewed as proposals for a model of musical ontology, but

rather as a demonstration of the flexibility and power of the type-based framework. In

particular, specifications of abstract data types in CIC generalise the algebraic theories

of Ologs (Spivak and Kent, 2012), the dimensions of conceptual spaces (Gärdenfors,

2000), and the data types of many other data types of many other formats such as

XML.

Formally specifying every aspect of the representation in CIC requires a considerable

level of commitment from the user of the framework. It results in a rather gradual ascent

from basic concepts to more sophisticated musical descriptions. However, we argue that

to achieve a state of affairs where computer systems can share and automatically reason

with complex musicological descriptions, a high degree of precision is required from the

formal specifications. The type-based framework presented in this part provides such

a level of precision, as well as a strong logical and computation basis for the design of

music representations to suit a wide variety of applications. In the Part III we present an

implementation of the framework which allows users to leverage the expressive power

and precision of the type-based representation method using mainstream tools and

technologies.
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Part III

An Implementation of the

Framework

146



Summary

In this part, we present an implementation of the type-based framework presented in

Part II, and use it to demonstrate the utility of the constituent structure representation

and specification logic. The implementation consists of three Semantic Web ontologies,

which capture the core structural features of the representation, and three JavaScript

libraries, which implement the core functionality of the framework. The part is di-

vided into three chapters. Chapter 8 describes the Semantic Web ontologies, each of

which captures a different aspect of the representation framework. For each, we give an

overview of the model, describe the core classes and relations, and give an example of

how it is used. Chapter 9 describes the JavaScript libraries. In particular, it describes

how they implement the functionality of the representation framework, including inter-

facing with linked data structured by the ontologies. Chapter 10 provides an illustration

of how the representation framework and implementation support three different mu-

sic analysis tasks, including pattern search and discovery, paradigmatic analysis and

hierarchical set-class analysis. In particular, it describes how the constituent structure

model supports representation of both the inputs and outputs of these analyses. Finally,

we present an demonstrator web application, built using the JavaScript tools, which

performs paradigmatic analysis and visualisation of linked data documents structured

by the ontologies presented in Chapter 8.
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Chapter 8

Semantic Web Ontologies

8.1 Introduction

In this chapter we describe a number OWL ontologies for representing constituent struc-

tures and their specifications on the Semantic Web. The purpose of these ontologies is

to provide linked data formats which capture the fundamental structural components

of the representation in a way which can be used by systems which implement the

framework.

Why Semantic Web?

Our motivation for designing linked data formats for our representation is the desire to

integrate our representation framework with existing methods of music representation

on the semantic web. The ever increasing popularity of the Semantic Web as a platform

for knowledge representation in many research fields means that new representations

will be maximally useful if they can be integrated with this growing body of information.

Chapter Outline

§8.2 describes the Constituent Structure Ontology which provides a linked data format

for the constituent structure representation presented in Chapter 5. §8.3 describes the
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Dependent Type Ontology which provides a linked data format for the specifications

abstract data types, such as those described in §7.2. §8.4 describes the Constituent

Structure Specification Ontology which provides linked data formats for capturing ex-

pressions of the specification logic presented in Chapter 6.

8.2 The Constituent Structure Ontology

In this section we describe the Constituent Structure Ontology (prefix: cso). The

ontology contains OWL classes and relations which capture the constituent structure

representation presented in Chapter 5. The purpose of the ontology is to provide a

linked data format which captures the structural properties of the constituent structure

representation, presented in §5.4, which is compatible with implementations of the

functional model, presented in §5.5.

8.2.1 Core Classes and Relations

The core classes and relations of the ontology are shown in Figure 8.1. The

cso:Constituent class captures the constituent musical objects of the representation.

The identity of musical objects is associated with the resource identifier used to repre-

sent them. Constituents are associated with their particles via the cso:hasPart prop-

erty, with inverse defined as cso:isPartOf. Constituents are associated with attributes

and properties via the cso:hasAttribute and cso:hasProperty object properties, re-

spectively. Attributes are arbitrary resources constructed to reify the connection be-

tween constituents and points in musical spaces, while properties are resources which

represent formal properties of constituents. We define two subclasses of cso:Property:

cso:IntrinsicProperty and cso:ExtrinsicProperty. Intrinsic properties represent

properties of constituents which require checking, such as constituent specifications,

while extrinsic properties are true by definition. An attribute is associated with an

cso:AttributeName and an cso:AttributeValue via the functional object properties
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Figure 8.1: The core classes and relations of the Constituent Structure Ontology. Grey
ovals indicate OWL classes, solid arrow indicate OWL object properties, dotted arrows
indicate the subclass relation, and dotted rectangles represent RDF literals.

cso:attributeName and cso:attributeValue, respectively. Attribute names are re-

sources which explicitly identify the particular aspect of the constituent described by

the attribute. Attribute values are arbitrary resources constructed to represent points

in musical spaces. Both attribute names and values are associated with instances of

cso:AttributeType via the cso:associatedType and ch:attributeType functional

object properties, respectively. Attribute types identify abstract data types which rep-

resent musical spaces. Attribute values can be associated with a literal value via the

rdfs:value property as well as information about the concrete implementation of the

type via the cso:implementation property.

8.2.2 Example

Here, we give an example of how the ontology can be used to represent a specific

piece of musical material. The example is taken from Harris et al. (1991, p. 8)

and uses the first four bars of Webern’s Variations for Piano, Op 27, show in Fig-

ure 8.2. Figure 8.3 shows a linked data description of the same four bars structured
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Figure 8.2: Webern, Op 27, bars 1-4.

{"@context": ":ctx.json"
"@graph:"[

{"@id": ":e00",
"@type":"cso:Constituent",
"cso:hasAttribute": [":e00p", ":e00o", ":e00d"]},

{"@id": ":e01",
"@type":"cso:Constituent",
"cso:hasAttribute":[":e01p", ":e01o", ":e01d"]},

{"@id": ":e02",
"@type":"cso:Constituent",
"cso:hasAttribute":[":e02p", ":e02o", ":e02d"]},

... ,
{"@id": ":e11",
"@type":"cso:Constituent",
"cso:hasAttribute":[":e11p", ":e11o", ":e11d"]},

... ]}

Figure 8.3: The note events of Webern, Op 27, bars 1-4 represented using JSON-LD
and structured using the Constituent Structure Ontology.

using the Constituent Structure Ontology. The concrete syntax used is JSON-LD,

with ‘...’ used to indicate elided material. Each note event is represented as an in-

stance of cso:Constituent and associated with three, arbitrarily named, attributes

via the cso:hasAttribute property. Figure 8.4 shows the pitch attribute, :e00p, of

the first note of the excerpt, :e00. The attribute is linked with a name and value

via the cso:attributeName and cso:attributeValue properties, respectively. The

value is linked with an abstract type via the cso:attributeType property, and the

cso:implementation property is used to indicate the concrete format used to encode

the literal value, in this case :string_pitch. Figure 8.5 shows two examples of higher-
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level structural annotations, again taken from Harris et al. (1991, p. 13), which capture

particular groupings of the basic musical material. The first, :c00, is linked with an in-

stance of cso:ExtrinsicProperty, identifying that the constituent is a ‘subject’ of the

piece. The second, :c08, is linked with an instance of cso:IntrinsicProperty, which

indicates that the grouping is a ‘triple’. Each constituent is linked with its particles

using the cso:hasPart property.

...
{"@id": ":e00p",
"@type": "cso:Attribute",
"cso:attributeName": "an:pitch",
"cso:attributeValue": {

"@type": "cso:AttributeValue",
"rdfs:value": "f4",
"cso:attributeType": "adt:Pitch",
"cso:implementation": "string_pitch" }},

...

