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CHAPTER 1: INTRODUCTION

Real-time and embedded systems have become increasingly complex due to the advent of high-performance

microprocessor technology. A modern day automotive system provides numerous functionalities such as

adaptive cruise control, collision avoidance, lane-departure warning systems, satellite navigation appli-

cations etc. In traditional models, separate Electronic Control Units (ECUs) supporting a single hard

real-time application are used. A recent trend is integrating functionalities into a smaller number of more

powerful microprocessors. Further, independently-developed applications from different vendors might

be accommodated to same processing platform. The motivation for such integration comes from the re-

duction in size, weight and power (SWaP) of the system as a whole, and at the same time this provides the

opportunity to enhance functionality. The design goal of such systems raises issues like resource allocation

and partitioning among the applications, and thus, presents a great research opportunity for compositional

real-time analysis. In this thesis our goal is to obtain efficient solutions for such systems. We begin with

describing basic real-time concepts before introducing compositional concepts.

A real-time system is a system whose correctness depends on the logical result of computation along

with the “timeliness” of completion. In such systems, the main performance metric is the timeliness (e.g.,

deadline constraints) as predictability of the system is more important than performance. Such systems

are usually modeled as set of jobs where each job is a sequential set of instructions. Each of the jobs is

characterized by its execution (resource) requirement, release time at which the job is ready to execute and

a deadline, by which the job must complete its execution. There are two types of real-time jobs: hard real-

time (HRT) jobs and soft real-time (SRT) jobs. For the former, the deadline constraint is rigid, all jobs in

the system must execute before its deadline; if a job misses its deadline then the system is incorrect (e.g., a

nuclear power plant is an example of a HRT system). For the latter case, the system allows deadline misses

for some jobs (e.g., multimedia applications are often characterized as SRT systems). Often a real-time

application is modeled by set of periodic or sporadic tasks each of which generates a potentially infinite

sequence of real-time jobs, with successive job-arrivals separated by a period.

Scheduling is the process of assigning a resource (processor, memory etc.) to the applications in the

system and deciding the order of their executions. There are two type of scheduling algorithms: static

and dynamic. In this thesis, we will consider only dynamic algorithms in which tasks are scheduled based
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on their priorities. These algorithms can also be of two types: fixed priority (FP) in which priority of

tasks are predefined and do not vary at runtime (e.g., rate/deadline monotonic [66]), and dynamic priority

in which task priority may vary at runtime (e.g., earliest-deadline first [66]). In rate-monotonic (RM) or

deadline-monotonic (DM) scheduling algorithms, static task priorities are assigned based on task periods

(RM) or deadlines (DM). In earliest-deadline-first (EDF) scheduling algorithm, at any instant of time the

scheduler chooses to execute the job of a task which has earliest deadline in time.

A processing resource in real-time systems can be categorized as uniprocessor platform or multiproces-

sor platform. In a uniprocessor platform all the execution requirements are satisfied using one processor,

whereas in multiprocessor or multicore platform it is assumed that the processing resource is supplied by

m processors or cores. The processing resource provided to a real-time application can be either dedicated

or partitioned. In the former case the application gets access to the resource persistently, and in the later

case it has to time-share the resource with other applications in the system. A real-time system is schedu-

lable if a given scheduling algorithm (e.g., EDF) can schedule the system meeting all task deadlines. A

schedulability test is the process of determining the schedulability of a system. This test can either be exact

or sufficient. In the former case the test correctly determines the schedulability of a given system using a

specific algorithm. In the latter case, if the test results schedulable then the system is in fact schedulable;

if the test returns not schedulable then we can not positively conclude the schedulability of the system. In

the next section, we describe necessary concepts related to compositional real-time systems.

1.1 Compositional Real-Time System

Recent real-time and embedded systems research has increasingly trended towards open environments [34]

due to the ease of portability and integration of applications in a single shared platform. In such systems,

independently-developed real-time and non-real-time applications may coexist and may join and leave the

system dynamically. These requirements have inspired compositional real-time research with hierarchical

scheduling frameworks. Over the past years, component-based design for real-time systems has received

considerable attention, as numerous compositional frameworks have been proposed for both uniprocessor

and multiprocessor platforms. Such systems must satisfy following properties [81]: (1) independence: the

schedulability of each component is analyzed independent of any other components; (2) separation: in

compositional design, a parent component is separated from the child component and interact with each
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Figure 1.1: Compositional real-time system consisting of three components C1, C2 and C3.
The global scheduler allocates the resource among the components, and the local
schedulers A1, A2, A3 allocate resource within the respective components. Com-
ponent C1 has sub-components τ1 and τ2, which forms a hierarchy.

other only through a common interface; (3) universality: the component-level or system-level scheduling

algorithm is independent, and any scheduling algorithm can be used; and (4) compositionality: a parent

scheduling model is computed from its child scheduling models such that the timing guarantee of the

parent scheduling model is satisfied, if and only if, the timing guarantees of its child scheduling models

are satisfied together in the framework. In the next few sections, we elaborate the compositional concepts.

1.1.1 Component-Based Design

As the name suggests, in the design paradigm of a compositional real-time system, a large, complex system

is decomposed into smaller and simpler components, and developed independently. A major benefit of

such design is that the components hide their internal complexity and details from the designer of other

components by component abstraction and only expose information necessary to use the component. Most

proposed frameworks facilitate the abstraction of each component’s real-time requirements by specifying

a real-time interface for each component. While adding the component to a system, only the interface of

the component is used to verify the resource requirements of the component.
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Let a component C be characterize by the tuple (W,A, I) [83] where W represents the real-time

workload generated by C, A represents the component-level scheduling algorithm1, and I represents the

real-time interface for C. We say the component C is schedulable upon interface I , if, for any resource

supply R that exceeds or equals the resource supply specified by I , W can meet all deadlines when

scheduled by A upon R.

In Figure 1.1, a compositional real-time system is shown where the system consists of three indepen-

dent components C1, C2, C3. Each of the components is independent in a sense that their corresponding

workload or component-level (local) scheduling algorithm does not depend on other components in the

system. The interface specification for each component represents the timing constraints of the component

as a whole, and ensures temporal isolation (i.e., separation) for the components, that is if the resource

requirement of one component exceeds its interface specification, the system will ensure that the other

components will not be affected by this. A global scheduler allocates the resource to the components, and

it is independent of local schedulers (i.e., universality). Finally, the system is schedulable if both global

and local schedulers can successfully allocate resources among the components (i.e., compositionality) for

a specific resource platform.

1.1.2 Hierarchical Scheduling

In compositional real-time system design, the independently-developed components are composed to ob-

tain the original system. Thus, the overall verification of temporal constraints of the system requires only

the interfaces of the components in the system. To support component-based design, a multi-level schedul-

ing framework is realized. At the top level of the hierarchy, the global scheduler allocates the resource to

heterogenous components (applications). In the next level, a local application-level scheduler schedules

tasks (jobs) of the application during the time allocated by top-level scheduler (Figure 1.1).

1.1.3 Real-Time Interfaces

To hide internal complexity from the entire system, components abstract their temporal requirements via

interfaces. A real-time interface describes the processing-resource supply that a component requires to

meet all real-time constraints. Potential implementations of an interface are via server-based model or
1Note the component-level scheduling algorithm may differ from the system-level scheduling algorithm. Furthermore, many

compositional frameworks permit components to be composed of sub-components.
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demand-based interfaces. In the former model, access to the physical resource is provided by the servers,

ensuring strong temporal isolation properties (e.g., one component is isolated from the potentially faulty

temporal behavior of another component). In the later model, the component demand is precisely modeled

by a demand-curve function.

Server-Based Interface

In this model, the component interface is specified by resource partitions; each component receives the

processing units for a specific portion of time according to its interface. Given a component with work-

load, and a local scheduling algorithm, the interface must ensure that all the tasks within the component

meet their deadlines. In this model, a component can be assumed to execute within a “server” which allo-

cates the resource partitions based on the component interface, and guarantees temporal isolation among

components by ensuring that no component executes beyond its specified interface. Further, given the

components and their interface requirements, the system must be able to compose the interfaces such that

all timing requirements are satisfied globally.

Demand-Based Interface

In this model, the component interface is generated by demand functions which characterize the maxi-

mum amount of processing that the workload of a component will require for any interval of time. The

demand interface precisely represents the resource requirement of a component and it is generated using

fine-grained techniques such as standard real-time calculus (RTC) [28, 88]. The interface represents the

usage and compatibility of a component, and the system designer uses this information to compose the

component to the system satisfying all requested real-time constraints. The precise characterization of

the interface makes it complex and arbitrary; as a result achieving temporal isolation among components

become difficult when components are composed to a shared processing platform.

In Figure 1.2, a compositional system is shown with two components Ci and Cj , where Ci is modeled

by server-based interface and Cj is modeled by demand-curve interface. For Ci, the component workload

and local scheduling algorithm is known to the designer and by interface selection, the resource require-

ment is determined for this specific component setting. The server ensures thatCi gets its share of resource

from the global scheduler (bottom-up approach). In contrast, component Cj is served by a demand-curve
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Figure 1.2: Server-based (left) and interface-based (right) resource allocation model for a com-
positional real-time system.

interface model, where only the interface is known to the system designer. In this model, the component

can be compared to a black-box (e.g., a module developed by a vendor who does not want to disclose the

internal details other than the component interface), and the workload to the component must be “policed”

so that the interface is enforced for the component (top-down approach). An admission controller in this

regard performs the interface enforcement for the component.

1.1.4 Compositional Schedulability Analysis

In traditional uniprocessor real-time systems, schedulability tests are used to guarantee that the timing con-

straints of each of the tasks in the system are satisfied. In contrast, for compositional real-time systems,

the overall system schedulability is determined in multiple steps. At first, for each component in the sys-

tem, the component-level schedulability is determined for the component workload and local scheduling

scheme. From the resource requirement of the component workload, the component interface is abstracted

for each of the components in the system. Finally, using the abstractions, global schedulability analysis is

performed to ensure “compositionality” of the system as a whole.

Exact schedulability tests rely on necessary and sufficient schedulability conditions for a system. For

a uniprocessor system scheduled by EDF or FP scheduling algorithm upon a dedicated processor, exact
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tests require exponential or pseudo-polynomial time complexity. Sufficient schedulability tests for such

systems are mostly utilization based and require constant or linear time complexity. Although these tests

are computationally efficient, they significantly over-allocate resources to applications and induce lower

system utilization. A third possible approach is approximate schedulability tests with a pre-specified

approximation parameter. An algorithmA is called fully polynomial time approximation scheme (FPTAS)

for a minimization problemP , if given ε > 0, it solvesP in time polynomial to input size ofP and 1
ε . If S∗

represent optimal solution to P and Ŝ represent solution returned byA, then it must be that Ŝ ≤ (1+ε)S∗.

The (1 + ε) factor is called the approximation ratio of the produced solution.

Sufficient solutions may be impractical for developing real-time systems in which resources are very

scarce. In real-time open systems where applications may be added or removed dynamically, it is im-

portant to provision resources efficiently at run-time and an efficient allocation algorithm is desirable. A

parametric approximate algorithm allows system designer to pre-specify an arbitrary level of accuracy

(ε) in obtaining a solution with a quantifiable trade-off with the computation efficiency of obtaining the

solution. In this thesis our goal is designing computationally efficient algorithms on real-time guarantee

verification, as well as providing the system designer control over accuracy of resource allocation.

1.2 Fundamental Problems in Compositional Systems

In the context of compositional real-time systems, we address three problems in this thesis: allocation,

enforcement and slack reclamation. We address efficient allocation of processing resource among the

components of the compositional system (Section 1.2.1) . We provide efficient techniques to ensure that

the interface of each of the components are strictly enforced (Section 1.2.2). While enforcing a given inter-

face, we devise a method to reclaim slack of processing resource at runtime to allocate possible overruns

(Section 1.2.3). In the next section, we give an overview of the allocation problem we addressed in obtain-

ing approximate schedulability tests for compositional systems with EDF- or FP-scheduled components.

1.2.1 Allocation: Minimization of Interface Bandwidth

Although the various proposed compositional frameworks differ in the component information that is ex-

posed to the system by real-time interfaces, a common necessary attribute is the interface bandwidth.

The interface bandwidth simultaneously quantifies the fraction of the total system resource supply that a
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component C will require to meet its real-time constraints and the component C’s “interference” on the

resource supply provided to other system components. Thus, an important fundamental problem in de-

sign and analysis of compositional real-time systems is the minimization of real-time interface bandwidth

(MIB-RT).

Let I ∈ I denote a real-time interface I for component C from the set I of all possible real-time

interfaces in a given compositional framework. Let β(I) denote the interface bandwidth of real-time

interface I . We say the component C is schedulable upon interface I , if, for any resource supply R that

exceeds or equals the resource supply specified by I , component workloadW can meet all deadlines when

scheduled by algorithm A upon R. With these notations, our goal is to minimize interface bandwidth β(I)

for a specific compositional framework: the explicit deadline periodic (EDP) [39] resource model.

Π 2Π 3Π∆ Π + ∆ 2Π + ∆

Θ

∆

Π

Figure 1.3: An example of resource allocation in the EDP model.

In the EDP model (Figure 1.3), a resource Ω is characterized by a three-tuple (Π,Θ,∆). The inter-

pretation of such a resource is that a component C executed upon Ω is guaranteed Θ units of processing

resource supply for successive Π-length intervals (given some initial starting time). Furthermore, the Θ

units of resource supply must be provided within ∆ (≤ Π) time units after the start of the Π-length interval.

For Ω = (Π,Θ,∆), Π is referred to as the period of repetition, Θ is the capacity, and ∆ is the relative

deadline. The EDP model generalized the simpler periodic resource model [81] which represented a

resource by (Π,Θ) where relative deadline of the resource is implicit (i.e., ∆ = Π). The advantage of

the EDP model over the periodic resource model is to permit tighter control of the resource allocation

by reducing the starvation period or no-supply period for the resource model. The starvation period is

the maximum amount of time at which a component using any resource model will not receive any re-

source from the system. The EDP model provides the flexibility of reducing starvation period by tuning

∆. Moreover, the resource model provides optimal resource to a component when ∆ = Θ [38, 39]. The

results obtained in this thesis apply to both EDP model and the simpler periodic resource model.
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The MIB-RT problem for the EDP model can be stated as follows: for any component C determine

capacity Θ̂, period Π̂ and deadline ∆̂ such that interface bandwidth2 Θ̂

Π̂
is minimized and C is schedulable

by A upon a resource Ω = (Π̂, Θ̂, ∆̂). Therefore, to solve MIB-RT, we need to address two subprob-

lems: capacity determination and period selection. Previous techniques are known for determining Π̂ and

∆̂ [38,44]. Given a capacity determination algorithmA, and a range of values of period Πlower to Πupper,

the period selection algorithm selects period Π and uses A to determine capacity Θ such that the band-

width Θ/Π is minimized (Figure 1.4). Thus, given those methods, we narrow the scope of MIB-RT as

follows: for any component C, given Π and ∆, determine a capacity Θ̂ such that Θ̂
Π is minimized and C is

schedulable by A upon a resource Ω = (Π, Θ̂,∆). We solved MIB-RT where component-level scheduler

A is EDF or FP.

Min Θ/Π

Period Selection Algorithm

Capacity
Determination
Algorithm A

τ

Πlower, ..Πupper

A
Iterate
over Π

Θ

Ω = (Π,Θ,∆)

Figure 1.4: MIB-RT problem for periodic resources

The MIB-RT problem has been extensively studied for the various real-time compositional frame-

works. The currently-known solutions to MIB-RT generally fall into one of two categories: exact or

over-provisioned. Exact solutions to MIB-RT (e.g., see Easwaran et al. [39] or Lipari et al. [62,65]), deter-

mine the exact minimum bandwidth necessary to meet the component’s real-time constraints under a given

framework – i.e., if the bandwidth provided by the system is less than the exact minimum bandwidth for

component C, some real-time constraint will be violated for C. Typically, exact solutions for MIB-RT rely

upon modifications to exact schedulability techniques for non-compositional real-time systems [20, 56]

which are computationally expensive. Furthermore, MIB-RT with A equal EDF is clearly co-NP-hard by

reduction to uniprocessor EDF schedulability (which was recently shown to be co-NP-Hard by Eisenbrand

and Rothvoß [42]); a task system is EDF-schedulable if and only if the task system can be scheduled on a

periodic resource Ω = (Π,Θ,Π) with Θ ≤ Π. Thus, it is unlikely that exact polynomial-time algorithms

2We abuse terminology slightly and allow (Π,Θ,∆) describe both the resource Ω and an interface for C.
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exist for MIB-RT. Over-provisioned solutions to MIB-RT (e.g., [5, 39]) for a component C also allocate

sufficient bandwidth to C to ensure that all real-time constraints are met; however, the allocated bandwidth

may be more than necessary – leading to a potential waste of processing resources. Advantageously, an

over-provisioned solution is typically computationally much less expensive than an exact solution since its

running time is linear or polynomial in the representation of C’s real-time constraints.

The speed-of-analysis for MIB-RT is often a critical issue in compositional real-time systems where

components may dynamically join the system, since efficient admission tests based on interface bandwidth

are required to quickly determine whether a component may be admitted. To address this need and the cur-

rent gap for MIB-RT between computationally-expensive exact solutions and computationally-inexpensive

over-provisioned solutions, we propose investigation into a third category of solution for MIB-RT: para-

metric approximate solutions. A parametric approximate solution allows the component designer to pre-

specify an arbitrary level of accuracy in obtaining a solution to MIB-RT; however, the desired level of

accuracy has a quantifiable trade-off with the efficiency of obtaining the solution. In other words, an

increased level of accuracy requires an increased amount of computation.

Furthermore, we require that the complexity of the algorithm to obtain the approximate solution is

polynomial both in terms of 1
ε and in the representation of C. In other words, one of our goals is to obtain

a fully-polynomial-time approximation schemes (FPTAS) [92] for the MIB-RT problem under various

compositional real-time frameworks.

1.2.2 Enforcement: Admission Control

In the previous section, we addressed efficient interface (bandwidth) determination for server-based inter-

face models, where the model enforces the interface via servers (Section 2.1.1). In this section, we address

interface enforcement for demand-based or demand-curve interfaces. Consider hard real-time applications

developed by different vendors with the real-time requirements specified by their interfaces. Composi-

tional analysis must be performed to integrate such applications into a common hardware platform in a

real-time open environment. The system designer must allocate resources for each of the components

(applications) such that the performance is guaranteed as well as temporal isolation among the compo-

nents are strictly enforced (e.g., one component is isolated from potentially faulty temporal behavior of

another component). A popular approach for achieving temporal isolation between components is to use
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server-based interfaces; each component may execute within a system-provided server that allocates the

resource based upon the component’s real-time interface. The main disadvantage of this approach is that

it requires some over-provisioning of resources to guarantee temporal isolation [8]. A more precise alter-

native to server-based approach is to use a demand-curve interface to specify the amount of computational

resources (over any interval of time) that the components will require. The well known real-time calculus

(RTC) frameworks [28, 88] are examples of this approach. However, strict temporal isolation is currently

difficult to achieve between components specified by demand-curve interfaces, as there is no known on-

line “policing” protocol for ensuring that a system does not violate an arbitrarily-specified demand-curve

interface [17].

In this thesis, we address the lack of interface-policing protocols for the more precise demand-curve

interface models. To achieve this, we propose admission controllers for components comprising aperi-

odic hard-real-time jobs. These admission controllers will ensure temporal isolation by checking whether

a newly-arrived job may be admitted for execution in a component without violating its demand-curve

interface. Furthermore, we describe the implementation of an associated server which can enforce (at

runtime) the temporal isolation once a job is admitted to the system. Our primary design goal is the de-

velopment of admission controllers that are both theoretically and practically efficient; i.e., we can prove

tight, polynomial bounds on computation complexity and observe low overhead in an implementation.

1.2.3 Slack Reclamation

In traditional hard real-time systems, schedulability analysis is often performed offline with the assumption

of worst-case workload demand. The analysis guarantees that the system will not violate any deadline

given that it behaves predictably. However, the runtime behavior of the system may vary due to various

factors such as resource availability, overrun, other runtime dependencies (e.g., memory, I/O, cache, etc.).

Due to such variability, worst-case execution time (WCET) analysis often gives pessimistic bounds on the

execution time of real-time jobs that are rarely achieved. Thus, at runtime, there is often an opportunity to

make use of the processing time slack left by the jobs that did not execute up to their WCET.

In the last part of the thesis, we address the challenge of determining “allowable” slack for any job in

a system (or component) while still maintaining system schedulablity. We provide a novel technique to

efficiently compute system slack at runtime, which can be used to allow a job to overrun if there is enough
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slack in the system. For this problem we assume a compositional system where components may have

arbitrary interface (i.e., server-based or demand-based).

1.3 Applications

Real-time application domains include automotive, automation, avionics, consumer electronics, industrial

process controller and medical systems among others. Compositional system design has wide applicabil-

ity in such systems. In the next few subsections, we describe potential application domains where our

theoretical contribution in this thesis may be applied.

1.3.1 Automotive

In automotive electronics, the advent of high-performance embedded microprocessors has made possible

complex functionalities in different domains such as active safety (e.g., emergency brake assist system),

driver assistance (e.g., cruise control, blind spot detection, park assist system etc.), passenger comfort

(e.g., automatic climate control), infotainment systems (e.g., navigation system) etc. With the growing

demand of functionality, the number of Electronic Control Units (ECU) has also increased in modern-day

vehicles (e.g., Volkswagen Phaeton 2002 has about 70 to 100 ECUs), which raises issues like increase

in copper wiring, cost, space and power of the vehicle. Instead of using sperate processing platform

(i.e., ECU) per application, multiple applications can be combined into same ECU to take the benefit of

powerful microprocessors. The design goal of integrating a number of real-time applications onto a single

processing platform necessitates compositional analysis to ensure real-time guarantee for the system.

The well known open framework AUtomotive Software ARchitecture (AUTOSAR) [10] can be used

in this regard to implement component-based systems. This standardized architecture for automotive sys-

tem modularizes the softwares (applications) into components with well-defined interfaces, and separates

hardware and software in the subsystem. Using this, complex applications can be decomposed into sim-

pler ones, developed independently, and their resource and temporal requirements can be represented by

interfaces. Finally, the timing constraints of the entire system will be guaranteed by compositional analysis

by integrating multiple real-time applications into a shared hardware platform (ECU).
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1.3.2 Avionics

Integrated Modular Avionics (IMA) represents real-time computer network for airborne systems consist-

ing of computing modules which support numerous applications of differing criticality levels. ARINC

653 (Avionics Application Standard Software Interface) [84, 96] is a software specification for space and

time partitioning in safety-critical avionics real-time operating systems. It allows hosting of multiple ap-

plications of different software levels on the same hardware in the context of a IMA architecture. In this

specification, the real-time system of an aircraft consists of one or more core modules which are connected

using switched Ethernet. The core modules are hardware platforms consisting of one or more processors,

and provide space and temporal partitioning for independent execution of avionics applications. Each

independent application (also known as partition) has one or more processes representing its real-time

resource demand. Therefore, the workload on a single processor in a core module can be described as a

two-level hierarchical real-time system. Each application has a (local) application specific scheduler which

schedules processor time among the processes (tasks) in that application. All the applications that are al-

located to the same processor are then scheduled among themselves using a (global) resource scheduler.

Compositional analysis can be applied for ARINC-653 platform, in which the system can be modeled as

multi-level hierarchical scheduling [41] system.

In modern-day aircrafts, system design is performed manually through interactions between appli-

cation vendors and system designers. Using compositional schedulability analysis, this process can be

automated [41] and served as a framework for the design of application level schedules. Also the ana-

lytical correctness guarantee provided by this method can be used as system certification. The MIB-RT

problem we address in this thesis can be applied for this setting to obtain efficient interfaces for the avionic

applications. Our approach provides system designer with a choice of accuracy to trade with the speed-of-

analysis.

1.3.3 Energy-Aware Systems

We addressed efficient slack reclamation at runtime in the context of compositional real-time systems.

Once system slack is computed, it may be utilized in a variety of ways (e.g., permitting a job to overrun

its WCET). An important potential application of slack reclamation is in energy-aware systems. In de-

signing such system, the biggest challenge is to minimize energy consumption by lowering the processor
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frequency/voltage to reduce power dissipation. However, a real-time system’s task deadlines constrain

how much the frequency may be reduced. If there is an account of system slack at runtime, it will be

easy to determine whether the system can safely execute at a lower frequency state (and thus increase the

WCET of executing jobs if required).

1.4 Contribution

The thesis of this dissertaion is as follows:

Currently, server-based interfaces ensure strong temporal isolation among components at the

cost of resource over-provisioning whereas demand-based interfaces precisely model the re-

source demand of a component without the guarantee of temporal isolation. For both these

models, we show that efficient and effective resource allocation as well as strict temporal iso-

lation among components can be achieved. Specifically, we obtain efficient and near-optimal

bandwidth allocation schemes and admission controllers for periodic resource model and

arbitrary demand-based interface respectively. Furthermore, efficient slack reclamation tech-

nique can be obtained to allocate unused processing resources at runtime while still enforcing

the given interface.

To support the thesis, we make the following contributions in this thesis. For server-based inter-

faces, we address resource over-provisioning among components by proposing computationally efficient

approximate bandwidth allocation algorithms when components are scheduled upon periodic resources.

For demand-based interfaces, we address the enforcement of temporal isolation among components by

developing admission controllers for components specified by arbitrary demand interfaces.

• We propose a parametric approximation algorithm for bandwidth allocation of periodic resources

for earliest-deadline-first scheduled components [46, 47]. Exact bandwidth allocation for MIB-RT

of sporadic task system uses either exponential-time or pseudo-polynomial-time techniques, and

utilization-based sufficient techniques over-provision bandwidth. A parametric approximation scheme

in this case will allow component designer to specify an arbitrary level of accuracy (ε) for bandwidth

computation, and trade accuracy for computational complexity. Furthermore, the complexity of our

algorithm is polynomial both in terms of 1
ε and in the representation of C. In other words, we obtain
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a fully-polynomial-time approximation schemes (FPTAS) [92] for the MIB-RT problem. We also

show, via simulation, that our algorithm is quite accurate over synthetically generated task systems

even for medium-sized values of ε.

• For fixed-priority scheduled components of server-based model, we propose a parametric approx-

imation algorithm for bandwidth allocation of periodic resources where task deadlines are less or

equal task periods [35]. The complexity of our algorithm is polynomial in 1
ε and in the representation

of C, and the runtime is significantly smaller compared to the exact algorithm.

• For demand-based interface models, we address the interface enforcement problem to ensure strict

temporal isolation among components by proposing exact admission control algorithm for aperiodic

workload [36]. Given a simple demand interface, our algorithm runs in constant time for monotonic

absolute deadline (MAD) jobs3 and O(logN) time for arbitrary aperiodic jobs where N is the

number of active jobs in the system at any time.

• For arbitrary demand-curve interfaces, we propose exact admission control scheme for aperiodic

workload and show that it is computationally infeasible for long-running online system. For this

setting we propose a parametric approximate admission control algorithm, which has polynomial

time complexity in terms of number of active jobs in the systemN and the approximation parameter

ε [37]. We implement each of our proposed admission controllers and show that our approximate

admission controller is both efficient and precise (in comparison to the exact) via simulation.

• To address efficient slack reclamation, we characterize the optimal runtime system slack at any dis-

crete time instant with the guarantee that all future jobs in the system will remain schedulable. We

describe a straightforward slack determination mechanism which is of exponential space complex-

ity. To efficiently store and access the data, we investigate the use of space-filling curves along with

advance tree data structure. Furthermore, we propose a simple approximation on the stored slack

data to further reduce the space complexity of the problem. Simulation results comparing the pro-

posed approaches (exact and approximate) are presented which shows significant improvement in

space complexity.
3See Section 3.1.1 for illustration of MAD aperiodic jobs.



16

1.5 Organization

The remainder of the thesis is organized as follows. We review prior related research on various com-

positional real-time frameworks in Chapter 2. We give necessary background and notations in Chapter 3

(see List of Notations for a complete list of notations used in the report). In the next two chapters (Chap-

ter 4 and 5) we address the MIB-RT problem in the context of compositional frameworks executing upon

explicit-deadline periodic resource. In Chapter 4, we present our fully-polynomial-time approximation al-

gorithm for EDF scheduled components and prove its correctness and approximation ratio. We extend the

results for fixed-priority component level scheduling algorithm and give an FPTAS in Chapter 5. In Chap-

ter 6, we propose exact and approximate admission control algorithm for simple demand interfaces and

arbitrary demand interfaces respectively. We address runtime slack determination techniques for a compo-

sitional system in Chapter 7. Finally, in Chapter 8 we finish the thesis with the summary of contributions

and future research directions.
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CHAPTER 2: RELATED WORK

Over the past decade, numerous compositional real-time frameworks have been proposed, since the orig-

inal seminal works introducing real-time open environments by Deng and Liu [34] and resource kernels

by Rajkumar et al. [74]. In this chapter we briefly survey current literature on compositional frameworks

for both uniprocessor (Section 2.1) and multiprocessor platforms (Section 2.2). We explore server-based

models and interface-based models in Section 2.1.1 and 2.1.2 respectively, and highlight key differences

of these models with our contribution in this thesis.

2.1 Uniprocessor Platform

Research in compositional schedulability analysis for uniprocessor platforms has matured over years. For

the two-level hierarchical framework of Deng and Liu [34], Kuo and Li [54] developed exact schedulabiltiy

conditions for rate-monotonic (RM) system-level scheduler with harmonic task periods. Lipari and Baruah

gave exact conditions [62, 65] for dynamic priority (EDF) system-level scheduler for this model. The

common assumption for these initial works was that the system-level scheduler has full processor capacity

(100% utilization), which limits the hierarchical framework to two levels only. A more general approach

was proposed by Regehr and Stankovic [75] in which they used real-time guarantee conversion between

parent and child components. In their model, the child component is schedulable if the guarantee provided

from parent component can be converted to the guarantee that the child component demands.

To support multi-level hierarchical frameworks in uniprocessor platforms, two types of compositional

analysis techniques are used: a) resource model (server) based analysis and b) demand-bound function

based analysis. In the next two sections we describe different frameworks of these models.

2.1.1 Server-Based Models

In resource model based techniques, a component workload is abstracted by partial resource supply (i.e.,

processor execution). In other words, resource models can be used to specify the real-time guarantees

that a parent component provides to its children and can be assumed as “servers”. Compositional analysis

techniques have been proposed for bounded-delay resource model [43,69,82], periodic resource model [5,



18

31, 63, 76, 81] and explicit deadline periodic [38, 39] (EDP) model; we will cover these models in more

details in this section.

Real-Time Open Environment

The concept of an open environment for real-time systems with uniprocessor platforms was first proposed

by Deng and Liu [34], where real-time and non-real-time applications may coexist in a system and may join

and leave the system dynamically. This allows admission of new real-time tasks to be independent of the

existing tasks in the system and thus removes the requirement of global schedulability analysis whenever

a new task arrives in the system. The real-time applications supported by this model may have non-

preemptive tasks, aperiodic or sporadic tasks (i.e., tasks having release time jitter) and may be scheduled

by priority driven algorithms. The concept was first discussed for EDF kernel scheduler [34], and was later

extended to fixed-priority kernel scheduler [55].

Resource Kernel

In [74] Rajkumar et al. proposed the concept of resource kernels to provide timely, guaranteed and pro-

tected use of OS resource for concurrently running real-time and multimedia applications with different

timing constraints. In their model, applications specify their resource demands and the kernel satisfies

the demands using hidden resource management, and thus provides a separation of concern. This allows

OS-subsystem-specific customization (e.g., independent scheduling algorithms, extension) and simultane-

ous access to multiple resources by resource decoupling and thus resolving critical resource dependencies

immediately.

Bounded-Delay Model

Feng and Mok [43] proposed the concept of temporal resource partitions where processing resource is

available to each application at specific time partitions. This allows multiple application to share the same

resource platform and thus support hierarchical resource sharing. However, the characterization of par-

titions can become too specific to the applications in the system which makes this model less flexible.

To overcome this, they introduced more general bounded-delay resource model [69] to implement open

system environments. In this model, a resource partition is specified by a tuple (α,∆) where 0 ≤ α ≤ 1
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is the availability factor of the partition and ∆ is the maximum delay of the time intervals of any length in

the partition. Intuitively, each partition receives a fraction α of the total amount of processor capacity with

partition delay at most ∆. This model achieves a clean separation between a parent component and its chil-

dren, and has been used for compositional schedulability analysis [43,82]. Henzinger and Matic [48] have

also extended these techniques to support compositional analysis. Almeida and Pedreiras [5] developed

sufficient, polynomial-time bandwidth allocation techniques for fixed-priority scheduling upon temporal

partitions.

Periodic Resource Model

The periodic resource model (or periodic servers) has been introduced by Saewong et al. [76], Lipari and

Bini [63], and Shin and Lee [81]. This model characterizes resource supply guaranteed to any component

in compositional system (along with algorithms for MIB-RT described in the introduction) with periodic

resource allocation behavior, that is, the real-time guarantee of the parent model is satisfied if and only if

the real-time guarantee of the child model is satisfied. A periodic resource model is characterized by the

tuple (Π,Θ) where a resource or budget of Θ time units (capacity) is provided within a time interval of Π

(period).

For RM scheduled components upon periodic resources, Saewong et al. [76] introduced an exact

schedulability condition based on worst-case response time analysis, and Lipari and Bini [63] developed

an exact, pseudo-polynomial-time algorithm for MIB-RT based on time demand analysis. Similarly, for

dynamic-priority (EDF) scheduled components, Shin and Lee [81] have presented an exact schedulability

condition based on time demand analysis. To analyze hierarchical scheduling frameworks, these stud-

ies have also presented composition techniques for the component interfaces generated by the resource

models.

Explicit Deadline Periodic Resource

Easwaran et al. [39] generalized the periodic resource model as explicit deadline periodic (EDP) model by

introducing a deadline parameter to the component interface (see Section 1.2.1). They developed optimal

interface generation and composition techniques and gave exact algorithms for MIB-RT for their model.

State-of-the-art algorithms for bandwidth allocation use either exponential-time or pseudo-polynomial-
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time techniques for exact allocation, or linear-time, utilization-based techniques which may over-provision

bandwidth. In this thesis, we propose research into a third possible approach: parametric approximation

algorithms for bandwidth allocation in compositional real-time systems with the goal to allow a component

designer to specify an arbitrary level of accuracy for bandwidth computation, and trade increased accuracy

for increased computational complexity. We use EDP model for efficient interface determination problem

addressed in Chapter 4 and 5.

Fixed-Priority Servers

The schedulability analysis of fixed-priority-scheduled components upon periodic resources can be com-

pared to existing fixed-priority servers [57, 85–87]. When system consists of both periodic and aperiodic

jobs, the periodic jobs require fraction of resource proportional to their utilization. A fixed-priority server

reserves a fraction of resource for the upcoming aperiodic jobs, and serves them whenever such job arrives

in the system depending on the server “budget”. In deferrable server [57, 87], the server budget (C) is

replenished in periodic manner at the beginning of server periods (T ). If there is any remaining budget in

a period T , it can be used in the next server period. In sporadic server [86], the initial server budget is C

and it is consumed when an aperiodic job arrives. The budget is replenished after T time units from the

arrival of an aperiodic job, and it is replenished the amount consumed by the aperiodic job. The aperiodic

jobs have highest priority for both these models and if the budget is exhausted while executing a job, the

job is suspended unit next replenishment occurs.

For the periodic resource models discussed in the previous sections, the starvation or no-supply period

of the resource model can be considered as a special task (similar to the aperiodic server job) with high-

est priority, and traditional uniprocessor schedulability analysis can be performed to obtain a solution to

MIB-RT. Further, response time bounds can be derived similar to [32] to obtain efficiency in traditional

fixed-priority scheduling for FP-scheduled components scheduled upon periodic resources (Section 5.2).

To the best of our knowledge, we are currently not aware of any approximation algorithm (prior to our

work) with known approximation ratio developed to address the MIB-RT problem for any of the real-time

compositional frameworks. However, research by Albers et al. [2] has developed parametric algorithms,

without known approximation ratios, for the hierarchical event stream model. The goal of our work is to

fill this needed gap by obtaining an FPTAS for MIB-RT in the periodic resource model with uniprocessor
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platforms.

2.1.2 Interface-Based Models

Recently, researchers have also focused on characterizing component interface by demand functions which

describe the maximum amount of processing that the workload of a component requires for any interval of

time. The motivation of such design is to analyze essential characteristics of a system at early design stage;

before much time is invested in detailed implementation. An example of such characteristics are maximum

delay and throughput constraints, on-chip memory requirements, dimensioning of architectural elements

etc. In interface-based system design, system components are characterized by component interfaces,

which describe the usage and compatibility of the components to the entire system. A component interface

provides enough information to decide whether two or more components can work together satisfying all

requested real-time constraints. However, achieving temporal isolation in such model is not trivial when

components share same processing platform.

