9 research outputs found

    On exploiting spare capacity in hard real-time systems.

    Get PDF
    Remove this page before binding. (The page number was placed before realizing that this was to be the title page.) Also, don’t forget to move the Contents and Figure

    The jointly scheduling of hard periodic tasks with soft aperiodic events within the Real-Time Specification for Java (RTSJ)

    Get PDF
    The studied problem is the jointly scheduling of hard periodic tasks with soft aperiodic events, where the response times of soft tasks have to be as low as possible while the warranty to meet their deadlines has to be given to hard tasks. A lot of theoretical solutions have been proposed these past two decades but we are interested on the implementability of these solutions under the real-time specification for Java (RTSJ), without changing the scheduler. This led us to adapt the existing algorithms to operate at a user land level in the system, to propose some optimizations and counter measures in order to balance the lost of performances and finally to set up an approximate slack stealer algorithm specifically designed to take into account RTSJ restrictions. We propose new classes to extend the RTSJ API's to implement these mechanisms and some minor modification suggestions to existing ones as a feed back from our RTSJ experiences. We demonstrates the efficiency of the modified algorithms through extensive simulations and the implementability on available RTSJ compliant virtual machine by an overhead measure in real situation with the RTSJ JamaïcaVM from Aïcas. We also measure the overhead on LejosRT, an RTSJ compliant firmware for Lego Mindstorms NXT in development

    Analyzing the effect of gain time on soft task scheduling policies in real-time systems

    Full text link
    In hard real-time systems, gain time is defined as the difference between the Worst Case Execution Time (WCET) of a hard task and its actual processor consumption at runtime. This paper presents the results of an empirical study about how the presence of a significant amount of gain time in a hard real-time system questions the advantages of using the most representative scheduling algorithms or policies for aperiodic or soft tasks in fixed-priority preemptive systems. The work presented here refines and complements many other studies in this research area in which such policies have been introduced and compared. This work has been performed by using the authors' testing framework for soft scheduling policies, which produces actual, synthetic, randomly generated applications, executes them in an instrumented Real-Time Operating System (RTOS), and finally processes this information to obtain several statistical outcomes. The results show that, in general, the presence of a significant amount of gain time reduces the performance benefit of the scheduling policies under study when compared to serving the soft tasks in background, which is considered the theoretical worst case. In some cases, this performance benefit is so small that the use of a specific scheduling policy for soft tasks is questionable. © 2012 IEEE.This work is partially funded by research projects PROMETEO/2008/051, CSD2007-022, and TIN2008-04446.Búrdalo Rapa, LA.; Terrasa Barrena, AM.; Espinosa Minguet, AR.; García Fornes, AM. (2012). Analyzing the effect of gain time on soft task scheduling policies in real-time systems. IEEE Transactions on Software Engineering. 38(6):1305-1318. https://doi.org/10.1109/TSE.2011.95S1305131838

    An Enhanced Bailout Protocol for Mixed Criticality Embedded Software

    Get PDF
    To move mixed criticality research into industrial practice requires models whose run-time behaviour is acceptable to systems engineers. Certain aspects of current models, such as abandoning lower criticality tasks when certain situations arise, do not give the robustness required in application domains such as the automotive and aerospace industries. In this paper a new bailout protocol is developed that still guarantees high criticality software but minimises the negative impact on lower criticality software via a timely return to normal operation. We show how the bailout protocol can be integrated with existing techniques, utilising both offline slack and online gain-time to further improve performance. Static analysis is provided for schedulability guarantees, while scenario-based evaluation via simulation is used to explore the effectiveness of the protocol

    Analysis-Runtime Co-design for Adaptive Mixed Criticality Scheduling

    Get PDF
    In this paper, we use the term “Analysis-Runtime Co-design” to describe the technique of modifying the runtime protocol of a scheduling scheme to closely match the analysis derived for it. Carefully designed modifications to the runtime protocol make the schedulability analysis for the scheme less pessimistic, while the schedulability guarantee afforded to any given application remains intact. Such modifications to the runtime protocol can result in significant benefits with respect to other important metrics. An enhanced runtime protocol is designed for the Adaptive Mixed-Criticality (AMC) scheduling scheme. This protocol retains the same analysis, while ensuring that in the event of high-criticality behavior, the system degrades less often and remains degraded for a shorter time, resulting in far fewer low-criticality jobs that either miss their deadlines or are not executed

    A Survey of Research into Mixed Criticality Systems

    Get PDF
    This survey covers research into mixed criticality systems that has been published since Vestal’s seminal paper in 2007, up until the end of 2016. The survey is organised along the lines of the major research areas within this topic. These include single processor analysis (including fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, realistic models, and systems issues. The survey also explores the relationship between research into mixed criticality systems and other topics such as hard and soft time constraints, fault tolerant scheduling, hierarchical scheduling, cyber physical systems, probabilistic real-time systems, and industrial safety standards