Figure 8.4: An example of an attribute; the pitch attribute of the first note of We-
bern, Op 27, represented in JSON-LD and structured using the Constituent Structure
Ontology.

...
{"@id": ":c00",
"@type": "cso:Cosntituent",
"cso:hasProperty": {

"@id": ":subject",
"@type": "cso:ExtrinsicProperty" },

"cso:hasPart": [":e00", ":e01", ... , ":e11"]},
...

{"@id": ":c08",
"@type": "cso:Constituent",
"cso:hasProperty": {

"@id": ":triple",
"@type": "cso:IntrinsicProperty"},

"cso:hasPart": [":e00", ":e01", ":e02"]},
...

Figure 8.5: Two examples of constituents which capture structural groupings repre-
sented in JSON-LD and structured using the Constituent Structure Ontology.
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8.2.3 Extending the ontology in OWL

Simple extensions to the ontology can admit more domain-specific knowledge modelling.

In this section we give examples of this by defining new OWL classes. For these examples

we use the OWL functional syntax1 to write class definitions.

Firstly, the cso:AttributeValue class can be extended to capture classes of at-

tribute values of a particular abstract type. Below we define the class :PitchValue,

where :pitch is a resource indicating the abstract type of pitch from §7.2.

EquivalentClasses(
:PitchValue
ObjectHasValue( cso:attributeType :pitch ))

The cso:Attribute class can be extended to capture attributes whose value is of

a certain type. Below we define the class :PitchAttribute in this way, using the

ObjectSomeValuesFrom class construction.

EquivalentClasses(
:PitchAttribute
ObjectSomeValuesFrom( cso:attributeValue :PitchValue ))

The cso:hasAttribute property can be extended to reflect the greater precision of

these constituent-attribute relations. Below we define the object property :hasPitch

which connects a cso:Constituent with a :PitchAttribute.

SubObjectPropertyOf( :hasPitch cso:hasAttribute )
ObjectPropertyRange( :hasPitch :PitchAttribute )

We can give similar treatment to onset and duration attributes. Now, the

cso:Constituent class can be extended to define subclasses of constituents which have

specific attributes. Below, we define the classes :Event and :Note. :Event classifies

all those constituents that have onsets and durations while :Note classifies constituents

which are events and have pitches.
1https://www.w3.org/TR/owl2-syntax/
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EvivalentClasses(
:Event
ObjectIntersectionOf(

ObjectSomeValuesFrom( :hasOnset :TimeAttribute )
ObjectSomeValuesFrom( :hasDuratation :DurationAttribute )))

EvivalentClasses(
:Note
ObjectIntersectionOf(

:Event
ObjectSomeValuesFrom( :hasPitch :PitchAttribute )))

Finally, these classes can be used to define simple descriptions of higher-level struc-

tures. Below, we define the class of constituents that contain only notes as particles,

called :NoteCollection.

EquivalentClasses(
:NoteCollection
ObjectIntersectionOf(

ObjectHasSomeValuesFrom( cso:hasPart :Note )
ObjectAllValuesFrom( :hasPart :Note )))

These example classes illustrate how the model captured by the Constituent Struc-

ture Ontology is sufficiently general that more specialised representations can be can be

described through extension of the classes within the OWL language. These extensions

can provide greater precision when representing specific types of musical knowledge, as

well as greater support for OWL reasoners. The advantage of having a highly general,

top-level ontology is that domain-specific extensions can be more easily integrated, and

so are more conceptually interoperable. The Constituent Structure Ontology provides

such an upper-level model, as well as the formal strength of the type-based framework.

8.2.4 Discussion

The Constituent Structure ontology provides a general purpose model for representing

multiple-hierarchical musical structures on the Semantic Web and acts as an anchor

point for more domain-specific knowledge representation. In addition, the ontology can

been seen as generalising many approaches to music representation found in existing on-
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tologies. For example, the cso:AttributeValue and cso:AttributeType classes can

be seen as generalisations of the tl:Instant/tl:Interval and tl:Timeline classes

from the Timeline Ontology (Abdallah et al., 2006). This generalisation views time lines

as just a specific kind of ‘type’ or ‘space’ representation, with its inhabitants viewed as

abstract ‘values’ or ‘points’. In addition, the cso:implementation property can be seen

as generalising the notion of namespace from the JAMS specification (Humphrey et al.,

2014); any concrete representation of an attribute value can be explicitly linked to in-

formation about the specific way in which it is encoded. Finally, the cso:Constituent

class can be seen as a generalisation of the event:Event class; events can be seen as a

particular instances of constituents whose attributes include temporal information.

On its own, the ontology affords limited reasoning through the standard OWL rea-

soners. In particular, the axioms of the ontology do not fully constrain the typing

inherent in the functional model of constituent structures given in §5.5. The ontol-

ogy can be extended in OWL to admit more precise descriptions of musical structures.

However, the expressive power of OWL is limited compared to that of the specification

logic described in §6.

8.3 The Dependent Type Ontology

In this section we describe the Dependent Type Ontology (prefix: dto). The ontology

contains classes and relations which capture the abstract syntax of the terms of an

arbitrary pure type system (see §2.2), extended with classes which capture the sorts of

CIC (Bertot and Castéran, 2004), and a number of specific classes which capture par-

ticular inductive definitions as syntactic extensions to the term language. The purpose

of the ontology is to provide a linked data format for representing formal specifications

of abstract data types, such as those presented in §7.2.
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8.3.1 Core Classes and Relations

The core of the ontology is a single top class dto:Term, which captures expressions of the

term language. Subclasses are used to distinguish the various syntactic classes of terms.

For example, dto:Variable, dto:Sort, dto:Lambda, dto:Pi and dto:Application

represent variables, sorts, lambda abstractions, dependent products and function appli-

cations, respectively. Object properties are defined which link instances of a particular

subclass to its sub-terms. For example, the object property dto:lambdaBinds links

an instance of dto:Lambda to an instance of dto:Variable representing the variable

which is bound in the body of the lambda term. In this way, the ontology captures

terms of dependent type theory as abstract syntax trees. In addition to the basic terms

of dependent theory, the ontology includes additional subclasses of dto:Term which

capture additional types such as dependent sums, simple types, such as non-dependent

functions, binary products and coproducts, and logical formula. Each of these syntactic

extensions can be interpreted as an inductive definition in CIC. Finally, the ontology in-

cludes a small vocabulary of terms for defining the signatures of abstract data types. For

this vocabulary we use a distinguished prefix, sig. It allows the modular organisation

of specification components, and includes the classes sig:AtomicType, sig:Operation,

sig:Predicate and sig:Axiom for representing abstract atomic types, operations,

predicates and axioms, respectively. These components can be associated with instances

of the class sig:Signature via the properties definesType, sig:definesOperation,

sig:definesPredicate and sig:definesAxiom, respectively. Components of specifi-

cations can be associated with a type specification via the property sig:hasType. The

types of specification components are instances the class dto:Term.

8.3.2 Example

Figure 8.6 shows an example of how the ontology can be used to capture specifica-

tions of abstract data types. The example is written in JSON-LD and encodes the
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abstract data type specification for pitch, described in §7.2. :PitchSig is an instance

of sig:Signature, and is associated with its components via the relevant properties.

Figure 8.7 shows the :pitch_shift component of this specification; an encoding of

the pitch_shift operation defined in Table 7.1. It is an instance of sig:Operation and

is linked to its type specification via the sig:hasType property. The type is a linked

data encoding of the term “Interval→ Pitch→ Pitch”. It is an instance of dto:Arrow,

a subclass of dto:Term, which captures the syntactic class of non-dependent functions

type expressions. The properties dto:domain and dto:codomain associate instances of

dto:Arrow with sub-expressions corresponding to their domain and codomain, respec-

tively.