Real-Time Calculus

Several interface-based frameworks have been proposed [89, 93, 94] for subsystems1 of a compositional

real-time system. For these frameworks the compositional design is based on Real-Time Interfaces [4]

and the analysis is based on Real-Time Calculus (RTC) [28, 88]. These models provision for inherent

constraint propagation and address important design issues as expected maximum delay, maximal task

activation rate supported, least hardware resource requirement, amount of remaining resource, etc. For

example, Thiele et al. [93] proposed the concept of interface-based design to compute demand curves

and service curves for interface abstraction of a component in a compositional real-time system. They

applied existing interface theory [4, 33] into real-time context by developing a real-time calculus [88] for

these interfaces. In their model interfaces for the subsystems are “assumed”, and the system “guarantees”

the interface to the subsystem. Compositional techniques have also been developed based on incremental

design of components in the system.

Unlike the server-based resource model, the demand interface model precisely characterizes the sub-

system demand. If the system has to guarantee the resource demand accurately to different subsystems,
1We use the term “subsystem” as a synonym for the term “component” in compositional setting.
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enforcing strict temporal isolation among subsystems becomes difficult to achieve. In Chapter 6, we ad-

dress this problem by developing admission controllers for simple and arbitrary demand interfaces. In the

next few sections, we discuss state-of-art admission controllers for a subsystem consisting of aperiodic

and/or periodic jobs.

Bandwidth Sharing Server

Linear-time exact admission tests for scheduling periodic and aperiodic jobs have been proposed in [1,

78], which can be used for admission control. Lipari and Buttazzo [64] proposed Bandwidth Sharing

Server (BSS) algorithm which provides precise isolation between subsystems. In [62], this model has been

extended to support aperiodic servers with different subsystem-level schedulers. Using a similar approach,

Andersson and Ekelin [9] proposed an O(logN) exact admission controller for aperiodic and periodic

jobs in a non-compositional setting where N is the set of active jobs in the system. In Section 6.2 we

extend their techniques to apply to admission control for simple (single-step) demand-curve interfaces

(see Section 3.3.2 for more details).

Demand-Bound Server

A recent paper by Kumar et al. [53] has proposed a Demand-Bound Server (DBS) for scheduling jobs

according to a demand-curve interface. The proposed server successfully achieves the goal of providing

temporal isolation between subsystems specified precisely by a demand-curve. However, the approach has

fundamental differences with our proposed approach in Section 6.3. First, Kumar et al. do not provide

an admission controller for DBS; thus, if a subsystem incorrectly generates workload which exceeds the

specified demand curve, the over-allocation error would only become apparent when the subsystem misses

a deadline. In our approach, we seek to identify jobs that exceed a subsystem’s demand-curve interface

before they are admitted to the scheduler. This approach permits a subsystem designer to identify and

recover from potential over-allocation errors early before a temporal violation has occurred. The second

fundamental difference is that Kumar et al. assume that jobs are scheduled in first-come first-serve (FCFS)

order. Our general approach makes no assumptions regarding the underlying execution of admitted jobs;

we only guarantee that the set of admitted jobs does not violate the demand-curve interface. In Kumar et

al. [53], while a general mathematical model is presented for arbitrary demand curves, the server algorithm
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has only been specified for a very simple periodic demand function corresponding to the demand of a

single periodic task. In Chapter 6, we perform admission control and ensure temporal isolation for an

arbitrarily-complex demand curve.

2.1.3 Slack Reclamation

Several techniques exist in the literature to reclaim available unused resources for both uniprocessor and

multiprocessor scheduling platforms. System slack or spare capacity determination in the context of fixed-

priority scheduling has been explored in the Ph.D. thesis of Davis [30]. Existing server algorithms (e.g.

CBS [1], BSS [62], etc.) address overrun and resource reclamation of jobs which are mostly aperiodic

in nature. When a system consists of both aperiodic and periodic tasks and aperiodic tasks are scheduled

by constant bandwidth server (CBS), Caccamo et al. [27], [72] proposed techniques to reclaim unused

bandwidth allocated to the aperiodic tasks. Marzario et al. [67], developed similar techniques to utilize

unused bandwidth evenly to the jobs in the system to handle computational overload. Although these

techniques efficiently handle system overrun for aperiodic workload, none of the approaches guarantee

that the overrun will not violate the schedulability of future periodic/sporadic jobs.

Chetto and Chetto [29] determined system idle-time for a set of periodic tasks scheduled by EDF by

computing a slack table containing location and duration of slack over the hyperperiod. Andersson and

Ekelin [9] proposed an exact admission controller for system with integrated aperiodic and periodic tasks.

Using similar techniques as [29], they obtained slack from the periodic jobs, and used it to accommodate

aperiodic jobs and overrun situations. In Chapter 7, we use sporadic task model with EDF, in which case it

is not possible to determine slack location and duration in the schedule beforehand. Instead, we determine

worst-case available slack for each active job in the system at runtime.

Given a feasible preemptive uniprocessor system, Bertogna and Baruah [22] provide a method to com-

pute non-preemption period for jobs to reduce preemption overhead at runtime. However, their approach

is not dynamic in a sense that the computed slack period does not take into account of the execution times

of the active jobs. Our goal here is to determine system slack online, so that runtime unpredictability can

be better accommodated.

A significant body of work has also been done in the context of slack reclamation in energy-aware

systems exploiting the processor’s dynamic voltage scaling (DVS) feature. In this case slack is determined
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at runtime by changing the processor voltage such that the overall energy consumption is minimized [15,

50, 52, 73, 95]. Unlike DVS, in Chapter 7 we aim to determine runtime system slack for a fixed processor

voltage/frequency.

2.2 Multiprocessor Platform

Along with uniprocessor platforms, several compositional frameworks have been proposed in the literature

for multiprocessor resource platforms where components are modeled as hard or soft real-time sporadic

tasks. Anderson et al. [6] proposed a two-level multiprocessor scheduling framework with Pfair sched-

uler [7, 19]. Shin et al. [79] extended their periodic resource model [83] for multiprocessor platforms.

Leontyev and Anderson [59, 60] proposed hierarchical scheduling framework of soft/hard real-time tasks

in multiprocessor platforms. Since most of these frameworks devise sufficient solutions for MIB-RT, we

can extend our solution for uniprocessor platforms to obtain approximate solutions with constant-factor

approximation ratio for multiprocessor platforms.

For hard real-time applications, Bini et al. [24, 26] proposed compositional frameworks with under-

lying multiprocessor resource platforms. The proposed multi-supply function (msf) abstraction [26] and

parallel supply function (psf) abstraction [24] represent resource supply to an application from a virtual

processor characterized by m physical processors. The msf abstraction represents set of m supply func-

tions2 each corresponding to supply from a single processor, and the psf abstraction represents set of m

supply functions where i-th supply function represent resource supply with atmost i-processors running

in parallel. For these abstractions, we can develop admission controller for the applications similar to our

approach described in Chapter 6, and thus enforce strong temporal isolation among applications running

in multiprocessor platforms.

Please note that, we do not address multiprocessor platform in this thesis.

2See Definition 4 of Section 3.3, which characterizes supply function for periodic resources in uniprocessor platforms.
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CHAPTER 3: MODEL AND NOTATIONS

In this chapter, we introduce the reader to the background and notation for the task model, workload

functions, and interface models that we use throughout the thesis. In Section 3.1, we describe the task

models assumed for the problems considered in this report. In Section 3.2 we quantify the workload of

the task models, and in Section 3.3, we describe the resource model and interface model of compositional

real-time system used in our specific problem settings.

3.1 Task Model

While addressing the resource allocation problem (Chapter 4, 5) and slack reclamation problem (Chap-

ter 7) we have modeled a real-time component as a set of sporadic tasks [70], since this model is more

generalized than traditional periodic task model [66]. For enforcing demand interfaces in Chapter 6 we

have assume that a component consists of a set of aperiodic jobs.

3.1.1 Aperiodic Job Model

Each aperiodic job ji is characterized by an arrival time Ai, a worst case execution requirement Ei, and

a relative deadline Di; a job ji is denoted by the three-tuple (Ai, Ei, Di). We also denote the absolute

deadline for ji as d̄i
def
= Ai + Di. A job set J = {j1, j2, . . .} is a finite set of jobs indexed in order of

increasing arrival time (i.e., for 1 ≤ i < |J | : Ai ≤ Ai+1). We assume that job parameters are revealed to

a component only upon job arrival; i.e., a component does not have knowledge of future job arrivals. We

call a job ji active at time instant T , if T ∈ [Ai, Ai +Di). Let N be the maximum number of active jobs

in the component at any given time.

The monotonic absolute deadline (MAD) [18] property of an aperiodic job states that if job ji arrives

before job jk, then ji’s absolute deadline must occur before jk’s absolute deadline; more formally, Ai ≤
Ak ⇔ d̄i ≤ d̄k. Figure 3.1 provides a visual depiction of a legal MAD job arrival sequence. For arbitrary

aperiodic jobs, the constraint of the MAD property is relaxed; that is, jobs may arrive in the system at any

order of deadline (Figure 3.2).
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Figure 3.1:
MAD jobs: ji has greater absolute deadline than jn.
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Figure 3.2:
Arbitrary jobs: ji has smaller absolute deadline than jn−1.

3.1.2 Sporadic Task Model

A sporadic task τi = (ei, di, pi) is characterized by a worst-case execution requirement ei, a (relative)

deadline di, and a minimum inter-arrival separation pi, which is, for historical reasons, also referred

to as the period of the task. Such a sporadic task generates a potentially infinite sequence of jobs, with

successive job-arrivals separated by at least pi time units. Each job has a worst-case execution requirement

equal to ei and a deadline that occurs di time units after its arrival time. A sporadic task system τ
def
=

{τ1, . . . , τn} is a collection of n such sporadic tasks. For each task τi ∈ τ , the task system is constrained-

deadline if di less or equal pi, implicit-deadline if di equals pi, and arbitrary-deadline if di can be greater

or equal pi. A useful metric for a sporadic task τi is the task utilization ui
def
= ei/pi. The system utilization

is denoted Uτ
def
=
∑

τi∈τ ui.

Let pmax represent maximum period among all the task periods, and dmax represent maximum relative

deadline among all task deadlines. For any task τi ∈ τ , we denote j-th job of τi by τi,j , its arrival time as

aij and absolute deadline as d̄ij(= aij + pi) .

3.2 Workload Functions

The workload of a system represents the amount of work needs to be done by the processor in a given

period of time. For determining schedulability of a real-time system, it is often useful to quantify the

maximum amount of execution required by the tasks in the system that must complete over any time

interval. A workload function depends on the scheduling algorithm used to allocate resource among the

tasks. We denote an absolute time by T and a time interval-length by t.
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3.2.1 Aperiodic Jobs

Given a set of aperiodic jobs J in the system, we can accurately quantify the maximum allowable workload

over any interval of time.

Definition 1 (Demand) For any J and time instant T1, T2 ∈ R : 0 ≤ T1 < T2, the function demand(J, T1, T2)

represents the maximum cumulative execution requirement of all jobs in J that have both an arrival time

and deadline in the interval [T1, T2].

demand(J, T1, T2) =
∑

ji∈J :
(Ai≥T1) ∧ (Ai+Di≤T2)

Ei. (3.1)

3.2.2 Sporadic Tasks

A sporadic task τi generates potentially infinite sequence of jobs. The workload for such task can be

characterized for different scheduling schemes used by the task system τ as described below.

Earliest-Deadline First Scheduling

In earliest-deadline-first (EDF) scheduling algorithm, at any instant of time the scheduler chooses to exe-

cute the job of a task which has earliest deadline in time. To quantify the workload of an EDF-scheduled

system, researchers [21] have derived the demand-bound function, defined below.

Definition 2 (Demand-Bound Function) For any t > 0 and task τi, the demand-bound function (dbf)

quantifies the maximum cumulative execution requirement of all jobs of τi that could have both an arrival

time and deadline in any interval of length t. Baruah et al. [21] have shown that, for sporadic tasks, dbf

can be calculated as follows.

dbf(τi, t) = max

(
0,

⌊
t− di
pi

⌋
+ 1

)
· ei. (3.2)

Figure 3.3 gives a visual depiction of the demand-bound function for a sporadic task τi. Observe from

the above definition and Figure 3.3 that the dbf is a right continuous function with discontinuities at time

points of the form t ≡ di + a · pi where a ∈ N. The cumulative demand-bound function for task system τ

is defined as follows:
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DBF(τ, t)
def
=
∑

τi∈τ
dbf(τi, t) (3.3)

It has been shown [21] that the condition DBF(τ, t) ≤ t,∀t ≥ 0 is necessary and sufficient for sporadic

task system τ to be EDF-schedulable upon a preemptive uniprocessor platform of unit speed. Furthermore,

it has also been shown that the aforementioned condition needs to be verified at only time points in the

following ordered set (elements are in non-decreasing order). These points correspond to the points of

discontinuity for DBF.

TS(τ)
def
=
⋃

τi∈τ
{t ≡ di + a · pi | (a ∈ N) ∧ (t ≤ Hτ )} . (3.4)

where Hτ is an upper bound on the maximum time instant that the schedulability condition must be

verified at. For EDF-scheduled sporadic task systems on preemptive unit-speed processors, Hτ is at most

lcmτi∈τ{pi}. The above set is known as the testing set for sporadic task system τ . For any ta ∈ TS(τ),

ta ≤ ta+1 (a ∈ N+); if ta is the last element of the set, we use the convention that ta+1 equals∞. Also,

we will assume that t0 is equal to zero.

tei ei + pi di + 2pi di + 3pi di + 4pi

ei

2ei

3ei

4ei

5ei

d
bf

(τ
i,
t)

Figure 3.3: Demand-bound function dbf(τi, t) of task τi
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Figure 3.4: Request-bound function rbf(τi, t) of task τi
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Fixed-Priority Scheduling

When tasks are scheduled by a fixed-priority scheduling algorithm, we assume that task priorities are

preassigned and each task has a fixed-priority. Tasks are indexed in non-increasing priority order. That is,

τi has higher (or equal) priority than τj , if and only if, i ≤ j. As tasks generate jobs, each job inherits

the priority of its generating task. At any instant of time the scheduler chooses to execute the job of a task

which has higher (preassigned) priority. The optimal fixed-priority scheduling algorithm for constrained-

deadline sporadic tasks is deadline monotonic (DM) [61], which assigns each task a priority equal to the

inverse of its relative deadline (i.e., tasks with shorter relative deadlines have priority greater than tasks

with longer relative deadlines).

For FP-scheduled system, request-bound function is used to represent the system workload.

Definition 3 (Request-Bound Function) For any t > 0 and sporadic task τi, the request-bound func-

tion (rbf) quantifies the maximum cumulative execution requests that could be generated by jobs of τi

arriving within a contiguous time-interval of length t. It has been shown that for sporadic tasks, rbf can

be calculated as follows [56].

rbf(τi, t)
def
=

⌈
t

pi

⌉
· ei. (3.5)

The cumulative request-bound function for task τi is defined as follows:

RBF(τi, t)
def
= ei +

i−1∑

j=1

rbf(τj , t). (3.6)

Audsley et al. [14] have given a necessary and sufficient condition for sporadic task system τ to be

fixed-priority-schedulable upon a preemptive uniprocessor platform of unit speed: ∃t ∈ (0, di] such that

RBF(τi, t) ≤ t,∀i. Furthermore, it has also been shown [11] that this condition needs to be verified at

only time points in the following ordered set:

TSi(τ)
def
=

{
t = b · pa : a = 1, . . . , i; b = 1, . . . ,

⌊
di
pa

⌋}
∪ {di}. (3.7)

The above set is known as the testing set for sporadic task τi. The size of this set is
∑i

j=1

⌊
di
pj

⌋
which is

dependent on the task periods, and requires pseudo-polynomial time schedulability test.
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For server-based models, we consider each component C of the compositional real-time system as a

sporadic task system τ . For interface-based models, we assume that jobs can arrive aperiodically for a

component.

3.3 Resource Model

A resource model characterizes the processing resource supply to a system. In compositional setting, the

resource platform is shared among the components via the specifications of a resource model. In Sec-

tion 1.1.1 we introduced these concepts. In this section we characterize the supply function and interface

model used in this thesis.

3.3.1 Server-Based Interface

A periodic resource [81, 82] denoted by Γ = (Π,Θ), characterizes a partitioned resource that guarantees

allocations of Θ time units every Π time units, where a resource period Π is a positive integer and a

resource allocation time Θ is a real number in (0,Π). This model is generalized by [39] as Explicit-

Deadline Periodic (EDP) resource model. An EDP resource, denoted by Ω = (Π,Θ,∆), guarantees that

a component C (task system τ in our setting ) executed upon resource Ω will receive at least Θ units

of execution between successive time points in {t ≡ t0 + `Π | ` ∈ N} where t0 is some initial service

start-time t0 for the periodic resource. Furthermore, the Θ units of service must occur ∆ units after

each successive time point in the aforementioned set. Obviously, Θ ≤ ∆; for this thesis, we will make

the simplifying assumption that ∆ ≤ Π, as well. Furthermore, we will assume in this thesis that each

component C is a sporadic task system1 τ scheduled by EDF or FP upon Ω. (From now on, we use τ in

the context of component C).

Definition 4 (Supply-Bound Function) For any t > 0, the supply-bound function (sbf) quantifies the

minimum execution supply that a component executed upon periodic resource may receive over any inter-

val of length t.

Easwaran et al. [39] have quantified the supply-bound function for an EDP resource in the following

(see Figure 4.1 in Chapter 4 for a graphical depiction of the function) equation:
1Observe this is not a restriction on the number of hierarchical levels for our results. Subcomponents may also be represented

by sporadic tasks, and our results will apply without change.
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sbf(Ω, t) =





yΩΘ + max (0, t− xΩ − yΩΠ) , if t ≥ ∆−Θ

0, otherwise.
(3.8)

where yΩ =
⌊
t−(∆−Θ)

Π

⌋
and xΩ = (Π + ∆− 2Θ).

Note that we can obtain supply-bound function for periodic resource Γ by replacing ∆ by Π in the above

equation (Equation 3.8).

Since sbf is discontinuous at certain points, researchers [39, 82] have defined a linear lower-bound to

simplify the supply function:

Definition 5 (Lower Supply-Bound Function)

lsbf(Ω, t) =
Θ

Π
(t−Π−∆ + 2Θ) . (3.9)

lsbf is a linear interpolation of the lower portions of the “steps” in the sbf function. It has been

shown [82] that lsbf(Ω, t) ≤ sbf(Ω, t) for all t > 0. See Figure 4.1 for a visual depiction of lsbf.

Similarly, a linear-upper bound of the sbf is given by the following definition (the concept will be

useful in Chapter 5).

Definition 6 (Upper-Supply Bound Function)

usbf(Ω, t) def
=

Θ

Π
(t−∆ + Θ). (3.10)

usbf is a linear interpolation of the upper portion of the ”steps” of sbf (Fig. 4.1). From the definition it is

evident that for all t > 0, usbf(Ω, t) ≥ sbf(Ω, t).

Note that we use Θ to denote capacity in general, Θ∗ to denote exact or minimal capacity required for

a component to be schedulable, Θ̄ to denote sufficient capacity (Chapter 4), and Θ̂ to denote approximate

capacity obtained from our proposed algorithms EDFMINIMUMCAPACITY (Chapter 4) and FPMINI-

MUMCAPACITY (Chapter 5).
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Figure 3.5: Demand-curve interfaces

3.3.2 Demand-Curve Interface

Demand-curve interface for a component quantifies the precise demand of the workload for the component.

There are standard techniques which uses real-time calculus to determine the demand-curve interfaces.

Definition 7 (Demand-Bound Curve) A demand-bound curve of interface Λ gives an upper bound on

the total demand of the set of jobs J admitted by a component. We denote the demand-bound curve for any

interval of positive length t as dbi(Λ, t). Formally, the demand-bound curve dbi ensures that the following

condition holds

∀T1, T2 ∈ R : (0 ≤ T1 < T2) :: demand(J, T1, T2) ≤ dbi(Λ, T2 − T1). (3.11)

We require that dbi is a right continuous, piecewise linear, non-negative, and non-decreasing function of

interval length t ∈ R≥0 (t = T2 − T1 in the above case).

The above definition is applicable to existing real-time interface models such as RTC.

Single Step Demand Interface

A single-step demand interface (SSDI) can be defined as follows.

dbi(Λ, t) def
=





0, t < ν;

ρ+ σ(t− ν), t ≥ ν.
(3.12)
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Figure 3.5(a) gives a visual depiction of such interface. It is worthwhile to observe that the SSDI model

is a generalization of the well-known bounded-delay resource model proposed by Mok et. al [69] (Sec-

tion 2.1.1). In the above model, ν represents the “jitter” that an application executing upon the resource

may experience, σ represents the “rate” of execution that the application is guaranteed over time and ρ

represents initial supply of resource.

Arbitrary Demand Interface

An arbitrary demand interface can be considered as a sum of several single-step demand interfaces, with

each step characterized by (σi, νi, ρi) as shown in Figure 3.5(b). To precisely model system demand,

a cumulative demand-bound function (Equation 3.3) can be used as a demand interface for a system.

Another example of demand interface is the periodic resource model described in Section 3.3.1.
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CHAPTER 4: ALLOCATION: SERVER-BASED

MODEL ( EDF)

We address the MIB-RT problem in the context of server-based resource models (EDP) where components

are sporadic tasks. In this chapter, we consider the case where component-level scheduling algorithm is

earliest-deadline first (EDF). The contribution of this chapter can be summarized as follows:

Given a sporadic task system τ as real-time component C running on an earliest-deadline

periodic resource model Ω and accuracy parameter ε > 0, we will obtain a real-time interface

I ∈ I such that C is EDF-schedulable on I and β(I∗) ≤ β(I) ≤ (1 + ε)β(I∗) where I∗ is

the interface with the (optimal) minimum interface bandwidth for C. Given Π, ∆, let Θ∗ be

the optimal minimum capacity for τ to be EDF-schedulable upon Ω∗ = (Π,Θ∗,∆). If our

algorithm returns Θ̂ for the given parameters, then Θ∗ ≤ Θ̂ ≤ (1 + ε) ·Θ∗. Furthermore, our

algorithm runs in time polynomial in the number of tasks in τ and 1
ε .

4.1 MIB-RT in Periodic Resources for EDF-Scheduled Components

In this section, we discuss previous work on MIB-RT for periodic resource model [63, 81].

4.1.1 An Exact Solution

For EDP resource Ω, Easwaran et al. [39] developed exact schedulability conditions when components

are scheduled by EDF. The condition is given by the following theorem.

Theorem 1 (from [39]) A sporadic task system τ is EDF-schedulable upon an EDP resource Ω = (Π,Θ,∆),

if and only if,

(DBF(τ, t) ≤ sbf(Ω, t), ∀t ≤ Hτ )
∧(

Uτ ≤
Θ

Π

)
(4.1)

where Hτ equals lcmτi∈τ{pi}+ maxτi∈τ{di}.

This condition needs to be verified at each point in the testing set. As the size of the testing set is exponen-

tial (upto the lcm Hτ of task periods) in the number of tasks in the task system, the overall complexity of



35

the exact test is exponential.

4.1.2 An Over-provisioned Solution

Shin and Lee [83] proposed a sufficient approach for generating over-provisioned solutions given a com-

ponent with an implicit-deadline sporadic task system τ (i.e., for all τi ∈ τ , di = pi) and component-level

scheduling algorithm EDF. We will paraphrase their result in the following theorem.

Theorem 2 (from [83]) A component C = (τ,EDF) (where τ is an implicit-deadline sporadic task

system) is EDF-schedulable upon periodic resource Γ = (Π, Θ̄) if there exists an a ∈ N+ such that

Θ̄ ∈ [θmin(a), θmax(a)] where θmin(a) = max{θ0(a), θ1(a)} and θmax(a) = min{θ2(a),Π} with θ0(a),

θ1(a), and θ2(a) defined as follows.

θ0(a)
def
=

(a+ 1)Π− pmin(τ)

1 + a
a+2

,

θ1(a)
def
= Π · (a+ 2)Uτ

a+ 2Uτ
,

and

θ2(a)
def
=

(a+ 2)Π− pmin(τ)

1 + a+1
a+3

.

Here pmin(τ) = minτi∈τ{pi}. This approach has liner time complexity in determining capacity Θ̄, given

a periodic resource with fixed period Π. In [47], we have shown that the capacity Θ̄ from this algorithm

has an approximation ratio in the range 3
2 to 3. Thus, the over-provisioned capacity obtained from this

algorithm cannot guarantee that the returned Θ̄ satisfies Θ∗ ≤ Θ̄ ≤ (1 + ε)Θ∗ for any ε < 1
2 . In the next

section, we give our algorithm for determining minimum capacity Θ̂ of an EDP resource within a user

specified approximation ratio.

4.2 Approximate Solution

In this section we propose our approximate solution to MIB-RT problem in the context of EDF-scheduled

components. Albers and Slomka [3] proposed the following approximation to dbf to reduce the number of

discontinuities (and, thus, points in the testing set).
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d̃bf(τi, t, k)
def
=





dbf(τi, t), if t < di + (k − 1)pi;

ui · (t− di) + ei, otherwise.
(4.2)

The main intuition behind d̃bf(τi, t, k) is that it “tracks” dbf for exactly k discontinuities (i.e., “steps”).

After k discontinuities, d̃bf(τi, t, k) is a linear interpolation of the subsequent discontinuous points (with

slope equal to ui). The steps with the thick lines and the sloped-dotted line in Figure 3.3 correspond to

approximate demand dbf(τi, t, 3) with k = 3. Let D̃BF(τ, t, k)
def
=
∑

τi∈τ d̃bf(τi, t, k). Albers and Slomka

show [3], for any fixed k ∈ N+, the condition D̃BF(τ, t, k) ≤ t,∀t ≥ 0 is sufficient for sporadic task τ

to be EDF-schedulable upon a preemptive uniprocessor platform of unit speed. The ordered testing set of

this condition is reduced to

T̃S(τ, k)
def
=
⋃
τi∈τ {t ≡ di + a · pi | (a ∈ N) ∧ (a < k) ∧ (t ≤ Hτ )} . (4.3)

In order to obtain a fully polynomial-time approximation scheme for preemptive uniprocessors, Albers

and Slomka [3] make the following observation regarding the relationship between dbf and d̃bf.

Lemma 1 (from [3]) Given a fixed integer k ∈ N+, dbf(τi, t) ≤ d̃bf(τi, t, k) ≤
(
k+1
k

)
dbf(τi, t) for all

τi ∈ τ and t ∈ R≥0.

In addition to the above observation, we will now derive a technical lemma regarding D̃BF. Let

〈(t,Dt), α〉 denote the half-line in Euclidean space R2, originating at point (t,Dt) ∈ R2 with slope α

where 0 ≤ α ≤ 1 (i.e., 〈(t,Dt), α〉 = {(x, y) ∈ R2 | (x ≥ t) ∧ (y = α(x− t) +Dt))}). Additionally, we

define the following function ψ(τ, t, k) which quantifies the slope of the expression D̃BF(τ, t, k) at any

time t. Formally,

ψ(τ, t, k)
def
=

∑

τi∈τ :t≥di+(k−1)pi

ui. (4.4)

Note that ψ(τ, t,∞) is zero for all t. The following lemma states that for any element ta of testing set

T̃S(τ, k), the half-line defined by
〈(
ta, D̃BF(τ, ta, k)

)
, ψ(τ, ta, k)

〉
lower bounds D̃BF(τ, t, k) for all t

at least ta.
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Lemma 2 Given any fixed k ∈ N+ ∪ {∞}, ta ∈ T̃S(τ, k), and t ≥ ta

D̃BF(τ, t, k) ≥ ψ(τ, ta, k) · (t− ta) + D̃BF(τ, ta, k). (4.5)

Furthermore, for t ∈ [ta, ta+1), Equation 4.5 satisfies equality.

Proof: Given a k and ta as defined above, consider D̃BF(τ, t, k) for any t ≥ ta.

D̃BF(τ, t, k)

=
∑

τj∈τ d̃bf(τj , t, k)

=
∑

τj∈τ :t<dj+(k−1)pj
d̃bf(τj , t, k)

+
∑

τj∈τ :t≥dj+(k−1)pj
[uj(t− dj) + ej ]

(by Definition of d̃bf)

≥∑τj∈τ :t<dj+(k−1)pj
d̃bf(τj , ta, k)

+
∑

τj∈τ :t≥dj+(k−1)pj
[(uj(ta − dj) + ej) + uj(t− ta)]

(d̃bf is monontonically non-decreasing)

=
∑

τj∈τ d̃bf(τj , ta, k) + ψ(τ, ta, k) · (t− ta)
(by Definition of d̃bf and ψ).

The above series of inequalities show Equation 4.5. We now show that equality holds for Equation 4.5

for any time instant between ta and ta+1. For a task τj ∈ τ , consider t, t′ ∈ [dj + (s − 1)pj , dj + spj)

where s ∈ N+ and s ≤ k − 1. For any such t and t′, d̃bf(τj , t, k) equals dbf(τj , t) and d̃bf(τj , t′, k)

equals dbf(τj , t′), by definition of d̃bf (Equation 4.2). Furthermore, by Definition 2, dbf(τj , t) equals

dbf(τj , t′) due to the floor in the expression of Equation 3.2. Thus, for such a t and t′, d̃bf(τj , t, k) equals

d̃bf(τj , t′, k). In the third step of the derivation above the inequality may be replaced by equality for all

t ∈ [ta, ta+1) and τj where t < dj + (k − 1)pj , since there exists a s ∈ N+ (s < k − 1) such that

t, ta ∈ [dj + (s − 1)pj , dj + spj). (Otherwise, there would exist a tb(= d` + (s − 1)p`) ∈ T̃S(τ, k) for

some τ` ∈ τ where ta < tb < ta+1 which would contradict the ordering of the testing set). This implies

that d̃bf(τj , t, k) equals d̃bf(τj , ta, k) for all such τj ∈ τ with t < dj + (k − 1)pj .

The next corollary immediately follows by combining Lemmas 1 and 2.
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Algorithm 1 Pseudo-code for determining minimum capacity for a periodic resource given Π, ∆, and τ .
Note the algorithm is exact when k equals∞.

EDFMINIMUMCAPACITY(Π,∆, τ, k)

1 Θ̂← Uτ ·Π
2 for each t ∈ T̃S(τ, k)� (In order)

� For testing set with Hτ defined as in Theorem 1.
3 Dt ← D̃BF(τ, t, k)
4 α← ψ(τ, t, k)
5 Θmin

t ←∞
6 for `← max

{
1,
⌊
t−∆

Π

⌋}
to
(⌈

t+∆
Π

⌉
− 1
)

7 Θmin
` ← max





αΠ,
Dt−t+`Π+∆

`+1 ,
Dt
` ,

Dt+α((`+1)Π+∆−t)
`+2α





8 Θmin
t ← min{Θmin

t ,Θmin
` }

9 end (of inner loop)
10 Θ̂← max{Θ̂,Θmin

t }
11 end (of outer loop)
12 return Θ̂

Corollary 1 Given any fixed k ∈ N+, ta ∈ T̃S(τ, k), and t ≥ ta,

DBF(τ, t) ≥
(

k

k + 1

)
·
[
ψ(τ, ta, k) · (t− ta) + D̃BF(τ, ta, k)

]
. (4.6)

4.2.1 Approximate Capacity Determination

In Algorithm 1, we give pseudocode for our algorithm, EDFMINIMUMCAPACITY, for determining the

minimum capacity required to correctly schedule task system τ according to EDF upon an EDP resource

with given Π and ∆ parameters. One of the input parameters is k ∈ N+. If k is some fixed value, then

EDFMINIMUMCAPACITY returns an approximate value for the minimum capacity; however, if the input

value of k is equal to∞, then the returned value will be the actual minimum capacity.

The intuition behind algorithm EDFMINIMUMCAPACITY is as follows: for each value t in the testing

set T̃S(τ, k) find the minimum capacity Θmin
t required to guarantee that the half-line 〈(t, D̃BF(τ, t, k)),-

ψ(τ, t, k)〉 is completely beneath sbf((Π,Θmin
t ,∆), t). By Lemma 2, this half-line is equal to D̃BF(τ, t, k)
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until the next testing set time-point. So, any capacity greater than this minimum capacity Θmin
t will ensure

that D̃BF falls below sbf up until the next point in the testing set. If we set Θ̂ to be the maximum of

all these Θmin
t (Line 17 of EDFMINIMUMCAPACITY) and Uτ · Π, then we ensure that each “step” of

D̃BF(τ, t, k) is strictly less than sbf((Π, Θ̂,∆), t) and Uτ ≤ Θ̂
Π . Since D̃BF(τ, t, k) ≥ DBF(τ, t) for all t,

this implies that the schedulability condition of Theorem 1 is satisfied; thus, τ is EDF-schedulable upon

EDP resource Ω = (Π, Θ̂,∆). (Note that if the algorithm returns Θ̂ > ∆, we cannot guarantee that τ is

schedulable upon any EDP resource with parameters Π and ∆ executing upon a unit-speed processor).

4.2.2 Algorithm Complexity

The complexity of EDFMINIMUMCAPACITY depends almost entirely upon the cardinality of T̃S(τ, k).

To see this, observe that the inner loop (Lines 4 to 25) has a constant number of iterations due to the fact

that 0 ≤
(⌈

t+∆
Π

⌉
− 1
)
−
⌊
t−∆

Π

⌋
≤ 2 (since 0 ≤ ∆ ≤ Π). The work inside the inner loop takes constant

time as well. For the outer loop (Lines 1 to 28), the algorithm iterates (in non-decreasing order) through

the testing set T̃S(τ, k). Using a “heap-of-heaps” described by Mok [68], the time complexity to obtain

an element of the testing set is O(log n). Since for each element of the testing set, t ≡ di + api for some

τi ∈ τ and a ∈ N, setting Dt and α (Lines 3 and 4) may be done in constant time on each iteration of

the outer loop. (Dt is increased by ei from prior iteration and α is only increased by ui, if a = (k − 1)).

Therefore, the runtime complexity of EDFMINIMUMCAPACITY is O(|T̃S(τ, k)| · log n). If k =∞, then

|T̃S(τ,∞)| ≤ Hτ which is potentially exponential in the number of tasks. The complexity for exactly

determining the minimum capacity is, thus, the same complexity as the test of Theorem 1 on a fixed Ω.

Otherwise, if k is a fixed integer, |T̃S(τ, k)| ≤ kn and the complexity is O(kn log n).

4.2.3 Algorithm Correctness

To prove the correctness of EDFMINIMUMCAPACITY, we will show the following theorem which states

that the value returned by the algorithm (i.e., Θ̂) is at least the optimal minimum capacity value Θ∗(Π,∆, τ).

Furthermore, if the input k equals∞, then the returned capacity is optimal.

Theorem 3 For all k ∈ N+ ∪ {∞}, EDFMINIMUMCAPACITY returns Θ̂ ≥ Θ∗(Π,∆, τ). Furthermore,

if k =∞, Θ̂ = Θ∗(Π,∆, τ).
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3Θ

Π + ∆ − 2Θ

Π + ∆ − Θ

2Π + ∆ − 2Θ 3Π + ∆ − 2Θ

2Π + ∆ − Θ 3Π + ∆ − Θ

〈(t, Dt), α〉

F2(Π,Θ,∆)

lsbf

sbf

Figure 4.1: The solid line “step” function is sbf for Ω. The dashed line is the lower supply-
bound function lsbf. The shaded region represents the `-Feasibility Region for
` = 2 with element 〈(t,Dt), α〉.

In order to prove the above theorem, we require some additional definitions. The next definition

quantifies the minimum capacity Θ(≤ ∆) that is required for sbf to upper-bound a half-line 〈(t,Dt), α〉.
Definition 8 and 10 uses the function infimum (inf) instead of minimum (min) . We will use the convention

that inf returns∞ on an empty set.