    TRAMMAS: Enhancing Communication in Multiagent Systems

    Full text link
    Tesis por compendio[EN] Over the last years, multiagent systems have been proven to be a powerful and versatile paradigm, with a big potential when it comes to solving complex problems in dynamic and distributed environments, due to their flexible and adaptive behavior. This potential does not only come from the individual features of agents (such as autonomy, reactivity or reasoning power), but also to their capability to communicate, cooperate and coordinate in order to fulfill their goals. In fact, it is this social behavior what makes multiagent systems so powerful, much more than the individual capabilities of agents. The social behavior of multiagent systems is usually developed by means of high level abstractions, protocols and languages, which normally rely on (or at least, benefit from) agents being able to communicate and interact indirectly. However, in the development process, such high level concepts habitually become weakly supported, with mechanisms such as traditional messaging, massive broadcasting, blackboard systems or ad hoc solutions. This lack of an appropriate way to support indirect communication in actual multiagent systems compromises their potential. This PhD thesis proposes the use of event tracing as a flexible, effective and efficient support for indirect interaction and communication in multiagent systems. The main contribution of this thesis is TRAMMAS, a generic, abstract model for event tracing support in multiagent systems. The model allows all entities in the system to share their information as trace events, so that any other entity which require this information is able to receive it. Along with the model, the thesis also presents an abstract architecture, which redefines the model in terms of a set of tracing facilities that can be then easily incorporated to an actual multiagent platform. This architecture follows a service-oriented approach, so that the tracing facilities are provided in the same way than other traditional services offered by the platform. In this way, event tracing can be considered as an additional information provider for entities in the multiagent system, and as such, it can be integrated from the earliest stages of the development process.[ES] A lo largo de los últimos años, los sistemas multiagente han demostrado ser un paradigma potente y versátil, con un gran potencial a la hora de resolver problemas complejos en entornos dinámicos y distribuidos, gracias a su comportamiento flexible y adaptativo. Este potencial no es debido únicamente a las características individuales de los agentes (como son su autonomía, y su capacidades de reacción y de razonamiento), sino que también se debe a su capacidad de comunicación y cooperación a la hora de conseguir sus objetivos. De hecho, por encima de la capacidad individual de los agentes, es este comportamiento social el que dota de potencial a los sistemas multiagente. El comportamiento social de los sistemas multiagente suele desarrollarse empleando abstracciones, protocolos y lenguajes de alto nivel, los cuales, a su vez, se basan normalmente en la capacidad para comunicarse e interactuar de manera indirecta de los agentes (o como mínimo, se benefician en gran medida de dicha capacidad). Sin embargo, en el proceso de desarrollo software, estos conceptos de alto nivel son soportados habitualmente de manera débil, mediante mecanismos como la mensajería tradicional, la difusión masiva, o el uso de pizarras, o mediante soluciones totalmente ad hoc. Esta carencia de un soporte genérico y apropiado para la comunicación indirecta en los sistemas multiagente reales compromete su potencial. Esta tesis doctoral propone el uso del trazado de eventos como un soporte flexible, efectivo y eficiente para la comunicación indirecta en sistemas multiagente. La principal contribución de esta tesis es TRAMMAS, un modelo genérico y abstracto para dar soporte al trazado de eventos en sistemas multiagente. El modelo permite a cualquier entidad del sistema compartir su información en forma de eventos de traza, de tal manera que cualquier otra entidad que requiera esta información sea capaz de recibirla. Junto con el modelo, la tesis también presenta una arquitectura {abs}{trac}{ta}, que redefine el modelo como un conjunto de funcionalidades que pueden ser fácilmente incorporadas a una plataforma multiagente real. Esta arquitectura sigue un enfoque orientado a servicios, de modo que las funcionalidades de traza son ofrecidas por parte de la plataforma de manera similar a los servicios tradicionales. De esta forma, el trazado de eventos puede ser considerado como una fuente adicional de información para las entidades del sistema multiagente y, como tal, puede integrarse en el proceso de desarrollo software desde sus primeras etapas.[CA] Al llarg dels últims anys, els sistemes multiagent han demostrat ser un paradigma potent i versàtil, amb un gran potencial a l'hora de resoldre problemes complexes a entorns dinàmics i distribuïts, gràcies al seu comportament flexible i adaptatiu. Aquest potencial no és només degut a les característiques individuals dels agents (com són la seua autonomia, i les capacitats de reacció i raonament), sinó també a la seua capacitat de comunicació i cooperació a l'hora d'aconseguir els seus objectius. De fet, per damunt de la capacitat individual dels agents, es aquest comportament social el que dóna potencial als sistemes multiagent. El comportament social dels sistemes multiagent solen desenvolupar-se utilitzant abstraccions, protocols i llenguatges d'alt nivell, els quals, al seu torn, es basen normalment a la capacitat dels agents de comunicar-se i interactuar de manera indirecta (o com a mínim, es beneficien en gran mesura d'aquesta capacitat). Tanmateix, al procés de desenvolupament software, aquests conceptes d'alt nivell son suportats habitualment d'una manera dèbil, mitjançant mecanismes com la missatgeria tradicional, la difusió massiva o l'ús de pissarres, o mitjançant solucions totalment ad hoc. Aquesta carència d'un suport genèric i apropiat per a la comunicació indirecta als sistemes multiagent reals compromet el seu potencial. Aquesta tesi doctoral proposa l'ús del traçat d'esdeveniments com un suport flexible, efectiu i eficient per a la comunicació indirecta a sistemes multiagent. La principal contribució d'aquesta tesi és TRAMMAS, un model genèric i abstracte per a donar suport al traçat d'esdeveniments a sistemes multiagent. El model permet a qualsevol entitat del sistema compartir la seua informació amb la forma d'esdeveniments de traça, de tal forma que qualsevol altra entitat que necessite aquesta informació siga capaç de rebre-la. Junt amb el model, la tesi també presenta una arquitectura abstracta, que redefineix el model com un conjunt de funcionalitats que poden ser fàcilment incorporades a una plataforma multiagent real. Aquesta arquitectura segueix un enfoc orientat a serveis, de manera que les funcionalitats de traça són oferides per part de la plataforma de manera similar als serveis tradicionals. D'aquesta manera, el traçat d'esdeveniments pot ser considerat com una font addicional d'informació per a les entitats del sistema multiagent, i com a tal, pot integrar-se al procés de desenvolupament software des de les seues primeres etapes.Búrdalo Rapa, LA. (2016). TRAMMAS: Enhancing Communication in Multiagent Systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/61765TESISCompendi