{"@id": ":PitchSig",
"@type": "sig:Signature",
"sig:definesType": [

":Pitch",
":Interval" ],

"sig:definesOperation": [
"pitch_eqb",
"interval_eqb",
...
":pitch_diff",
":pitch_shift" ],

"sig:definesPredicate": [
"pitch_eq",
"interval_eq",
"pitch_lte",
"interval_lte" ],

"sig:definesAxiom": [
":pitch_total_order",
":interval_total_order",
...
":shift_associativity",
":shift_identity",
... ]}

Figure 8.6: A linked data description of the abstract data type specification for pitch,
described in §7.2, represented using JSON-LD and structured using the Dependent
Type Ontology.
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{"@id": ":pitch_shift",
"@type": "sig:Operation",
"sig:hasType": {

"@type": "dto:Arrow",
"dto:domain": ":PitchInterval",
"dto:codomain": {

"@type": "dto:Arrow",
"dto:domain": ":Pitch",
"dto:codomain": "Pitch" }}}

Figure 8.7: A linked data description of the specification for the pitch_shift operation,
described in §7.2, represented using JSON-LD and structured using the Dependent
Type Ontology.

8.3.3 Discussion

The Dependent Type Ontology can be used to augment the Constituent Structure On-

tology, presented in §8.2, by linking cso:AttributeNames and cso:AttributeValues

with the appropriate type information. Being able to represent algebraic specifications

of data types on the semantic web is an important step in enabling the integration of

web-based knowledge representation and programming languages. Music is one domain

in which representations must support both reasoning applications and user-defined al-

gorithms for specific analysis methods.

It is important to clarify that the axioms of the Dependent Type Ontology do not

capture or constrain the well-typedness or convertability of terms. OWL reasoners

may be used to detect syntactic errors in the linked data descriptions of expressions.

However, the user must rely on additional external tools for type checking. Such a tool

is presented in the following chapter.

A core advantage of the ontology, is that it allows for the modular extension of the

term language via specific subclasses of dto:Term. Rather than encode the syntax of

general inductive definitions, new type and term expressions are introduced as syntactic

extensions to the language. It is important to notice, however, that the soundness of

these extensions is not controlled by the axioms of the ontology. It is the responsibility
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of the user to ensure that any syntactic extensions defined as new subclasses of dto:Term

constitute correct inductive definitions in CIC.

The approach of reifying logical formulae in Semantic Web languages is not entirely

novel. For example, McDermott and Dou (2002) propose a system for embedding

certain FOL formulae in RDF. In addition, the N3-Tr method (Raimond, 2008, see §4.4)

of repressing music processing algorithms, embeds formulae of a concurrent transaction

logic in RDF. However, no previous attempt has utilised the full expressive power and

formal rigour of dependent type theory.

8.4 The Constituent Structure Specification

Ontology

In this section we describe the Constituent Structure Specification Ontology (prefixes:

csso, sprop, cspec and crel). The ontology contains classes and relations which cap-

ture the abstract syntax of the specification logic described in Chapter 6. The purpose

of the ontology is to provide a linked data format for capturing logical specifications

which can be linked to representations of constituent structures.

8.4.1 Core Classes and Relations

The core of the ontology are three disjoint subclasses of dto:Term:

csso:StructureInvariant csso:ConstituentSpecification and

csso:ConstituentRelation, which capture the syntactic classes of specifica-

tions of type SPROP, CSPEC and CREL, respectively. As in the Dependent Type

Ontology, subclasses are used to capture specific syntactic classes of specifications, and

specific object properties are used to link an expression to its sub-expressions. For

example, the class sprop:Conjunction is the syntactic class of structure invariants

of the form φ[∧]sψ (see Table 6.2). The object properties sprop:leftConjunct and

sprop:rightConjunct are used to connect these conjunction expressions with their
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conjuncts. In this way, the Constituent Structure Specification Ontology can be seen

as a syntactic extension to the language captured by the Dependent Type Ontology,

presented in §8.3, in accordance with the definitions given in Chapter 6.

8.4.2 Example

Figure 8.8 shows an example of how the ontology can be used to build linked data

descriptions of constituent specifications. The example shows the Sequence constituent

specification, defined in §7.2, represented in JSON-LD. :Sequence is an instance of the

class cspec:Conjunction, and is associated with its left and right conjuncts via the

properties cspec:leftConjunct and cspec:rightConjunct, respectively. Each nested

expression is annotated with its syntactic class and linked with its sub-expressions via

properties from the ontology. In addition, the specification makes reference to resources

which represent the constituent specification :TemporalCollection, the equality rela-

tion on constituent identifiers :uci_eq, and the temporal constituent relation :starts,

defined in §7.2.

8.4.3 Discussion

The Constituent Structure Specification Ontology captures the syntax of constituent

structure specifications as defined in Chapter 6 by extending the Dependent Type

Ontology. This allows instances of cso:Constituent to be linked with instances of

csso:ConstituentSpecification via the cso:hasProperty property. In this way,

the class csso:ConstituentSpecification is a subclass of cso:IntrinsicProperty.

However, the axioms of the ontologies do capture whether such a statement is prov-

able in the underlying type theory. This is a job for external tools which perform

proof automation and checking. As with the Dependent Type Ontology, the axioms of

the Constituent Structure Specification Ontology do not capture the well-typedness of

expressions, but do make possible the detection of syntactic errors. Syntactic expres-

sions represented using the ontology can become quite large, by comparison to typical
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{"@id": ":Sequence",
"@type": "cspec:Conjunction",
"cspec:leftConjunct": ":TemporalCollection",
"cspec:rightConjunct": {

"@type": "cspec:ForallParts",
"cspec:fpBinds": ":p1",
"cspec:fpBody": {

"@type": "cspec:Not",
"cspec:notBody": {

"@type": "cspec:ExistsPart",
"cspec:epBinds": ":p2",
"cspec:epBody": {

"@type": "cspec:Conjunction",
"cspec:leftConjunct": {

"@type": "cspec:LiftProp",
"cspec:liftProp": {

"@type:": "prop:Not",
"prop:notBody": {

"@type": "dto:Application",
"dto:appHead": {

"@type": "dto:Application",
"dto:appHead": ":uci_eq",
"dto:appParameter": ":p1" },

"dto:appParameter": ":p2" }}},
"cspec:rightConjunct": {

"@type": "cspec:LiftSprop",
"cspec:liftSprop": {

"@type": "dto:Application",
"dto:appHead": {

"@type": "dto:Application",
"dto:appHead": ":starts",
"dto:appParameter": ":p1" },

"dto:appParameter": ":p2" }}}}}}}

Figure 8.8: The Sequence constituent specification, defined in §7.2, represented in
JSON-LD and structured using the Constituent Structure Specification Ontology.

OWL class axioms. However, this is mitigated by the ability to incrementally construct

specifications by reusing identifiers which represent existing descriptions.

8.5 Summary and Conclusions

The three ontologies described in this chapter together form the basis for a full Seman-

tic Web realisation of the type-based framework, presented in Part II. The Constituent
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Structure Ontology captures the core structure of the representation, while the De-

pendent Type and Constituent Structure Specification ontologies can be used to link

constituents and attributes with rich type information. However, the ontologies do

not capture the well-typedness of such descriptions. In order for the ontologies to be

incorporated into an implementation of the framework, it is necessary to develop com-

plementary tools which implement the functionality of the representation and perform

the necessary type checking and proof automation. In the next chapter we describe

work that has been done towards providing such tool support.
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Chapter 9

JavaScript Tools

9.1 Introduction

In this chapter we describe a number of JavaScript modules which have been devel-

oped to support the use of the constituent structure representation and specification

language defined in Part II. The purpose of the tools is two-fold. Firstly, they are

intended to implement the functionality of the representation framework, and provide

users with a programming interface for working with linked data structured by the

ontologies presented in the previous chapter. Secondly, they are intended as a basis for

the development of formally specified, interoperable software tools for computer music

research.