Definition 8 (Minimum Capacity for 〈(t,Dt), α〉)

Θ∗(Π,∆, 〈(t,Dt), α〉) def
= inf



Θ ∈ R+

∣∣∣∣∣∣
(Θ ≤ ∆)

∧ (∀x ≥ t : α(x− t) +Dt ≤ sbf((Π,Θ,∆), t))



 . (4.7)

Since sbf is not a continuous function, it is difficult to calculate Θ∗(Π,∆, 〈(t,Dt), α〉) in a straightfor-

ward linear way. Instead, we break the region below the sbf function into overlapping subregions we call

`-feasibility regions for any given Ω = (Π,Θ,∆). An `-feasibility region is the area below the `th “step”

of the sbf function extending downward and infinitely to the right. Figure 4.1 gives a visual depiction; the

definition below formalizes the `-feasibility region concept.
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Definition 9 (`-Feasibility Region of Ω)

F`(Π,Θ,∆)
def
=





〈(t,Dt), α〉 ∈ R2
≥0 × R≥0

∣∣∣∣∣∣∣∣∣∣∣∣

(
0 ≤ α ≤ Θ

Π

)

∧
(

Θ ≥ Dt−t+`Π+∆
`+1

)

∧
(
Θ ≥ Dt

`

)

∧
(

Θ ≥ Dt+α((`+1)Π+∆−t)
`+2α

)





. (4.8)

The next defined function determines the minimum capacity for any given half-line 〈(t,Dt), α〉 to be

an element of the `-feasibility region.

Definition 10 (`-Minimum Capacity for 〈(t,Dt), α〉)

Θ∗` (Π,∆, 〈(t,Dt), α〉) def
= inf {Θ(≤ ∆) ∈ R+ | 〈(t,Dt), α〉 ∈ F`(Π,Θ,∆)} . (4.9)

We begin by showing that the half-line 〈(t,Dt), α〉 is completely below sbf if and only if 〈(t,Dt), α〉
is contained in some `-feasibility region with ` > 0.

Lemma 3 For any 〈(t,Dt), α〉 ∈ R2
≥0 × R≥0, α(t′ − t) + Dt ≤ sbf((Π,Θ,∆), t′) ∀t′ ≥ t if and only if

there exists ` ∈ N+ such that 〈(t,Dt), α〉 ∈ F`(Π,∆,Θ).

Proof: We will give a geometric-based proof for this lemma. We will first show the “if” direction.

Assume that 〈(t,Dt), α〉 ∈ F`(Π,∆,Θ) for some ` ∈ N+. We must show that the half-line 〈(t,Dt), α〉
is completely contained below the sbf function for Ω = (Π,Θ,∆). (This is equivalent to showing α(t′ −
t) +Dt ≤ sbf((Π,Θ,∆), t′) ∀t′ ≥ t).

If Dt ≤ lsbf((Π,Θ,∆), t), then the half-line 〈(t,Dt), α〉 is below lsbf(Ω, t′) for all t′ ≥ t, because

the slope of the half-line (i.e., α) is at most Θ
Π that is, the slope of lsbf(Ω, t) (see Figure 4.2a). α ≤ Θ

Π

follows from Equation 4.8. Since lsbf(Ω, t′) ≤ sbf(Ω, t′) for all t′ ≥ t, this implies that the half-line

〈(t,Dt), α〉 never exceeds lsbf for Ω = (Π,Θ,∆). Otherwise, if Dt > lsbf((Π,Θ,∆), t), the originating

point of the half-line 〈(t,Dt), α〉 is contained within the triangular convex region defined by the (x, y)-

points (`Π+∆−2Θ, (`−1)Θ), (`Π+∆−Θ, `Θ), and ((`+1)Π+∆−2Θ, `Θ); this region is formed by

the intersection of the half-plane y > lsbf((Π,Θ,∆), x) and the `-feasibility region; e.g., see Figure 4.2b.

From the figure it is obvious that this triangular region is contained below sbf. Furthermore, the entire
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(t,Dt)

(`Π + ∆
((` + 1)Π + ∆

(`Π + ∆ − 2Θ,

(` − 1)Θ)

−Θ, `Θ)
−2Θ, `Θ)

(t,Dt)

(`Π + ∆
((` + 1)Π + ∆

(`Π + ∆ − 2Θ,

(` − 1)Θ)

−Θ, `Θ) −2Θ, `Θ)

sbf sbf

lsbf lsbf

(a) Dt ≤ lsbf (b) Dt > lsbf

Figure 4.2: Illustration of Lemma 3. (a) Originating point of half-line 〈(t,Dt), α〉 is below
lsbf. (b) Originating point of 〈(t,Dt), α〉 is above lsbf

`-feasibility region is contained below sbf; thus, Dt ≤ sbf((Π,Θ,∆), t). If we can show that the half-line

〈(t,Dt), α〉’s value is below `Θ at t1 = (`+ 1)Π + ∆− 2Θ, then [t, t1] interval portion of the half-line is

contained entirely within the `-feasibility region (and, thus, below sbf), and the remaining [t1,∞) portion

of the half-line falls below lsbf (and, thus, sbf). From the fourth condition of Equation 4.8, it must be that

`Θ ≥ Dt + α((`+ 1)Π + ∆− 2Θ− t) which is equivalent to 〈(t,Dt), α〉 being less than `Θ at t1. Thus,

in either case (based on the relative values of Dt and lsbf(Ω, t)), we show the half-line 〈(t,Dt), α〉 must

be completely contained below the sbf function for Ω.

For the “only if” direction, we must show that if the half-line 〈(t,Dt), α〉 is completely contained

below the sbf function for Ω, then there exists an ` ∈ N+ such that 〈(t,Dt), α〉 ∈ F`(Π,Θ,∆). Consider

` =
⌈
Dt
Θ

⌉
. (If Θ = 0, then we will simply use ` = 0, since in this case Dt must be zero due to

sbf((Π, 0,∆), t) = 0 for all t > 0). The third condition of Equation 4.8 is trivially satisfied for this `. It

also must be true that Dt > (`− 1)Θ. Thus, (t,Dt) must be below of the line defined by y = x− (`Π +

∆−(`+1)Θ) (otherwise, (t,Dt) would be above the sbf function at t). This last constraint is equivalent to

the second condition of Equation 4.8. The half-line’s slope α obviously must not exceed Θ
Π ; otherwise, the

〈(t,Dt), α〉 would eventually exceed sbf at some point. This constraint corresponds to the first condition

of Equation 4.8. Finally, `Θ must be greater than the value of 〈(t,Dt), α〉 at t1 = (` + 1)Π + ∆ − 2Θ;

otherwise, the half-line would exceed sbf at t1. By the previous paragraph, we showed that this condition

corresponds to satisfying the fourth condition of Equation 4.8. Therefore, for ` =
⌈
Dt
Θ

⌉
we have satisfied

all four conditions of Equation 4.8, implying that 〈(t,Dt), α〉 ∈ F⌈
Dt
Θ

⌉(Π,Θ,∆).
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Lemma 4 For any ` ∈ N+,

Θ∗` (Π,∆, 〈(t,Dt), α〉) = max





αΠ,

Dt−t+`Π+∆
`+1 ,

Dt
` ,

Dt+α((`+1)Π+∆−t)
`+2α





. (4.10)

Proof: Let ΘRHS denote the right-hand side of Equation 4.10. We will show that both ΘRHS ≥
Θ∗` (Π,∆, 〈(t,Dt), α〉) and ΘRHS ≤ Θ∗` (Π,∆, 〈(t,Dt), α〉) which will imply the lemma. The inequal-

ity ΘRHS ≥ Θ∗` (Π,∆, 〈(t,Dt), α〉) follows from the observation that 〈(t,Dt), α〉 ∈ F`(Π,ΘRHS,∆)

(i.e., the four conditions of Equation 4.8 imply the lower bound).

We will show ΘRHS ≤ Θ∗` (Π,∆, 〈(t,Dt), α〉) by contradiction. Assume the negation of the inequality.

In this case, since ΘRHS > Θ∗` (Π,∆, 〈(t,Dt), α〉), it must be that Θ∗` (Π,∆, 〈(t,Dt), α〉) is strictly less

than at least one of the four terms in the RHS of Equation 4.10; however, this implies that 〈(t,Dt), α〉 6∈
F`(Π,Θ∗` (Π,∆, 〈(t,Dt), α〉),∆). The previous statement contradicts the definition of Definition 10; thus,

it must be that ΘRHS ≤ Θ∗` (Π,∆, 〈(t,Dt), α〉) is true.

Now that we know how to efficiently compute Θ∗` (Π,∆, 〈(t,Dt), α〉) by simply checking the four

values defined by the previous lemma, it would be convenient to use this value to compute the overall

minimum capacity for half-line 〈(t,Dt), α〉. The next lemma shows that this minimum bandwidth can be

found by taking the minimum `-minimum capacity for all positive `.

Lemma 5

Θ∗(Π,∆, 〈(t,Dt), α〉) = inf
`>0
{Θ∗` (Π,∆, 〈(t,Dt), α〉)} . (4.11)

Proof: Let ΘRHS denote the right-hand side of Equation 4.11. We will show that both ΘRHS ≥
Θ∗(Π,∆, 〈(t,Dt), α〉) and ΘRHS ≤ Θ∗(Π,∆, 〈(t,Dt), α〉) which will imply the lemma. First, we show

ΘRHS ≥ Θ∗(Π,∆, 〈(t,Dt), α〉). By definition of infimum, for any δ > 0, there exists ` ∈ N+ such that

{Θ∗` (Π,∆, 〈(t,Dt), α〉)} ≤ ΘRHS + δ. Definition 10 states that 〈(t,Dt), α〉 ∈ F`(Π,ΘRHS + δ,∆) for

this `. Lemma 3 then implies that α(t′ − t) + Dt ≤ sbf((Π,ΘRHS + δ,∆), t′) for all t′ ≥ t. Therefore,

for all δ > 0, ΘRHS + δ must be in the set considered in the inf on the right-hand side of Equation 4.7 in

Definition 8. Thus, ΘRHS ≥ Θ∗(Π,∆, 〈(t,Dt), α〉).
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Next, we will show ΘRHS ≤ Θ∗(Π,∆, 〈(t,Dt), α〉). By Definition 8,

∀x ≥ t : α · (x− t) +Dt ≤ sbf((Π,∆,Θ∗(Π,∆, 〈(t,Dt), α〉)), t).

Lemma 3 implies that there exists ` ∈ N+ such that 〈(t,Dt), α〉 ∈ F`(Π,Θ∗(Π,∆, 〈(t,Dt), α〉),∆). By

Definition 10, this implies that Θ∗(Π,∆, 〈(t,Dt), α〉) is in the set considered in the right-hand side of

Equation 4.9 which implies the inequality.

Fortunately, we do not need to evaluate Θ∗` (Π,∆, 〈(t,Dt), α〉) for all positive ` to compute the mini-

mum capacity for half-line 〈(t,Dt), α〉. In the next lemma and corollary, we show that the smallest value

of ` that needs to be considered is max
(
1,
⌊
t−∆

Π

⌋)
for a given Π and ∆. For all values of `′ smaller than

this value, we can show that Θ∗`′(Π,∆, 〈(t,Dt), α〉) ≥ Θ∗
max(1,b t−∆

Π c)(Π,∆, 〈(t,Dt), α〉).

Lemma 6 For any `, `′ ∈ N+ and Dt, t, α ∈ R≥0, if (t ≥ `Π + ∆), (`′ < `), and (α ≤ 1), then

[〈(t,Dt), α〉 ∈ F`′(Π,Θ,∆)]⇒ [〈(t,Dt), α〉 ∈ F`(Π,Θ,∆)] . (4.12)

Proof: Assume that 〈(t,Dt), α〉 ∈ F`′(Π,Θ,∆). We must show that all four conditions of Equation 4.8

are satisfied forF`. First note that 〈(t,Dt), α〉 ∈ F`′(Π,Θ,∆) implies that α ≤ Θ
Π ; thus, the first condition

of Equation 9 is trivially satisfied for F`. By the third condition of Equation 4.8 for F`′ , Dt ≤ `′Θ. Since

` > `′, it must also be thatDt ≤ `Θ (which satisfies third condition forF`). Similarly, the fourth condition

of Equation 4.8 for F`′ implies that `′Θ ≥ α((`′ + 1)Π + ∆− 2Θ− t) +Dt. Since Θ ≥ αΠ and ` ≥ `′,
the fourth condition for F` is also satisfied. Finally, consider the following expression

t− `Π−∆ + (`+ 1)Θ

≥ (`Π + ∆)− (`Π + ∆) + (`+ 1)Θ (by assumption on t)

= (`+ 1)Θ

> `′Θ

≥ Dt (from condition three for F`′)

The above derivation implies the second condition for F` which proves the lemma.
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Given t,Π, and ∆, consider ` = max
(
1,
⌊
t−∆

Π

⌋)
. For any Dt, α, and `′ < ` which satisfy the

supposition of the above lemma, it must be that.

{Θ(≤ ∆) ∈ R+ | 〈(t,Dt), α〉 ∈ F`′(Π,Θ,∆)}
⊆
{

Θ(≤ ∆) ∈ R+ | 〈(t,Dt), α〉 ∈ Fmax(1,b t−∆
Π c)(Π,Θ,∆)

}
.

By the above expression and Equation 4.9 of Definition 10, the corollary below follows immediately.

Corollary 2 For any `′ ∈ N+ and Dt, t, α ∈ R≥0, if
(
`′ < max

(
1,
⌊
t−∆

Π

⌋))
and (α ≤ 1), then

Θ∗`′(Π,∆, 〈(t,Dt), α〉) ≥ Θ∗
max(1,b t−∆

Π c)(Π,∆, 〈(t,Dt), α〉).

In the following two lemmas and one corollary, we show that the largest value of ` that needs to be

considered is
⌈
t+∆

Π

⌉
− 1 for a given Π and ∆. For all values of `′ larger than this value, we can show that

Θ∗`′(Π,∆, 〈(t,Dt), α〉) ≥ Θ∗d t+∆
Π e−1

(Π,∆, 〈(t,Dt), α〉).

Lemma 7 For any `, `′ ∈ N+ and Dt, t, α ∈ R≥0, if (t ≤ `Π−∆), (`′ ≥ `− 1), and (α ≤ 1), then

[〈(t,Dt), α〉 6∈ F`′(Π,Θ,∆)]⇒ [〈(t,Dt), α〉 6∈ F`′+1(Π,Θ,∆)] .

Proof: Assume that 〈(t,Dt), α〉 6∈ F`′(Π,Θ,∆). This implies that at least one of the following is true:

α > Θ
Π (4.13a)

Θ < Dt−t+`′Π+∆
`′+1 (4.13b)

Θ < Dt
`′ (4.13c)

Θ < Dt+α((`′+1)Π+∆−t)
`′+2α (4.13d)

We will show that each of the above inequalities implies that 〈(t,Dt), α〉 6∈
F`′+1(Π,Θ,∆). Obviously, Equation 4.13a trivially implies the aforementioned expression. If Equa-

tion 4.13b is true, then

Dt > t− `′Π−∆ + (`′ + 1)Θ

⇒ Dt > t− (`′ + 1)Π−∆ + (`′ + 2)Θ

⇒ Θ > Dt−t+(`′+1)Π+∆
`′+2
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The first implication above is due to the fact that right-hand side of the first inequality in the derivation is

non-increasing in `′ (since Θ ≤ Π). Thus, if Equation 4.13b is true, then 〈(t,Dt), α〉 6∈ F`′+1(Π,Θ,∆).

If Equation 4.13c is true, then consider the following expression:

t− (`′ + 1)Π−∆ + (`′ + 2)Θ

≤ `Π−∆− (`′ + 1)Π−∆ + (`′ + 2)Θ

(by supposition on t)

≤ `Π− `Π− 2∆ + (`′ + 2)Θ (by `′ ≥ `− 1)

≤ (`′ + 2)Θ− 2Θ (by ∆ ≥ Θ)

= `′Θ

< Dt (by Equation 4.13c)

Thus, Θ < Dt−t+(`′+1)Π+∆
`′+2 which implies 〈(t,Dt), α〉 6∈ F`′+1(Π,Θ,∆).

Finally, if Equation 4.13d is true, then

`′Θ < Dt + α((`′ + 1)Π + ∆− 2Θ− t)
⇒ `′Θ < Dt + (`′ + 1)Π + ∆− 2Θ− t
⇒ (`′ + 2)Θ < Dt + (`′ + 1)Π + ∆− t
⇒ Θ < Dt−t+(`′+1)Π+∆

`′+2

The first implication is due to α ≤ 1. The last inequality implies that when Equation 4.13d is true,

〈(t,Dt), α〉 6∈ F`′+1(Π,Θ,∆); the lemma follows.

Lemma 8 For any `, `′ ∈ N+ and Dt, t, α ∈ R≥0, if (t ≤ `Π−∆), (`′ > `− 1), and (α ≤ 1), then

[〈(t,Dt), α〉 ∈ F`′(Π,Θ,∆)]⇒ [〈(t,Dt), α〉 ∈ F`−1(Π,Θ,∆)] .

Proof: By the contrapositive of Lemma 7, if 〈(t,Dt), α〉 ∈ F`′(Π,Θ,∆), then 〈(t,Dt), α〉 ∈ F`′−1(Π,Θ,∆).

If `′− 1 equals `− 1, then we have shown the lemma. Otherwise, the lemma follows from repeated appli-

cation of the contrapositive of Lemma 7.
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Given t,Π, and ∆, consider ` =
⌈
t+∆

Π

⌉
. For any Dt, α, `

′ > `− 1 which satisfy the supposition of the

above lemma, it must be that.

{Θ(≤ ∆) ∈ R+ | 〈(t,Dt), α〉 ∈ F`′(Π,Θ,∆)}
⊆
{

Θ(≤ ∆) ∈ R+ | 〈(t,Dt), α〉 ∈ Fd t+∆
Π e−1(Π,Θ,∆)

}
.

By the above expression and Equation 4.9 of Definition 10, the corollary below follows immediately.

Corollary 3 For a given Π, ∆, and 〈(t,Dt), α〉, the following is true for all `′ >
⌈
t+∆

Π

⌉
− 1,

Θ∗`′(Π,∆, 〈(t,Dt), α〉) ≥ Θ∗d t+∆
Π e−1

(Π,∆, 〈(t,Dt), α〉).

Combining Corollaries 8 and 7 with Lemma 5, we obtain the following lemma which shows that

Θ∗(Π,∆, 〈(t,Dt), α〉) may be calculated with only a small number of values for `.

Corollary 4

Θ∗(Π,∆, 〈(t,Dt), α〉) = min
max{1,(b t−∆

Π c)}≤`≤(d t+∆
Π e−1)

{Θ∗` (Π,∆, 〈(t,Dt), α〉)} .

The next lemma shows the maximum value of Θ obtained from calculating Θ∗(·) for every value in the

testing set T̃S(τ, k) may be used safely used as a capacity which will satisfy the condition of Theorem 1

(i.e., the EDP schedulability condition).

Lemma 9 For any t ≥ 0, D̃BF(τ, t, k) ≤ sbf((Π,Θ,∆), t) and Uτ ≤ Θ
Π , if and only if,

Θ ≥ max

(
max

t∈T̃S(τ,k)

{
Θ∗
(

Π,∆, 〈(t, D̃BF(τ, t, k)), ψ(τ, t, k)〉
)}

,

Uτ ·Π

)
. (4.13)

Proof: We will show the “if” direction first, by showing its contrapositive. We must show that if either

Uτ >
Θ
Π or ∃t ≥ 0 : D̃BF(τ, t, k) > sbf((Π,Θ,∆), t), then the negation of the inequality of Equation 4.13

is also true. Assume that Uτ > Θ
Π . By the second expression in the outer “max” of Equation 4.13, the nega-

tion of the inequality is true. Now, assume there exists t ≥ 0 such that D̃BF(τ, t, k) > sbf((Π,Θ,∆), t).

There must exist two consecutive values ta and ta+1 in T̃S(τ, k) where t ∈ [ta, ta+1). (Recall that if ta is

the largest value in T̃S(τ, k) then ta+1 is assumed to be∞). Lemma 2 implies that for all t′ ∈ [ta, ta+1),
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D̃BF(τ, t′, k) equals ψ(τ, ta, k) · (t′ − ta) + D̃BF(τ, ta, k). Since t ∈ [ta, ta+1),

sbf((Π,Θ,∆), t) < ψ(τ, ta, k) · (t− ta) + D̃BF(τ, ta, k).

By Lemma 3, this implies that for all ` ∈ N+,

〈(ta, D̃BF(τ, ta, k)), ψ(τ, ta, k)〉 6∈ F`(Π,Θ,∆).

By Equation 4.9 from Definition 10,

Θ < Θ∗` (Π,∆, 〈(ta, D̃BF(τ, ta, k)), ψ(τ, ta, k)〉)

for all ` ∈ N+, which implies (by Lemma 5)

Θ < Θ∗(Π,∆, 〈(ta, D̃BF(τ, ta, k)), ψ(τ, ta, k)〉).

Thus, Θ < max
t∈T̃S(τ,k)

{
Θ∗
(

Π,∆, 〈(t, D̃BF(τ, t, k)), ψ(τ, t, k)〉
)}

. Again, the negation of the in-

equality of Equation 4.13 is true. The contrapositive of the “if” direction follows.

For the “only if” direction of the lemma, we will also consider the contrapositive. The contrapositive

will follow by simply reversing the implications of the proof for the “if” direction. We give the argument

for completeness. Assume that the negation of the inequality of Equation 4.13. If Θ < Uτ · Π, then

obviously Uτ > Θ
Π . Otherwise, if

Θ < max
t∈T̃S(τ,k)

{
Θ∗
(

Π,∆, 〈(t, D̃BF(τ, t, k)), ψ(τ, t, k)〉
)}

,

then there exists ta ∈ T̃S(τ, k) such that Θ < Θ∗(Π,∆, 〈(ta, D̃BF(τ, ta, k)), ψ(τ, ta, k)〉). By Lemma 5,

Θ < Θ∗` (Π,∆, 〈(ta, D̃BF(τ, ta, k)), ψ(τ, ta, k)〉)

for all ` ∈ N+. From Equation 4.9 from Definition 10, 〈(ta, D̃BF(τ, ta, k)), ψ(τ, ta, k)〉 6∈ F`(Π,Θ,∆)

for all ` ∈ N+. By Lemma 3, there exists a t ≥ ta such that sbf((Π,Θ,∆), t) < ψ(τ, ta, k) · (t − ta) +

D̃BF(τ, ta, k). Lemma 2 implies that for all t′ ≥ ta, D̃BF(τ, t′, k) is at least ψ(τ, ta, k) · (t′ − ta) +
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D̃BF(τ, ta, k). Thus, since t ≥ ta, sbf((Π,Θ,∆), t) < D̃BF(τ, t, k). The contrapositive of the “only if”

direction follows.

After proving the above lemma, we may now prove Theorem 3 which states that EDFMINIMUM-

CAPACITY returns a valid capacity (i.e., τ is schedulable upon the returned capacity) for finite k and an

exact value for k =∞.

Proof of Theorem 3 It is easy to see that Θ̂ returned from EDFMinimumCapacity corresponds to the

value on the right-hand side of Equation 4.13 of Lemma 9; the loop from Line 1 to 28 iterate through each

value ta in T̃S(τ, k) (setting variables corresponding to D̃BF(τ, ta, k) and ψ(τ, ta, k) in Lines 3 and 4, re-

spectively). The inner loop from Line 4 to 25 determines Θ∗
(

Π,∆, 〈(ta, D̃BF(τ, ta, k)), ψ(τ, ta, k)〉
)

; the

implications of Corollary 4 and Lemma 5 show that we need to calculate

Θ∗` (Π,∆, 〈(ta, D̃BF(τ, ta, k)), ψ(τ, ta, k)〉) only for values of ` from max
(
1,
⌊
ta−∆

Π

⌋)
to
⌈
ta+∆

Π

⌉
− 1.

Finally, in Line 17, Θ̂ is set to the maximum of Uτ · Π and Θ∗
(

Π,∆, 〈(ta, D̃BF(τ, ta, k)), ψ(τ, ta, k)〉
)

over all values ta in T̃S(τ, k).

By Lemma 9, D̃BF(τ, t, k) ≤ sbf((Π, Θ̂,∆), t) for all t ≥ 0 and Uτ ≤ Θ
Π . By Lemma 1, DBF(τ, t) ≤

D̃BF(τ, t, k) ≤ sbf((Π, Θ̂,∆), t) for all t ≥ 0. Therefore, the supposition of Theorem 1 are satisfied

and the τ will always meet all deadlines when scheduled by EDF upon Ω = (Π, Θ̂,∆). When k = ∞,

D̃BF(τ, t, k) equals DBF(τ, t) for all t ≥ 0; in this case, Θ̂ equals Θ∗(Π,∆, τ) (i.e., Θ̂ is an exact value)

due to the fact that both Lemma 9 and Theorem 1 are necessary and sufficient.

4.2.4 Approximation Ratio

In this section we prove that given an accuracy parameter ε, our algorithm returns minimum capacity

with approximation ration 1 + ε. In the previous section, we have shown that EDFMINIMUMCAPACITY

gives a valid answer when k is finite and an exact answer when k is infinite. When k is finite, we

have not, yet, given any details on how accurate the returned Θ̂ will be. In this section, we show that

we may trade computational efficiency for accuracy; that is, as k increases the guaranteed accuracy of

EDFMINIMUMCAPACITY increases along with its running time. Theorem 4 quantifies this tradeoff for a

given k; Corollary 6 shows that this tradeoff permits an FPTAS for the MIB-RT problem. Before we prove

Theorem 4 and Corollary 6, we need two technical lemmas.
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Lemma 10 Given Π, ∆, and τ , the following is true for all k, `(∈ N+), t,Dt(∈ R+), and α(∈ [0, 1]),

Θ∗` (Π,∆, 〈(t,Dt), α〉) ≤
(
k+1
k

)
·Θ∗`

(
Π,∆,

〈(
t, k·Dtk+1

)
, k·αk+1

〉)
. (4.14)

Proof: By Lemma 4, Θ∗` (Π,∆, 〈(t,Dt), α〉) must be equal to one of the following: αΠ; Dt−t+`Π+∆
`+1 ;

Dt
` ; or Dt+α((`+1)Π+∆−t)

`+2α . We will show that for each of the four possibilities, Equation 4.14 must hold.

If Θ∗` (Π,∆, 〈(t,Dt), α〉) is equal to αΠ, then by Lemma 4,

Θ∗`

(
Π,∆,

〈(
t,
k ·Dt

k + 1

)
,
k · α
k + 1

〉)

≥
(
k·α
k+1

)
·Π

=
(

k
k+1

)
·Θ∗` (Π,∆, 〈(t,Dt), α〉) .

The last step implies Equation 4.14.

If Θ∗` (Π,∆, 〈(t,Dt), α〉) is equal to Dt−t+`Π+∆
`+1 , we will consider two subcases: t ≤ `Π + ∆ and

t > `Π + ∆. If t ≤ `Π + ∆, then by Lemma 4,

Θ∗`

(
Π,∆,

〈(
t,
k ·Dt

k + 1

)
,
k · α
k + 1

〉)

≥
k·Dt
k+1
−t+`Π+∆

`+1

≥
(

k
k+1

)
·
(
Dt−t+`Π+∆

`+1

)

=
(

k
k+1

)
·Θ∗` (Π,∆, 〈(t,Dt), α〉) .

Otherwise, t > `Π + ∆. In this case, Lemma 4 also implies

Θ∗`

(
Π,∆,

〈(
t,
k ·Dt

k + 1

)
,
k · α
k + 1

〉)

≥
k·Dt
k+1

`

≥ ( k
k+1)·Dt−( k

k+1)(t−`Π+∆)

`+1

=
(

k
k+1

)
·
(
Dt−t+`Π+∆

`+1

)

=
(

k
k+1

)
·Θ∗` (Π,∆, 〈(t,Dt), α〉) .

Thus, in either subcase, Equation 4.14 holds.
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If Θ∗` (Π,∆, 〈(t,Dt), α〉) is equal to Dt
` , then Lemma 4 implies

Θ∗`

(
Π,∆,

〈(
t,
k ·Dt

k + 1

)
,
k · α
k + 1

〉)

≥
k·Dt
k+1

`

=
(

k
k+1

)
·Θ∗` (Π,∆, 〈(t,Dt), α〉) .

Finally, if Θ∗` (Π,∆, 〈(t,Dt), α〉) is equal to Dt+α((`+1)Π+∆−t)
`+2α , then Lemma 4 implies that

Θ∗`

(
Π,∆,

〈(
t,
k ·Dt

k + 1

)
,
k · α
k + 1

〉)

≥
k·Dt
k+1
−( k·αk+1)((`+1)Π+∆−t)

`+2·( k·αk+1)

≥
(

k
k+1

)
·
(
Dt−α((`+1)Π+∆−t)

`+2α

)

=
(

k
k+1

)
·Θ∗` (Π,∆, 〈(t,Dt), α〉) .

Lemma 11 Given Π, ∆, and τ , the following is true for all k ∈ N+ and ta ∈ T̃S(τ, k),

Θ∗(Π,∆, τ) ≥ Θ∗
(

Π,∆,

〈(
ta,

k · D̃BF(τ, ta, k)

k + 1

)
,
k · ψ(τ, ta, k)

k + 1

〉)
. (4.15)

Proof: Let ΘRHS denote the right-hand side of Equation 4.15. By definition of Θ∗(Π,∆, τ) and Theo-

rem 1,

sbf((Π,Θ∗(Π,∆, τ),∆), t) ≥ DBF(τ, t) : ∀t ≥ 0. (4.16)

Now consider any ta ∈ T̃S(τ, k). By combining Lemma 1 and Lemma 2, we have, for all t ≥ ta,

(
k + 1

k

)
· DBF(τ, t) ≥ ψ(τ, ta, k) · (t− ta) + D̃BF(τ, ta, k). (4.17)

Combining the inequalities of Equations 4.16 and 4.17 gives us, for all t ≥ ta,

sbf((Π,Θ∗(Π,∆, τ),∆), t) ≥
(
k·ψ(τ,ta,k)

k+1

)
· (t− ta) + k·D̃BF(τ,ta,k)

k+1 . (4.18)
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Lemma 3 and Equation 4.18 imply that there exists ` ∈ N+ such that

〈(
ta,

k · D̃BF(τ, ta, k)

k + 1

)
,
k · ψ(τ, ta, k)

k + 1

〉
∈ F`(Π,Θ∗(Π,∆, τ),∆). (4.19)

The above expression and Definition 10 imply

Θ∗`

(
Π,∆,

〈(
ta,

k · D̃BF(τ, ta, k)

k + 1

)
,
k · ψ(τ, ta, k)

k + 1

〉)
≤ Θ∗(Π,∆, τ). (4.20)

The lemma follows from the expression above and Lemma 5.

The following corollary gives upper and lower bounds on the value obtained from the approximation.

The corollary follows by combining Lemmas 10 and 11.

Corollary 5 Given Π, ∆, and τ , the following is true for all k ∈ N+ and t ∈ T̃S(τ, k),

(
k+1
k

)
·Θ∗(Π,∆, τ) ≥ min`∈N+

{
Θ∗`
(

Π,∆,
〈(
t, D̃BF(τ, t, k)

)
, ψ(τ, t, k)

〉)}
. (4.21)

Finally, we give the theorem which quantifies the tradeoff between accuracy and computational com-

plexity, in terms of k.

Theorem 4 Given Π, ∆, τ , and k ∈ N+, the procedure EDFMINIMUMCAPACITY returns Θ̂ such that

Θ∗(Π,∆, τ) ≤ Θ̂ ≤
(
k + 1

k

)
·Θ∗(Π,∆, τ).

Furthermore, EDFMINIMUMCAPACITY (Π,∆, τ, k) has time complexity O(kn log n)

Proof: Theorem 3 shows that Θ∗(Π,∆, τ) ≤ Θ̂; thus, we are left to prove the second inequality of the

theorem. There are two cases that we will consider: Θ̂ = Uτ · Π and Θ̂ > Uτ · Π. (Observe by Line 1, Θ̂

must be at least Uτ · Π). In the case that Θ̂ equals Uτ · Π, Theorem 1 implies that Θ∗(Π,∆, τ) must be at

least Uτ ·Π. For this case, the second inequality follows, since k+1
k ≥ 1 for all k ∈ N+.

In the case that Θ̂ exceeds Uτ ·Π, Θ̂ must equal

max
t∈T̃S(τ,k)

{
Θ∗
(

Π,∆, 〈(t, D̃BF(τ, t, k)), ψ(τ, t, k)〉
)}
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according to the proof of Theorem 3. By Lemma 5, this is equivalent to

max
t∈T̃S(τ,k)

{
min
`∈N+

{
Θ∗`
(

Π,∆, 〈(t, D̃BF(τ, t, k)), ψ(τ, t, k)〉
)}}

.

Applying Corollary 5 immediately yields the second inequality of the theorem for this case.

If we are given an accuracy parameter ε > 0, we can appropriately set k equal to max
(
1,
⌊

1
ε

⌋)

and guarantee an (1 + ε) approximation ratio from the result returned from EDFMINIMUMCAPACITY.

The following corollary (which follows from Theorem 4) shows that this approach yields an FPTAS for

MIB-RT.

Corollary 6 Given Π, ∆, τ , and ε > 0, the procedure EDFMINIMUMCAPACITY
(
Π,∆, τ,

⌈
1
ε

⌉)
returns

Θ̂ such that

Θ∗(Π,∆, τ) ≤ Θ̂ ≤ (1 + ε) ·Θ∗(Π,∆, τ).

Furthermore, EDFMINIMUMCAPACITY
(
Π,∆, τ,

⌈
1
ε

⌉)
has time complexity O

(
n logn
ε

)
.

4.3 Simulation Results

In this section, we show the simulation results for our proposed algorithm and compare it with the exact

(Theorem 1) [39] and the sufficient algorithm (Theorem 2) [83]. During simulations, we have the following

simulation parameters and value ranges:

1. The number of tasks (n) in the task system τ is taken from the set {2, 4, 6, 8, ...24}.

2. The system utilization Uτ is taken from the range [0.1, 0.8] at 0.05-increments and individual task

utilizations ui are generated using UUniFast algorithm [25]. For a specific system utilization Uτ ,

this algorithm generates n random numbers in the range [0, Uτ ] from uniform distribution in such a

way that the sum of the numbers equals the system utilization Uτ .

3. Each sporadic task τi = (ei, di, pi) has a period pi uniformly drawn from the interval [5, 40]. (A

small period range is used to keep Hτ from becoming too large). The execution time ei is set to

ui × pi. For each task, di = pi.

4. The component level scheduling algorithm is EDF.
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5. The value of k is taken from the set {1, 3, 5, ...19}; Π is taken from the set {5, 10, 15...40}; ∆ is set

equal to Π.

For each simulation, given task system size n and system utilization Uτ , we randomly generate task

set parameters ui, pi, and ei for each task τi. We implemented the linear time sufficient algorithm, the

exact algorithm [39, 83] and EDFMINIMUMCAPACITY in MATLAB to generate sufficient, exact and

approximate capacity, respectively. We have used two machines in our simulations with the following

specifications: an Intel i-7 950 (four-core CPU with two hardware threads per core) machine with 6 GB

RAM and a Phenom II X6 1100T (six-core CPU) machine with 8 GB RAM. To exploit the benefit of a

multicore architecture, we have used ’parfor’ function of MATLAB instead of a regular ’for’ loop. Using

this function, the simulation runs are concurrently executed on the cores of the CPU, which allowed us a

significant speed-up in the duration of the simulations.

Our comparison metrics are relative error, testing set size and execution time of the algorithms. We

compare relative error of our algorithm with the sufficient algorithm, and the other two metric of our

algorithm with the exact algorithm. For our simulations, we vary the task system utilization (Figures 4.3,

4.4, and 4.10), resource period (Figures 4.7, 4.8, and 4.12), and task system size (Figures 4.5, 4.6, and

4.11) and evaluated each of the comparison metrics above. We also varied the approximation parameter

k to evaluate the change in relative error (Figure 4.9). For the plots which vary the system utilization,

resource period, or approximation parameter, each point represents the mean value of the comparison

metric over 1000 simulation runs. For the plots which vary task system size, we reduced the number of

simulation runs per point to 300. (Using 1000 runs for this experiment requires the simulation to execute

for more than one week!). The 95% confidence intervals are shown for all the plots.

In Figure 4.3, relative error in calculation of capacity for the two algorithms are plotted as a function of

task system utilization. In the graph, the dotted-line curve represents relative error for Θ̂ and the solid-line

curve represents relative error for Θ̄. For EDFMINIMUMCAPACITY, the mean relative error is less than

5%, whereas for the sufficient algorithm it ranges from 15% to 50%. Please note that approximation ratio

for Θ̄ is between 3/2 and 3 as shown in Section 4.1.2 whereas the approximation ratio for Θ̂ is at most 4/3

when k = 3 (from Theorem 4). Another interesting phenomena in the figure is that the relative error of

sufficient algorithm reduces with increasing utilization. A potential explanation for the decrease in relative

error is that some of the functions in the sufficient algorithm for setting the capacity (e.g., θ0(a)) do not
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Figure 4.3: Relative Error vs System Utilization
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Figure 4.4: Testing Set Size vs System Utilization

depend on the utilization, only the task and resource period parameters. Such functions will be constant

over increasing utilization while the optimal capacity must increase as utilization increases. The result is

a reduction in the relative error of these (non-utilization-dependent) functions.