    Mixed Criticality Systems - A Review : (13th Edition, February 2022)

    Get PDF
    This review covers research on the topic of mixed criticality systems that has been published since Vestal’s 2007 paper. It covers the period up to end of 2021. The review is organised into the following topics: introduction and motivation, models, single processor analysis (including job-based, hard and soft tasks, fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, related topics, realistic models, formal treatments, systems issues, industrial practice and research beyond mixed-criticality. A list of PhDs awarded for research relating to mixed-criticality systems is also included

    Efficient Allocation And Enforcement Of Interfaces In Compositional Real-Time Systems

    Get PDF
    Compositional real-time research has become one of the emerging trends in embedded and real-time systems due to the increasing scale and complexity of such systems. In this design paradigm, a large system is decomposed into smaller and simpler components, each of which abstracts their temporal requirements via interfaces. Such systems are mostly implemented by resource partitions to ensure that the components receive resources according to their interfaces. Potential implementations of a resource partition are via server-based interfaces or demand-based interfaces. In this context, our thesis in this dissertation is as follows: Currently, server-based interfaces ensure strong temporal isolation among components at the cost of resource over-provisioning whereas demand-based interfaces precisely model the resource demand of a component without the guarantee of temporal isolation. For both these models, efficient and effective resource allocation as well as strict temporal isolation among components can be achieved. Specifically, we can obtain efficient and near-optimal bandwidth allocation schemes and admission controllers for periodic resource model and arbitrary demand-based interface respectively. Furthermore, efficient slack reclamation technique can be obtained to allocate unused processing resources at runtime while still enforcing the given interface. To support our thesis, we address efficient resource allocation among components with server-based interfaces by providing fully-polynomial-time approximation schemes (FPTAS) for allocating processing resource to components scheduled by earliest-deadline-first (EDF) or fixed-priority (FP) scheduling algorithm. For enforcing temporal isolation of demand-based interfaces, we provide a parametric approximate admission control algorithm, which has polynomial-time complexity in terms of number of active jobs in the system and the approximation parameter. Finally, to address efficient reclamation of unused processing resources, we give a novel technique to optimally and efficiently determine maximum allowable runtime slack for a component with arbitrary interface, considering active jobs in the system and guaranteeing system schedulability even for worst-case future job arrival scenarios. We expect that these techniques can ultimately be used to minimize the size, weight, and power requirements of real-time and embedded systems by reducing the processing resource requirements of such systems
    corecore