Why JavaScript?

The tools are developed in JavaScript using Node.js. The choice of JavaScript as an

implementation language was made for two reasons. Firstly, JavaScript is a mainstream

language which is used by the majority of web developers. Its widespread use for

building web applications makes it an obvious choice for the development of web-based

tools for digital musicology which process linked data. Secondly, it is a highly flexible

language. Although it apparently lacks many of the features necessary for implementing
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type-based specifications (specifically, static type checking), it has a highly flexible

object mechanism, as well as higher-order functions. This flexibility makes it possible

to incorporate typically functional features by designing data structures which contain

run-time type information.

Chapter Outline

§9.2 describes a JavaScript implementation of the constituent structure representation,

presented in Chapter 5. §9.3 describes JavaScript tools which enable the user to build

and use specifications of abstract data types in conjunction with constituent structures.

§9.4 describes an implementation of the specification logic, presented in Chapter 6,

which allows specifications to be constructed and used to check the intrinsic properties

of constituents.

9.2 An Implementation of the Constituent

Structure Model

In this section we describe a JavaScript module, cs.js, which implements the con-

stituent structure representation, presented in Chapter 5. The library includes and

in-memory implementation of constituent structures as JavaScript objects, whose struc-

ture is controlled by the prototype mechanism.

The library defines a JavaScript class for each of the abstract types of the functional

model, given in §5.5. The construction and manipulation of constituent objects and

structures is controlled by methods which perform run-time type checking. Constituent

identifiers are implemented using strings. The library includes both a functional and a

imperative interface for manipulating constituent structures. That is, object’s include

methods which mutate the original object, as well as methods which return a new deep

copy of the object, with the requisite modification. The library also includes operations

for interfacing with linked data documents structured by the Constituent Structure
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Ontology, presented in §8.2. It allows for JSON-LD documents to be imported and

used to construct internal representations of constituent structures. The operation

performs checking of the correctness of linked data descriptions, including the typing

of attributes. Finally, JavaScript objects representing constituents and structures can

be serialised to JSON-LD.

9.3 Tools Support for Abstract Data Types

In this section we describe a JavaScript module, dt.js, which implements the term

language captured by the Dependent Type Ontology, presented in §8.3. The implemen-

tation includes a JavaScript class for each class of the ontology with methods which

control the creation and manipulation of term objects. The structure of term objects

follows the exact structure of the ontology. Term objects include methods which per-

form substitution, beta-reduction and convertibility checks on terms. In addition, we

implement a system of type contexts, which are run-time structures containing lists of

type declarations. These are used to type-check term objects at run-time, by passing a

context object to the type checking method.

Specifications of abstract data types can be constructed as special instances of con-

text objects which include a declaration for each component of the specification. These

objects can be imported by the cs.js module, extending the constituent structure in-

terface with abstract operations for manipulating constituent attribute data. Concrete

implementations of these abstract interfaces, in the form of objects containing native

JavaScript functions, can be ‘plugged-in’ to the abstract interface. This produces spe-

cial term objects which includes a ‘type-safe’ JavaScript function. Applications of these

terms to attribute values type check if the attribute value’s abstract type and implemen-

tation information match. Performing beta-reduction on these term objects produces

attribute values whose literal value is the result of applying the native JavaScript func-

tion to the literal values of the arguments. It is important to note, that currently the

implementation is not able to verify whether a concrete implementation of an abstract
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data type satisfies the axioms of the specification; this is the responsibility of the im-

plementer. Finally, the module includes operations for interfacing with linked data,

allowing JSON-LD documents to be imported and generated from term objects.

A mechanism of dynamic dispatch is implemented, whereby attribute values are

labelled with the name of a JavaScript module which contains a concrete implemen-

tation. The beta-reduction algorithms reads this information, automatically requires

the module and locates the appropriate concrete operation, applying it to the literal

arguments.

9.4 Tool Support for Constituent Specifications

In this section we describe a JavaScript module, css.js, which implements the specifi-

cation language, defined in Chapter 6. The library enables users to construct structure

invariants, constituent specifications, and constituent relations, and use them to check

properties of constituent structures.

Expression of the specification language are implemented as JavaScript objects.

The methodology follows exactly that of the dt.js module, with the structure of in-

memory specification objects corresponding exactly with the structure of the ontology.

Type checking is performed in exactly the same way. In addition, a partial decision

procedure has been implemented which takes a constituent structure object and a struc-

ture invariant specification, and checks whether the structure satisfies the invariant.

This procedure is defined recursively according to the structure of specification expres-

sions. Atomic propositions are decided using built-in boolean operations or user-defined

boolean operations from implementations of abstract data type specifications. The pro-

cedure works for a subset of specification expressions, described in Chapter 6, which

does not include quantification over arbitrary abstract types.
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9.5 Summary and Conclusions

In this chapter we have briefly described three JavaScript modules which implement the

key aspects of the representation framework presented in Part II, and provide tool sup-

port for working with linked data documents structured by the ontologies presented in

Chapter 8. Their purpose is to aid in the development of formally specified, interoper-

able software tools for computational musicology. The core contribution of this chapter

is to demonstrate that, despite the apparent complexity of the type-based specification

and its detachment from practical software tools, it is possible to implement its the

functionality in a way which hides the complexity of the underlying theory from the

user. In doing so the user is free to focus on data modelling and application development

for his or her intended problem.
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Chapter 10

Demonstration Analysis

Applications

10.1 Introduction

In this chapter we describe how our representation framework and implementation can

be used for the development of software tools for digital musicology. The purpose

of this chapter is to demonstrate the utility of the proposed representation and the

applicability of type-based methods of specification.

We examine three analysis tasks: pattern search and discovery, paradigmatic anal-

ysis and hierarchical set-class analysis. For each of these tasks we show how our frame-

work supports representation of the input data and the output of the analysis. We

focus on abstract, simplified examples of data for clarity. In addition, we characterise

the stages of the analysis algorithms in terms high-level operations on abstract types.

For the purposes of this thesis, we do not give formal definitions and/or specifications

for these abstract types and operations. To do so would require extending the spec-

ification presented in §5.5 to capture the behaviour of constituent structures under

certain mapping and folding operations. This is left for future work and discussed in

§12.1. The implementations of the analysis algorithms instead manipulate JavaScript
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objects (representing constituent structures) using implicit knowledge about the way

those objects are structured and the abstract data interfaces. Focus is concentrated on

representation and specification of the inputs and outputs of the analysis, which are

subject to type-checking as described in Chapter 9.

10.2 Pattern Search and Discovery

An important part of structural analysis of music is the identification of repeated pat-

terns in low-level musical data. The SIA family of algorithms (Meredith et al., 2002)

were developed to do just that. In this section we describe how our representation

supports these analysis methods.