As we have mentioned before, the runtime complexity of EDFMINIMUMCAPACITY entirely depends

on the size of the testing set. Figure 4.4 shows a logarithmic plot to compare between testing set sizes for

exact algorithm (|TS(τ)|) and approximate algorithm (|T̃S(τ, k)|). The solid-line curve in the graph repre-

sents |T̃S(τ, k)| and the dotted-line curve represents |TS(τ)|. As we know from the algorithm, |T̃S(τ, k)|
depends on only the input k and task set size n (which is constant for our graph), on the other hand |TS(τ)|
may be exponentially large and has several orders of magnitude of variance, since it depends on the lcm

of the periods. The sufficient algorithm is not shown since the algorithm only uses the utilization and

minimum period parameters (i.e., it is linear time).

The next plot shows the effect of task system size on relative error for the two algorithms (Figure 4.5).

In this plot we considered system utilization Uτ = 0.4, approximation parameter k = 3, period Π = 5

and task system size is varied from 2 to 24. We observe that for EDFMINIMUMCAPACITY, task system

size does not have significant effect on relative error, where as for the sufficient algorithm, relative error

increases with task system size. This is due to the fact that in the later case, capacity depends on minimum

period of the task system. As the task system size grows, minimum period tends to go smaller, which

results the overestimation of sufficient capacity calculation. Figure 4.6 compares testing set size of the

exact algorithm and the approximate algorithm for the same setting. Here, as expected, testing set size
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Figure 4.5: Relative Error vs Task System Size
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Figure 4.6: Testing Set Size vs Task System Size

of the exact algorithm grows exponentially with task system size compared to polynomial-time growth of

EDFMINIMUMCAPACITY.
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Figure 4.7: Relative Error vs Resource Period
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Figure 4.8: Testing Set Size vs Resource Period

The next two plots (Figures 4.7 and 4.8) compare the effect of resource period on the relative error and

testing set size for the two algorithms. We varied Π from 5 to 40 and took n = 8, Uτ = 0.4 and k = 3.

We observe that varying Π does not effect relative error or testing set size for both the algorithms.

In Figure 4.9, the effect of approximation parameter (k) on relative error for the approximate algorithm

(EDFMINIMUMCAPACITY) is shown. We observe that the relative error for Θ̂ approaches 0 for k ≥ 7.

That is, the approximation gives as good as the exact performance for accuracy ε ≥ 1
7 .

Finally, in Figures 4.10, 4.11 and 4.12, we compare the execution time of our algorithm with the
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Figure 4.9: Relative Error vs Approximation (k)
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Figure 4.10: Execution Time vs System Utilization

exact algorithm. Observe that for each execution-time plot, the execution-time curves for each algorithm

are roughly proportional to their corresponding testing set size plots. All three plots shows several orders

of magnitude improvement in the approximate algorithm’s execution time when compared with the exact

algorithm’s execution time.
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Figure 4.11: Execution Time vs Task System Size
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Figure 4.12: Execution Time vs Resource Period

Therefore, the simulation results strengthen the claim that EDFMINIMUMCAPACITY improves upon

the performance of the sufficient algorithm while still maintaining a low polynomial runtime.
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CHAPTER 5: ALLOCATION: SERVER-BASED

MODEL (FP)

For EDP resource model with sporadic tasks as components, first we derive a response time based ex-

act schedulability condition similar to dedicated uniprocessor scheduling by considering the “no-supply

period” of the EDP resource as special higher priority task. We derive heuristics (i.e., lower bound and

upper bound for response time) to efficiently perform the schedulability test similar to [32]. We develop

a parametric approximation algorithm that addresses the current gap between computationally-expensive,

exact solutions and computationally-inexpensive, sufficient solutions for MIB-RT problem. We claim the

following.

Given Π, ∆, task system τ , and accuracy parameter ε > 0, let Θ∗(Π,∆, τ) be the op-

timal minimum capacity for τ to be fixed-priority-schedulable upon EDP resource Ω∗ =

(Π,Θ∗(Π,∆, τ),∆). Our algorithm returns Θ̂ for the given parameters where Θ∗(Π,∆, τ) ≤
Θ̂ ≤ (1 + ε) ·Θ∗(Π,∆, τ). Furthermore, the time complexity of our algorithm is polynomial

in the number of tasks in τ and 1
ε .

In other words, our algorithm is a fully-polynomial-time approximation scheme (FPTAS) for the MIB-RT

problem with the approximation ratio (1 + ε). This implies that the system designer can pre-specify an

arbitrary level of accuracy in obtaining solution to MIB-RT with the tunable algorithm. We also vali-

date our algorithm by means of simulation over randomly generated task systems. One application of

our approximation scheme is in thermally constrained real-time systems, where power-aware components

dynamically tune the interface [49] to meet the temporal and thermal constrains.

In this chapter, we assume that each task in τ has a fixed-priority and task priorities are preassigned1.

Tasks are indexed in non-increasing priority order; i.e., τi has higher (or equal) priority than τj , if and only

if, i ≤ j. As tasks generate jobs, each job inherits the priority of its generating task (i.e., all jobs generated

by task τi have the same priority as τi). When multiple jobs of same task are ready to execute, the job

with lowest index (arrival time) gets to execute first. Whenever component C is allocated the processor,
1See Audsley’s paper [12] for an optimal priority assignment algorithm.
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C executes the highest-priority job with remaining execution; ties are broken in favor of the job generated

from the lower task index.

5.1 MIB-RT in Periodic Resources for FP-Scheduled Components

When components are scheduled by fixed-priority (dead-line monotonic), Easwaran et al. [39] developed

exact schedulability conditions for EDP resource Ω. The condition is given by the following theorem

Theorem 5 (from [39]) A sporadic task system τ is fixed-priority schedulable upon an EDP resource

Ω = (Π,Θ,∆), if and only if,

( ∀i, ∃t ∈ (0, di] : RBF(τi, t) ≤ sbf(Ω, t))
∧(

Uτ ≤
Θ

Π

)
(5.1)

Since RBF is a non-decreasing function and changes only at the arrival of a job of τi or higher priority

tasks, this conditions only needs to be verified at the testing set points defined by Equation 3.7 for each

task in τ . The complexity of the exact test depends on the number of such points which can be pseudo

polynomial in task parameters.

5.2 Determining Minimum Capacity Using Response Time

In this section, we derive an efficient exact schedulability test for a fixed-priority scheduled component

upon periodic resources using similar approach as response time analysis of a dedicated uniprocessor

system. Researchers defined response time for fixed-priority scheduled preemptive uniprocessor system

consisting of periodic or sporadic tasks [11, 13, 51, 90]. The worst-case response time (WCET) Ri of task

τi is computed using the following recursive function.

Ri = ei +
∑

∀j∈hp(i)

⌈
Ri
pj

⌉
ej (5.2)

A fixed-priority scheduled component upon EDP resource Ω can be considered as an equivalent ded-

icated uniprocessor system by adding special higher priority tasks to the original task system which cor-

responds to the “no-supply period” of Ω. The traditional response time based fixed-priority schedulability
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test can be applied to the modified task system.

Given a task system τ and EDP resource Ω ≡ (Π,Θ,∆), we derive fixed-priority schedulability by

considering two special periodic tasks τ−1 and τ0 with higher priority then all the tasks in task system

τ . Priority of τ−1 is higher than priority of τ0. Let τ ′ = {τ ∪ τ−1 ∪ τ0} be the new task system with

τ−1(e−1, d−1, p−1) ≡ (∆−Θ,∆−Θ,∞) and τ0(e0, p0, d0) ≡ (Π−Θ,Π,Π). Let τ0 has a release jitter

j0 = e−1, and for all the other task τi ∈ τ ′, release jitter ji = 0. This assumption enables us to correctly

model the initial starvation period of Π+∆−2Θ units of the periodic resource Ω. Clearly, these two tasks

together represent the “no-supply period” of Ω, where τ−1 accounts for initial non-recurring starvation

period ∆ − Θ, and τ0 accounts for the resource unavailability in every t − (∆ − Θ) interval. The exact

fixed-priority schedulability test of τ ′ is the reduction of the compositional schedulability test of τ with

periodic resource Ω.

Now, to solve our problem of obtaining minimum capacity Θ, we use a binary search of Θ over the

range [0,Π], along with the exact fixed priority schedulability test of τ ′ shown in EXACTFPSCHEDUL-

ABILITY(τ,Ω).

The request bound function for the two special tasks τ−1 and τ0 is as follows.

rbf0(t,Ω)
def
= (∆−Θ) + max

{
0,

⌈
t− (∆−Θ)

Π

⌉
· (Π−Θ)

}
. (5.3)

Using this and Equation 5.2, we determine response time for all tasks τi ∈ τ as given by the following

iterative equation.

Ri = ei +
∑

∀j∈hp(i)

⌈
Ri
pj

⌉
ej + rbf0(Ri,Ω) (5.4)

Thus, the exact schedulability test checks for each τi ∈ τ ′, whether the response time Ri is less or

equal its relative deadline di. In the next two subsections, we derive response time lower bound Rlbi and

upper boundRubi for each task τi ∈ τ ′, and use these heuristics to derive an efficient iterative schedulability

test following the suggestions of [32]. Now, given fixed resource period Π and resource deadline ∆ of Ω,

we use a binary search of Θ over the range [0,Π] to solve our problem of obtaining minimum capacity Θ

along with the above exact test as shown in EXACTFPSCHEDULABILITY(τ,Ω).
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Algorithm 2 Exact Fixed-Priority Schedulability algorithm considering τ−1, τ0 as higher priority tasks.

EXACTFPSCHEDULABILITY(τ,Ω)

1 τ−1(e−1, d−1, p−1) = (∆−Θ,∆−Θ,∞); τ0(e0, d0, p0) = (Π−Θ,∆,Π)
2 u−1 ← 0, u0 ← e0/p0

3 Rub0 ← e−1 + e0

4 for Each task τi ∈ τ in descending order of priority

5 Rubi ←
ei+

∑
∀j∈hp(i)

ej(1−uj)+e0(1−u0)+(1−u0)e−1

1− ∑
∀j∈hp(i)

uj−u0

6 if Rubi > di

7 Rlbi ←
ei+

Θ
Π

(∆−Θ)
Θ
Π
−Ui−1

� Calculate initial value for response time of τi
8 Ri ← max{(di + ei)/2, di −Rubi−1, R

lb
i }

� Solve the recurrence starting from initial response time

9 Ri ← ei +
∑

∀j∈hp(i)

⌈
Ri
pj

⌉
ej +RBF 0(Ri,Π,Θ,∆)

10 if Ri > di
11 return Not Schedulable.
12 end if
13 end for
14 return Schedulable.

5.2.1 Deriving Response Time Lower Bound

Observe from Equation 5.3, rbf0(t,Ω) = ∆−Θ when t < ∆−Θ. We do not have to consider this case,

since the response time lower bound Rlb−1 for τ−1 must be equal to e−1, which follows the response time

lower bound for next highest priority job τ0 to be at least Rlb0 = e−1 + e0 at any time t > 0. All the jobs in

τ have lower priority than these two jobs, thus the response time lower bound Rlbi , ∀τi ∈ τ must be greater

Rlb0 , greater ∆−Θ.

For the case when t ≥ ∆−Θ, we can derive response time lower bound Rlbi by solving Equation 5.4.



62

Let Ui−1 =
∑

∀j∈hp(i)

ej
pj

(excluding τ−1 and τ0).

Ri = ei +
∑

∀j∈hp(i)

⌈
Ri
pj

⌉
ej + (∆−Θ) +

⌈
Ri−(∆−Θ)

Π

⌉
(Π−Θ)

≥ ei +
∑

∀j∈hp(i)
Ri
pj
ej + (∆−Θ) + Ri−(∆−Θ)

Π (Π−Θ)

= ei +RiUi−1 + (∆−Θ)Π+Ri(Π−Θ)−(∆−Θ)(Π−Θ)
Π

= Πei+RiΠUi−1+Ri(Π−Θ)+Θ(∆−Θ)
Π

= Πei+Θ(∆−Θ)
Θ−ΠUi−1

=
ei+

Θ
Π

(∆−Θ)
Θ
Π
−Ui−1

.

(5.5)

The last line of Equation 5.5 gives the lower bound Rlbi for the response time of task τi.

5.2.2 Deriving Response Time Upper Bound

We derive the upper bound of response time for all τi ∈ τ ′ using similar approach used by [23]. Using

similar notation as [23], let wi(t) represents maximum amount of time that the processor executes τi in

any interval length t, and w0
i (t) represents maximum amount of time that the processor executes τi in any

interval length t when τi is the only task in the system. Then the worst case workload at time t for task τi

is given by the following equation:

Wi(t) =
i∑

j=1

wj(t) + w0(t) + w−1(t). (5.6)

This implies:

Wi(t) ≤
i∑

j=1

w0
j (t) + w0

0(t) + w0
−1(t). (5.7)

Observe that for task τ−1, w0
−1(t) is equal to min{∆−Θ, t}. Therefore, we obtain following bound.

w0
−1(t) ≤ ∆−Θ. (5.8)

For τ0,w0
0(t) = min

{
t− (∆−Θ)− (p0 − e0)

⌊
t−(∆−Θ)

p0

⌋
,
⌈
t−(∆−Θ)

p0

⌉
e0

}
, which can be upper bounded

by linear approximation of the step function.
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w0
0(t) ≤ u0t+ e0(1− u0)− (∆−Θ)u0. (5.9)

For all other tasks in τ ′, w0
i can be upper bounded by the following linear approximation.

w0
i (t) ≤ uit+ ei(1− ui). (5.10)

Combining Equation 5.8, 5.9, 5.10, we obtain workload upper bound for task τi at time t.

Wi(t) ≤
i∑

j=0

(ujt+ ej(1− uj)) + (1− u0)(∆−Θ). (5.11)

Now, using the steps similar to Theorem 2 of [23], we obtain response time upper bound from workload

upper bound.

Ri ≤
ei +

i−1∑
j=0

ej(1− uj) + (1− u0)(∆−Θ)

1−
i−1∑
j=0

uj

. (5.12)

Using Equation 5.5 and 5.12, we obtain initial value for our efficient iterative algorithm similar to [32]

Ri = max{(di + ei)/2, di −Rubi−1, R
lb
i } (5.13)

In Algorithm 2, we give our efficient exact schedulability test for fixed-priority scheduled components

upon periodic resources. We omit the proof of correctness for the algorithm as it directly follows from the

derivations above.

5.3 Determining Minimum Capacity Using Testing Set

5.3.1 Exact Capacity Determination

The following theorem states the exact schedulability condition for EDP resource Ω, where task system

is scheduled using fixed priority scheduling algorithm [39, 81, 82]. It says that for the task system τ to be

schedulable with EDP resource, each task τi in τ must have a fixed point t before its deadline at which the

cumulative request bound function for τi is less than the supply provided to the system at that point.
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Theorem 6 (from [39]) A sporadic task system τ is fixed priority schedulable upon an EDP resource

Ω = (Π,Θ,∆), if and only if,

( ∀i, ∃t ∈ (0, di] : RBF(τi, t) ≤ sbf(Ω, t))
∧(

Uτ ≤
Θ

Π

)
(5.14)

In the next section we present an approximate algorithm to obtain minimum capacity for EDP resource

when the component-level scheduling algorithm is fixed priority for the task system τ . We consider fixed

period (Π) and deadline (∆) for the EDP resource Ω.

5.3.2 Approximate Capacity Determination

We develop an approximate algorithm in the context of implicit or constrained deadline sporadic tasks

scheduled by fixed-priority (e.g., DM, RM). Fisher and Baruah [45] proposed the following approximation

to rbf (inspired by a similar approximation for EDF due to Albers and Slomka [3]) to reduce the number

of points in the testing set.

r̃bf(τi, t, k)
def
=





rbf(τi, t), if t ≤ (k − 1)pi

ei + t·ei
pi
, otherwise.

(5.15)

This function tracks rbf for exactly k − 1 steps and after the k − 1-th step, it uses linear interpolation of

subsequent discontinuous points of rbf (with slope equal to ui). The steps in Figure 3.4 correspond to

rbf(τi, t, k), and the thick steps and the sloped-dashed line correspond to r̃bf(τi, t, k). The approximate

cumulative request-bound function is defined as follows:

R̃BF(τi, t)
def
= ei +

i−1∑

j=1

r̃bf(τj , t, k). (5.16)

For any fixed k ∈ N+, Fisher and Baruah [45] showed that if for all τi ∈ τ there exists a t ∈ (0, di]

such that R̃BF(τi, t) ≤ t then the sporadic task system τ is static priority schedulable upon a preemptive

uniprocessor platform of unit speed. The testing set for this condition is as follows:

T̂Si(τ, k)
def
= {t = b · pa | a = 1, . . . , i− 1; b = 1, . . . , k − 1; t ∈ (0, di]} ∪ {di} ∪ {0} (5.17)
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Li
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Figure 5.1: The solid line “step” function is sbf for Ω. The shaded region represents the `-
Feasibility Region F2 (` = 2). Line segment Lita intersects F2.

Let ta, ta+1 denote any pair of consecutive values in the above ordered set.

Next, we give the relation between the request-bound function rbf and the approximate request-bound

function r̃bf.

Lemma 12 (from [45]) Given a fixed integer k ∈ N+, rbf(τi, t) ≤ r̃bf(τi, t, k) ≤
(
k+1
k

)
rbf(τi, t) for all

τi ∈ τ and t ∈ R≥0.

We will use this lemma in our approximation algorithm (Section 5.3.2).

Next, we define notation to represent the discontinuous line segments of the cumulative request-bound

function (R̃BF). Let Lita ≡ 〈(ta, D̄ta), (ta+1, Dta+1), α〉 be a line segment in the Euclidean space, R2,

originating at open left end point (ta, D̄ta) ∈ R2 and ending at closed right end point (ta+1, Dta+1) ∈ R2

with slope α ≥ 0 (Figure 5.1); more formally,

Lita
def
= {(x, y) ∈ R2 | (x ∈ [ta, ta+1]) ∧ (y = α(x− ta) + D̄ta))}. (5.18)

Please note the term α is included in the notation for convenience only; it is possible to determine the slope

from points (ta, D̄ta) and (ta+1, Dta+1) alone. We denote any point in the line segment by (t,Dt) ∈ Lita .

α
def
=

∑

τh∈τ :(ta≥(k−1)ph)∧(h<i)

uh. (5.19)
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The connection between Lita and R̃BF is as follows. Consider a time ta ∈ T̂Si(τ, k). Define Dta to be

request-bound function at time ta, that is R̃BF(ta) (Figure 3.4). At time ta, some set of tasks with priority

greater τi have job arrivals in the synchronous arrival sequence. Let ri(t) be the sum of the executions of

these tasks. Formally,

ri(t)
def
=

∑

τj∈τ :(j<i)∧(Tj divides t)

ej . (5.20)

At time ta there is a discontinuity in the function R̃BF in which R̃BF increases by ri(ta) and then is linear

until the next discontinuity in R̃BF (i.e., at time ta+1 ∈ T̂Si(τ, k)). Thus, R̃BF is a line segment from

ta to ta+1 with slope equal to the total utilization of all task τj such that j < i and ta ≥ (k − 1)Tj .

We denote D̄ta by the sum of request-bound function at time point ta and job release at time ta, that is,

D̄ta = Dta + ri(ta). Finally, observe that

α
def
=

∑

τj∈τ :(ta≥(k−1)Tj)∧(j<i)

uj . (5.21)

From the above definitions of ta, ta+1, Dta , D̄ta , Dta+1 , and α, it is straightforward to verify that the line

segment Lita is equivalent to (t, R̃BF(τi, t)) for all t ∈ (ta, ta+1], with the exception at ta where D̄ta is

not equal to R̃BF(ta). From the definitions of ta, ta+1, Dta , D̄ta , Dta+1 , and α, the following lemma is

apparent.

Lemma 13 For any consecutive pairs of values (ta, ta+1) ∈ T̂Si(τ, k), R̃BF(τi, t) ≤ Dt for all (t,Dt) ∈
Lita .

We use the concept of `-feasibility region of Ω similar to Definition 9 in Chapter 4 to define the region

under the `-th step of sbf. For our convenience, we redefine `-feasibility region as follows:

Definition 11 (`-Feasibility Region of Ω)

F`(Π,∆,Θ)
def
=



(t,Dt) ∈ R2

≥0

∣∣∣∣∣∣

(
Θ ≥ Dt−t+`Π+∆

`+1

)

∧
(
Θ ≥ Dt

`

)



 . (5.22)
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Algorithm Description

In Algorithm 3, we present the pseudocode for our algorithm, FPMINIMUMCAPACITY2. Given task

system τ and an EDP resource with Π and ∆ as input, the algorithm returns approximate minimum

capacity to correctly schedule the task system with the resource. The approximation parameter of the

algorithm is the input k ∈ N+ (k = d1
ε e). For some fixed k input, the algorithm returns the approximate

minimum capacity; if k is equal to ∞, it returns exact minimum capacity. If FPMINIMUMCAPACITY

returns a value Θmin that does not exceed ∆, then τ can be fixed-priority scheduled to meet all deadlines

upon Ω = (Π,∆,Θmin). Note that the approximate capacity Θmin can be at most (1 + ε) times the

exact capacity. If FPMINIMUMCAPACITY returns a capacity greater than ∆, then our algorithm cannot

guarantee τ can be scheduled on any Ω with parameters Π and ∆. (Unless k = ∞, the algorithm is an

approximation, and, thus, a returned capacity greater than ∆ does not necessarily imply infeasibility of τ ).

In our proposed algorithm, the objective is to compute minimum capacity Θmin for a task system τ such

that τ is fixed-priority schedulable under EDP resource model. For each task τi ∈ τ , we find minimum

capacity Θmin
i such that there exists a fixed point t ∈ (0, di] at which the supply bound function sbf

exceeds the cumulative request-bound function R̃BF(τi, t) (Theorem 6). To calculate Θmin
i , we determine,

for each consecutive pair of values (ta, ta+1) in the testing set T̂Si(τ, k), the minimum capacity Θmin
ta

required to guarantee that the line segment Lita is beneath sbf((Π,Θmin
ta ,∆), t) for some t ∈ (ta, ta+1].

Since Lita is equivalent to R̃BF for all t ∈ (ta, ta+1], this implies that there exist a t ∈ (ta, ta+1] such

that R̃BF(τi, t) ≤ sbf((Π,Θmin
ta ,∆), t). To determine Θmin

ta , we take specific steps of the sbf (denote a

selected step by `) and determine the minimum Θ` such that some point of the line segment is below the

`-feasibility region with capacity Θ`. Each Θ` for (ta, ta+1) is set in lines 7, 8, 10 and 11. The following

functions are used to determine the values of Θ` in our algorithm.

Φ1(Lita , `,Π,∆)
def
=

Dta+1−ta+1+`Π+∆

`+1 ,

Φ2(Lita , `,Π,∆)
def
=
D̄ta
` ,

Φ3(Lita , `,Π,∆)
def
=
D̄ta+α(`Π+∆−ta)

`+α .

(5.23)

We will also show that we only need to consider the integer values of ` given by the following equations.
2We would like to thank the authors of [91] for identifying and correcting a small bug in our algorithm. In the original

algorithm we did not check the condition in Line 9, and calculated Θb`1c and Θd`2e for all cases including the case d`2e > b`1c,
which corresponds to an undefined interval (See Lemma 20, 21 and 22 for more details).
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Algorithm 3 Pseudo-code for determining minimum capacity for a periodic resource given Π, ∆, and τ
using fixed-priority scheduling algorithm. Note the algorithm is exact when k equals∞.

FPMINIMUMCAPACITY(Π,∆, τ, k)

1 Θmin ← Uτ ·Π
2 for each τi ∈ τ
3 Θmin

i ←∞
4 for each (ta, ta+1) ∈ T̂Si(τ, k)� (In order)
5 D̄ta ← Ŵi(ta) + ri(ta)

6 Dta+1 ← Ŵi(ta+1)
7 Θb`1c+1 ← Φ1(Lita , b`1c+ 1,Π,∆)

8 Θd`2e−1 ← Φ2(Lita , d`2e − 1,Π,∆)

9 if d`2e ≤ b`1c
10 Θb`1c ← Φ3(Lita , b`1c ,Π,∆)

11 Θd`2e ← Φ3(Lita , d`2e ,Π,∆)

12 else
13 Θb`1c,Θd`2e ←∞
14 Θmin

ta ← min{Θb`1c+1,Θd`2e−1,Θb`1c,Θd`2e}
15 Θmin

i ← min{Θmin
i ,Θmin

ta }
16 end (of inner loop)
17 Θmin ← max{Θmin,Θmin

i }
18 end (of outer loop)
19 return Θmin

`1
def
=

(ta+1 −∆) +
√

(ta+1 −∆)2 + 4ΠDta+1

2Π
, (5.24)

`2
def
=

(ta −∆) +
√

(ta −∆)2 + 4ΠD̄ta

2Π
. (5.25)

That is, we consider b`1c, b`1c + 1, d`2e − 1 and d`2e to evaluate Θ`. The logic behind the choice of Φ

functions and our definition of `1 and `2 will be more apparent in the proof of correctness section below.

Since we are looking for only one point in t ∈ (0, di] for task τi where R̃BF(τi, t) ≤ sbf(Ω, t), we

only need a single line segment of R̃BF(τi, t) that intersects with sbf(Ω, t) and gives minimum capacity.

Thus, we set Θmin
i to be the minimum of all Θmin

ta values for each of the line segment of R̃BF. Finally,

we set Θmin to be the maximum of all Θmin
i values. This ensures that for each task τi ∈ τ , we find a

t ≤ di such that R̃BF(τi, t) ≤ sbf((Π,Θmin,∆), t). Since R̃BF(τi, t) ≥ RBF(τi, t) for all t, this implies
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Theorem 6; thus τ is fixed-priority schedulable upon EDP resource Ω = (Π,Θmin,∆).

Algorithm Complexity

The complexity of FPMINIMUMCAPACITY depends on the number of tasks n in the task set τ and the

cardinality of testing set T̂Si(τ, k) for each task τi. The outer loop of the algorithm (Lines 1 to 28) iterates

for each task, thus n times in total. The inner loop (Lines 4 to 25) scans every pair of testing set points in

T̂Si(τ, k) (in non-decreasing order) for task τi, and this can take at most 1+(i−1)(k−1) times for a single

task. Using a “heap-of-heaps” described by Mok [68], the time complexity to obtain an element of the test-

ing set is O(log n). Setting D̄ta , Dta+1 and α (Lines 5, 6 and 4) is done in constant time on each iteration

of the inner loop. Again, setting ` values and evaluating Θ values using these (Line 7 to 11) takes constant

time. Therefore, the runtime complexity of FPMINIMUMCAPACITY is O(log n ·∑n
i=1 |T̂Si(τ, k)|). If

k = ∞, the complexity for exactly determining the minimum capacity is the same complexity as the test

of Theorem 6 on a fixed Ω, which may be pseudo-polynomial depending on the period of tasks. Other-

wise, if k is a fixed integer, the complexity is at most O (log n ·∑n
i=1(1 + (i− 1)(k − 1))) times, which

is O(kn2 log n).

Algorithm Correctness

To prove the correctness of FPMINIMUMCAPACITY, we prove the following theorem which states that the

value returned by the algorithm (i.e., Θmin) is at least the optimal minimum capacity value Θ∗(Π,∆, τ).

Furthermore, if the input k equals∞, then the returned capacity is optimal.

Theorem 7 For all k ∈ N+∪{∞}, FPMINIMUMCAPACITY returns Θmin ≥ Θ∗(Π,∆, τ). Furthermore,

if k =∞, Θmin = Θ∗(Π,∆, τ).

We require some additional definitions similar to [46] for notational convenience. The next definition

quantifies the minimum capacity Θ(≤ ∆) that is required for sbf to exceed the line segment Lita at some

point (t,Dt). We will use the convention that inf returns∞ on an empty set.

Definition 12 (Minimum Capacity for Lita)

Θ∗
(
Π,∆,Lita

) def
= inf



Θ ∈ R+

∣∣∣∣∣∣
(Θ ≤ ∆)

∧
(
∃(t,Dt) ∈ Lita : Dt ≤ sbf((Π,Θ,∆), t)

)



 . (5.26)
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The next function determines the minimum capacity for any given line segment Lita to have a point in

the `-feasibility region.

Definition 13 (`-Minimum Capacity for Lita)

Θ∗`
(
Π,∆,Lita

) def
= inf



Θ(≤ ∆) ∈ R+

∣∣∣∣∣∣
∃(t,Dt) ∈ Lita

: (t,Dt) ∈ F`(Π,Θ,∆)



 . (5.27)

Note the two above definitions use infimum, since they are defined over infinite sets; however, we will

later see (Corollary 10) that the infimum corresponds to the minimum (i.e., the value returned by inf exists

in the set specified in the right-hand side of Equations 5.26 and 5.27).

In order to prove Theorem 7, we must prove some additional lemmas. We start by presenting the three

conditions on the value of Θ that are necessary and sufficient condition for a line segment Lita to have a

point in the `-feasibility region.

Lemma 14 For any two consecutive pair of values (ta, ta+1) ∈ T̂Si(τ, k), there exists (t,Dt) ∈ Lita such

that (t,Dt) ∈ F`(Π,∆,Θ) for some ` ∈ N+, if and only if, the following conditions hold:

Θ ≥ Φ1(Lita , `,Π,∆) (5.28a)

∧ Θ ≥ Φ2(Lita , `,Π,∆) (5.28b)

∧ Θ ≥ Φ3(Lita , `,Π,∆) (5.28c)

Proof: For the “only if” direction, we must show if some point of the line segment is in the `-feasibility

region for any given ` ∈ N+ then the three conditions of Equation (5.28) hold. We will show this by

contrapositive; that is, if any of the three conditions is violated, the line segment will not be inF`(Π,∆,Θ)

for that `. We now consider the negation of the conditions of Equation (5.28). By negation, at least one of

the Equations (5.28a), (5.28b), or (5.28c) must be violated. We will show that if any of the conditions is

violated, then for all (t,Dt) ∈ Lita , (t,Dt) 6∈ F`(Π,∆,Θ).

Case 1: Equation (5.28a) is false. That is,

Θ <
Dta+1−ta+1+`Π+∆

`+1

⇒ Θ <
D̄ta+α(ta+1−ta)−ta+1+`Π+∆

`+1 .
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The second inequality follows from the fact that Dta+1 = D̄ta + α(ta+1 − ta). Consider any

(t,Dt) ∈
Lita . Let x def

= t − ta where 0 ≤ x ≤ ta+1 − ta; thus, t = ta + x and Dt = D̄ta + αx.

Consider the expression
(D̄ta + αx)− (ta + x) + `Π + ∆

`+ 1

Obviously, the above expression is non-increasing in x, since Uτ ≤ 1 and α is at most the

utilization of tasks with higher priority than τi. Therefore, D̄ta+α(ta+1−ta)−ta+1+`Π+∆
`+1 ≤ -

(D̄ta+αx)−(ta+x)+`Π+∆
`+1 ≤ Dt−t+`Π+∆

`+1 for all (t,Dt) ∈ Lita . This implies that the first condition

of `-feasibility is violated for all (t,Dt).

Case 2: Equation (5.28b) is false. That is, Θ < D̄ta/`. Again, consider any (t,Dt) ∈ Lita . Observe that

Dt = D̄ta + α(t− ta) ≥ D̄ta , since t ≥ ta and α ≥ 0. Thus, Θ < D̄ta/` implies Θ < Dt/` for

all (t,Dt); this implies that the second condition of F`(Π,∆,Θ) is violated.

Case 3: Equation (5.28c) is false. That is,

Θ <
D̄ta + α(`Π + ∆− ta)

`+ α
. (5.28)

Consider any (t,Dt) ∈ Lita . We consider two further subcases based on the value of t. We will

show in both subcases, (t,Dt) 6∈ F`(Π,∆,Θ).

Subcase 3a: t < D̄ta−αta+`Π+∆−(`+1)Θ
1−α .

By solving for Θ, we obtain

Θ <
D̄ta−(1−α)t−αta+`Π+∆

`+1

⇒ Θ < Dt−t+`Π+∆
`+1

The implication follows from Dt = D̄ta +α(t− ta). The above inequality implies

that the first condition of `-feasibility is violated.

Subcase 3b: t ≥ D̄ta−αta+`Π+∆−(`+1)Θ
1−α .
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Again, solving for Θ,

Θ ≥ D̄ta−(1−α)t−αta+`Π+∆
`+1

⇒ Θ ≥ Dt−t+`Π+∆
`+1

(5.29)

Now consider the value of the first partial derivative of Φ3 with respect to α; i.e.,
∂Φ3
∂α which is equal to

`(`Π + ∆− ta)− D̄ta

(`+ α)2
.

Note the sign of the above partial derivative is independent of the value of α; there-

fore, either ∂Φ3
∂α ≤ 0, or ∂Φ3

∂α > 0 for any α : 0 ≤ α ≤ 1; in other words,

the sign remains constant for all α. If ∂Φ3
∂α > 0, then Φ3 is maximized when α

is as large as possible (i.e., α equals one). By Equation (5.28), this implies that

Θ <
D̄ta+`Π+∆−ta

`+1 which is impossible due to Equation (5.29). Thus, ∂Φ3
∂α ≤ 0

must be true. If the partial derivative is non-positive, then Φ3 is maximized when

α is as small as possible (i.e., α equals zero). By Equation (5.28), Θ < Dt
` which

violates the second condition of `-feasibility.

Thus, we have proved that if the line segment has a point in the `-feasibility region, then the conditions in

Equation (5.28) hold.

For the “if” direction, we need to show, if the conditions hold then there exists a point on the line

segment that is included in the `-feasibility region. Again, we will show by contrapositive; that is, if the

line segment is completely outside the `-feasibility region, then there is a condition of Equation (5.28) that

is not satisfied. Assume that for all (t,Dt) ∈ Lita that (t,Dt) 6∈ F`(Π,∆,Θ). The previous statement

implies that the first or the second condition of `-feasibility must be violated for each (t,Dt). We now

consider two cases based on the “location” of the left end point of the line segment (ta, D̄ta).

Case 1: The second condition of `-feasibility is violated for (ta, D̄ta). In this case, Θ <
D̄ta
` . Indeed, this

violates the condition of Equation (5.28b).

Case 2: The second condition of `-feasibility is not violated for (ta, D̄ta). In this case, Θ ≥ D̄ta
` . We

now consider two further subcases regarding the “location” of (ta+1, Dta+1).
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Subcase 2a: The first condition of `-feasibility is violated for the right end point of line segment

(ta+1, Dta+1). In this case, Θ <
Dta+1−ta+1+`Π+∆

`+1 . This clearly violates the

condition of Equation (5.28a).

Subcase 2b: The first condition of `-feasibility is not violated for (ta+1, Dta+1). In this subcase,
Dta+1−ta+1+`Π+∆

`+1 ≤ Θ. Consider the function θ(t) def
=
D̄ta+α(t−ta)−t+`Π+∆

`+1 for

t ∈ [ta, ta+1]. Thus, by this subcase and Dta+1 = D̄ta + α(ta+1 − ta) we obtain

the following equation,

(
θ(ta+1)

def
=
D̄ta + α(ta+1 − ta)− ta+1 + `Π + ∆

`+ 1

)
≤ Θ. (5.30)

By Case 2, the second condition of `-feasibility is not violated for (ta, D̄ta). Thus,

the first condition must be; i.e.,

(
θ(ta)

def
=
D̄ta − ta + `Π + ∆

`+ 1

)
> Θ. (5.31)

Therefore, Θ ∈ [θ(ta+1), θ(ta)). Observe that θ(t) is continuous for all t ∈
[ta, ta+1]. Therefore, the Intermediate Value Theorem implies that there exists a

t′ ∈ [ta, ta+1] such that θ(t′) equals Θ. That is,

D̄ta + α(t′ − ta)− t′ + `Π + ∆

`+ 1
= Θ. (5.32)

By the above equality, the first condition of `-feasibility is not violated for (t′, Dt′);

therefore, the second condition must be false:

D̄ta + α(t′ − ta)
`

> Θ. (5.33)

Solving Equation (5.32) for t′, we obtain

t′ =
D̄ta − αta + `Π + ∆− (`+ 1)Θ

1− α .
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Substituting the above solution to t′ into Equation (5.33) and solving for Θ, we

obtain

Θ <
D̄ta − α(`Π + ∆− ta)

`+ α

which indeed violates the condition of Equation (5.28c).