10.2.1 Representing the Input

The SIA algorithm takes as input a multi-dimensional dataset. This dataset is rep-

resented as a constituent whose particles represent the points of the data set. The

coordinates of the points are defined via attributes. A k-dimensional dataset of size n

is represented as a constituent structure s as follows:

s : STRUC := [ dataset 7→ ({p1, ... , pn}, {}),
p1 7→ ({}, {a1 := v11, ... , ak := v1k}),

...

pn 7→ ({}, {a1 := vn1, ... , ak := vnk}) ],

where the notation (ps, {a1 := v1, ... , an := vn}) is a syntactic short-

hand for the functional expression set(an, vn, ( ... set(a1, v1, delimit(ps))) ... ), and

[x1 7→ c1, ... , xn 7→ cn] is a syntactic shorthand for the functional expression

insert(x1, c1, (...insert(xn, cn, empty))...). We also define a constituent specification which

captures the structure of such multidimensional datasets as follows:
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SIA_Dataset : CSPEC := ∀Parts(〈a1〉[∧]...[∧]〈ak〉)

In addition, we require that the type of each attribute dimension typ(ai)1<=i<=k has

an ordered interval structure. Typically the dimensions of the dataset will include pitch

and onset. The abstract data type specifications for pitch and time given in §7.2 provide

adequate functionality to perform this analysis, as they include ordering relations on

points and intervals and functions for calculating the intervals between pairs of points.

Figure 10.1 shows the k-dimensional dataset constituent structure encoded in JSON-

LD using the Constituent Structure Ontology. The dataset constituent is associated

with the intrinsic property :SIA_Dataset to indicate its suitability for application of

the SIA algorithm. Figure 10.2 shows this specification encoded in JSON-LD using the

Constituent Structure Specification Ontology. The JavaScript tools are used to type

check the dataset representation, as well as check that that is satisfies the specification

indicated by its intrinsic property.

{"@context": ":ctx.json",
"@id": ":dataset",
"@type": ":Constituent",
"cso:intrinsicProperty": ":SIA_Dataset",
"cso:hasPart": [

{"@id": ":p1",
"@type":"cso:Constituent",
"cso:hasAttribute": [":p1_a1", ... , ":p1_ak"]},
...
{"@id": ":pn",
"@type":"cso:Constituent",
"cso:hasAttribute":[":pn_a1", ... , ":pn_ak"]}]}

Figure 10.1: A k-dimensional dataset of size n, represented in JSON-LD and structured
using the Constituent Structure Ontology.
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{"@id": ":SIA_Dataset",
"@type": "cspec:ForallParts",
"cspec:fpBody": {

"@type": "cspec:Conjunction",
"cspec:leftConjunct": {

"@type": "cspec:hasAttribute",
"cspec:attribute": ":a1"},

"cspec:rightConjunct": {
"@type": "cspec:Conjunction",

...

"cspec:rightConjunct": {
"@type": "cspec:hasAttribute",
"cspec:attribute": ":ak"} ... }}}

Figure 10.2: The SIA input dataset specification represented in JSON-LD and struc-
tured using the Constituent Structure Specification Ontology.

10.2.2 The Algorithm

In this section we describe the steps of the SIA algorithm and characterise the operations

abstractly as functional operations on abstract types.

1. The data points are sorted. This operation takes as input the dataset constituent

structure and an ordering relation on the points, in the form of a constituent

relation. This relation is defined in terms of the ordering and equality relations

on the abstract types of the values. In the case of pitch and onset dimensions,

this relation is defined as

λx y.∃tx px ty py.x
Onset7→ tx[∧]x Pitch7→ px[∧]

y
Onset7→ ty[∧]y Pitch7→ py[∧]

[tx <t ty ∨ (tx =t ty ∧ px 6p py)]

using the ordering and equality relations <t, =t and 6p. The sorting operation

produces an ordered list of constituent identifiers.
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2. The vector table is computed. Translation vectors between points of the data

set are represented as tuples of their respective interval types. For example,

vectors between points in pitch and time would be of the product type Vector :=

Interval × TimeInterval. This stage of the algorithm takes as input the ordered

list of constituent identifiers and returns a vector table. At the abstract level, a

vector table is merely a finite map from pairs of identifiers to vectors.

3. The maximal translatable pattern (MTP) is computed for each vector. This stage

of the analysis involves mapping over the vector table and grouping together

constituent identifiers which are translatable by the same vector. This produces a

finite map from vectors to finite sets of identifiers. The set of identifiers associated

with each vector is an MTP.

SIATEC in addition finds all occurrences of each MTP. Additional heuristics such

as compactness and coverage can be used to isolate only the interesting or significant

patterns, however we do not include these aspects here for simplicity.

10.2.3 Representing the Output

We now describe how the results of the SIA analysis algorithm may be represented

using constituent structures. MTPs are represented as constituents whose particles are

the set of identifiers associated to a particular vector. In addition, we attribute to each

MTP, the specific translation vector from which it arises. Each MTP constituent is

annotated with an extrinsic property indicating that it is a discovered pattern. In the

case of SIATEC we represent all occurrences of a particular pattern with a constituent.

Finally we group together all the pattern classes in a single constituent representing the

overall output of the analysis procedure. Figure 10.3 shows an example of the output

of the method represented in JSON-LD using the Constituent Structure Ontology.

:mtp1 is an MTP consisting of two points, :p1 and :p2, which is translatable by the

abstract value :vector1, :pattern1 is a constituent representing the pattern class
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of all occurrences of the MTP :mtp1, and :results groups together all such pattern

classes.

...
{"@id": ":mtp1",
"@type": "cso:Constituent",
"cso:extrinsicProperty": ":MTP",
"cso:hasAttribute": {

"cso:attributeName": ":SIATranslationVector",
"cso:attributeValue": ":vector1"},

"cso:hasPart": [":p1", ":p2" ]}
...
{"@id": ":pattern1",
"@type": "cso:Constituent",
"cso:extrinsicProperty": ":PatternClass",
"cso:hasPart": [":mtp1", "mpt1_1"]}

...
{"@id": ":results",
"@type": "cso:Constituent",
"cso:hasPart": ["pattern1", "pattern2"]}

...

Figure 10.3: An example MTP computed by SIA, represented in JSON-LD and struc-
tured using the Constituent Structure Ontology.

Associations can be used to annotate these output hierarchies. For example, trans-

lations between occurrences of patterns may be annotated with associations indicating

the vector which relates them. In addition, an analyst may wish to annotate the work-

flow from input to output, in the manner of Raimond (2008), by associating with the

dataset constituent the set of pattern classes which were computed from it. The use of

associations for such annotations is described in §10.3.

10.3 Paradigmatic Analysis

An important aspect of music analysis is similarity between structural elements of

a piece of music. The SIA method of discovering patterns, described in §10.2, re-

gards translation as a primitive form of similarity between points in a multidimensional

dataset. In this section we describe how more general notions of similarity can be cap-
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tured as constituent relations in the specification logic, and how similarity annotations

can be represented in constituent structures using associations. Specifically, we examine

the paradigmatic analysis algorithm of Ruwet (1972) adapted from Smaill et al. (1993).

10.3.1 Representing the Input

This analysis procedure takes as input a monophonic line of musical notes. We define

a specification for this input as follows:

SIM_Dataset : CSPEC := Stream[∧]∀Parts(〈Pitch〉)

This specification asserts that a constituent is a stream, i.e. has no parts which overlap

in time, and all of its parts have a pitch attribute. In addition, the analysis procedure

takes a number of similarity relations which are used to determine the important struc-

ture within the piece. The four similarity relations considered by Smaill et al. (1993)

can be formalised in the specification logic as constituent relations as follows:

Identity :=PartRel(NoteRepeat)
LongIdentity :=λx y.[∃]p1 p2 ps1 ps2.

MString(p1 :: ps1, x)[∧]MString(p2 :: ps2, y)[∧]
AttRel(Pitch,=p, p1, p2)[∧]PairWise(NoteRepeat, ps1, ps2)

Transpose :=λx y.[∃]i.PartRel(PInt(i), x, y)
LooseTranspose :=λx y.[∃]p1 p2 ps1 ps2.

MString(p1 :: ps1, x)[∧]MString(p2 :: ps2, y)[∧]
[∃]i.PInt(i, x, y)[∧]PairWise(PInt(i), ps1, ps2)

Identity identifies an exact repeat of a phrase. The constituent relation NoteRepeat

captures when one note is a repeat of another, i.e. has equal pitch and duration at-

tributes. LongIdentity identifies an exact repeat where the first note of the phrase is

longer. The specification MString(l) captures when a constituent’s particles form a

stream of notes represented by the list of identifiers l. Transpose identifies a transposi-
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tion of the original phrase by a fixed pitched interval i. The constituent relation PInt(i)

captures when the pitch interval between two notes is i. LooseTranspose identifies a

transposition by a fixed pitch interval, where the durations of the initial note might be

different. The precise details of these relation specifications is unimportant, however

we aim to emphasise that the specification logic is sufficiently expressive to formally

capture the requisite relations. The dataset, its logical specification and the similarity

relations are represented using the ontologies as was done for the SIA implementation

in §10.2.

10.3.2 The Algorithm

The basic algorithm is as follows:

1. The piece is scanned for significant phrases. This is achieved by applying a mod-

ified version of the SIA algorithm which selects only translation vectors in which

all but the time interval component is zero. This stage of the analysis takes as in-

put the constituent structure dataset and produces an new constituent structure

which includes constituents for each of the MTPs.

2. The piece is then rescanned for phrases which are similar to each of the MTPs

using the similarity relations. This involves generating candidate constituents

and checking whether the particular constituent relation holds between them.

This stage of the analysis takes as input the set of MTPs and produces a new

constituent structure which includes constituents which represent each similar

phrase.

10.3.3 Representing The Output

The output of the algorithm is a set of constituents which are related to one another

by the similarity relations. The representation of this hierarchical structure is done in

the same way as described in §10.2. Figure 10.4 shows an example of the output of the
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analysis encoded in JSON-LD and structured using the Constituent Structure Ontology.

:phrase1 is a constituent representing the first occurrence of a musical phrase. It is

given the extrinsic property :motif to indicate it was identified as such by the analysis

procedure. :phrase1_repeat1 is a constituent representing a repeat of the phrase.

It is given the intrinsic property Identity(:phrase1) : CSPEC to indicate the motif and

similarity relation with which it is deemed structurally relevant. :sim1 is an association

which explicitly represents the analytic connection between the constituents. Here we

use a simple Semantic Web vocabulary for representing constituent associations. It

uses the namespace prefix aso and includes the class aso:Association of associations,

the properties aso:source and aso:target for relating associations with their source

and target constituents, respectively, and the property aso:intrinsicProperty for

linking associations with association specifications. In this case, the intrinsic property

of the association is the association specification Assoc(Identity) : ASPEC. :wf1 is an

association linking the input dataset and the results of the analysis. It is annotated

with an extrinsic property identifying it as a similarity analysis connection.

10.4 Hierarchical Set-Class Analysis

In this section we examine the hierarchical set-class analysis method of Martorell (2015).

Pitch set classes are a way of abstractly describing the harmonic content of musical

structures. The output of this analysis method is different in nature to that of the

previous analysis examples in that it generates a new kind of analytic object: a segment.

We describe how constituent structures can be usefully employed to represent such

objects in a uniform way. In addition, the analysis involves new kinds of data values,

specifically pitch classes and pitch set classes. A such, it serves as a good example

for demonstrating how the type-based framework accommodates varied representations

through the introduction of new abstract data types.

176



...
{"@id": ":phrase1",
"@type": "cso:Constituent",
"cso:extrinsicProperty": ":motif",
"cso:hasPart": [ ... ]},

...
{"@id": ":phrase1_repeat1",
"@type": "cso:Constituent",
"cso:hasPart": [ ... ],
"cso:extrinsicProperty": ":motif",
"cso:intrinsicProperty": {

"@type": "dto:Application",
"dto:appHead": ":Identity",
"dto:appParameter": ":phrase1"}},

...
{"@id": ":sim1",
"@type": "aso:Association",
"aso:source": ":phrase1",
"aso:target": ":phrase1_repeat1",
"aso:intrinsicProperty": {

"@type": "aspec:Assoc",
"aspec:crel": ":Identity"}}

...
{"@id": ":wf1",
"@type": "aso:Association",
"aso:source": ":sim_dataset",
"aso:target": ":sim_results",
"aso:extrinsicPropery": ":sim_analysis"}

...

Figure 10.4: Example output of the paradigmatic analysis procedure represented in
JSON-LD and structured using the Constituent Structure Ontology.

10.4.1 Representing the Input

The analysis takes as input an arbitrarily complex musical surface of notes. This is

represented as a constituent structure as in §10.2, where the attributes must include

Pitch, Onset and Duration. We define a constituent specification for this class of inputs

as follows:

SC_Dataset : CSPEC := ∀Parts(Note).
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In addition, we must have available to us, data type specifications for pitch class,

interval class, pitch class set and set class. These types are defined by extending the

abstract data type specification for pitch from §7.2 with additional types and operations.

The necessary operations include pitch and interval constants octave and semitone, a

mapping from pitches to pitch classes, and a mapping from pitch class sets to set classes.

The details of the abstract data type specifications are left for future work.

10.4.2 The Algorithm

The basic analysis method is as follows:

1. The musical input is systematically segmented. This involves creating a new seg-

ment for every possible pair of time points corresponding to either the beginning

or end of a note. This method exhausts all segmentation possibilities.

2. The class-scape (Martorell, 2015, p. 5) is computed by assigning a set class to

each segment. This is done by first computing the pitch class set of the segment;

the pitch class material of a segment is defined as the set of pitch classes asso-

ciated with notes which overlap the segment. The set class of a pitch class set

is calculated as the cardinality-ordinal number of Forte (1973). The class scape

is the collection of segments of the piece indexed by their onset, duration and

set-class.

3. Subsequent analysis of the class-scape representation involves filtering or other-

wise reducing the information for the purposes of visualisation, or using set-class

analysis methods such as similarity measures (for example, Lewin (1979)) to view

segments in terms of their similarity to some other judiciously selected set class.

10.4.3 Representing the Output

In this section we describe three possible methods of using constituent structures to

represent the class-scape information. The specific method used will depend on the
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analytic requirements of the user of the information. A thorough examination of these

requirements is beyond the scope of this thesis. Instead we aim to emphasise that

the constituent structure representation is sufficiently general and flexible so as to ac-

commodate multiple perspectives on the same data simultaneously and in a uniform

way. The hierarchical aspects of the proposed representations are general to any tem-

poral segment based analysis of music, although we use the set class analysis context

to consider the utility of each representation.

The simplest way of representing class scape information with constituent structures

is to assign an elementary constituent to each segment, attributed with onset, duration

and set-class values. This essentially amounts to a flat hierarchical structure. Whist

this may be the most computationally efficient for certain processing tasks, in the case of

set class analysis, it does not explicitly represent the hierarchical relationships between

set class material required for harmonic analysis (Martorell, 2015).

One method for capturing the hierarchical relationships between segments is to

generate a constituent structure with a constituent for every segment, whose particles

include every segment which is temporally included within it. This provides the analyst

with explicit representation of the containment ordering between segments of a piece.

However, this hierarchical structure implicitly contains a high degree of redundancy, as

the particles of any given segment constituent are themselves hierarchically related.