Thus, if the line segment is strictly above the `-feasibility region, at least one of the three conditions is

violated.

The following lemma formalizes the equivalence between the concept of a line segment Lita being

included in some `-feasibility region and the concept of a cumulative request-bound function R̃BF falling

below a supply-bound function sbf.

Lemma 15 For consecutive pair of values (ta, ta+1) ∈ T̂Si(τ, k) and (t,Dt) ∈ Lita such that ta < t ≤
ta+1, the inequality R̃BF(τi, t) ≤ sbf((Π,Θ,∆), t) holds, if and only if, there exists ` ∈ N+ such that

(t,Dt) ∈ F`(Π,∆,Θ).

Proof: For the “if” direction, we must show that if the point (t,Dt) ∈ Lita satisfies (t,Dt) ∈ F`(Π,∆,Θ),

then there is sufficient supply over an interval of length t to satisfy the execution of a job of τi and the

approximated execution times of all higher-priority tasks (formally, R̃BF(τi, t) ≤ sbf((Π,Θ,∆), t)). Ob-

serve that every point in F`(Π,∆,Θ) is below the sbf function (see Figure 4.1). Thus, if (t,Dt) ∈
F`(Π,∆,Θ), then Dt ≤ sbf((Π,Θ,∆), t). Finally, Lemma 13 states that R̃BF(τi, t) ≤ Dt implying the

“if” direction.

For the “only if” direction, observe that Lita and R̃BF(τi, t) are equivalent for t ∈ (ta, ta+1]. Thus,

we must show that if line segment Lita has point (t,Dt) contained below the sbf function for Ω, then there

exists an ` ∈ N+ such that 〈(t,Dt), α〉 ∈ F`(Π,Θ,∆). Consider ` =
⌈
Dt
Θ

⌉
. The second condition of

`-feasibility (Equation (5.22)) is trivially satisfied for this `. It also must be true that Dt > (` − 1)Θ.

Thus, (t,Dt) must be below of the line defined by y = x − (`Π + ∆ − (` + 1)Θ) (otherwise, (t,Dt)

would be above the sbf function at t). This last constraint is equivalent to the first condition of `-feasibility

region. Therefore, for ` =
⌈
Dt
Θ

⌉
we have satisfied the two conditions of Equation (5.22), implying that

(t,Dt) ∈ F⌈
Dt
Θ

⌉(Π,Θ,∆).

In the above lemma, we did not include ta in the interval of time values where line segment inclusion

in the `-feasibility region implies that the approximate request-bound function is below the supply-bound
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function. The exclusion of ta from the above lemma is due to the fact that R̃BF is discontinuous at ta.

However, notice that ta is the right end point of the predecessor line segment immediately to the left of

Lita .

Lemma 14 equates the concept of finding t such that R̃BF(τi, t) is below the sbf for a given Θ and the

concept of point (t,Dt) of a line segment Lita being contained in some `-feasibility region for Θ. The next

lemma uses Definitions 12 and 13 to show that if we can compute Θ∗` (Π,∆,Lita) for any ` ∈ N+, then we

can also compute Θ∗(Π,∆,Lita).

Lemma 16

Θ∗(Π,∆,Lita) = inf
`>0

{
Θ∗` (Π,∆,Lita)

}
. (5.34)

Proof: Let ΘRHS denote the right-hand side of Equation (5.34). We will show that both ΘRHS

≥ Θ∗(Π,∆,Lita) and ΘRHS ≤ Θ∗(Π,∆,Lita) which will imply the lemma. First, we show ΘRHS ≥
Θ∗(Π,∆,Lita). By definition of infimum, for any δ > 0, there exists ` ∈ N+ such that Θ∗` (Π,∆,Lita) ≤
ΘRHS + δ. Definition 13 states that there exists (t,Dt) ∈
Lita such that (t,Dt) ∈ F`(Π,ΘRHS + δ,∆) for this `. Therefore, for all δ > 0, ΘRHS + δ must be

in the set considered in the inf on the right-hand side of Equation (5.26) by Definition 12. Thus, ΘRHS ≥
Θ∗(Π,∆,Lita).

Next, we will show ΘRHS ≤ Θ∗(Π,∆,Lita). By Definition 12 and application of Lemma 13, there

exist (t,Dt) ∈ Lita such that

R̃BF(τi, t) ≤ sbf((Π,∆,Θ∗(Π,∆,Lita)), t).

Lemma 15 implies that there exists ` ∈ N+ such that (t,Dt)∈F`(Π,Θ∗(Π,∆,Lita),∆). By Definition 13,

this implies that Θ∗(Π,∆,Lita) is in the set considered in the right-hand side of Equation (5.27) which

implies the inequality.

In the next few lemmas, we derive the values `1 and `2 (Equations (5.24) and (5.25)), and prove that

we only need to evaluate the Φ functions at these ` values to obtain minimum capacity. Consider the three

conditions given in Equation (5.28) of Lemma 14. There are three possible cases. We invite the reader to

verify that these cases are complete and mutually exclusive.

Case I:
(
Φ1(Lita , `,Π,∆) > Φ2(Lita , `,Π,∆)

)
∧
(
Φ1(Lita , `,Π,∆) > Φ3(Lita , `,Π,∆)

)
;
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Case II:
(
Φ2(Lita , `,Π,∆) > Φ3(Lita , `,Π,∆)

)
∧
(
Φ2(Lita , `,Π,∆) ≥ Φ1(Lita , `,Π,∆)

)
;

Case III:
(
Φ3(Lita , `,Π,∆) ≥ Φ1(Lita , `,Π,∆)

)
∧
(
Φ3(Lita , `,Π,∆) ≥ Φ2(Lita , `,Π,∆)

)
.

For each of the above cases, we solve for the value of ` and obtain bounds for the value of `.

Lemma 17 For any Lita , and ` ∈ N+, Π, ∆, Case I holds, if and only if,

` ≥

(ta+1 −∆) +
√

(ta+1 −∆)2 + 4ΠDta+1

2Π

+ 1. (5.35)

Proof: Let us consider the “only if” direction of the lemma; that is, Case I holds. From Case I,

we have that both Φ1(Lita , `,Π,∆) > Φ2(Lita , `,Π,∆) and Φ1(Lita , `,Π,∆) > Φ3(Lita , `,Π,∆). For

Φ1(Lita , `,Π,∆) > Φ2(Lita , `,Π,∆), solving for `,

Dta+1−ta+1+`Π+∆

`+1 >
D̄ta
`

⇔ ` >
[(1−α)ta+1+αta−∆]+

√
((1−α)ta+1+αta−∆)2+4ΠD̄ta

2Π .

(5.36)

The bidirectional implication follows since Inequality (5.36) is a quadratic inequality with respect to `,

defining a convex parabola Π`2 − ((1− α)ta+1 + αta −∆) `− D̄ta . The zeros of the parabola are

[(1− α)ta+1 + αta −∆]±
√

((1− α)ta+1 + αta −∆)2 + 4ΠD̄ta

2Π
.

Since the square-root term in the numerator is always greater than the term preceding the ±, one root is

positive and the other is negative. Inequality (5.36) implies that we are interested in values of ` ∈ N+ such

that the parabola strictly exceeds zero. Since the parabola is convex, all values of ` strictly greater than the

positive root satisfy this inequality.

For Φ1(Lita , `,Π,∆) > Φ3(Lita , `,Π,∆), solving for `,

Dta+1−ta+1+`Π+∆

`+1 >
D̄ta+α(`Π+∆−ta)

`+α

⇔ ` >
(ta+1−∆)+

√
(ta+1−∆)2+4ΠDta+1

2Π

(5.37)

The bidirectional implication follows since Inequality (5.37) is a quadratic inequality with respect to `,

defining a convex parabola Π`2 − (ta+1 −∆) `− (
(
D̄ta + α(ta+1 − ta)

)
. By similar reasoning done for
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Inequality (5.36), all values of ` strictly greater than the positive root satisfy this inequality.

Combining Equations (5.36) and (5.37), we obtain

` > max





[(1−α)ta+1+αta−∆]+

√
((1−α)ta+1+αta−∆)2+4ΠD̄ta

2Π ,

(ta+1−∆)+
√

(ta+1−∆)2+4ΠDta+1

2Π




. (5.38)

Observe that (1 − α)ta+1 + αta −∆ equals ta+1 −∆ − α(ta+1 − ta) which is at most ta+1 −∆, since

ta+1 > ta and 0 ≤ α ≤ 1. Thus, we conclude that the second value of Equation (5.38) is the maximum

of the two bounds obtained in this case. The lemma follows by observing that ` is an integer. The “if”

direction follows by simply reversing the direction of each implication in the proof.

Lemma 18 For any Lita and ` ∈ N+, Π, ∆, Case II holds, if and only if,

` ≤

(ta −∆) +
√

(ta −∆)2 + 4ΠD̄ta

2Π

 .` ≤




(ta −∆) +
√

(ta −∆)2 + 4ΠD̄ta

2Π



− 1. (5.39)

Proof: Let us consider the “only if” direction of the lemma; that is, Case II holds. From Case II,

we have that both Φ2(Lita , `,Π,∆) > Φ3(Lita , `,Π,∆) and Φ2(Lita , `,Π,∆) ≥ Φ1(Lita , `,Π,∆). For

Φ2(Lita , `,Π,∆) > Φ3(Lita , `,Π,∆), solving for `,

D̄ta
` >

D̄ta+α(`Π+∆−ta)
`+α

⇔ ` <
(ta−∆)+

√
(ta−∆)2+4ΠD̄ta

2Π

(5.40)

The bidirectional implication follows since Inequality (5.40) is a quadratic inequality with respect to `,

defining a convex parabola Π`2 − (ta −∆) `− D̄ta . The zeros of the parabola are

(ta −∆)±
√

(ta −∆)2 + 4ΠD̄ta

2Π
.

Since the square-root term in the numerator is always greater than the term preceding the ±, one root is

positive and the other is negative. Inequality (5.40) implies that we are interested in values of ` ∈ N+ such

that the parabola is strictly below zero. Since the parabola is convex, all positive integer values of ` strictly

less than the positive root satisfy this inequality.
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For Φ2(Lita , `,Π,∆) ≥ Φ1(Lita , `,Π,∆), solving for `,

D̄ta
` ≥

Dta+1−ta+1+`Π+∆

`+1

⇔ ` ≤ [(1−α)ta+1+αta−∆]+

√
((1−α)ta+1+αta−∆)2+4ΠD̄ta

2Π

(5.41)

The bidirectional implication follows since Inequality (5.41) is a quadratic inequality with respect to `,

defining a convex parabola Π`2 − ((1− α)ta+1 + αta −∆) ` − D̄ta . By similar reasoning done for

Inequality (5.40), all positive integer values of ` at most the positive root satisfy this inequality.

Now consider the following term: (1− α)ta+1 + αta −∆ which equals (1− α)(ta+1 − ta) + ta −∆

which is at least ta −∆ since ta+1 > ta and 0 ≤ α ≤ 1. Thus, we conclude that the value on the right-

hand-side of Equation (5.40) is the minimum of the two values obtained in this case. The lemma follows

by observing that ` must be an integer. The “if” direction of the lemma follows by simply reversing the

implications of the proof.

Lemma 19 For any Lita and ` ∈ N+, Π, ∆, Case III holds, if and only if,




(ta −∆) +
√

(ta −∆)2 + 4ΠD̄ta

2Π



≤ ` ≤

(ta+1 −∆) +
√

(ta+1 −∆)2 + 4ΠDta+1

2Π

 (5.42)

Proof: Let us consider the “only if” direction of the lemma; that is, Case III holds. From Case III,

we have that both Φ3(Lita , `,Π,∆) ≥ Φ1(Lita , `,Π,∆) and Φ3(Lita , `,Π,∆) ≥ Φ2(Lita , `,Π,∆). For

Φ3(Lita , `,Π,∆) ≥ Φ1(Lita , `,Π,∆), solving for `,

D̄ta+α(`Π+∆−ta)
`+α ≥ Dta+1−ta+1+`Π+∆

`+1

⇔ ` ≤ (ta+1−∆)+
√

(ta+1−∆)2+4ΠDta+1

2Π

(5.43)

The bidirectional implication follows since Inequality (5.43) is a quadratic inequality with respect to `,

defining a convex parabola Π`2 − (ta+1 −∆) `−
(
D̄ta + α(ta+1 − ta)

)
. The zeros of the parabola are

(ta+1 −∆)±
√

(ta+1 −∆)2 + 4ΠDta+1

2Π
.
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Since the square-root term in the numerator is always greater than the term preceding the ±, one root is

positive and the other is negative. Inequality (5.43) implies that we are interested in values of ` ∈ N+ such

that the parabola is at most zero. Since the parabola is convex, all positive integer values of ` at most the

positive root satisfy this inequality.

For Φ3(Lita , `,Π,∆) ≥ Φ2(Lita , `,Π,∆), solving for `,

D̄ta+α(`Π+∆−ta)
`+α ≥ D̄ta

`

⇔ ` ≥ (ta−∆)+

√
(ta−∆)2+4ΠD̄ta

2Π

(5.44)

The bidirectional implication follows since Inequality (5.44) is a quadratic inequality with respect to `,

defining a convex parabola Π`2 − (ta −∆) `− D̄ta . The zeros of the parabola are

` ≥
(ta −∆)±

√
(ta −∆)2 + 4ΠD̄ta

2Π
.

Since the square-root term in the numerator is always greater than the term preceding the ±, one root is

positive and the other is negative. Inequality (5.44) implies that we are interested in values of ` ∈ N+ such

that the parabola is at least zero. Since the parabola is convex, all positive integer values of ` at least the

positive root satisfy this inequality.

The lemma follows by observing that ` must be an integer. The “if” direction of the lemma follows by

simply reversing the implications of the proof.

We now prove three lemmas and corollaries which show that for all ` ∈ N+ not equal to the values

b`1c, b`1c + 1, d`2e or d`2e − 1 will result in a larger minimum Θ. The first lemma, towards this goal,

shows that if a point on the line segment is in an `′-feasibility region and `′ is at least b`1c + 1, then the

point is also in the b`1c+ 1-feasibility region.

Lemma 20 For any ta, ta+1 ∈ T̂Si(τ, k), (t,Dt) ∈ Lita , `′ ∈ N+, Π, ∆, and Θ, if `′ ≥ b`1c + 1 and

Θ ≤ ∆ then

[(t,Dt) ∈ F`′(Π,∆,Θ)]⇒
[
(t,Dt) ∈ Fb`1c+1(Π,∆,Θ)

]
.
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Proof: By Lemma 17 and `′ ≥ b`1c + 1, Case I must hold for all such `′. Combining Case I and

Lemma 14, we have that if (t,Dt) ∈ F`′(Π,∆,Θ), then

Θ ≥ Φ1(Lita , `′,Π,∆).

Now consider the first partial derivative of Φ1 with respect to `; i.e.,

∂Φ1
∂` =

−Dta+1+ta+1−`Π−∆+Π(`+1)

(`+1)2

=
[ta+1−Dta+1 ]+[Π−∆]

(`+1)2 .

Since Π ≥ ∆, the second term in the numerator is positive. Consider the first term, ta+1 − Dta+1 . By

(t,Dt) ∈ F`′(Π,∆,Θ) and the first condition of `′-feasibility,

t ≥ Dt + `Π + ∆− (`+ 1)Θ

⇒ t+ (ta+1 − t) ≥ Dt + α(ta+1 − t) + `Π + ∆− (`+ 1)Θ

(since α < 1)

⇒ ta+1 ≥ Dta+1 + `Π + ∆− (`+ 1)Θ

⇒ ta+1 ≥ Dta+1 .

The second to last implication is due to Dt = D̄ta + α(t− ta) and Dta+1 = D̄ta + α(ta+1 − ta). The last

implication is due to Θ ≤ ∆. Therefore, the first term in the numerator of ∂Φ1
∂` is also positive. Thus, ∂Φ1

∂`

is non-decreasing for all `′. Thus, the Φ1 evaluated at b`1c+ 1 is a lower bound; i.e., for all `′ ≥ b`1c+ 1,

Φ1(Lita , `′,Π,∆) ≥ Φ1(Lita , b`1c+ 1,Π,∆).

The above inequality implies that Θ ≥ Φ1(Lita , b`1c+1,Π,∆), satisfying Equation (5.28a) of Lemma 14.

For b`1c+1, Case I holds, implying that Equations (5.28b) and (5.28c) must also hold. Thus, by Lemma 14,

(t,Dt) ∈ Fb`1c+1(Π,∆,Θ).

The next corollary follows from the above lemma and the definition of Θ∗` (Definition 13).

Corollary 7 For any ta, ta+1 ∈ T̂Si(τ, k), `′ ∈ N+, Π, and ∆, if (`′ ≥ b`1c+ 1) then

Θ∗`′(Π,∆,Lita) ≥ Θ∗b`1c+1(Π,∆,Lita).
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The next lemma shows that if a point on the line segment is in an `′-feasibility region and `′ is at most

d`2e − 1, then the point is also in the d`2e − 1-feasibility region.

Lemma 21 For any ta, ta+1 ∈ T̂Si(τ, k), (t,Dt) ∈ Lita , `′ ∈ N+, Π, ∆, and Θ, if `′ ≤ d`2e − 1 and

Θ ≤ ∆ then

[(t,Dt) ∈ F`′(Π,∆,Θ)]⇒
[
(t,Dt) ∈ Fd`2e−1(Π,∆,Θ)

]
.

Proof:

By Lemma 18 and `′ ≤ d`2e− 1, Case II must hold for all such `′. Combining Case II and Lemma 14,

we have that if (t,Dt) ∈ F`′(Π,∆,Θ), then

Θ ≥ Φ2(Lita , `′,Π,∆).

Now consider the first partial derivative of Φ2 with respect to `;

∂Φ2

∂`
=
−Dt

`2
.

Therefore, Φ2 is a decreasing function for all `′ ∈ N+ such that `′ ≤ d`2e − 1. Thus, the Φ2 evaluated at

d`2e − 1 is an upper bound for all such `′; i.e., for all `′ ≤ d`2e − 1,

Φ2(Lita , `′,Π,∆) ≤ Φ2(Lita , d`2e − 1,Π,∆).

The above inequality implies that Θ ≥ Φ2(Lita , d`2e−1,Π,∆), satisfying Equation (5.28b) of Lemma 14.

For d`2e − 1, Case II holds, implying that Equations (5.28a) and (5.28c) must also hold. Thus, by

Lemma 14, (t,Dt) ∈ Fd`2e−1(Π,∆,Θ).

The next corollary follows from the above lemma and the definition of Θ∗` (Definition 13).

Corollary 8 For any ta, ta+1 ∈ T̂Si(τ, k), `′ ∈ N+, Π, and ∆, if (`′ ≤ d`2e − 1) then

Θ∗`′(Π,∆,Lita) ≥ Θ∗d`2e−1(Π,∆,Lita).
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Lemma 22 For any ta, ta+1 ∈ T̂Si(τ, k), (t,Dt) ∈ Lita , `′ ∈ N+, Π, ∆, and Θ, if d`2e ≤ `′ ≤ b`1c then

[(t,Dt) ∈ F`′(Π,∆,Θ)]⇒
[
(t,Dt) ∈ Fb`1c(Π,∆,Θ)

]
∨
[
(t,Dt) ∈ Fd`2e(Π,∆,Θ)

]
.

Proof: By Lemma 19 and d`2e ≤ `′ ≤ b`1c, Case III must hold for all such `′. Combining Case III and

Lemma 14, we have that if (t,Dt) ∈ F`′(Π,∆,Θ), then

Θ ≥ Φ3(Lita , `′,Π,∆).

Now consider the first partial derivative of Φ3 with respect to `;

∂Φ3

∂`
=
α2Π− D̄ta − α∆ + αta

(`+ α)2
.

Note the sign of the above partial derivative is independent of the value of `; therefore, either ∂Φ3
∂` ≤ 0,

or ∂Φ3
∂` > 0 for any ` ∈ N+; in other words, the sign remains constant for all `. If ∂Φ3

∂` > 0, then Φ3 is

minimized when ` is as small as possible; i.e., ` equals d`2e. In this case, the Φ3 evaluated at d`2e is a

lower bound for all such `′; i.e., for all `′ such that d`2e ≤ `′ ≤ b`1c,

Φ3(Lita , `′,Π,∆) ≥ Φ3(Lita , d`2e,Π,∆).

The above inequality implies that Θ ≥ Φ3(Lita , d`2e,Π,∆), satisfying Equation (5.28c) of Lemma 14.

For d`2e, Case III holds, implying that Equations (5.28a) and (5.28b) must also hold. Thus, by Lemma 14,

(t,Dt) ∈ Fd`2e(Π,∆,Θ) when ∂Φ3
∂` > 0.

If ∂Φ3
∂` ≤ 0, then Φ3 is minimized when ` is as large as possible; i.e., ` equals b`1c. In this case, the Φ3

evaluated at b`1c is an upper bound for all such `′; i.e., for all `′ such that d`2e ≤ `′ ≤ b`1c,

Φ3(Lita , `′,Π,∆) ≥ Φ3(Lita , b`1c,Π,∆).

By the same argument for ∂Φ3
∂` > 0, (t,Dt) ∈ Fb`1c(Π,∆,Θ) when ∂Φ3

∂` ≤ 0.

The next corollary follows from the above lemma and the definition of Θ∗` (Definition 13).
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Corollary 9 For any ta, ta+1 ∈ T̂Si(τ, k), `′ ∈ N+, Π, and ∆, if (d`2e ≤ `′ ≤ b`1c) then

Θ∗`′(Π,∆,Lita) ≤ min{Θ∗b`1c(Π,∆,L
i
ta),Θ∗d`2e(Π,∆,L

i
ta)}.

Combining Corollaries 7, 8, 9, and using Definitions 12 and 13, we obtain the following corollary.

Corollary 10

Θ∗(Π,∆,Lita) = min
`∈{b`1c,b`1c+1,d`2e,d`2e−1}

{Θ∗` (Π,∆,Lita)}.

By the above corollary, we now know how to compute Θ∗(·) efficiently from Θ∗` (·). The next lemma

shows that we may use the Φ functions to efficiently compute Θ∗` (·).

Lemma 23 For any Lita and ` ∈ N+,

Θ∗` (Π,∆,Lita) =





Φ1(Lita , `,Π,∆), if ` ≥ b`1c+ 1;

Φ2(Lita , `,Π,∆), if ` ≤ d`2e − 1;

Φ3(Lita , `,Π,∆), otherwise.

(5.45)

Proof: From Definition 13, Θ∗` (Π,∆,Lita) is the minimum Θ ≤ ∆ such that there exists (t,Dt) ∈ Lita
where (t,Dt) ∈ F`(Π,Θ,∆). By Lemma 14, such a Θ is also the minimum value that satisfied all

three conditions of Equation (5.28). Since each of the conditions is a lower bound on Θ (with equality

permitted), Θ must satisfy equality of at least one of the three conditions of Equation (5.28) and must

exceed or equal the other two conditions. Notice that, if ` ≥ b`1c + 1, then by Lemma 17, Θ equals

Φ1(Lita , `,Π,∆). We can show an identical proof for intervals (0, d`2e − 1] and[d`2e, b`1c], by applying

Lemmas 18 and 19, respectively.

The final lemma that we prove before providing a proof for Theorem 7 shows that a choice of Θ based

on the computation of Θ∗(·) is a “safe” choice in the sense that all tasks in τi will complete by their

deadline under an EDP resource Ω = (Π,Θ,∆).

Lemma 24 For all τi ∈ τ, ∃t ∈ (0, di] such that R̃BF(τi, t) ≤ sbf((Π,Θ,∆), t) and Uτ ≤ Θ
Π , if and

only if,

Θ ≥ max


 maxτi∈τ

{
minta,ta+1∈T̂Si

{
Θ∗(Π,∆,Lita)

}}
,

Uτ ·Π


 . (5.46)



84

Proof: We will prove this lemma by contrapositive. For the ”if” direction, we must prove if eitherUτ > Θ
Π

or ∀t ∈ (0, di] : R̃BF(τi, t) > sbf((Π,Θ,∆), t), then the negation of the inequality of Equation (5.46)

is true. If we consider Uτ > Θ
Π , the inequality of Equation (5.46) is trivially violated due to the second

expression in the outer max of Equation (5.46).

Now, consider the case when there exists a τi ∈ τ such that R̃BF(τi, t) > sbf((Π,Θ,∆), t) for

all t in (0, di]. By Lemma 15, this implies for all ` ∈ N+, ta, ta+1 ∈ T̂Si(τ, k), and (t,Dt) ∈ Lita
that (t,Dt) 6∈ F`(Π,∆,Θ). By Definition 13, it must be for all ` ∈ N+ that Θ < Θ∗` (Π,∆,Lita).

By Lemma 16, this implies that Θ < Θ∗(Π,∆,Lita) for any ta, ta+1 ∈ T̂Si(τ, k), which violates the

inequality of Equation (5.46) due to the first term in the outer max. For the ”only if” direction of the

lemma, we will also consider the contrapositive. The contrapositive will follow by simply reversing the

implications of the proof for the ”if” direction.

After proving the above conditions, we are ready to prove Theorem 7 which states that FPMINIMUM-

CAPACITY returns a valid value for finite k and an exact value for k =∞.

Proof of Theorem 7 We will show that Θmin returned from FPMINIMUMCAPACITY corresponds to the

value on the right-hand side of Equation (5.46) of Lemma 24. The loop from Line 4 to 25 iterates through

each consecutive pair of values ta and ta+1 in T̂Si(τ, k) to find optimal capacity for each line segment

defined by the endpoints (ta, D̄ta) and (ta+1, Dta+1). It sets variables corresponding to R̃BF(ta) and

R̃BF(ta+1) in Lines 5 and 6 respectively. Then, in the next few lines it sets four different values to ` (based

on `1 and `2, defined in Equations (5.24) and (5.25)) and evaluates Φj(·) according to Lemma 23 to com-

pute Θ∗` (·) for each of the four integer values of `. Therefore, Θmin
ta , set in Line 14, equals Θ∗(Π,∆,Lita)

by Lemma 16. At the end of this loop it sets Θmin
i to be the minimum of Θmin

ta and Θmin
i (Line 15). Thus,

once the inner loop is executed for all ta, ta+1 ∈ T̂Si(τ, k), Θmin
i contains the minimum of all Θmin

ta values.

The outer loop from Line 1 to Line 28 finds Θmin
i for all task τi in τ . Finally, in Line 17, Θmin is set to the

maximum of Uτ ·Π and Θmin
i over all values τi in τ .

By Lemma 24, R̃BF(τi, t) ≤ sbf((Π,Θmin,∆), t) for some t ∈ (0, di] and Uτ ≤ Θ
Π . By Lemma 12,

RBF(τi, t) ≤ R̃BF(τi, t). This implies RBF(τi, t) ≤ sbf((Π,Θmin,∆), t) which is the schedulability

condition given by Theorem 6. Therefore, τ will always meet all deadlines when scheduled by fixed-

priority scheduling upon Ω = (Π,Θmin,∆). When k =∞, R̃BF(τi, t) equals RBF(τi, t) for all t ≥ 0; in

this case, Θmin equals Θ∗(Π,∆, τ) (i.e., Θmin is exact capacity).
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Approximation Ratio

In the previous section, we have shown that FPMINIMUMCAPACITY gives a valid answer when k is finite

and an exact answer when k is infinite. In this section, we show that as k increases, the guaranteed accuracy

of FPMINIMUMCAPACITY increases along with its running time. Theorem 8 presents the tradeoff between

accuracy and computational complexity, in terms of k.

Theorem 8 Given Π, ∆, τ , and k ∈ N+, the procedure FPMINIMUMCAPACITY returns Θmin such that

Θ∗(Π,∆, τ) ≤ Θmin ≤
(
k + 1

k

)
·Θ∗(Π,∆, τ).

Furthermore, FPMINIMUMCAPACITY (Π,∆, τ, k) has time complexity O(kn2 log n)

The following corollary quantifying our FPTAS is immediately obtainable from Theorem 8, by substi-

tuting a value for k dependent on the accuracy parameter ε (k =
⌈

1
ε

⌉
).

Corollary 11 Given Π, ∆, τ , and ε > 0, the procedure FPMINIMUMCAPACITY
(
Π,∆, τ,

⌈
1
ε

⌉)
returns

Θmin such that

Θ∗(Π,∆, τ) ≤ Θmin ≤ (1 + ε) ·Θ∗(Π,∆, τ).

Furthermore, FPMINIMUMCAPACITY
(
Π,∆, τ,

⌈
1
ε

⌉)
has time complexity O

(
n2 logn

ε

)
.

To prove Theorem 8, we need to prove two additional lemmas.

Lemma 25 Given Π, ∆, and pair of consecutive pair of values ta, ta+1 ∈ T̂Si(τ, k), the following is true

for all k, `(∈ N+), and α(∈ [0, 1]),

Θ∗`
(
Π,∆,Lita

)
≤
(
k+1
k

)
·Θ∗`

(
Π,∆,

〈(
ta,

k·D̄ta
k+1

)
,
(
ta+1,

k·Dta+1

k+1

)
, k·αk+1

〉)
. (5.47)

Proof: By Lemma 23, Θ∗` (Π,∆,Lita) must be equal to one of Φ1,Φ2 or Φ3 according to the value of `.

We will show that for each of the three possibilities, Equation (5.47) must hold.
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If Θ∗` (Π,∆,Lita) is equal to Φ1(Lita , `,Π,∆) (i.e.,
Dta+1−ta+1+`Π+∆

`+1 ), then ` ≥ b`1c+1 by Lemma 23.

This implies by definition of `1,

` ≥
⌊

(ta+1−∆)+
√

(ta+1−∆)2+4ΠDta+1

2Π

⌋
+ 1

>
(ta+1−∆)+

√
(ta+1−∆)2+4ΠDta+1

2Π

> 2(ta+1−∆)
2Π

= ta+1−∆
Π .

Thus, `Π + ∆− ta+1 ≥ 0. By Lemma 23 and ` ≥ b`1c+ 1,

Θ∗`

(
Π,∆,

〈(
ta,

k · D̄ta

k + 1

)
,

(
ta+1,

k ·Dta+1

k + 1

)
,
k · α
k + 1

〉)

= Φ1

(〈(
ta,

k·D̄ta
k+1

)
,
(
ta+1,

k·Dta+1

k+1

)
, k·αk+1

〉
, `,Π,∆

)

=
k·Dta+1
k+1

−ta+1+`Π+∆

`+1

≥
k
k+1
·Dta+1+ k

k+1
·(`Π+∆−ta+1)

`+1

≥
(

k
k+1

)
·
(
Dta+1−ta+1+`Π+∆

`+1

)

=
(

k
k+1

)
·Θ∗`

(
Π,∆,Lita

)
.

In this case, Equation (5.47) holds.

If Θ∗` (Π,∆,Lita) is equal to Φ2(Lita , `,Π,∆) (i.e, D̄ta
` ), then ` ≤ d`2e − 1 by Lemma 23. Lemma 23

also implies

Θ∗`

(
Π,∆,

〈(
ta,

k · D̄ta

k + 1

)
,

(
ta+1,

k ·Dta+1

k + 1

)
,
k · α
k + 1

〉)

= Φ2

(〈(
ta,

k·D̄ta
k+1

)
,
(
ta+1,

k·Dta+1

k+1

)
, k·αk+1

〉
, `,Π,∆

)

≥
k·D̄ta
k+1

`

=
(

k
k+1

)
·Θ∗`

(
Π,∆,Lita

)
.
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Finally, if Θ∗` (Π,∆,Lita) is equal to Φ3(Lita , `,Π,∆) (i.e., D̄ta+α(`Π+∆−ta)
`+α ),then d`2e ≤ ` ≤ b`1c

by Lemma 23. Lemma 23 also implies that

Θ∗`

(
Π,∆,

〈(
ta,

k · D̄ta

k + 1

)
,

(
ta+1,

k ·Dta+1

k + 1

)
,
k · α
k + 1

〉)

= Φ3

(〈(
ta,

k·D̄ta
k+1

)
,
(
ta+1,

k·Dta+1

k+1

)
, k·αk+1

〉
, `,Π,∆

)

≥
k·D̄ta
k+1

−( k·αk+1)(`Π+∆−ta)

`+( k·αk+1)

≥
(

k
k+1

)
·
(
D̄ta−α(`Π+∆−ta)

`+α

)

=
(

k
k+1

)
·Θ∗`

(
Π,∆,Lita

)
.

Lemma 26 Given Π, ∆, τi ∈ τ , and k ∈ N+, there exists consecutive pair of values ta, ta+1 ∈ T̂Si(τ, k)

such that,

Θ∗(Π,∆, τ) ≥ Θ∗
(

Π,∆,

〈(
ta,

k · D̄ta

k + 1

)
,

(
ta+1,

k ·Dta+1

k + 1

)
,
k · α
k + 1

〉)
. (5.48)

Proof:

Let ΘRHS denote the right-hand side of Equation (5.48). By definition of Θ∗(Π,∆, τ) and Theorem 6,

for all τi ∈ τ , there exist t ∈ (0, di] such that

RBF(τi, t) ≤ sbf((Π,Θ∗(Π,∆, τ),∆), t). (5.49)

Now consider any pair of consecutive values ta, ta+1 ∈ T̂Si(τ, k). By Lemma 12, we have, for all

t ∈ (ta, ta+1], (
k + 1

k

)
· RBF(τi, t)

=
(
k+1
k

)
·
(
ei +

∑i−1
j=1 rbf(τj , t)

)

≥ ei +
(
k+1
k

)
·∑i−1

j=1 rbf(τj , t)

≥ ei +
(
k+1
k

)
·
(∑i−1

j=1 δ(τi, t) · k
k+1

)

= R̃BF(τi, t)

(5.50)

Combining the inequalities of Equations (5.49) and (5.50) gives us, for all t ∈ (ta, ta+1],
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sbf((Π,Θ∗(Π,∆, τ),∆), t) ≥ k

k + 1
· R̃BF(τi, t). (5.51)

Lemma 15 and Equation (5.51) imply that there exists ` ∈ N and (t,Dt) ∈
〈(

ta,
k·D̄ta
k+1

)
,
(
ta+1,

k·Dta+1

k+1

)
, k·αk+1

〉

such that

(t,Dt) ∈ F`(Π,Θ∗(Π,∆, τ),∆).

The above expression and Definition 13 implies

Θ∗`

(
Π,∆,

〈(
ta,

k · D̄ta

k + 1

)
,

(
ta+1,

k ·Dta+1

k + 1

)
,
k · α
k + 1

〉)
≤ Θ∗(Π,∆, τ).

The lemma follows from the expression above and Lemma 16.

We find the following corollary by combining Lemmas 25, 26 and 16.

Corollary 12 Given Π, ∆, k ∈ N+, and τi, there exists consecutive pair of values ta, ta+1 ∈ T̂Si(τ, k),

(
k + 1

k

)
·Θ∗(Π,∆, τ) ≥ inf

`∈N+

{
Θ∗` (Π,∆,Lita)

}
. (5.52)

Now, we are ready to give the proof of Theorem 8.

Proof of Theorem 8 We already proved the first part in Theorem 7; now we must prove the second part

of the inequality. From our algorithm, the value of Θmin can be either equal to Π · Uτ or greater than this

term. If Θmin = Π · Uτ , Theorem 6 implies that Θ∗(Π,∆, τ) must be at least Uτ · Π. For this case, the

second inequality follows, since k+1
k ≥ 1 for all k ∈ N+. Now consider the case when Θmin > Π · Uτ .

Θmin = max
τi∈τ



 min
ta,ta+1∈T̂Si

{
Θ∗(Π,∆,Lita)

}




according to Theorem 7 and Lemma 24. By Lemma 16, this is equivalent to

Θmin = max
τi∈τ



 min
ta,ta+1∈T̂Si

{
inf
`∈N+

{
Θ∗`
(
Π,∆,Lita

)}}


 .
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Applying Corollary 12, we find,

Θmin ≤ max
τi∈τ

{(
k + 1

k

)
·Θ∗(Π,∆, τ)

}
.

From this and the definition of Θ∗(Π,∆, τ) the second inequality of this theorem follows.

5.3.3 Simulation Results

In this section, we present simulation results and compare the performance of our proposed algorithms.