A second method for capturing hierarchy between segments mitigates this redun-

dancy. It involves constructing a stratified hierarchy, whereby each segment is indexed

by the number of atomic segments that it spans. Atomic segments are defined by ad-

jacent time points. Given a musical surface with n significant time points, there are

n− 1 atomic (1-)segments, n− 2 2-segments, and so on up to the entire piece, a single

(n− 1)-segment. The stratified hierarchy therefore consist of constituents representing

i-segments whose particles are the two (i− 1)-segments which are included in it. This

representation explicitly captures the fine-grained detail of the hierarchical relationships

between set classes in a uniform structure. Figure 10.5 shows a stratified hierarchy rep-

179



resentation of a class-scape with ten segments (four atomic segments). :s1 and :s2 are

atomic segments with no particles. :s5 is the 2-segment which contains both :s1 and

:s2. :s9 is the 3 segment which contains the 2-segments :s6 and :s7, and :s10 is the

4-segment spanning the entire piece and contains the 3-segments :s8 and :s9. Each

segment is annotated with an extrinsic property indicating its level of the hierarchy and

given attributes representing its onset, duration and set class values.

...
{"@id": ":s1",
"@type": "cso:Constituent",
"cso:extrinsicProperty": ":1_segment",
"cso:hasAttribute": [":s1_o", "s1_d", "s1_sc"]},

{"@id": ":s2",
"@type": "cso:Constituent",
"cso:extrinsicProperty": ":1_segment",
"cso:hasAttribute": [":s2_o", "s2_d", "s2_sc"]},

...
{"@id": "s5",
"@type": "cso:Constituent",
"cso:extrinisicProperty": ":2_segement",
"cso:hasAttribute": [":s5_o", "s5_d", "s5_sc"],
"cso:hasPart": [":s1", "s2"]},

...
{"@id": ":s9",
"@type": "cso:Constituent",
"cso:extrinisicProperty": "3_segment",
"cso:hasAttribute": [":s9_o", "s9_d", "s9_sc"]},
"cso:hasPart": [":s6", ":s7"]},

{"@id": "s10",
"@type": "cso:Constituent",
"cso:extrinisicProperty": "4_segment",
"cso:hasAttribute": [":s10_o", "s10_d", "s10_sc"]},
"cso:hasPart": [":s8", ":s9"]},

...

Figure 10.5: A stratified hierarchy representation of class-scape information, encoded
in JSON-LD and structured using the Constituent Structure Ontology.

The choice of constituent structure representation for complex hierarchies is left to

the user. The set class example might be best represented as a stratified hierarchy of

segments. However, a different kind of segment analysis, such as key estimation or audio

feature analysis, might be best served by a different structure. The relation between
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analytic requirements and structural representation has not been addressed in this

thesis. However, we again emphasis the key aspect of our approach: the accommodation

of multiple perspectives without prescribing the kinds of hierarchy available.

10.5 Demonstrator Application

In this section we present a demonstrator application which performs simple analysis

and visualisation of linked data documents structured by the constituent structure

ontology (§8.2). The application is implemented as a Node.js web application using

the JavaScript modules defined in Chapter 9. It implements the paradigmatic analysis

algorithm described in §10.3.

10.5.1 Implementation

The application is implemented JavaScript using the modules described in Chapter

9. The analysis algorithm is a simplification of the method described in §10.3. The

simplification involves explicitly passing, as a parameter to the procedure, a specific

motif to which similar motifs will be found. The algorithm takes as input a constituent

structure and two constituent identifiers. The first identifier represents the constituent

whose particles are the musical material to be analysed. The second identifier identifies

a constituent which represents a specific motif of interest. It begins by checking that

both identifiers represent constituents of the structure and that they both represent

monophonic lines. The algorithm then extracts from the structure, ordered collections

of objects containing identifiers and attributes. The ordering is performed by compari-

son of the onset, pitch and duration attributes, respectively, of the constituents. This

intermediate representation is used by the algorithm for efficient scanning of the ma-

terial. The algorithm then uses the four similarity relations from §10.3 to find similar

motifs. It iterates the second particle set over the first, generating temporary candidate

constituents and checking whether each relation holds between them. If it does, a new
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constituent identifier is minted and used to insert an new constituent which delimits

that particle subset. This constituent is then given a label which describes its structural

relevance. Once all the relations have been checked, the new constituents are grouped

into a further constituent labelled as the analysis results.

10.5.2 Analysis of Syrinx

The implementation of the algorithm is used in a simple web application which reads a

linked data document from a local server, performs the analysis and displays the results

using a simple visualisation tool. Figure 10.6 shows a screen shot from the application

in which the analysis has been applied to an encoding of Debussy’s Syrinx. The left

hand panel of the window displays a visualisation the hierarchical constituent structure

which is produced. Black rectangles indicate constituents, while blue lines indicate the

particular relationship. The right hand panel of the window displays the analysis results

in JSON-LD form.

Figure 10.6: Screenshot from the demonstrator application.

The application also demonstrates how the implementation supports generic pro-

cessing of musical documents by applying the same analysis algorithm to two different

underlying encodings of Syrinx. The underlying implementation of the framework uses

dynamic dispatch to select, at run-time, the correct implementation of the abstract
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data types according to the data it is presented.

10.6 Summary and Conclusions

In this chapter we have demonstrated how our representation framework supports three

different analysis tasks. We have shown how the framework supports the representa-

tion the low-level input musical data, as well as the logical properties of this data and

logical relations required for analysis. We have shown how the framework supports

the representation of the information produced by these analysis methods as output,

including sophisticated structural annotations and workflow relationships. Finally, we

have described how the analysis algorithms may be viewed in terms of high-level oper-

ations on abstract types of the representation. Although, the existing implementations

do not entirely follow these high-level descriptions, they are important in motivating

future work on the formal specification of music processing methods, discussed in §12.2.

Representation of the output of analysis methods is something which is often ne-

glected by music representations systems. We argue that it is an essential requirement

of music information systems, in which any analysis performed produces data of po-

tential relevance to another music research question. The ability to accurately record,

share and reproduce analysis is an essential part of any scientific research field. We

believe that, in this chapter, we have giving sufficient preliminary illustration of how

the type-based framework, presented in Part II, provides a formal basis which facilitates

these aspects of music research.
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Part IV

Conclusions and Future Work
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Summary

In this, the final part of the thesis, we give the conclusions of the research and propose a

number of directions for potential future work on the topic. Chapter 11 provides a sum-

mary of the work and highlights the major findings and contributions, as well as giving

a high-level discussion of the ultimate goals and status of the wider project. Chapter

12 discusses future work and identifies three directions in which it might proceed.
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Chapter 11

Conclusions

11.1 Summary

In this thesis we have addressed the problem of representing music and musical in-

formation in computer systems. In Part I we surveyed the literature on the topics of

knowledge representation and music representation, and in doing so identified the re-

quirements of a general purpose music knowledge representation system. In Part II we

gave a abstract specification for a music representation framework which meets these

requirements. The specification was given in dependent type theory and consisted of a

multiple-hierarchical information model and a specification logic. In Part III we gave

an implementation of the specification using Semantic Web ontologies and JavaScript,

and demonstrated how it could be used to support the development of software tools

for music analysis.

Figure 11.1 gives a diagrammatic overview of the work, indicating how the frame-

work and implemented tools fit into a broader setting of computer-based music research.

It shows the different levels of abstraction in an idealised music research pipeline, with

the framework acting as an abstract interface between user applications and musical

data. This overview provides a point for reference for the discussion of the rest of this

chapter and the following one.
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Figure 11.1: The different levels of abstraction in an idealised music research pipeline:
The knowledge representation framework forms the core of the abstract interface layer,
which connects user applications to data sources via dedicated concrete implementa-
tions. On the right hand side, Semantic Web ontologies, represented by arrows, provide
linked data formats for the different levels of abstraction. Solid arrows denote ontolo-
gies presented in the thesis, whilst dotted arrows denote ontologies founds elsewhere or
designated future work.

187



11.2 Contributions

The core contributions of the thesis are as follows:

1. A detailed literature review examining the issues and requirements of music knowl-

edge representation.

2. An abstract specification for a general purpose music knowledge representation

framework in dependent type theory.

3. An implementation of the framework using Semantic Web technologies and

JavaScript, and demonstrator application for music analysis and visualisation

of musical data.

11.3 Conclusions

In this section we summarise the conclusions of the thesis:

Part I: Using type theory for music knowledge representation is sensible and

necessary. Music is a highly complex subject and so is demanding from the

perspective of knowledge representation. Type theory is a powerful tool for logic

and programming which meets these demands.

Chapter 2: Type theory is a powerful alternative to classical FOL as a

basis for knowledge representation.

Chapter 3: Knowledge representation languages can be made more ex-

pressive, precise and interoperable with types.

Chapter 4: Musical knowledge requires expressive, precise and inter-

operable representation languages. Knowledge representation languages

based on singly-typed classical FOL are not suitable for music represen-

tation.
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Part II: Type theory, specifically the Calculus of Inductive Constructions, can

be used to give a formal specification for a general purpose representation of mu-

sic, at an abstract level. Separating the information structure from the language

of invariants used to describe it, enables the representation to remain entirely

general.

Chapter 5: The constituent structure representation satisfies the re-

quirements of a general purpose music representation system, and gen-

eralises many existing methods. The use of algebraic specifications of

abstract data types provides greater precision and modularity.

Chapter 6: The constituent structure specification logic is highly ex-

pressive and is able to accommodate the vast majority of data description

and conceptual modelling needs in the domain of music.

Chapter 7: The representation can be extended to incorporate the di-

verse requirements of music representation.

Part III: The type-based specification can be implemented using mainstream

technologies, namely Semantic Web ontology languages and JavaScript. Such

implementations are necessary in affording users of the framework the power of

linked open data and web applications.

Chapter 8: The representation framework can be deployed on the Se-

mantic Web. Semantic Web ontology languages are capable of capturing

the structural properties of constituent structures, as well as the syntax

of expression of the specification logic.

Chapter 9: The representation framework can be operationalised us-

ing JavaScript. JavaScript provides enough flexibility to allow for the

incorporation of type information and performance of type checking at

runtime.
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Chapter 10: The implementation supports the development of tools for

music analysis. The representation requirements of many music analysis

tasks can be formalised in the framework. The demonstrator application

is a proof of concept. It shows that the abstract specification can be

implemented using mainstream tools allowing developers and researchers

to readily adopt it.

11.4 Discussion

The overall goal of this kind work on representation is a future state of affairs in which

computer systems for computational musicology are entirely conceptually interoperable

and highly automated. From the perspective of software development this involves

the formal specification of not only the information and knowledge content, but also

the logical and computational properties of representations. This level of specification

allows developers to use high-level, domain-specific languages to create precise, modular

and automated software tools which in turn provide musicologists with composable

methods of analysis and comparison.

The work presented in this thesis is a first step in achieving this goal. The selection

of type theory as a basis for both software development and knowledge representation

leads to the application of type-based methods of verified software to music knowledge

representation. The music representation framework presented in this thesis constitutes

a formal basement for future research into music knowledge representation.

Using type theory for knowledge representation constitutes a significant change from

the traditional methods involving set theory and FOL. Chief among the consequences

are that knowledge representation languages, conceptual models and ontologies must

be developed in concert with appropriate methods of automated reasoning. In the

type-theoretic or constructive setting, proofs are the method by which knowledge is

represented and communicated. We take the view that this is a highly natural and

intuitive way to approach knowledge representation. Intuitionistic logic takes its name
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from Brouwer’s program of intuitionism, in which all mathematical objects, including

proofs and programs, are regarded as kinds of construction which be shared, manip-

ulated and verified by machines. This work is just the beginning in exploring these

connections.
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Chapter 12

Future Work

12.1 Developing the Specification in Coq

The Coq proof assistant is a powerful tool for developing type-based specifications, and

includes an imperative language Ltac for automating proof construction. Possible future

work could be the use of Ltac to develop proof automation methods for the specification

logic presented in Chapter 6. Such proof automation could involve proof by reflection,

whereby a syntactic subset of the logic is represented as a functional data structure and

used to develop decision procedures.

Coq has many other features which assist in proof automation and knowledge man-

agement. Spitters and van der Weegen (2011) uses type classes and instance resolution

formalise various aspects of mathematics and universal algebra in Coq. This constitutes

a flexible and intuitive approach to proof management and the structuring of mathe-

matical knowledge. Similar techniques could be used in the management of abstract

data type specifications for the music representation framework.

Proof assistants such as Coq are often used to formalise and verify properties of

programming languages using higher-order abstract syntax. The statics and dynamics

of these languages are then defined by logical relations over abstract syntax trees.

These techniques could be used to design high-level languages for data querying, data
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manipulation and data description based on constituent structures.

There is scope for the development constituent structure specification to include

operations for mapping and folding over the finite data structures involved, such as the

constituents of a structure or the particles of a constituent. The requisite extensions

could borrow almost entirely from the Coq standard library for lists. This aspect of the

specification has been mentioned in Chapter 10, and is, in general, required in order

to give full logical specifications of analysis algorithms at the specification level. This

would allow analysis algorithms, such as those described in Chapter 10, to be imple-

mented only in terms of the abstract type and interface operations of the specification,

ultimately leading to more conceptually interoperable tools for musicology.

12.2 Developing the Implementation

Further work is required on both the Semantic Web ontologies and JavaScript Modules

in order to make them publishable for use by other researchers and developers.

We have demonstrated ways in which the Constituent Structure Ontology can be

extended with OWL axioms which capture more domain-specific music knowledge rep-

resentation. Future research could explore these extensions more thoroughly and work

towards using the ontology to unify and integrate existing music ontology projects.

The Dependent Type Ontology could be extended to develop high-level languages

for the modular organisation of data type specification. Such languages could be based

on category theory such as Ologs (Spivak and Kent, 2012) or using distinct levels of

abstraction such as those of the Audio Features Ontology (Allik and Sandler, 2016).

There are many possible ways in which the JavaScript tools may be developed and

extended. In particular, it would be highly beneficial to developers and musicologists if

there existed tools which could automatically generate code from high-level descriptions

of music analysis workflows. Such tools could be developed in conjunction with addi-

tional ontologies for capturing these high-level description. Implementations if these

kinds of tools would most likely require the extensions to the constituent structure
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specification mentioned in §12.1. Implementations of an interface which included map-

ping and reducing functionality on both constituent structures and constituent objects

would allow analysis algorithms to be constructed at the abstract level by composition

of atomic operations from the specifications, and used to automatically generate imple-

mentations of the analysis procedure given the requisite implementations of abstract

data types.

12.3 Type Theories for Knowledge Representation

A final direction of future work could explore the application of different type theories

and systems to knowledge representation. In this thesis we have used CIC to give formal

specifications for the representation components. Alternative type systems with differ-

ent computational and logical properties could prove more suitable for certain aspects

of knowledge representation systems. For example, sub-structural type systems capture

various different notions of computation by omitting one or more of the structural rules.

In particular, the contexts of linear type systems capture the notion of memory states,

or resources, and could be used to model knowledge bases which capture the existence

of certain objects. Krishnaswami et al. (2015) develop a type system which integrates

linear and dependent types, and shows how it can be used to give formal specifications

of type-safe imperative programs. Such a type system could be applicable to the design

of knowledge representation or database languages. Another possibility is to explore

the use of more exotic type systems. Benzaken et al. (2013) present a type system for

No-SQL-style languages. It focusses on the typing of programs designed to manipulate

semi-structured data, such as that of JSON documents. Such languages could be widely

applied to music knowledge representation, as they would afford the smooth integration

of conceptual modelling and programming languages.
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