We implemented six schedulability tests: exact test derived in Section 5.2 without any heuristics (i.e., iter-

ative convergence to determine response time in Equation 5.4); exact test with heuristics (using response

time lower bound and upper bound derived in Section 5.2.1 and 5.2.2); exact algorithm by [39]3; our

proposed approximate algorithm FP-MINIMUMCAPACITY; iterative convergence-based approximate test

with heuristics and sufficient algorithm by [83]. We denote these algorithms as BS-E, BS-E-h, MC-E,

MC-A, BS-A-h and Suff respectively in the plots. The simulation parameters and value ranges are shown

below:

1. The number of tasks in a task system τ is [4, 60] at 4-increments.

2. The system utilization Uτ is taken from the range [0.1, 0.9] at 0.05-increments and individual task

utilizations ui are generated using UUniFast algorithm [25].

3. Each sporadic task τi = (ei, di, pi) has a period pi uniformly drawn from the interval [10, 10000].

The execution time ei is set to ui.pi. We assume di ≤ pi and is uniformly drawn from the interval

[deie, pi].

4. The component level scheduling algorithm is FP.

5. k is taken from the range [1, 25] at 2-increments. Π is set in the range [10, 10000]; ∆ is equal to Π.

6. Note that, we assume integral values for pi, di, Π, ∆ and fractional values for ei and Θ for the ease

of simulation, our results will still hold for non-integral parameters.

7. A 2.33 GHz Intel Core 2 Duo E6550 machine with 2.0GB RAM is used for simulations.
3Note that we can obtain the exact capacity from FP-MINIMUMCAPACITY with k =∞.
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8. Each point in the plots represents mean of 1000 simulation runs with 95% confidence intervals.
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Figure 5.2: Relative Error vs System Utilization
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Figure 5.3: Relative Error vs Workload Size
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Figure 5.4: Relative Error vs Resource Period
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Figure 5.5: Relative Error vs Approximation Parameter

For each simulation, for a specific task system size n and utilization Uτ , we randomly generate taskset

parameters ui, pi, ei and di for each task τi. We execute three exact algorithms, two approximate algo-

rithms, and the sufficient algorithm to generate exact, approximate and sufficient capacity, respectively.

We first compare the relative error4 of our proposed approximate algorithm (MC-A) with the sufficient

algorithm (Suff), and iterative approximate algorithm (BS-A-h), with respect to the exact algorithm (MC-

E)5. In Figure 5.2, the relative error in the calculation of capacity for our algorithm is plotted as a function
4Relative error is defined as follows: Θ−Θ∗

Θ∗ where Θ∗ is the exact capacity and Θ is either the sufficient capacity Θ̄ or the
approximate capacity Θ̂.

5Note that the relative error of BS-E and BS-E-h are equal to the threshold (equals 10−6 in the simulations) of the binary
search used to determine minimum capacity.
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Figure 5.6: Execution Time vs System Utilization
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Figure 5.7: Execution Time vs Workload Size

of task system utilization (n = 20; Π = 100; ∆ = Π; k = 3). For MC-A, the mean relative error is less

than 5%, whereas for Suff it ranges from 40% to 85%. For the sufficient algorithm, relative error is very

high due to the fact that the algorithm overestimates capacity. The relative error for our approximation al-

gorithm does not vary much with the increase in system utilization, where as it decreases for the sufficient

algorithm. A potential explanation for the this is that some of the functions of Suff for setting the capacity

do not depend on the utilization, only the task and resource period parameters. Such functions will be

constant over increasing utilization while the optimal capacity must increase as utilization increases. This

results in a reduction in the relative error of these (non-utilization-dependent) functions. This observation

continues to hold for the next two plots where we compare relative error by varying workload size (Fig-

ure 5.3) and resource period (Figure 5.4). We observe that for Suff, the relative error ranges from 25−95%

and it increases with the increase of workload size and resource period. For MC-A, relative error for both

these cases are below 5%, and it is independent of workload size and resource period. In Figure 5.5, we

compare the relative error of the two approximation algorithms (MC-A and BS-A-h) by varying the ap-

proximation parameter k. For both the cases, we observe that the relative error is very low (below 1%)

even for moderate value of k (≥ 5). The relative error for BS-A-h is slightly higher than MC-A in all the

above cases due to the fact that in the former case we have used a threshold of 10−6 while performing

binary search of minimum capacity Θ. Further, in BS-A-h, the approximation of the special tasks which

represent the resource unavailability period results a slight overestimation of minimum capacity by this

algorithm.
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Figure 5.8: Execution Time vs Resource Period

Next, we compare the execution time (in ms) for all six algorithms varying system utilization, workload

size and resource period. In Figure 5.6, execution time for these algorithms are plotted against system

utilization. We observe that for the iterative convergence-based algorithms (BS-E, BS-E-h and BS-A-

h), execution time decreases with increasing system utilization. This is due to the fact that the initial

values of the response time for each task in task system τ (see Equation 5.4) is higher at the initial steps

of the iterative convergence algorithm. This results in fewer number of iterations for the response time

to converge, and thus reduces overall execution time of the algorithm. The execution time for the other

three algorithms (i.e., MC-E, MC-A, Suff) does not vary much with respect to utilization. Notice that

the comparison between the two heuristics based iterative algorithms: the approximate algorithm BS-A-h

performs worse than the exact algorithm BS-E-h. This is due to the fact that the approximate response

time obtained by BS-A-h is higher than that of the exact response time obtained by BS-E-h which results

the former algorithm taking more iterations to converge. This is not trivial since at each iteration, the

response time calculation for the approximate algorithm takes less time than the exact algorithm. Also, we

observe similar run-time performance of BS-A-h in the last two plots.

In Figure 5.7, we compare execution time for all algorithms varying workload size, and observe that as

the number of tasks in the system increases, the execution time for all the algorithms except the constant-

time sufficient algorithm increases. However, the execution time for MC-E grows at higher rate than BS-

E-h, and crosses it at around n = 48. This is due to the fact that MC-E calculates minimum capacity for

each point in the testing set, and the size of testing set grows pseudo-polynomially with the workload size

(Equation 3.7), whereas the growth of the iterative algorithms (BS-E, BS-E-h and BS-A-h) is proportional
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to the workload size. Thus, we may conclude that the heuristic-based exact algorithm (BS-E-h) is more

suitable when workload size is high. Finally, in Figure 5.8 execution time is compared against resource

period. Here we observe that MC-E, MC-A and Suff do not vary much with resource period as expected.

However, execution time for iterative exact algorithms decrease with increasing period, due to large initial

response time for larger value of Π.

Although for moderate task system size the execution time of MC-E is very competitive to MC-A

(Figure 5.6), while determining the interface parameters using the capacity determination algorithm as a

subroutine of the period selection algorithm [44], it significantly adds up to the time required to determine

interface parameters. Therefore, the near-optimal capacity determination algorithm MC-A can be used

with very low relative error (< 1% for k = 5). In this chapter, we have considered constrain-deadline

sporadic tasks in which case the execution time of the exact algorithm (MC-E) is proportional to dmax (i.e.,

maximum relative deadline among tasks). However, when task deadlines are arbitrary, this condition no

longer holds and an approximate algorithm performs much better than the exponential time exact algorithm

as shown in the next section.

5.4 Efficient Capacity Determination for Arbitrary Deadline FP-Scheduled

Components

For arbitrary deadline sporadic tasks (i.e., task deadlines can be greater task periods) as components sched-

uled upon EDP resource, we characterize an exact schedulability condition (Theorem 9) for fixed-priority-

scheduled components which potentially requires exponential runtime. To address the computational in-

efficiency, we are give a sufficient schedulability algorithm in this section.

When deadlines can exceed periods, it is no longer sufficient to check the response-times of only the

first job (τi,1) of each task [58]. Instead, Lehoczky [58] showed that is potentially necessary to check the

response-time of all the jobs in synchronous level-i busy interval Bi for each task τi, which is the longest

possible busy interval.

The cumulative request-bound function for job τi,j is defined as follows:

RBFi,j(t)
def
= jei +

i−1∑

h=1

rbf(τh, t). (5.53)
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The exact schedulability condition for arbitrary deadline fixed-priority scheduling in preemptive unipro-

cessor platform is given by the following equation.

∀i, j ∈ N : aij ∈ [0,Bi) :: ∃t ∈ (aij , d̄ij ],RBFi,j(τi, t) ≤ t (5.54)

This condition needs to be verified at the following testing set6 points (ordered):

TSi(τ)
def
=

{
t = b · pa : a = 1, . . . , i; b = 1, . . . ,

⌊Bi
pa

⌋}
. (5.55)

The size of this set may be as large as
∑i

j=1

⌊
Bi
pj

⌋
which is dependent on the task periods, and thus

requires pseudo-polynomial time feasibility test. Again, at any instant t since di can be greater pi for task

τi, the number of active jobs of τi could be Θ(di/pi), which is also pseudo-polynomial.

We can obtain an approximate cumulative request bound function using Equation 5.15 and 5.53 as

follows:

R̃BFi,j(t)
def
= jei +

i−1∑

h=1

r̃bf(τh, t, k). (5.56)

Fisher et al. [45] proposed an approximation to the feasibility test by approximating testing set points.

A sporadic or synchronous periodic task system with arbitrary relative deadlines is schedulable if

∀i, j ∈ N : aij ∈ [0,Bi) :: ∃t ∈ (aij , d̄ij ], R̃BFi,j(t) ≤ t. (5.57)

The testing set for this condition reduces to:

T̂Si(τ, k)
def
= {t = b · pa : a = 1, . . . , i− 1; b = 1, . . . , k − 1} . (5.58)

Let ta, ta+1 denote any pair of consecutive values in the above ordered set. T̂Si(τ, k) contains the points

t1, t2, . . . , t(i−1)(k−1). For convenience, we assume that the first point in the testing set, t0 equals zero and

the last point in the testing t(i−1)(k−1)+1 equals∞.

In the EDP resource model, the processor is no longer dedicated to a single component, but shared

among numerous components. The length of a level-i busy interval for a task system τ now depends upon

the amount of processing time that a resource Ω can provide to τ over that interval. Thus, we cannot use
6Note that we slightly abuse notation in this section to represent testing set similar to Section 5.3



95

Equation 5.54 or 5.1 to directly evaluate fixed-priority-schedulability upon Ω. Instead, we need to redefine

the busy interval to account for the effects of Ω’s resource parameters. Below we define the level-i busy

interval with respect to EDP resource Ω.

Definition 14 (Synchronous Level-i Busy Interval for Ω) A level-i busy interval upon an EDP resource

Ω = (Π,Θ,∆) is a time interval [0,BΩ
i ) where only jobs of {τ1, τ2, . . . , τi} are execute upon Ω and the

following conditions hold:

1. All tasks of {τ1, τ2, . . . , τi} release jobs at time zero.

2. Each task of {τ1, τ2, . . . , τi} releases tasks periodically (i.e., τk ∈ {τ1, τ2, . . . , τi} has successive

job releases pk time units apart).

3. The execution provided by Ω over any subinterval [0, t) ⊆ [0,BΩ
i ) is minimal (i.e., the execution

received by the component at t ∈ [0,BΩ
i ) equals sbf(Ω, t)).

4. BΩ
i is the first time instant such that all jobs of τi released in the interval [0,BΩ

i ) have completed.

Using the above definition, we may easily obtain the following theorem (using identical arguments

as Lechoczky [56, 58]) which states an exact schedulability condition for EDP resource Ω where the

arbitrary-deadline task system is scheduled by an fixed-priority-scheduling algorithm. Informally, it states

that all jobs of task τi in the busy interval BΩ
i must complete at time t before its deadline.

Theorem 9 An arbitrary-deadline sporadic task τi is fixed-priority-schedulable upon an EDP resource

Ω = (Π,Θ,∆), if and only if,

(
∀j ∈ N+ : (j − 1)pi ≤ BΩ

i :: ∃t ∈ (aij , d̄ij ],RBFi,j(τi, t) ≤ sbf(Ω, t)
)∧ (

Uτ ≤ Θ
Π

)
. (5.59)

While the above theorem gives a test for fixed-priority schedulability upon an EDP resource, the

complexity of the test depends on the value of BΩ
i which can be quite large. Furthermore, the above

theorem essentially requires simulation of the synchronous arrival sequence for τi up to BΩ
i . For task

system schedulability, we must repeat this process for each τi ∈ τ . We will address the lack of efficient

schedulability results for this large and important class of task systems in our future work.



96

5.4.1 Schedulability Algorithm for FP-Scheduled Arbitrary-Deadline Tasks

In this section, we give our schedulability algorithm for arbitrary-deadline sporadic tasks on an EDP

resource called AFPSCHEDULABILITY with a formal proof correctness.

We now define notation to represent the discontinuous line segments of the cumulative request bound

function (R̃BFi,j) (similar to section 5.3). Consider any t ∈ T̂Si(τ, k); define Dt to be request bound

function at time t, that is the R̃BFi,j(t) of τi,j . Define Lita to be the (non-vertical) line segment of the

cumulative request bound function R̃BFi,j between consecutive testing set points ta and ta+1. Note that

R̃BFi,j has a slope equal to the total utilization of all task τh with higher priority than τi i.e., (h < i) and

ta+1 ≥ (k− 1)ph (i.e., the total utilization of all tasks that are in the “approximate” portion of the r̃bf after

time point ta). More formally,

αi,jta
def
=

∑

τh∈τ :(ta+1≥(k−1)ph)∧(h<i)

uh. (5.60)

The line segment (Figure 5.9) has a closed right endpoint (ta+1, Dta+1) and an open left endpoint (ta, D̄ta)

where

D̄ta
def
=





Dta+1 + αi,jta (ta − ta+1) if ta+1 ≥ (k − 1)pi,

jei +
∑i−1

h=1 eh + taα
i,j
ta otherwise.

(5.61)

Thus, we formally define the line segment Lita as follows (similar to Equation 5.18).

Lita
def
= {(x, y) ∈ R2 | (x ∈ (ta, ta+1]) ∧ (y = D̄ta + αi,jta (x− ta))}. (5.62)

From the above definitions, it is straightforward to verify that for all t ∈ (ta, ta+1], R̃BFi,j(t) is equivalent

to Lita . Furthermore, the following lemma is apparent from the observation that R̃BFi,j(t) ≥ RBF(τi, t)

for all t > 0.

Lemma 27 For any t ∈ T̂Si(τ, k), R̃BFi,j(t) ≤ Dt for all (t,Dt) ∈ Lita .

Definition 15 (Intersection of Lita and usbf) For any line segment Lita of R̃BFi,j(t), the intersection of

line L, containing Lita , with usbf is given by the following expression:

φi,jta
def
=
Dta+1 − αi,jta ta+1 + Θ

Π (∆−Θ)
Θ
Π − α

i,j
ta

. (5.63)
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Ŵ3,1

L3,2ta D3,2
ta+1

D̄3,2
ta

2

2

4

4

6

6

8

8

10

10

12

12

14

D3,2
ta

d3

Figure 5.9: Consider τ consisting τ1(1, 5, 2), τ2(1, 10, 4) and τ3(1, 15, 8), where τ1 and τ2 have higher
priority than τ3. The cumulative request bound functions W3,1 and W3,2 are shown in the
plot. The dashed lines represent approximation R̃BFi,j for each of the jobs τi,j . A line
segment Lita is any non-vertical line of R̃BFi,j .

Note that by Equation 5.61, φi,jta can also be calculated using D̄ta and αi,jta . We now characterize the elapsed

time between successive intersections of Lita and Li,j+1
ta with usbf. As the Lita and Li,j+1

ta correspond to

the cumulative request bound function R̃BFi,j and R̃BFi,j+1 over the interval (ta, ta+1], we know (by

Equation 5.56) that R̃BFi,j+1(t) − R̃BFi,j(t) = ei for all t ∈ (ta, ta+1]. Thus, the (horizontal) distance

between the intersections of the two successive line segments with usbf can be found below.

ϕita
def
= φi,j+1

ta − φi,jta =
ei

Θ
Π − α

i,j
ta

(5.64)

The following lemma relates the concept of feasibility regions with the intersection of R̃BFi,j and sbf.

Lemma 28 For any ta ∈ T̂Si(τ, k) and (t,Dt) ∈ Lita , the inequality R̃BFi,j(t) ≤ sbf(Ω, t) holds, if and

only if there exists ` ∈ N such that (t,Dt) ∈ F`(Π,Θ,∆).

The following two specially-defined steps (with respect to Lita and Ω) will be useful in constructing a
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schedulability test:

` i,jta
def
= max

{⌈
D̄ta

Θ

⌉
,

⌈
D̄ta − αi,jta (ta −∆ + Θ)

Θ− αi,jta Π

⌉}
(5.65)

and

`
i,j
ta

def
=

⌊
ta+1 −Dta+1 −∆ + Θ

Π−Θ

⌋
. (5.66)

Algorithm Description

The pseudocode of our sufficient algorithm AFPSCHEDULABILITY is presented in Algorithm 4, along

with an auxiliary functions AFPSINTERSTAGE, given in Algorithms 5. AFPSCHEDULABILITY works as

follows. For each task τi ∈ τ , we try to determine which jobs τi,j in the synchronous level-i busy interval

for Ω can complete by their deadline, starting with j = 1. We check job schedulability by considering

each of the testing set points ta ∈ T̂Si(τ, k) (in increasing order) and then incrementing j once we have

determined that the previous job (or jobs) are schedulable. For each testing point and current job τi,j for

which we are trying to determine schedulability, we consider the corresponding line segment Lita . Line 5

informally checks whether an intersection between Lita and sbf is in the interval (ta, ta+1]. If not, we

check (Line 6) whether τi,j’s deadline elapses in the interval (ta, ta+1], in which case we declare that the

system is not schedulable.

In the case that Lita intersects with sbf over (ta, ta+1], we determine the intersection point of Lita with

the ` i,jta -step of the sbf in Line 10. Line 12 checks whether this intersection occurs prior to τi,j’s deadline.

If so, we then calculate in Line 15 the number of jobs after τi,j that complete execution (not necessarily

by their deadline) in the interval (ta, ta+1]. Line 16 determines (via AFPSINTERSTAGE) whether these

jobs will meet their deadline and returns not schedulable, if they do not. If each job that completes meets

its deadline, we increment the variable j by the number of completed active jobs in Line 17, to update

which jobs have finished by their deadline. If j > d ta+1

pi
e, we can conclude that the end of the level-i busy

interval occurs prior to ta+1 and that τi is schedulable and continue the test for the next task. Otherwise,

we repeat the above process iterating over T̂Si(τ, k) until we check all jobs up until the final value of

ta ∈ T̂Si(τ, k). Line 27 checks (via AFPSINTERSTAGE) whether all jobs released after the final testing

set point complete by their deadline. If so, we can conclude τi is schedulable and move onto the next task

in τ .
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Algorithm 4 AFPSCHEDULABILITY(Ω, τ, k)

Require: EDP Resource Ω = (Π,Θ,∆); Task System τ ; k.
Ensure: τ is FP-schedulable upon Ω.

1: for all τi ∈ τ do
2: j ← 1
3: {Consider testing set points in increasing order}
4: for all ta ∈ T̂Si(τ, k) do
5: if ` i,jta > `

i,j

ta then
6: if ta+1 ≥ d̄ij then
7: Return Not Schedulable.
8: end if
9: else

10: t̂← Dta+1−α
i,j
ta ta+1+` i,j

ta
Π+∆−(` i,j

ta
+1)Θ

1−αi,jta
11: if t̂ ≤ ta+1 then
12: if t̂ > d̄ij then
13: Return Not Schedulable
14: else
15: z ← min

{⌈
ta+1

pi

⌉
− j,

(⌊
sbf(Ω,ta+1)−Dta+1

ei

⌋)

0

}

16: AFPSINTERSTAGE(Ω, τi, τi,j+1, ta+1)
17: j ← j + z + 1
18: if j > d ta+1

pi
e then

19: {No active jobs, end of busy period}
20: Continue Outer Loop.
21: end if
22: end if
23: end if
24: end if
25: end for{End Inner Loop}
26: {Check final line segment.}
27: AFPSINTERSTAGE(Ω, τi, τi,j , t(i−1)(k−1)+1)
28: end for{End Outer Loop}
29: Return Schedulable

Algorithm Complexity

Each iteration of the “inner” loop of AFPSCHEDULABILITY from Lines 4 to 25 requires constant time

(including the auxiliary function). The number times this inner loop executes for a given τi is equal to

|T̂Si(τ, k)| = (i − 1)(k − 1). Furthermore, if O(ik · lg ik) is required to sort each T̂Si(τ, k), the total

complexity of the algorithm is given by O(kn2 lg nk).
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Algorithm 5 AFPSINTERSTAGE(Ω, τi, τi,j , ta)

Require: EDP Resource Ω; Task τi; Job τi,j ; Time ta.
Ensure: All jobs τi,j and beyond of task τi are FP-schedulable in the interval (ta, ta+1] upon Ω.

1: {φi,jta and ϕita are defined in Equations 5.63 and 5.64.}
2: if d̄ij − φi,jta < Π−Θ

1−αi,jta
then

3: Return Not Schedulable
4: end if
5: if pi < ϕita then
6: Return Not Schedulable
7: end if

Algorithm Correctness

The main correctness result for our sufficient schedulability algorithm is given in the theorem below.

Theorem 10 A sporadic task system τ is FP-schedulable upon an EDP resource Ω, if AFPSCHEDU-

LABILITY(Ω, τ, k) returns ”Schedulable”.

To prove the above theorem, we need to prove some additional lemmas. We start with a lemma that

states schedulability condition for a line segment Lita of R̃BFi,j of τi,j with EDP resource Ω. In the

previous section, we derived bounds for the value of Θ such that a line segment corresponding to τi’s first

of τi1 is schedulable; i.e., if the necessary and sufficient conditions are satisfied, then Ŵi1(t) ≤ sbf(Ω, t)

for some t ∈ (ta, ta+1]. We restate Lemma 14 to obtain bounds on the values of `.

Lemma 29 For any ta ∈ T̂Si(τ, k) line segment Lita ,∃t ∈ (ta, ta+1] : R̃BFi,j(t) ≤ sbf(Ω, t), if and only

if there exists ` ∈ N+ such that the following conditions satisfy.

` ≤ ta+1−Dta+1−∆+Θ

Π−Θ , (5.67a)

` ≥ D̄ta
Θ , (5.67b)

` ≥ D̄ta−α
i,j
ta (ta−∆+Θ)

Θ−αi,jta Π
(5.67c).

(5.67)

The next corollary follows immediately from the above lemma and Equations 5.65 and 5.66. The

corollary shows that we can check whetherLita intersects with the sbf over (ta, ta+1] by evaluating whether

the condition ` i,jta > `
i,j
ta is false (Line 5 of AFPSCHEDULABILITY).
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Corollary 13 For any ta ∈ T̂Si(τ, k) and line segment Lita and (t,Dt) ∈ Lita , ∃t : R̃BFi,j(t) ≤ sbf(Ω, t)

if and only if ` i,jta ≤ `
i,j
ta .

The next lemma shows that if any part of Lita intersects with the sbf the point calculated in Line 10 of

AFPSCHEDULABILITY also does.

Lemma 30 For any ta ∈ T̂Si(τ, k), ` ∈ N+, Lita , Π,Θ and ∆, if ` i,jta ≤ ` ≤ `
i,j
ta and ∃(t,Dt) : (t,Dt) ∈

Lita ∧ (t,Dt) ∈ F`(Π,Θ,∆) then ∃(t̂, Dt̂) : (t̂, Dt̂) ∈ Lita ∧ (t̂, Dt̂) ∈ F` i,jta (Π,Θ,∆) where

t̂
def
=
Dta+1 − αi,jta ta+1 + ` i,jta Π + ∆− (` i,jta + 1)Θ

1− αi,jta
.

Proof: We need to show for the point (t̂, Dt̂), it is in F
` i,jta

-feasibility region. By definition of feasibility

region (Definition 11), we have to show the following.

Θ ≥ Dt̂−t̂+`
i,j
ta

Π+∆

` i,jta +1
(5.68a)

∧ Θ ≥ Dt̂
` i,jta

(5.68b)
(5.68)

We start with the right hand side of 5.68a.

Dt̂−t̂+`
i,j
ta

Π+∆

` i,jta +1

=
D̄ta+αi,jta (t̂−ta)−t̂+` i,jta Π+∆

` i,jta +1

=
D̄ta−α

i,j
ta ta

` i,jta +1

−
(1−αi,jta )

Dta+1−α
i,j
ta ta+1+`

i,j
ta

Π+∆−(`
i,j
ta

+1)Θ

1−αi,jta
−` i,jta Π−∆

` i,jta +1

=
Dta+1−α

i,j
ta ta+1−Dta+1+αi,jta ta+1−` i,jta Π−∆

` i,jta +1
+

(` i,jta +1)Θ+` i,jta Π+∆

` i,jta +1

≤ Θ

Thus, the first condition of feasibility region is verified.
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By 5.67c, we know

` i,jta ≥
D̄ta−α

i,j
ta (ta−∆+Θ)

Θ−αi,jta Π

⇒ ` i,jta (Θ− αi,jta Π) ≥ Dta+1 − αi,jta (ta+1 −∆ + Θ)

Next, we need to prove 5.68b.

Dt̂
` i,jta

=
D̄ta+αi,jta (t̂−ta)

` i,jta

=

Dta+1−α
i,j
ta ta+1+αi,jta

Dta+1−α
i,j
ta ta+1+`

i,j
ta

Π+∆−(`
i,j
ta

+1)Θ

1−αi,jta
` i,jta

=
Dta+1−α

i,j
ta ta+1+αi,jta (` i,jta Π+∆−(` i,jta +1)Θ)

(1−αi,jta )` i,jta

=
Dta+1−α

i,j
ta (ta+1+Θ−∆)+αi,jta `

i,j
ta

Π−αi,jta `
i,j
ta

Θ

(1−αi,jta )` i,jta

≤ ` i,jta (Θ−αi,jta Π)+αi,jta `
i,j
ta

Π−αi,jta `
i,j
ta

Θ

(1−αi,jta )` i,jta

≤ Θ

The last line follows by using the fact derived from 5.67c. Thus, the point (t̂, Dt̂) is in F
` i,jta

-feasibility

region.

Lemma 31 If ∃(t,Dt) ∈ Lita ∧ t ∈ (aij , d̄ij ] : (t,Dt) ∈ F` i,jta (Π,Θ,∆) then τi,j is schedulable.

Proof: By Lemma 28, if (t,Dt) ∈ Lita and (t,Dt) ∈ F` i,jta (Π,Θ,∆), then approximate cumulative

request for τi,j will be less or equal the supply at time t. By Theorem 9, task τi is schedulable if and only

if for all job τi,j in the busy interval BΩ
i , the cumulative request R̃BFi,j(t) is less or equal supply sbf(Ω, t)

for some point t ∈ (aij , d̄ij ]. Therefore, combining the two statements above, a job τi,j will be schedulable

if and only if ∃(t,Dt) ∈ Lita such that (t,Dt) ∈ F` i,jta (Π,Θ,∆).

The usbf and the steps of sbf form obtuse triangular regions with base as the plateau of an sbf step,

and the other two sides are as usbf (longest side) and the slope of sbf (see Figure 5.10). As usbf ≥ sbf,

a line with slope ≥ 0 entering and leaving the triangular region must have first intersection with the usbf,

and then it will exit the region with an intersection with the sbf slope portion of same triangular region.
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xi,jta
d̄i,j

R̃BFi,j

R̃BFi,j+1

R̃BFi,j+2

d̄i,j − φi,j
ta

φi,j
ta

φi,j+1
ta

((` − 1)Π + ∆ − Θ,

(`Π + ∆ − Θ, `Θ)

(`Π + ∆ − 2Θ, (` − 1)Θ)(` − 1)Θ)

Figure 5.10: Illustration of AFPSINTERSTAGE and triangular region between usbf and sbf.

We denote the line containing the line segment Lita by f(x) = αi,jta (x− ta) + D̄ta . Now consider the

intersection of f(x) and the triangular region formed by the usbf and some ` − 1 and ` steps of the sbf.

Let the horizontal distance between the intersection of f(x) and usbf and the intersection of f(x) and the

sloped-portion of the ` step of the sbf be denoted by xi,jta . The next lemma obtains an upper bound on xi,jta .

Lemma 32 For any line segmentLita of R̃BFi,j(t), longest horizontal distance between the points at which

the line intersects with the usbf(Ω, t) and sbf(Ω, t) satisfies

xi,jta ≤
Π−Θ

1− αi,jta
. (5.69)

Proof: Consider the set of all lines parallel to Lita that intersect with the triangular region formed from

usbf(Ω, t) and ` − 1 and ` steps of sbf(Ω, t) by first passing through the usbf face of the triangle. Let

g(x)
def
= x · αi,jta + b for some b ∈ R be the line where the horizontal distance is maximal. The leftmost

point for the triangle is ((` − 1)Π + ∆ − Θ, (` − 1)Θ) and the slope of sbf is given by the equation

h(x)
def
= x− `Π−∆ + (`+ 1)Θ. By definition of g and h, we obtain the intersection s def

= b+`Π+∆−(`+1)Θ

1−αi,jta
.

The intersection of Lita and usbf is q def
=

b+ Θ
Π

(∆−Θ)

Θ
Π
−αi,jta

. Since g has the maximal distance, it must be that

xi,jta ≤ s− q = b+`Π+∆−(`+1)Θ

1−αi,jta
− b+ Θ

Π
(∆−Θ)

Θ
Π
−αi,jta

=
(Π−Θ)(`Θ−αi,jta (`Π+∆−Θ)−b)

(1−αi,jta )(Θ−αi,jta Π)

(5.70)
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The only value above that is not fixed is b. Therefore, by finding the b that maximizes the right-hand

side of Equation 5.70, we can obtain an upper bound on xi,jta . The first derivative of the right-hand-side

expression with respect to b is −(Π−Θ)

(1−αi,jta )(Θ−αi,jta Π)
. As Π ≥ Θ, Θ

Π ≥ α
i,j
ta , and 0 ≤ αi,jta ≤ 1, the derivative is

negative, thus, the largest value of xi,jta (b) can be obtained for the smallest value of b. The line with smallest

y-intercept b of any line parallel to Lita entering the triangle through the usbf face must pass through the

point ((` − 1)Π + ∆ − Θ, (` − 1)Θ) of the triangle. Putting this point in the equation of Lita , we obtain

b = (`− 1)Θ− αi,jta ((`− 1)Π + ∆−Θ), and from Eqn. 5.70, we obtain upper bound on xi,jta .

The following lemma proves the correctness of the number of active jobs at any interval (ta, ta+1]

determined by the algorithm in Line 15.

Lemma 33 For ta ∈ T̂Si(τ, k) and i, j ∈ N+, if all jobs from 1 to j − 1 meet their deadline, and τi,j is

the first job to meet its deadline in the interval (ta, ta+1], then the number of jobs that complete execution

in the interval is at least min

{
d ta+1

pi
e − j,

(⌊
sbf(Ω,ta+1)−D̄ta

ei

⌋)

0

}
.

Proof: At any time point ta+1, the total number of jobs released by task τi is given by d ta+1

pi
e. If τi,j is

the first job to met its deadline in the interval (ta, ta+1], then it is the lowest active job at the beginning of

the interval. Thus, the term d ta+1

pi
e − j denotes remaining active jobs in the interval.

We now determine the number of such jobs that complete execution. As τi,j met its deadline, let Lita
be the line segment such that ∃(t,Dt) ∈ Lita , R̃BFi,j(t) ≤ sbf(Ω, t). To check whether subsequent jobs of

τi complete in (ta, ta+1], we must check if subsequent parallel line segments Li,j+1
ta ,Li,j+2

ta , . . . intersect

with sbf prior to time ta+1. Since ta+1 is the latest point of intersection with sbf that we consider, all line

segments must be below the parallel line denoted L that intersects with the point (ta+1, sbf(Ω, ta+1)); see

Figure 5.11. Furthermore, the line segments of that intersect with sbf prior to ta+1 must also intersect with

usbf prior to L’s intersection with usbf which may be derived as:

t1 =
sbf(Ω, ta+1)− αi,jta ta+1 + Θ

Π (∆−Θ)
Θ
Π − α

i,j
ta

(5.71)

By Definition 15, φi,jta is the intersection of Lita with usbf, and subsequent jobs’ request bound function

intersect usbf at ϕita interval. We can obtain number of active jobs after τi,j that can intersect with the usbf

in the interval [φi,jta , t1], which is

(⌊
t1−φ

i,j
ta

ϕita

⌋)

0

or
(⌊

sbf(Ω,ta+1)−Dta+1

ei

⌋)

0

. This is the upper bound
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on the number of jobs whose request can be satisfied within the interval. As this value cannot exceed the

number of active jobs of τi available in the system at time ta+1, we obtain actual number of jobs satisfying

their request in the interval by taking min

{
d ta+1

pi
e − j,

(⌊
sbf(Ω,ta+1)−Dta+1

ei

⌋)

0

}
.

t

L

φi,j
ta

ϕi
ta

t1 ta+1

(ta+1, y1)

R̃BFi,j

R̃BFi,j+1

R̃BFi,j+2

R̃BFi,j+3

φi,j+1
ta

φi,j+2
ta

usbf

sbf

sb
f

R̃BFi,j+4

ta

Figure 5.11: Determining number of active jobs in (ta−1, ta] interval.

We need two additional lemmas to prove the correctness of AFPSINTERSTAGE(Ω, τi, τi,j). The first

lemma shows that if the condition of Line 2 is not satisfied, it is safe to conclude that τi,j does not miss its

deadline.

Lemma 34 For ∀i, j, if d̄ij − φi,jta ≥ Π−Θ

1−αi,jta
, then τi,j does not miss its deadline in the interval (ta, ta+1].

Proof: The job τi,j is schedulable if it meets its deadline; i,e., there exists a point t ∈ [aij , d̄ij ] such that

R̃BFi,j(t) ≤ sbf(Ω, t). By Definition 15, for τi,j , φ
i,j
ta is a point at which R̃BFi,j(t) ≤ usbf(Ω, t).

We prove the proposition by taking contrapositive, that is, if τi,j is not schedulable then d̄ij − φi,jta <

Π−Θ

1−αi,jta
. By Lemma 32, xi,jta is the horizontal distance after φi,jta to obtain a point such that R̃BFi,j(t) ≤

sbf(Ω, t) and xi,jta ≤ Π−Θ

1−αi,jta
. Thus, if the job missed deadline, than φi,jta +xi,jta > d̄ij ⇒ φi,jta + Π−Θ

1−αi,jta
> φi,jta .

Rearrangement proves the lemma.

The next lemma shows that if the condition of Line 5 of AFPSINTERSTAGE(Ω, τi, τi,j) is not satisfied

no active job of τi will miss its deadline in the interval (ta, ta+1].

Lemma 35 Let τi,j be an active job in the interval (ta, ta+1] such that d̄ij −φi,jta ≥ Π−Θ

1−αi,jta
, then no active

job in the interval after τi,j will miss its deadline if pi ≥ ϕita .
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Proof: Assume that τi,j , τi,j+1, . . . , τi,j+s are the active jobs in the interval (ta, ta+1]. By Lemma 34,

d̄ij − φi,jta ≥ Π−Θ

1−αi,jta
implies τi,j does not miss its deadline. For the next job τi,j+1, the difference between

its absolute deadline and intersection with usbf is di,j+1 − φi,j+1 = d̄ij + pi + φi,jta + ϕita = d̄ij −
φi,jta + (pi − ϕita). Similarly, for τi,j+2, distance is di,j+2 − φi,j+2

ta = d̄ij − φi,jta + 2(pi − ϕita). Notice

the distance between intersection of the corresponding line segment and usbf grows by pi − ϕita . Thus,

pi ≥ ϕita implies that the growth is positive and the distance between deadline and intersection with usbf

is increasing for active jobs later than τi,j . Furthermore, by Lemma 34, the distance is of di,j+k − φi,j+kta

is at least Π−Θ

1−αi,jta
for each k = 1, . . . , s, which implies that each τi,j+k does not miss a deadline in the

interval (ta, ta+1].

We are ready to prove the correctness of our algorithm.

Proof of Theorem 10 To prove the correctness of AFPSCHEDULABILITY(Ω, τ, k), we need to prove the

following loop invariant for the inner loop (Line 4- 25).

At the beginning of the inner loop, all the jobs from 1 to j − 1 are schedulable.

Initialization When j = 1, there is no job in the range 1 to j − 1. We can conclude that all job in that

range is schedulable (trivially).

Maintenance At each loop iteration, we are starting with τi,j , which is the lowest active job in the

interval (ta, ta+1] (has arrival at or before ta and deadline after ta). All the jobs from 1 to j − 1 are

schedulable. If any of them missed deadline, the algorithm would not have continued to j-th job. Now we

need to show after current iteration we have successfully checked schedulability of the jobs that are active

within current interval (ta, ta+1]. We check the schedulability condition for the first active job (τi,j) in the

interval (Line 5 to 13). If τi,j does not miss its deadline in this interval, then we obtain minimum number of

active jobs that must finish their execution in the interval (Line 15), and perform sufficient schedulability

test for these jobs (Line 16). If these conditions are satisfied (Lemma 34, 35) then j is updated (Line 17)

by the job which is active, that is, the execution request of the job is not satisfied within current interval

(ta, ta+1].

At the end of the loop we check if all the jobs of τi available in the system have meet their execution

requirement, and terminate the loop (Line 18) for this case.

Termination The loop terminates when all intervals of testing set points have been considered, or the

busy interval for task τi have ended. As the loop did not return Not Schedulable, all the jobs from 1 to
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j − 1 are schedulable.

The outer loop checks the schedulability condition for each task in the task system.

5.4.2 Simulation Results

We compared our proposed algorithm with the exact and the approximate schedulability tests for arbitrary-

deadline FP-scheduled task system with EDP resource. From the compositional system scheduled upon

EDP resource, we obtained an equivalent dedicated uniprocessor system for each component by adding

a special highest priority task to the task system τ , which represents the no-supply period of the EDP re-

source (similar to [71]). Then we performed response-time based exact [58] and approximate [45] schedu-

lability test for dedicated uniprocessor system similar to the approach of Section 5.2 to the modified task

system. We have considered a fixed resource period Π and deadline ∆, and computed minimum capacity

Θ required to schedule the system for the three tests. The simulation parameters and value ranges are

shown below:

1. Task system size n = 10; k is set in the range [1, 20]; Π is set to 10 and ∆ is equal to Π.

2. Uτ is taken from the range [0.1, 0.9] at 0.05-increments and individual task utilizations ui are gen-

erated using UUniFast algorithm [25].

3. Each τi ∈ τ , period pi is uniformly drawn from the interval [5, 30], deadline di is uniformly drawn

from [5, 100] and execution time ei is set to ui.pi.

4. The component-level scheduler is rate-monotonic.

5. A 2.2GHz Intel Core i7-2670QM CPU with 8Gb RAM is used. Each point in the plot represents

1000 simulation runs.

For each simulation, given task system size n and system utilization Uτ , we randomly generated taskset

parameters ui, pi, di, for each task τi. Then we executed a binary search to search for minimum capacity

in the range [0,Π], using each of the schedulability test as subroutines to generate exact, approximate and

sufficient (i.e., AFPSFEASIBILITY) solutions.

In Figure 5.12 the capacity obtained from the three algorithms are plotted against system utilization.

We observe that the sufficient test performs better than the approximate test. In Figure 5.13, the execution
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Figure 5.12: Resource Capacity vs Utilization
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Figure 5.13: Execution Time vs Utilization

time (in log scale) for the three algorithms are plotted against task system utilization. Note that the capacity

Θ is chosen considering the resource starvation period (i.e., Θ ≥ Π/2) and since task deadlines can exceed

task periods, the iterative exact algorithm converges quickly for lower system utilization. However, for

higher system utilization, the execution time of the sufficient test outperforms the other two tests.
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Figure 5.14: Relative Error Vs Approximation

The last plot shown in Figure 5.14 compares the relative error of the approximate and the sufficient

algorithm with respect to the exact algorithm. We observe that the relative error for the approximate

algorithm (0.48 to 0.23) is almost twice as that of the sufficient algorithm (0.28 to 0.12).
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CHAPTER 6: ENFORCEMENT:

INTERFACE-BASED MODEL

Demand-curve interfaces provide a precise characterization of the resources demanded by a subsystem

using fine-grained approaches such as real-time calculus. In this chapter we focus on an important, un-

solved challenge for subsystems specified by such interfaces: the development of efficient enforcement

techniques to guarantee temporal isolation between the subsystems. Admission control algorithms can

be used in this regard to ensure that the cumulative subsystem demand never violates the demand-curve

specified by the interface. To address the problem, we contribute the following in this chapter:

• We propose a simple demand-curve interface model called single-step demand interface (SSDI) and

give admission control algorithms for this model with aperiodic workload (Section 6.2).

• For arbitrary demand-curve interface, we propose an exact admission control algorithm for aperiodic

jobs. To address the infeasibility of the exact approach, we give an efficient approximate admission

control algorithm for this setting (Section 6.3 and 6.7). Further, we verify the efficiency of our

admission controllers by simulation over randomly generated job set in Section 6.6.

6.1 Enforcing Demand-Curve Interface for Aperiodic Workload

For the interface enforcement problem, we assume that a subsystem consists of a set of aperiodic jobs

as defined in Section 3.1.1, and the demand interface for the subsystem is specified by the definitions in

Section 3.3.2. We place no restriction on the parameters of a job in general (except being non-negative

numbers) that arrive in the system. In this section, we present some useful functions for characterizing the

interaction between the subsystem’s generated jobs and the specified interface.

In compositional real-time systems, an interface exposes to the system the temporal requirements of a

subsystem. We denote the interface of the subsystem for which we are designing an admission controller

as Λ. In this chapter, we assume that Λ is characterized by an SSDI curve (defined in Section 3.3.2) in

Section 6.2, and a non-specific demand interface in Section 6.3.

We rephrase the definition of demand-curve interface given in Section 3.3.2. Let T1 and T2 represent
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discrete time instants (T2 ≥ T1). A demand-bound curve denoted by dbi(Λ, t) for any positive interval

t(= T2 − T1) of time gives an upper bound on the total demand of the set of jobs J admitted to the

subsystem such that the following equation holds.

∀T1, T2 ∈ R : (0 ≤ T1 < T2) :: demand(J, T1, T2) ≤ dbi(Λ, T2 − T1). (6.1)

We require that dbi is a right continuous, piecewise linear, non-negative, and non-decreasing function of

interval lengths t ∈ R≥0. Note that we denote a time interval as t and an absolute time instant as T .

We now present a function which quantifies how close the subsystem is to exceeding the SSDI curve

with respect to all time intervals that end at the last admitted job’s deadline.

Definition 16 (Minimum Demand Difference) The minimum demand difference function φ(J,Λ, T ) quan-

tifies the minimum difference between dbi(Λ, ·) and demand(J, ·, ·) for all intervals ending at some time

T > 0. If the demand of J is zero for all such intervals, the function returns∞. More formally,

φ(J,Λ, T )
def
=





min
T ′:0≤T ′≤T

{ψ(J,Λ, T ′, T )} , if J 6= ∅;

∞, if J = ∅.
(6.2)

where

ψ(J,Λ, T1, T2)
def
= dbi(Λ, T2 − T1)− µ−∞0 (demand(J, T1, T2)) (6.3)

and µ−∞0 (x) equals −∞ if x is zero and x otherwise.

We first prove important statements regarding the φ function. These statements will be used to justify

and prove the correctness of our proposed admission control algorithms in the subsequent sections. In our

first lemma, we show that the φ function may be utilized as an exact test of whether a job set satisfies the

demand constraints of SSDI interface Λ.

Lemma 36 For all time instant T > 0, φ(J,Λ, T ) ≥ 0, if and only if,

dbi(Λ, T2 − T1) ≥ demand(J, T1, T2), ∀T1, T2 ∈ R : 0 ≤ T1 < T2. (6.4)

Proof: (⇒) If J is empty, the demand is zero for any choice of T1 and T2. Thus, since dbi is non-negative

for all positive inputs, Equation 6.4 is trivially satisfied. If J is not empty, then φ(J,Λ, T ) ≥ 0 for all
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T > 0 is equivalent to the following (by the Definition 16).

min
T ′:0≤T ′≤T

{ψ(J,Λ, T ′, T ) ≥ 0} , ∀T > 0

⇔ ψ(J,Λ, T ′, T ) ≥ 0, ∀0 ≤ T ′ < T

Equation 6.4 follows by substituting in the definition of ψ from Equation 6.3.

(⇐) The other direction of the proof can be obtained by simply reversing the proof above.

The next two lemmas (Lemmas 37 and 38) show that for computing φ we may restrict attention to time

values corresponding to arrivals or deadlines of jobs of J .

Lemma 37 The value of φ(J,Λ, T ) remains unchanged if we restrict in Equation 6.2 the values of T ′

considered in the min function to be from the set {Ai | ji ∈ J}.

Proof: If J = ∅, the lemma is clearly true. So, let us assume that J 6= ∅. Let A0 denote zero and A|J |+1

denote T . Consider the partition of the interval [0, T ] into subintervals [Ai, Ai+1) where 0 ≤ i ≤ |J |.
Assume that the min function in the right-hand side of Equation 6.2 achieves its minimum at some

T ′ 6∈ {A1, A2, . . . , A|J |}. Thus, there exists some i : 0 ≤ i ≤ |J | such that T ′ ∈ (Ai, Ai+1). Now let us

consider the time instant Ai+1. By Equation 3.1, demand(J, T ′, T ) is equal to demand(J,Ai+1, T ) as

the set of jobs included in the summation of Equation 3.1 does not change for T ′ ranging over (Ai, Ai+1].

Furthermore, since dbi is a non-decreasing function with respect to the interval-length argument and

Ai+1 > T ′, it must be that dbi(Λ, T − T ′) ≥ dbi(Λ, T −Ai+1). Thus,

dbi(Λ, T − T ′)− demand(J, T ′, T ) ≥ dbi(Λ, T −Ai+1)− demand(J,Ai+1, T ).

Thus, the min function of Equation 6.2 also achieves the same minimum at Ai+1 ∈ {A1, A2, . . . , A|J |}.

Lemma 38 For all time instant T ≥ 0, the minimum φ(J,Λ, T ) occurs at t corresponding to an element

of the set {d̄i | ji ∈ J}.

Proof: The proof is symmetric to the proof of Lemma 37

The next lemma shows how we inductively calculate minimum demand difference φ when a new job

jk ≡ (Ak, Ek, Dk) is admitted to the system. To calculate φ for job set J ∪ {jk}, we need to consider
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all the intervals that potentially change the value of φ upon the arrival of jk. These intervals are [Ai, d̄k]

where Ai ≤ Ak and [Ak, d̄i] where d̄i > d̄k, for ∀ji ∈ J . For all the new intervals with the right endpoint

at least d̄k, the demand will increase by Ek. For intervals with right endpoints prior to d̄k, the demand will

remain the same. The lemma below describes how to update the minimum demand difference for each of

these cases.

Lemma 39 Given J and jk such that Ak ≥ maxji∈J{Ai}, if φ(J,Λ, T ) ≥ 0 for all T ∈ {d̄i}ji∈J , then

φ(J ∪ {jk},Λ, T ) =





min

{
dbi(Λ, Dk)− Ek,
φ(J,Λ, d̄last(J, jk)) + σ(d̄k − d̄last(J, jk))− Ek

}
, if T = d̄k;

min {φ(J,Λ, T )− Ek,dbi(Λ, T −Ak)− Ek} , if T > d̄k;

φ(J,Λ, T ), if T < d̄k.

(6.5)

where d̄last(J, jk)
def
= maxji∈J :d̄i≤d̄k{d̄i}. (We assume that d̄last(J, jk) equals zero if J is empty.)

6.2 Simple Demand-Curve Interface

In this section we propose admission controllers for simple demand-curve interface defined as single-step

demand interface SSDI (Equation 3.12). In Section 6.2.1, we present a constant time exact algorithm

for MAD aperiodic jobs as subsystem workload and in Section 6.2.2, we present an O(N) time exact

algorithm for arbitrary aperiodic jobs as subsystem workload.

6.2.1 Exact Admission Control for MAD Jobs

We start with the simpler case of MAD job arrivals (Section 3.1.1), and present a constant-time admission

control algorithm for SSDI interface. Assume at time instant T , n jobs have arrived and been admitted

to the subsystem. The MAD property implies that A1 + D1 ≤ A2 + D2 ≤ · · · ≤ An + Dn. Assume

that a new job jk = (Ak, Ek, Dk) arrives in the system with absolute deadline d̄k ≥ d̄n (Figure 3.1).

Job jk will be accepted if and only if the system can meet total demand over any interval after adding jk,

that is, the demand does not exceed the demand-curve specified by SSDI, Λ ≡ (σ, ρ, ν). In our admission

controller for MAD jobs, along with checking the demand for new jobs, we keep track of minimum demand

difference for future admissions. Our main observation is that we can easily calculate minimum demand

difference function at d̄k by using the last recorded minimum demand difference according Equation 6.5
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Algorithm 6 Pseudo-code for admission control of MAD jobs where interface is a single-step demand-
curve.

MAD-INITIALIZE()

1 �
Let md is the current minimum difference in the system and d is latest absolute deadline
among admitted jobs.

2 d← 0,md←∞.

MAD-ADMISSIONCONTROL(jk)

1 z ← min
{

dbi(Λ, Dk),md + σ(d̄k − d)
}
− Ek

2 if z ≥ 0
3 Accept jk.
4 � Update latest deadline, minimum difference.
5 d← d̄k,md← z.
6 else
7 Reject jk.

of Lemma 39. Furthermore, as there are no active jobs with deadline later than d̄k at jk’s arrival, we do

not need to update the minimum demand difference function at other time values.

The admission control algorithm for MAD jobs is given in Algorithm 6. In this algorithm, at any

time point we keep track of two variables: minimum demand difference md and latest absolute deadline d

among admitted jobs in the subsystem. When job jk arrives we calculate the dbi for the new interval from

latest absolute deadline to new job’s absolute deadline (the interval will always be greater or equal 0, since

the jobs arrive in MAD order). The demand for the new job is its execution Ek. From these two terms we

calculate minimum demand difference (z in MAD-ADMISSIONCONTROL) for job jk and admit the job to

the system if z is greater than zero. Finally, if the jk gets through the admission controller, we update the

variables d and md.

Algorithm Complexity

Clearly, MAD-ADMISSIONCONTROL has O(1) time complexity. Each time a new job is admitted to the

system, the minimum demand difference is updated for the arriving job only. We do not need to update

the minimum demand difference for other jobs as they are unaffected. However, as we will see in the next

section, this observation no longer holds for arbitrary job arrival sequences.



114

Algorithm Correctness

We first give a lemma to show the correspondence between the variable md and the minimum difference

φ for newly-admitted job jk.

Lemma 40 Let j1, j2, . . . be a sequence of admitted jobs that arrive in the subsystem. After the i’th

invocation of MAD-ADMISSIONCONTROL upon each job arrival, md equals φ({j1, j2, . . . , ji},Λ, d̄i), d

equals d̄i, and φ({j1, j2, . . . , ji},Λ, T ) ≥ 0 for all time instant T > 0.

We may now formally show that our admission controller is an exact test for determining whether an

admitted job will violate the demand-curve constraints of SSDI Λ.

Theorem 11 MAD-ADMISSIONCONTROL(jk) will admit job jk to a subsystem specified by Λ, if and

only if,

demand(JAk ∪ {jk}, T1, T2) ≤ dbi(Λ, T2 − T1), ∀0 ≤ T1 ≤ T2. (6.6)

where JAk is the set of admitted jobs upon jk’s arrival.

Proof: (⇐) We prove this direction by contrapositive. Thus, assume that jk is rejected by MAD-

ADMISSIONCONTROL(jk). By Lemma 40, the variable md corresponds to φ(JAk ,Λ, d̄|JAk |) and φ(JAk ,Λ, T )

for all time instant T > 0 at the beginning of the invocation of MAD-ADMISSIONCONTROL(jk). Thus,

by Lemma 39, φ(JAk ∪ {jk},Λ, d̄k) equals

min





dbi(Λ, Dk)− Ek,
φ(JAk ,Λ, d̄|JAk |) + σ(d̄k − d̄|JAk |)− Ek



 .

Since jk is rejected, it must have failed the condition of Line 2. This implies the above expression is

less than zero. For either value of the minimum, it may easily be shown that this implies the negation of

Equation 6.6 of the lemma.

(⇒) This direction follows immediately from Lemma 40.

6.2.2 Exact Admission Control for Arbitrary Jobs

In this section we relax the constraint of the MAD property for the aperiodic jobs in the system; that is,

jobs may arrive in the system at any order of deadline (Figure 3.2). For each new job arrival, the admission
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controller must check the demand of all preceding and succeeding jobs considering the execution require-

ment of the new job. For admission control purposes, a data structure containing the admitted jobs needs

to be maintained. The data structure we propose in this thesis is a variant of the sorted data structures

proposed by Andersson and Ekelin [9] and Lipari and Baruah [62].

Algorithm 7 Pseudo-code for admission control of aperiodic jobs where interface is a single-step demand-
curve.

INITIALIZE()

1 �

Let L represent list of nodes. Each node Pi ∈ L comprise parameters: arrival time A,
execution time E and absolute deadline d of an admitted job, two variables pd, sd, and a
pointer next to node. L is sorted in deadline order.

2 P0 ≡ (0, 0, 0,∞,∞, null),P∞ ≡ (0,∞, 0,∞,∞, null)
3 P0.next← P∞

UPONJOBARRIVAL(jk)

1 � Let P`.d ≤ d̄k ≤ P`+1.d

2 pd← min
{
P`.pd + σ(d̄k − P`.d),dbi(Λ,Dk)

}
− Ek

3 sd← min {P`+1.pd,P`+1.sd,dbi(Λ,P`+1.d− Ak)} − Ek

4 if pd ≥ 0 and sd ≥ 0
5 Accept jk.
6 Allocate new node Pi ≡ (Ak, d̄k, Ek, pd, sd, null), and insert to L in order.
7 Pi.next← P`.next,P`.next← Pi
8 For all `(6= 0) < i, set P`.sd← min {P`.sd,Pi.sd,Pi.pd}.
9 For all `(6=∞) > i, set P`.pd← min {P`.pd,dbi(Λ,P`.d− Pi.A)} − Pi.E

and P`.sd← min {P`.sd,dbi(Λ,P`+1.d− Pi.A)} − Pi.E.
10 else
11 Reject jk.

UPONJOBDEADLINE(jk)

1 Pi ← P0.next
2 Set P0.d = Pi.d and P0.pd = Pi.pd.
3 Delete Pi from L.

In Algorithm 7, we propose admission controller for arbitrary aperiodic jobs (i.e., no constraint on

arrivals/deadlines). The linked-list data structure L stores, for each admitted, active job jk ≡ (Ak, Ek, Dk)

in the subsystem, a node Pi ≡ (A,E, d, pd, sd, next) where A corresponds to arrival time Ak of jk, E

corresponds to execution requirementEk of jk, d corresponds to absolute deadline d̄k of jk, the variable pd

represents preceding minimum demand difference, the variable sd represents successive minimum demand
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difference, and next is a pointer to node. The variablePi.pd keeps track of the minimum demand difference

at time Pi.d. The variable Pi.sd stores the minimum demand difference for the jobs with deadlines after

Pi.d (i.e., the pd values for the succeeding nodes in the sorted list L). The list is initialized by INITIALIZE()

to contain two dummy nodes in order of deadline: a leftmost node P0 ≡ (0, 0, 0,∞,∞,P∞) and a

rightmost node P∞ = (0, 0,∞,∞,∞, null).

When a new job jk arrives in the system, UPONJOBARRIVAL(jk) in Algorithm 7 finds the appropriate

insertion position (according to the absolute deadline d̄k) in the list in O(N) time. Assume it is between

the nodes P` and P`+1 (i.e., P`.d ≤ d̄k ≤ P`+1.d). The variable pd for job jk is calculated from P`’s
preceding minimum demand difference (P`.pd), and the difference in demand and demand interface for

this job (similar to md of MAD-ADMISSIONCONTROL in Algorithm 6). The variable sd is calculated by

taking minimum of the P`+1’s preceding minimum demand difference(P`+1.pd) and successive minimum

demand difference (P`+1.sd). The new job jk is admitted if both pd and sd values are greater than 0.

Intuitively, the condition pd ≥ 0 determines that if jk is added, than its deadline will be met by the

demand interface dbi and the condition sd ≥ 0 ensures that after adding jk, all the succeeding jobs in the

system with deadline later than d̄k (nodes in the list succeeding the node P`) will also meet their deadline.

In this way, the algorithm ensures the demand of the system is met by the SSDI curve.

If UPONJOBARRIVAL(jk) returns “accept”, a new node Pi ≡ (Ak, Ek, d̄k, pd, sd, null) correspond-

ing to jk is created and inserted to L between P` and P`+1. The demand for the succeeding nodes is

increased by the amount of the new job’s execution Ek. Thus, the preceding minimum difference (pd)

and succeeding minimum difference (sd) values for nodes succeeding Pi in the sorted list must also be

reduced by Ek. The demand for preceding nodes of Pi is not increased, since they have deadlines before

d̄k, which implies that the pd values for the nodes preceding Pi in the sorted list will remain unchanged.

However, the successive minimum difference for the preceding nodes should be updated, if this is less

than Pi.sd or Pi.pd, to reflect the change in minimum difference of successive nodes after inserting Pi.
When UPONJOBARRIVAL(jk) returns “reject”, the job jk is not admitted to the system and L remains

unchanged.
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Algorithm Complexity

Algorithm 7 uses a simple linked-list implementation which requires O(N) time for determining whether

a job should be admitted where N is an upper bound on the number of active jobs in the subsystem at any

given time. The updates to both the preceding and succeeding jobs requiresO(N). When the deadline of a

job is elapsed, it can be removed from the data structure inO(1) time according to UPONJOBDEADLINE(jk)

since the nodes are ordered by absolute deadline. This data structure can be enhanced by using balanced-

binary tree, and lazy update operation can be performed similar to Andersson and Ekelin [9] to reduce the

time complexity for admission control to O(logN).

Algorithm Correctness

The functionality of the algorithm is similar to the approach proposed by Andersson and Ekelin [9] for

uniprocessor interface (i.e., the demand-curve is specified by the function dbi(t) = t) for a system with

set of aperiodic and periodic jobs as workload. Thus we omit the proof of correctness for this algorithm.

6.3 Arbitrary Demand-Curve Interface

We now focus on enforcing arbitrary demand-curve interface for a subsystem of a compositional real-time

system. In Chapter 2, we described several real-time interface models that have been proposed in recent

years (e.g., the EDP resource model Ω, real-time calculus [88], etc.); however, we consider Λ to be from

a non-specific interface model in this section. Our only requirement is that the interface model permits a

characterization of the admissible demand over intervals of time. Such interface can be modeled as sum

of multiple SSDI curves as shown in Section 3.3.2. Throughout this section, we assume that the system

designer has already generated and specified the interface Λ. The challenge of generating and composing

demand-curve interfaces is important, but orthogonal to the problem we address here. (See Thiele et

al. [88] for a discussion of these issues.)

Unlike the single-step demand-curve interface, the enforcement for arbitrary demand-curve interface

is a complex problem and the solution can become infeasible for long running online systems. As a

starting point of our development, we restrict ourselves to MAD aperiodic jobs for this setting in next

four sections and then give a straightforward extension for non-MAD aperiodic jobs in Section 6.7. For
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arbitrary demand-curve interface, in Section 6.3.1, we present an O(n) time exact algorithm for MAD

aperiodic jobs as subsystem workload, where n is the total number of jobs arrived in the subsystem from

system startup time. In Section 6.3.2 we show via an example that the algorithm becomes infeasible over

time, and to address this problem, we develop an approximate admission control algorithm independent

of the number of jobs in the subsystem in Section 6.3.3. Developing admission controller for arbitrary

aperiodic jobs as subsystem workload is addressed in Section 6.7.

6.3.1 Exact Admission Control for MAD Jobs

Let us consider the scenario where we have already admitted a set of MAD jobs J in the system and are

attempting to determine whether we can admit a new job jk (where jk has later arrival time and deadline

than all previously-admitted jobs). Observe that an exact admission control algorithm is conceptually

relatively straightforward: to check whether a job jk can be admitted, calculate the change in demand

over every interval [T1, T2] and check the inequality of Equation 6.1. However, a naive implementation

of this idea would require the evaluation of Equation 6.1 for an infinite number of intervals. A practical

(finite-time) implementation of the exact algorithm can be developed from the observation that only a finite

number of intervals must be checked for determining whether to admit jk: intervals that begin at the arrival

of some job of J and end at d̄k.

The exact algorithm shown in EXACTAC and EXACTAC-INIT (Algorithm 8) maintains an ordered set

S of intervals each specified by a demand pair (x, y) where x corresponds to the length of the interval

and y corresponds to demand over that interval. The set S is ordered in non-decreasing value of the x-

coordinate for each pair. The variable d̄last stores last accepted job’s absolute deadline. The demand pair

can be mapped to a point in the cartesian plane (Figure 6.1). Furthermore, we will show later that it is only

necessary to store demand pairs in S where the interval length x corresponds to the difference between the

arrival time of some accepted job of J and d̄last as shown in Figure 6.1.

When a new job jk arrives in the system, the demand of the intervals (d̄k − Ai),∀ji ∈ J needs to be

checked. In Line 2 of EXACTAC, an (x, y) interval corresponding to jk is added to the set. Since jobs

arrive in MAD order, the intervals ending at d̄k can be obtained by incrementing x values in the set S by

δx = d̄k−d̄last, where d̄last is the absolute deadline of the last admitted job before jk, and the demand over

these intervals can be obtained by incrementing y values in the set by δy = Ek amount. For all the new
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Algorithm 8 Pseudo-code for exact admission control of MAD jobs where interface is an arbitrary
demand-curve.

EXACTAC-INIT()

� S (initially empty) will keep a set of (x, y) values.
1 S ← ∅
2 d̄last ← 0

EXACTAC(Λ, jk)

1 δx ← d̄k − d̄last; δy ← Ek
� Insert a point in S corresponding to jk.

2 S ← S ∪ {(Dk − δx, Ek − δy)}
3 for (x, y) ∈ S
4 if dbi(Λ, x+ δx) < (y + δy)

� Delete previously inserted point.
5 S ← S \ {(Dk − δx, Ek − δy)}
6 Reject jk.
7 end for
8 Accept jk.

� Shift points in x, y-plane.
9 for (x, y) ∈ S

10 S ← S \ {(x, y)}
11 S ← S ∪ {(x+ δx, y + δy)}
12 end for
13 d̄last ← d̄k

intervals with the increment, the algorithm checks if the demand in the interval is less than the dbi (Line 3

to Line 7). If for any interval this condition is violated, jk is rejected and the point corresponding to it is

removed from S. When the condition holds for all the points in S, jk is admitted and all the points in S are

updated by the incrementing (δx, δy) amount (Line 9 to Line 12). Figure 6.1 illustrates the algorithm after

j4 arrives to the system. The set S consists of the intervals ending at d̄3 (blue points shown in the plot)

prior to the arrival of j4. When j4 arrives, after successful admission test, the demand pair (d̄4 − A4, E4)

is added (red point in the figure) in S, and all the existing intervals are shifted by (δx = d̄4− d̄3, δy = E4)

amount.

Algorithm Complexity

Exact admission control for arbitrary demand-curve is computationally linear to the number of jobs that

have arrived in the system. Since all past intervals need to be verified, the number of such intervals
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Figure 6.1: Illustration of exact admission control algorithm.

become intractable with time. The approach used for single-step demand interface [36] (i.e., dbi is linear)

in Section 6.2 is not applicable to arbitrary demand curves. The main challenge for arbitrary demand

interface is that the difference in demand and the interface for any time-interval changes non-linearly over

time. More specifically, for a same increase in interval length and same increase in demand, the interval

which had minimum demand difference before will not necessarily remain minimum difference after the

increase.

Algorithm Correctness

We now provide the main theorem which states that EXACTAC is correct and exact.

Theorem 12 Given a set of previously-admitted jobs J , the procedure EXACTAC(Λ, jk) returns “Ac-

cept”, if and only if, jk may be admitted without J ∪ {jk} violating Λ.

We need to prove the next three lemmas in order to prove the theorem. Please refer to Appendix A

for details proof of the lemmas. The first lemma shows that we only need to check a finite number (with

respect to the number of jobs in J) to determine whether Equation 6.1 is satisfied.

Lemma 41 For any set of MAD jobs J , Equation 6.1 is true, if and only if,

∀ji, j` ∈ J : d̄i ≤ d̄` :: demand(J,Ai, d̄`) ≤ dbi(Λ, d̄` −Ai). (6.7)
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The next lemma shows the correspondence between points stored in S and the intervals ending at the

deadline of the last admitted job (i.e., d̄last).

Lemma 42 After the call to EXACTAC-INIT() and the k’th invocation of EXACTAC(Λ, jk) where k ∈ N,

for MAD-sequenced jobs j1, j2, . . . , jk, define Jk to be the set of jobs admitted by the algorithm. For each

job j` ∈ Jk, there exists (x, y) ∈ S such that x equals d̄last − A` and y equals demand(Jk, A`, d̄last).

Furthermore, d̄last equals max
{
{0} ∪ {d̄` | j` ∈ Jk}

}
.

Finally, to determine whether to admit jk, we only need to check intervals ending at d̄k (and that begin

at some arrival time). Since we have stored all intervals that end at d̄last (≤ d̄k) in S, we may update the

points in S by shifting them to the right δx = d̄k − d̄last and upwards by δy = Ek. We also add a point

(Dk, Ek) which corresponds to job jk’s demand over its arrival and deadline. A new or newly-shifted

point will be above dbi(Λ, ·), if and only if, the corresponding interval ending at d̄k violates Equation 6.1.

This observation is formalized in the next lemma; thus, the algorithm returns “Accept”, if and only if, it is

safe to do so.

Lemma 43 After the call to EXACTAC-INIT() and the k’th invocation of EXACTAC(Λ, jk) where k ∈ N,

for MAD-sequenced jobs j1, j2, . . . , jk, define Jk to be the set of jobs admitted by the algorithm. It must

be that Equation 6.1 holds for Jk and Λ. Furthermore, if job jk was rejected by the admission controller

(i.e., EXACTAC(Λ, jk) returns “reject” and jk 6∈ Jk), then Equation 6.1 is false for Jk−1 ∪ {jk}.

The combination of Lemmas 41, 42, and 43 immediately imply Theorem 12.

6.3.2 Inadequacy of Naive Reduction in Intervals

A natural idea for reducing the time complexity of the exact admission controller would be to discard

some of the points of S. Unfortunately, we will see that this idea will lead to an incorrect admission

controller. In this subsection, we give a job set J such that if any of the points in S (corresponding jobs in

J) is discarded, there exist future job arrivals that will cause a violation of Equation 6.1, but the admission

controller will not detect this violation.

Example 1 Consider a system that has admitted a set of jobs J = {j1, . . . j4} as shown in Figure 6.2(a).

The demand-interface and the intervals corresponding to points in S (shown in grey) are illustrated in
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Figure 6.2: Naive reduction in intervals might cause violation of dbi.

Figure 6.2(b). For any of the points in S, if we discard it, we can construct a new job with parameters

such that it would have caused the discarded point to exceed the dbi after shifting it towards right (δx =

d̄k − d̄last) and upwards (δy = Ek). We will show that for the dbi and each of the intervals in Figure 6.2,

a job can be constructed with parameters such that only one interval violates the dbi after the shift. In

other words, if we discard one interval, the demand-interface violation might be undetected for the new

job, which will lead to an incorrect admission controller.

First, consider that we have discarded the point corresponding to [A4, d̄4] = [.75, 1.75] (the point

within circle in Figure 6.2(b)). The point corresponding to this interval has the largest difference with

dbi after the arrival of j4. Let the next job, j5(A5, E5, D5) ≡ (1, 1, 1.7), arrive into the system. The

demand for the new interval [1, 2.7] is 1, thus the point corresponding to this interval is below the dbi.

Now all the other points [Ai, d̄5], i = 1 . . . 3 will be shifted by (δx, δy) ≡ (2.7 − 1.75, 1), and they are

safely below the dbi. But the point corresponding to [A4, d̄4] interval would have moved beyond the dbi

as dbi(1 + 0.95) = 1.2375 ≤ 0.25 + 1. Since this point is discarded, the system will admit j5, which

will eventually lead to a violation of demand curve interface. Similarly, if we discard [A3, d̄4] interval,

and insert a new job j5 = (1, 0.7, 1.5), the demand for the discarded interval will exceed dbi only, and

other intervals will stay below dbi after the shift. Again, let us assume that [A2, d̄4] interval is discarded,

and a new job arrives with parameters j5 = (1, 0.5, 1.2), then the increment in all the other intervals will

not violate the dbi, and only demand for [A2, d̄4] interval will violate the dbi. Finally, consider we have

discarded the [A1, d̄4] interval and a new job j5 = (1, 0.25, 0.95) arrives in the system. Here also all the

other intervals with their increment will satisfy the dbi and falsely accept j5 to the system, whereas if we
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have stored the [A1, d̄4] interval, the interface violation would have been detected.

This example illustrates that there exist sequences of job arrivals and dbi such that no point may naively

be discarded. Therefore, simply throwing away intervals is not a solution to reducing the complexity of

the admission controller.

6.3.3 Approximate Admission Control for MAD Jobs

As mentioned in the previous section, the exact admission controller needs to check every demand-point

corresponding to previously admitted jobs while admitting a new job in the system. Thus the algorithm

is intractable for long-running online systems. In this section we propose an approximate solution to

efficiently perform admission control for MAD jobs. In our proposed approach, we reduce the number of

intervals (points) using a more sophisticated approach than just naively dropping intervals as illustrated in

the example of Section 6.3.2. We achieve our reduction in the time complexity for admission control via

four main steps:

1. Divide the xy-Plane into Regions: As a first step towards reducing the number of stored intervals,

we divide the xy-plane into increasingly large intervals based on a user-supplied accuracy parameter ε > 0.

A smaller value of ε will indicate that the admission controller is more accurate (i.e., closer to the exact

admission controller); however, the time complexity of the algorithm will be increased.

Definition 17 ((1 + ε)-Region) The i’th (1 + ε)-region denoted by Ai for i ∈ N+ is a horizontal strip in

Euclidean space (i.e., R2) where the upper boundary is (1 + ε) times the lower boundary of Ai. Formally,

the i’th (1 + ε)-region is defined as

Ai def
=
{

(x, y) ∈ R2 | (1 + ε)i−1 ≤ y < (1 + ε)i
}

(6.8)

Figure 6.3 gives a visual depiction of the horizontal division of the xy-plane. We denote the lower bound

and upper bound of region Ai as Ai.lb and Ai.ub respectively.

2. Merge Intervals Within A Region: Consider two distinct intervals represented by (xl, yl) and (xr, yr)

in the same (1 + ε)-regionAi. As a method of reducing the number of intervals stored, we will merge two

such intervals into an approximation point.

Definition 18 (Approximation Point P̂ ((xl, yl), (xr, yr))) Consider two points (xl, yl) and (xr, yr) where
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Figure 6.3: Approximating Y-axes of dbi.

xl ≤ xr and yl ≤ yr. We define the approximation point P̂ ((xl, yl), (xr, yr)) “anchored” by points (xl, yl)

and (xr, yr) as

P̂ ((xl, yl), (xr, yr))
def
= (xl, yr). (6.9)

The points (xl, yl) and (xr, yr) are referred to as the left-anchor point and right-anchor point of approxi-

mation point P̂ .

For simplicity, we drop the “((xl, yl), (xr, yr))” from P̂ when it is clear which approximation point we are

referring to. The notation P̂ .xl and P̂ .yl (respectively, P̂ .xr and P̂ .yr) refers to the x and y coordinates

of the left (right) anchor point. Figure 6.4(a) shows the formation of the approximation point P̂ from its

two anchor points. One important point to observe is that, due to the fact that we merge points in the same

(1 + ε)-region, it must be that P̂ .yr ≤ (1 + ε)P̂ .yl. In other words, the y-value of the approximation point

is no more than a factor of (1 + ε) greater than the y-value of its left anchor point. This observation will be

useful in proving the approximation ratio of our admission controller. In the next step, we show how these

approximation points can be utilized to decrease the total number of intervals stored by our approximate

admission controller.

3. Eliminate Redundant Points: Observe from Figure 6.4(a) that the region below and to the right of

the approximation point P̂ forms a rectangular region extending infinitely to the right and below, called

the redundancy region for approximation point P̂ .

Definition 19 (Redundancy Region) A redundancy region for approximation point P̂ is the region ex-
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tending towards lower right of a point in cartesian plane:

R(P̂ )
def
=
{

(x, y) ∈ R2|(P̂ .xl ≤ x) ∧ (P̂ .yr ≥ y)
}
. (6.10)

The following observation allows us to ignore intervals corresponding to points that fall into this rectan-

gular region; we call points falling into this region redundant points.

Lemma 44 For a given point P̂ and any point (x, y) ∈ R2, if x ≥ P̂ .xl and y ≤ P̂ .yr then dbi(Λ, P̂ .xl)−
P̂ .yr ≤ dbi(Λ, x)− y.

Proof: Since dbi is a non-decreasing function, dbi(Λ, x) ≥ dbi(Λ, P̂ .xl). Combining this with the

condition P̂ .yr ≥ y, we obtain dbi(Λ, P̂ .xl)− P̂ .yr ≤ dbi(Λ, x)− y.

Therefore, we can conclude that if approximate point P̂ is below dbi, then any point in the redundancy

regionR(P̂ ) will also be below dbi.

4. Merge Approximation Points: In Step 2, we show how two intervals in the same (1 + ε)-region can

be merged into a single approximation point. We will see in the next subsection that each approximation

point is shifted to the right and upwards as new jobs are admitted to the system. Thus, an approximation

point formed in region Ai may eventually move (completely with both anchor points) into another region

Aj where j > i. We say that an approximation point P̂ is “completely in” Aj if Aj .lb ≤ P̂ .yl ≤
P̂ .yr ≤ Aj .ub; otherwise, the approximation point “straddles” (1 + ε)-regions. An approximation point

P̂ is “contained” (not necessarily completely) in Aj , if Aj .lb ≤ P̂ .yr ≤ Aj .ub. Consider any two

approximation points P̂1 and P̂2 that are completely in Aj ; i.e., for k ∈ {1, 2}, the approximation points

P̂k satisfies P̂k.yl ≥ Aj .lb and P̂k.yr ≤ Aj .ub. Given these two points, we may merge P̂1 and P̂2 to form



126

a new approximation point P̂ =

(
min

k∈{1,2}
{P̂k.xl}, max

k∈{1,2}
{P̂k.yr}

)
. Figure 6.4(b) depicts the merge of

two approximation points and evolution of their redundancy regions after merging.

In Algorithm 9, we present the pseudocode for our approximate admission control algorithm for an

arbitrary demand-curve interface. The algorithm keeps a linked list of nodes L, where each node represents

an approximation point corresponding to a (1 + ε)-region. Each node P̂ consists of two points: left anchor

(xl, yl) and right anchor (xr, yr), and a pointer next to the next approximation point. We abuse notation

somewhat to allow P̂ to refer to both the point in the xy-plane and the node in the list L; P̂ .next is the

next node after P̂ in the list or null if no such node exists. The nodes of L are ordered in increasing value

of xl. The list is initially empty. At any time the algorithm keeps a variable d̄last to store the last admitted

job’s deadline.

First we describe some helper subroutines used by the approximate admission controller shown in

Algorithm 9. The procedure APPROXIMATEAC-INIT() initializes the list L to empty, d̄last to zero and P̂h

to null. An INSERT(x, y) operation creates a node in the list L with the approximate point equal to the

anchor points; i.e., (xl, yl) = (xr, yr) = (x, y). The node is inserted into the list in non-decreasing order

of its xl-value. A DELETE(P̂ ) operation deletes node P̂ from the list. A SHIFT(P̂ , δx, δy) operation shifts

both the left anchor and the right anchor of P̂ by (δx, δy) amount, where δx is the shift in X-axes and

δy is the shift in Y -axes. The MERGE(P̂1, P̂2) operation as described earlier in this section merges two

nodes by updating the left anchor and right anchor of P̂1 with the left-most of the two left anchors, and the

top-most of the two right anchors respectively (Figure 6.4(b)). Then it deletes the node P̂2 and updates the

linked list accordingly.

When a new job jk(Ak, Ek, Dk) arrives in the system, APPROXIMATEAC first checks in Line 1

whether the demand Ek of the job over the interval Dk exceeds the demand interface over a Dk-length

interval, i.e., dbi(Λ, Dk). It is possible to show (similar to Lemma 42) that all the intervals of interest

for MAD jobs end at the last admitted job’s deadline d̄last. Using this fact, the potential increase (due to

accepting jk) in the interval lengths is δx = d̄k − d̄last and the increase in demand is δy = Ek. In the

while-loop of Lines 7 to 15, we check that each of the approximate points will still fall below the dbi(Λ, ·)
if they are shifted to the right by δx and upwards by δy. In particular, Line 8 determines if the individual

points shifted will violate Λ; Line 12 determines if any new approximation point, formed by the shift (due

to the merging described in Step 4 of the previous subsection), will violate the interface Λ. If a violation
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is detected, jk will be rejected; otherwise, we may accept the job.

Once the conditions are verified for all the nodes in the list, the algorithm “accepts” the job and per-

forms UPDATE(P̂h, δx, δy) operation for all nodes starting from the head of the list. This procedure shifts

each node (both left and right anchors) by (δx, δy) amount using SHIFT and performs MERGE operation

when two consecutive nodes are in the same (1 + ε)-region.

Algorithm 9 Pseudo-code for approximate admission control of MAD jobs where interface is an arbitrary
demand-curve.

APPROXIMATEAC-INIT()

1 � Each node P̂ in the list L consists of two points (xl, yl), (xr, yr), and a pointer next.
2 � Initially L is empty. Let P̂h represents the head of the list
3 P̂h ← null; d̄last ← 0

APPROXIMATEAC(Λ, jk, ε)

1 if dbi(Λ, Dk) < Ek
2 Reject jk.
3 δx ← d̄k − d̄last; δy ← Ek

� Insert node at the beginning of the list
4 P̂c ← INSERT(Dk − δx, Ek − δy)
5 P̂c.next← P̂h; P̂h ← P̂c
6 P̂p ← P̂h; P̂c ← P̂h.next

7 while P̂c not null

8 if dbi(Λ, P̂c.xl + δx) < P̂c.yr + δy
9 Delete the head of the list. Reject jk.

� P̂p and P̂c would have moved to same region
10 j ← dlog1+ε(P̂p.yl + δy)e; k ← dlog1+ε(P̂c.yr + δy)e
11 if j == k

12 if dbi(Λ,min{P̂p.xl, P̂c.xl}+ δx) < (max{P̂p.yr, P̂c.yr}+ δy)
13 Delete the head of the list. Reject jk.
14 P̂p ← P̂c; P̂c ← P̂c.next
15 end while
16 Accept jk.
17 UPDATE(P̂h, δx, δy)
18 d̄last ← d̄k
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UPDATE(P̂h, δx, δy)

1 P̂p ← P̂h
2 SHIFT(P̂p, δx, δy)

3 P̂c ← P̂p.next

4 while P̂c not null

5 SHIFT(P̂c, δx, δy)

6 j ← dlog1+ε(P̂p.yl)e; k ← dlog1+ε(P̂c.yr)e
� P̂p and P̂c have moved to same region

7 if j == k

8 MERGE(P̂p, P̂c)

9 P̂p ← P̂c; P̂c ← P̂c.next
10 end while

INSERT(x, y)

1 Allocate a new node P̂
2 P̂ .xl ← x; P̂ .xr ← x

3 P̂ .yl ← y; P̂ .yr ← y

4 P̂ .next← null

5 return P̂

DELETE(P̂ )

1 Free the memory for node P̂ .

SHIFT(P̂ , x, y)

1 P̂ .xl ← P̂ .xl + x; P̂ .xr ← P̂ .xr + x

2 P̂ .yl ← P̂ .yl + y; P̂ .yr ← P̂ .yr + y

MERGE(P̂1, P̂2)

1 if P̂1.xl > P̂2.xl
� Update left anchor

2 P̂1.xl ← P̂2.xl; P̂1.yl ← P̂2.yl
3 if P̂1.yr < P̂2.yr

� Update right anchor
4 P̂1.xr ← P̂2.xr; P̂1.yr ← P̂2.yr
5 P̂1.next← P̂2.next;
6 DELETE(P̂2)



129

Algorithm Correctness

We now show that our approximate admission controller is correct in the following theorem. Through-

out this section, we consider a new element of L as an “approximation point” only after the admission

controller APPROXIMATEAC(Λ, jk, ε) has returned from its execution.

Theorem 13 If APPROXIMATEAC(Λ, jk, ε) returns “Accept”, then jk may be admitted without violating

the demand-curve interface Λ.

Our first lemma of this subsection shows that we always “cover” any deleted point by another point;

in other words, any deleted point must be contained in the redundancy region of a point that is in list L.

Complete proof of all the lemmas in this section can be found in Appendix A.

Lemma 45 For any approximation point P̂ that was inserted into list L, if P̂ is deleted, then there exists

some approximation point P̂ ′ in L such that P̂ ′.xl ≤ P̂ .xl and P̂ ′.yr ≥ P̂ .yr.

The next lemma shows the correspondence between points stored in L and intervals ending at the

deadline of last admitted job (i.e., d̄last).

Lemma 46 After the call to APPROXIMATEAC-INIT() and the k’th invocation of APPROXIMATEAC(Λ, jk, ε)

where k ∈ N, for MAD-sequenced jobs j1, j2, . . . , jk, define Jk to be the set of jobs admitted by the ap-

proximate admission controller. For each job j` ∈ Jk, there exists an approximation point P̂ in list L such

that P̂ .xl is at most d̄last − A` and P̂ .yr is at least demand(Jk, A`, d̄last). Furthermore, d̄last equals

max
{
{0} ∪ {d̄` | j` ∈ Jk}

}
.

Proof: We prove the lemma by induction on k.

Base Case: When k = 0, APPROXIMATEAC-INIT() has been invoked and thus no jobs have been

admitted; i.e, J0 = ∅. The lemma is clearly true as L is initialized to ∅ and d̄last is initialized to zero.

Inductive Hypothesis: Assume that the lemma holds for each i (i = 1, 2, . . . , k − 1) successive calls

to APPROXIMATEAC(Λ, ji, ε).

Inductive Step: We must show that the lemma holds for the k’th call to APPROXIMATEAC(Λ, jk, ε).

The admission controller can either return “accept” or “reject”. Let us first consider the case that APPROX-

IMATEAC(Λ, jk, ε) returns “reject”. Then, Jk−1 is identical to Jk and d̄last is not changed by any instruc-
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tion in the execution path to “reject”. Thus, by the inductive hypothesis, the lemma obviously continues to

hold as the state is identical to after the call to APPROXIMATEAC(Λ, jk, ε).

Now, consider the case when APPROXIMATEAC(Λ, jk, ε) returns “accept”. Line 18 of the procedure

sets d̄last equal to d̄k; Let the updated value of d̄last and L be denoted by d̄new
last and Lnew respectively. Let

d̄old
last and Lold denote the value of the d̄last and L, prior to the invoke of APPROXIMATEAC(Λ, jk, ε). By

the inductive hypothesis, for each job j` ∈ Jk−1, there exists P̂ ∈ Lold such that P̂ .xl is at most d̄old
last−A`

and P̂ .yr is at least demand(Jk−1, A`, d̄
old
last). The SHIFT subroutine shifts each approximation point (and

its anchors) to the right by δx = d̄new
last − d̄old

last and up by δy = Ek. Lemma 45, implies that if any approxi-

mation point P̂ is deleted by a MERGE, then Lnew has an approximation point P̂ ′ with P̂ ′.xl ≤ P̂ .xl and

P̂ .yr ≤ P̂ ′.yr. Thus, each P̂ ∈ Lold is now (P̂ .xl + δx, P̂ .yr + δy) ∈ Lnew or has an approximation point

P̂ ′ that covers it. Furthermore, P̂ .xl+δx is at most (d̄new
last−d̄old

last)+d̄old
last−A` = d̄new

last−A` and P̂ .yr+δy is

at most demand(Jk−1, A`, d̄
old
last) + E`. The last expression is equivalent to demand(Jk, A`, d̄

new
last) since

increasing the interval length by δx includes only the new job jk in the interval [A`, d̄
new
last ]. Finally, adding

the point {(Dk−δx, Ek−δy)} in Line 4 and shifting by δx and δy is equivalent to adding an approximation

point P̂ = (Dk, Ek) which equals (d̄new
last − Ak,demand(Jk, Ak, d̄

new
last)) to the list L. Thus, the lemma

holds for Jk.

The next lemma shows that the approximate admission controller returns “Accept” for a job jk only

when it is safe to do so.

Lemma 47 After the call to APPROXIMATEAC-INIT() and the k’th invocation of APPROXIMATEAC(Λ, jk, ε)

where k ∈ R, for MAD-sequenced jobs j1, j2, . . . , jk, define Jk to be the set of jobs admitted by the ap-

proximate admission controller. It must be that Equation 6.1 holds for Jk and Λ.

Theorem 13 immediately follows from the above lemma.

Approximation Ratio

In this section, we argue that when the approximate admission controller rejects a job, then the exact

admission controller would also have done so on a slightly “smaller” dbi. The accuracy of the test is

determined by the accuracy parameter ε > 0. Note that, in online setting, set of jobs accepted by the

approximate algorithm might not be a subset of set of jobs accepted by the exact algorithm. However,

for the ease of analysis, in this section we assume that initially both the algorithms have same set of
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accepted jobs. While not required for the correctness of the algorithm, to prove the approximation ratio,

we do require that each job ji have execution time Ei at least equal to one. (The algorithm will still work

correctly for Ei < 1; however, the approximation ratio is not true in this case).

Our first lemma of the subsection shows that the ratio of y-values of the right and left anchor point is

bounded in terms of ε.

Lemma 48 For any approximation points P̂ the following invariant holds:

P̂ .yr ≤ (1 + ε)P̂ .yl. (6.11)

The following corollary follows from the observation that for any approximation point P̂ a left anchor

point below Ai−1.lb and a right anchor point above Ai−1.ub (equal to Ai.lb) would violate the invariant

of Lemma 48.

Corollary 14 For an approximation point P̂ with Ai.lb ≤ P̂ .yr ≤ Ai.ub and P̂ .yl < Ai.lb where i > 1,

the left anchor point of P̂ must be in the (1 + ε)-region Ai−1; that is, Ai−1.lb ≤ P̂ .yl ≤ Ai−1.ub.

The next lemma shows that for any approximation point, the left anchor corresponds to the exact

demand over some interval.

Lemma 49 After the call to APPROXIMATEAC-INIT() and the k’th invocation of APPROXIMATEAC(Λ, jk, ε)

where k ∈ N, for MAD-sequenced jobs j1, j2, . . . , jk, define Jk to be the set of jobs admitted by the

approximate admission controller. For each P̂ in L, it must be that there exists a j` ∈ Jk such that

demand(J,A`, d̄last) equals P̂ .yl and d̄last −A` equals P̂ .xl.

We may now quantify the inaccuracy of our approximate admission controller by proving the following

theorem.

Theorem 14 Given a set of previously-admitted jobs J , if APPROXIMATEAC(Λ, jk, ε) returns “Reject”,

then EXACTAC(Λ, jk) also returns “Reject” for a demand-curve 1
1+εdbi(Λ, ·) on the same previously-

admitted job set.

Proof: If APPROXIMATEAC(Λ, jk, ε) returns “Reject” given previously admitted job set J , then there

exists an approximation point P̂ that fails the test in either Line 1 (i.e., the execution of jk is too large over
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it’s arrival to deadline interval), Line 8 (i.e., it would fail after the SHIFT operation is applied), or Line 12

(i.e., it would fail after being merged with another point in the same (1 + ε)-region). Let us first assume

that P̂ would fail the test of Line 1; clearly jk would fail the test of Line 4 of EXACTAC.

By Lemma 49, P̂ .xl equals d̄last − A` and P̂ .yl equals demand(J,A`, d̄last) for some J` ∈ J . If P̂

fails in Line 8, then dbi(Λ, P̂ .xl + δx) < P̂ .yr + δy which implies that dbi(Λ, d̄k − A`) < P̂ .yr + δy ≤
(1+ε)P̂ .yl+δy = (1+ε)demand(J,A`, d̄last)+Ek ≤ (1+ε)demand(J∪{jk}, A`, d̄k) by Lemmas 48

and 49. We may similarly show that the lemma holds if Line 12 fails. Thus, the approximation ratio holds

in all cases.

Algorithm Complexity

The complexity of the admission controller depends on the size of the linked list, since both APPROXI-

MATEAC and UPDATE have a loop traversing the list from beginning to end. We argue that the number of

approximation points (nodes) for each (1 + ε)-region is constant (at most two) in Theorem 15. Therefore,

the complexity of the algorithm is directly proportional to the number of (1 + ε)-regions.

Theorem 15 For ∀i, a (1 + ε)-region Ai contains at most two approximation points.

Our first lemma to prove the above theorem shows that each newly-admitted job corresponds to a node

at the front of list L.

Lemma 50 After the call to APPROXIMATEAC-INIT() and the k’th invocation of APPROXIMATEAC(Λ, jk, ε)

where k ∈ N and ε > 0, for MAD-sequenced jobs j1, j2, . . . , jk, define Jk to be the set of jobs admitted

by the approximate admission controller. The approximation point P̂ = (Dk, Ek) is the first node of list

L; i.e., the newly-admitted job is at the front of the list.

Based on this observation, the following lemma states that for any two approximation point P̂1 and

P̂2 the vertical region between the anchor points of the two points does not overlap. In other words, the

anchor points are totally ordered with respect to their y-values.

Lemma 51 For any two approximation points P̂1 and P̂2 in list L where P̂1 precedes P̂2, the following

invariant holds:

P̂1.yl ≤ P̂1.yr ≤ P̂2.yl ≤ P̂2.yr. (6.12)
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Using this lemma, we will prove that the list L will have at most two nodes corresponding to a (1 + ε)-

region.

Lemma 52 For ∀i, (1+ε)-regionAi contains at most one approximation point such that (Ai.lb ≤ P̂ .yr ≤
Ai.ub) ∧ (Ai.lb ≤ P̂ .yl ≤ Ai.ub) after each call to APPROXIMATEAC.

The next corollary shows that at most one approximation point may “straddle” any (1 + ε)-region

boundary. In other words, at most one approximation point has left anchor point below and right anchor

point above the boundary Ai.lb for any i > 1. This corollary follows by the observation that if there

were two such approximation points, then they would have to overlap in terms of y-value which would

contradict the invariant of Equation 6.12 of Lemma 51.

Corollary 15 For ∀i, region Ai contains at most one approximation point such that (Ai.lb ≤ P̂ .yr ≤
Ai.ub) ∧ (P̂ .yl ≤ Ai.lb).

Combining Lemma 52 and Corollary 15, we see that at most one approximation point exist completely

inside any region Ai and at most one straddles the boundary of Ai.lb for i ≥ 1. This proves Theorem 15,

which upper bounds the number of intervals that the approximate admission controller tracks.

Despite bounding the number of approximation points per (1 + ε)-region, the number of these regions

could be potentially infinite, for an arbitrary dbi; however, practically, a system cannot define an arbitrarily

infinite dbi function. Typically, there are two design choices: 1) store the dbi as a finite set of linear

segments (i.e., the dbi has a finite number of steps and an entry for each step in the function); or 2) dbi

is generated from some finite set of recurring tasks and each point can be calculated using some known

closed-form equation. In the next section, we explore the second option by showing how to modify the

algorithm to handle a dbi generated from periodic/sporadic task systems. Thus, for now, we will assume

that we are given a finite number of line segments as dbi.

Let r be the number of line segments required to specify the dbi for Λ. We can view the dbi as an

ordered set {((ai, bi), si) | 1 ≤ i ≤ r} where elements are ordered in increasing ai values and (ai, bi)

represents the left endpoint of the i’th line segment and si is the slope of the line segment. In other

words, for any interval length t ∈ [ai, ai+1) for some i : 1 ≤ i < r the dbi(Λ, t) = bi + (t − ai)si.

Furthermore, to ensure that dbi is non-decreasing, bi + (ai+1 − ai)si ≤ bi+1 for all i : 1 ≤ i < r. For

approximation points P̂ .xl larger than ar, we may modify APPROXIMATEAC in Algorithm 9 to use a
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constant-time approach given in Section 6.2 (Algorithm 6) for doing admission control of a single-step

dbi by storing only a single point with P̂ .xl ≥ ar. Otherwise, let U equal br−1 + (ar − ar−1)sr−1. For

all points before ar, APPROXIMATEAC requires at most
⌈
log1+ε U

⌉
different (1 + ε)-regions to cover all

the approximation points. Thus, we have at most O(log1+ε U) approximation points. To calculate the dbi

at any of the approximation points, we must simply look up the value in the ordered list which may be

accomplished in O(log r) time complexity. Thus, the overall complexity of the approach for a finite stored

dbi isO((log1+ε U)(log r)). The value of U is at most exponential (with base of two) in the number of bits

to represent the line segments of the dbi. Our approximate admission controller therefore has complexity

that is polynomial in the number of bits to store each line segment and 1/ε. Furthermore, the worst-case

computational complexity does not depend on the number of jobs admitted in during the lifetime of the

system; this removes a fundamental drawback of the exact admission controller.

We derive an upper bound on periodic dbi in Section 6.4. Let the upper bound for the dbi is U , then

the number of regions will be log1+ε U by Definition 17. Since all other operations take constant time, the

complexity of the algorithm is O(log1+ε U).

6.4 Deriving Upper-bound for dbi

In this section, we consider the second possibility posed in Section 6.3.3: the demand-curve interface

is a periodic function. In particular, we assume that we are given a demand-curve generated from n

constrained-deadline sporadic tasks [70]: τ def
= {τ1, τ2, . . . , τn} (Section 3.1.2). Each task τi is speci-

fied by the tuple (ei, di, pi) where ei is the worst-case execution requirement, di is the relative deadline,

and pi is the period of the task; we further assume that di ≤ pi for all τi. Uτ denotes the total uti-

lization of τ , and equal to
∑n

i=1 ei/pi. It has been shown [20] that the demand-curve dbi(τ, t) equals
∑

τi∈τ b(t− di)/pi + 1c · ei (Equation 3.2). Furthermore, it can be easily shown that this dbi repeats with

hyperperiod Hτ equal to lcmn
i=1{pi} (Section 3.2.2); this repetition implies

∀0 ≤ t ≤ Hτ :: dbi(τ, t+Hτ ) = dbi(τ, t) + UτHτ . (6.13)

Figure 6.5 shows the periodic behavior of the dbi. Note in the figure, we have divided the xy-plane

into rectangular regions labeled with roman numerals. The width of each region is Hτ and the height
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Figure 6.5: Deriving Upper Bound for Periodic dbi.

is UτHτ . Due to the periodic nature of the dbi, Regions I, III, VI, X, etc. are identical; similarly, the

Regions II, V, IX, etc. are also identical. Clearly a point (x, y) in any region with x ≥ Hτ and y ≥ UτHτ

can be “mapped” to a point in its identical region (i.e., one region down and one region to the left) by

(x−Hτ , y − UτHτ ). From Equation 6.13, we may observe that

dbi(τ, x−Hτ ) ≥ y − UτHτ ⇔ dbi(τ, x) ≥ y. (6.14)

Given the above observations regarding dbi(τ, t), we now present a modification of the approximate

admission controller to limit the number of regions to polynomial in ε and the size of τ . Let Amax be the

first (1+ε)-region completely above 2UτHτ ; the regionAmax represents the last region that we will track.

When an approximation point P̂ crosses Amax.lb (i.e., P̂ .yl crosses this boundary), we check whether the

point entered via Region VI or IX; if so, we use the mapping of Equation 6.14 to map the point back to

Region III or V, respectively. Otherwise, if it crossed Amax.lb in some other region, we may show that if

this point ever violates the dbi, there exists a smaller interval that also does. Therefore, we can remove this

point from consideration. We test for this by checking the condition P̂ .xl > 4Hτ . Algorithm 10 shows this

procedure called dbi- WRAPCHECK which we may add in the UPDATE subroutine in APPROXIMATEAC

after the SHIFT of each node. We can show that the number of (1 + ε)-regions for a periodic dbi is

O(log1+ε UτHτ ) based the definition of Amax. Since u ≤ n and Hτ ≤ pnmax where pmax = maxτi{pi},
then the total number of regions can be upper-bounded by O(n log1+ε pmax). The time to compute the

periodic dbi for any interval length adds an additional factor of O(n) to the time complexity.
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Algorithm 10 Pseudo-code for checking upper bound of periodic dbi for admission control of MAD jobs.

dbi-WRAPCHECK(Λ, P̂ , ε)

1 � Let Amax be the first region above 2UτHτ .
2 if P̂ .xl > 4Hτ

3 Delete all the nodes from P̂ to the end of the list.
4 if P̂ .yl > Amax.lb
5 P̂ .xl ← P̂ .xl −Hτ

6 P̂ .yr ← P̂ .yr − UτHτ

7 r ← dlog1+ε(P̂ .yl)e
8 if Ar has approximation point (P̂1)

9 MERGE(P̂1, P̂ )
10 else
11 INSERT(xl, yr)

6.4.1 Eliminating Approximation Points for Periodic dbi

In this section, we show that we may discard an approximation point P̂ if it is “too far away” from dbi(Λ, ·)
for a dbi generated from a set of sporadic tasks τ . The first lemma gives a technical result regarding

periodic dbis.

Lemma 53 For any positive real numbers x and y, it must be that

dbi(Λ, x+ y)− dbi(Λ, y) ≥ dbi(Λ, x). (6.15)

Proof: We use the following property of floors that for any a and b: bac+ bbc ≤ ba+ bc. By di ≤ pi and

the definition of dbi for sporadic tasks, we have

∑n
i=1

(⌊
x+y−di

pi

⌋
+ 1
)
ei −

∑n
i=1

(⌊
y−di
pi

⌋
+ 1
)
ei

=
∑n

i=1

(⌊
x+y−di

pi

⌋
−
⌊
y−di
pi

⌋)
ei.

(6.16)

Letting a = x
pi

and b = y−di
pi

and applying the property of floors, implies the lemma.

The next lemma shows that if the left anchor point of an approximation point P̂ passes the boundary

of 4Hτ and its y-value less than 2UτHτ , then there exists another point (with smaller x-value) that will

“cover” P̂ .
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Lemma 54 Let P̂ be an approximation point such that P̂ .xl > 4Hτ and P̂ .yr ≤ 2UτHτ at some time

T > 0 and for any sequence of admitted jobs after T , P̂ is not merged with any other point. Let P̂ new

be the approximation point corresponding to P̂ after jobs arriving between T and T ′ have been admitted

where T < T ′. If P̂ new.yr > dbi(Λ, P̂ new.xl) at time T ′, then there exists P̂ ′ ∈ L at time T ′ such that

P̂ ′.xl ≤ P̂ .xl and P̂ ′.yr > dbi(Λ, P̂ ′.xl).

Proof: Let J be the set of jobs admitted by APPROXIMATEAC before T . Let J ′ be the set of jobs

admitted after T up until T ′. Observe by supposition of the lemma, P̂ .xl > 4Hτ which implies that

dbi(Λ, P̂ .xl) > dbi(Λ, 4Hτ ) = 4UτHτ . Since P̂ .yr ≤ 2UτHτ , it must be that

dbi(Λ, P̂ .xl)− P̂ .yr ≥ 2UτHτ . (6.17)

Since P̂ is not merged, only SHIFT operations will change the location of P̂ . Let J = {j1, j2, . . . , jk}
and J ′ = {jk+1, . . . , jn}. We denote the value of the variable d̄last at time T as d̄old

last; similarly, d̄new
last

represents the variable at time T ′. Please note by our definition of J and J ′, it must be that d̄old
last = d̄k

and d̄new
last = d̄n. By Lemma 46, there exists ji ∈ J such that P̂ .xl ≤ d̄old

last − Ai = d̄k − Ai and

P̂ .yr ≥ demand(J,Ai, d̄k). Since jk was accepted P̂ .yr ≤ dbi(Λ, P̂ .xl) ≤ dbi(Λ, d̄k −Ai).

Let δ̄x equal d̄new
last − d̄old

last. Let δ̄y equals the total execution of all jobs of J ′. The approximation point

P̂ new is the original approximation point P̂ shifted to the right by δ̄x and upwards by δ̄y. If P̂ new.yr >

dbi(Λ, P̂ new.xl) is true, then

P̂ .yr + δ̄y > dbi(Λ, P̂ .xl + δ̄x). (6.18)

Combining Equations 6.17 and 6.18, we obtain

δ̄y > dbi(Λ, P̂ .xl + δ̄x)− dbi(Λ, P̂ .xl) + 2UτHτ . (6.19)

Now consider the interval [Ak+1, d̄n]. Observe that d̄n − Ai = (d̄n − Ak+1) + (Ak+1 − Ai). By

Lemma 53,
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dbi(Λ, d̄n −Ak+1)

≤ dbi(Λ, d̄n −Ai)− dbi(Λ, Ak+1 −Ai)
≤ dbi(Λ, P̂ .xl + δ̄x)− dbi(Λ, Ak+1 −Ai)
≤ dbi(Λ, P̂ .xl + δ̄x)−

[
dbi(Λ, P̂ .xl)− UτHτ

]
(6.20)

The last inequality follows since d̄k+1 ≥ d̄k (due to the MAD property). Assuming that Dk+1 ≤ Hτ ,

dbi(Λ, Ak+1 −Ai) ≥ dbi(Λ, (d̄k −Hτ )−Ai) = dbi(Λ, d̄k −Ai)− UτHτ ≥ dbi(Λ, P̂ .xl)− UτHτ .

By Lemmas 45 and 46, there exist an approximation point P̂ ′ ∈ L at time T ′ such that P̂ ′.xl ≤
d̄n − Ak+1 and P̂ ′.yr ≥ demand(J ∪ J ′, Ak+1, d̄n) = δ̄y. Combining these facts with Equations 6.17

and 6.20, we obtain

P̂ ′.yr > dbi(Λ, P̂ .xl + δ̄x)− dbi(Λ, P̂ .xl) + 2UτHτ (6.21)

and

dbi(Λ, P̂ ′.xl) ≤ dbi(Λ, P̂ .xl + δ̄x)− dbi(Λ, P̂ .xl) + UτHτ . (6.22)

Clearly, Equations 6.21 and 6.22 implies that P̂ ′.yr > dbi(Λ, P̂ ′.xl); if P̂ ′.xl ≤ 4Hτ , then the lemma

is proved. If not, we can repeat the same logic above to find P̂ ′′ with P̂ ′′.yr > dbi(Λ, P̂ ′′.xl) where

P̂ ′′.xl < P̂ ′.xl.

6.4.2 Server Design

Our admission controllers ensure that the total system demand for the admitted jobs will never violate

the demand-curve interface for the subsystem by policing the jobs before executing them. However, we

need a mechanism to strictly enforce the interface at runtime; for example, if a job needs to execute more

than its worst-case execution time, the system must ensure that temporal isolation is still maintained. We

denote the worst-case execution time Ei specified in our aperiodic job model as the estimated execution

time and Ēi as the actual execution time of job ji. In this section we address how the overrun (Ei < Ēi)

and underrun (Ei > Ēi) situations can be handled so that the interface is not violated. We explore the

design of a lightweight server to enforce temporal isolation and reclaim any unused reservation from a job

that finishes early.
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Figure 6.6: State transition diagram.

Temporal Isolation

Each job will have a server associated with it, which will monitor the execution time of the job. If the

actual execution goes beyond the estimated execution time, the server will stop running the job. Upon

ji’s admittance to the system (via our admission controller), the server is given a budget equal to Ei. The

server consumes this budget at a linear rate only when executing the job. When the budget of the server for

ji is depleted, its execution is halted. If ji has not successfully completed at this point, we have an overrun

situation. The subsystem designer needs to determine whether to abort the job or spawn a new server by

using the admission control algorithm with a new estimate of the remaining execution. Note that since the

server does not permit the actual execution Ēi of a job to exceed Ei, it enforces strong temporal isolation

between subsystems.

Each server assigns a state to the admitted job. A job can be in one of the four states: inactive, active,

executing and suspended. An inactive state is initial state of a job that just arrived to the system. Once the

admission controller admits the job, it moves to active state (transition (1)). The job moves to executing

state when the scheduler starts executing the job (transition (2)), and goes back to active state when a

higher priority job preempts the execution of the job (transition (3)). While in executing state, if the total

execution of the job exceeds Ei, the server transitions the job to suspended state (5). The job goes back to

inactive state when it finishes execution (transition 4). From the suspended state, the job might move back

to active state (6), however, it must get accepted through the admission controller with its new execution

requirement and deadline.

Resource Reclamation

Now consider that Ēi is less than Ei. Using APPROXIMATEAC directly, it would be difficult to modify

our data structure to reclaim the reserved execution for ji. (We would have to shift points backwards).
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Thus, to accommodate early completion, we do a lazy update to the linked list L. We maintain another list

Q called the active jobs list. This list stores all the jobs whose deadline have not yet elapsed. Let the sum

of demands of the jobs in the active job list is called active demand. We store the current value of active

demand for Q in a variable q.

When a job ji arrives to the system, the admission controller decides whether to admit the job based

on an “inflated” execution time which is the sum of the active demand (q) and Ei. If admitted, a node

is added to the list Q at the end in deadline order (recall that the jobs arrive in MAD order), and active

demand q is increased by Ei; however, we defer the updating of nodes of list L. Upon completion of a job

ji in Q, we reclaim execution in the active demand by increasing q by Ei − Ēi. When the deadline of any

job ji in the active job list elapses, it is removed from the front of Q and the active demand q is reduced

by Ēi. Then, a new interval corresponding to [Ai, d̄i] is inserted to L, with the job’s actual execution time

Ēi (≤ Ei), and update to existing intervals is performed with (δx, δy) = (d̄i − d̄last, Ēi). In this way, it is

ensured that if actual execution is less than the estimated, the remaining resource is reclaimed. Also, note

that the size of Q is at most the number of active jobs N in the system.

Many admission controllers have the ability to “reset” upon a system idle point. Clearly, it is desirable

to be able to reset the demand of a subsystem to zero at such a point. However, it is not possible to

implement such a subsystem reset for arbitrary demand-curve interface model, where complete global

knowledge of the state of all other subsystems comprising the system is unknown to a subsystem; doing so

could result in a violation of the interface. Consider a subsystem S with interface dbi(Λ, t) = .9t and jobs

j1(0, .9, 1) and j2(.91, .9, 1). If S executes all of j1 immediately, then it will go idle at time .9. If S resets

at this time, j2 will be admitted even though j1 and j2 together clearly violate dbi(Λ, 1.91). In the next

section we focus on determining reset points when the interface function has some specific characteristics.

6.5 Resetting the Admission Controller

While until now we have assumed that the dbi is an arbitrary function (i.e., piecewise continuous, non-

negative, and non-decreasing function of interval lengths), which makes the determination of a subsystem

reset point non-trivial. In this section we investigate few specific type of interface functions in which we

will be able to reset the admission controller based on certain properties of the function. The basic idea is

to determine a “safe” time interval IS for any subsystem S specified by an interface Λ such that if S is idle
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for time interval IS , we can safely reset S (i.e., discard all the demand points corresponding to previously

admitted jobs in list L). We assume that the system consists of MAD jobs.

Definition 20 (Subsystem reset time) For any subsystem S specified with an interface Λ, and an arbi-

trary set of accepted MAD jobs J at any time T , the subsystem reset time IS represents the time interval

for which if S is idle after the last admitted job jlast’s deadline d̄last, then it can forget its history of

previously admitted jobs i.e., it can be reset safely.

In the next section, we determine the subsystem reset time based on the characteristics of the interface

function that specifies the subsystem. We derive subsystem reset point for monotonic increasing-rate dbi

and super-additive dbi. Obtaining a general criteria for determining reset point of an arbitrary interface

function remains as future work.

6.5.1 Monotonic Increasing-Rate dbi

A function is monotonic increasing-rate if the following property hold:

f(T1)

T1
≤ f(T1 + T2)

T1 + T2
where T1, T2 ≥ 0 (6.23)

Few examples of monotonic increasing-rate functions are the uniprocessor supply function (f(t) =

t), the supply-bound function for EDP or periodic resource model (Section 3.3.1), single-step demand

interface (Section 3.3.2) etc. The monotonic increasing-rate property is due to the fact that the derivative

of each of these functions are greater or equal zero. In the next lemma, we obtain the reset condition for

subsystems specified by such interfaces.

Lemma 55 Let subsystem S is specified by a monotonic increasing-rate interface Λ, that is, for ∀T1, T2,∈
R and T1 ≤ T2, dbi(Λ, T1)/T1 ≤ dbi(Λ, T2)/T2. At time T , let J be the set of admitted jobs and d̄last be

the deadline of last admitted job jlast. The admission controller can be safely reset after any time point

T ≥ d̄last when S is idle, that is, IS = 0.

Proof: Let S is idle at time T ≥ d̄last, and a new job jk arrives in the system with Ak ≥ d̄last. To prove

that the admission controller can be reset at time T ≥ d̄last, we must show that if the demand over the
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interval [Ak, d̄k] does not violate dbi then the demand-points corresponding to already admitted set of jobs

J will not violate dbi after adding jk.

Since the admission controller already admitted the jobs in J , from Lemma 41 and 42 we obtain:

∀ji ∈ J,demand(J,Ai, d̄last) ≤ dbi(Λ, d̄last −Ai) (6.24)

When jk arrives, the EXACTAC(Λ, jk) in Algorithm 8 checks at the very beginning (first iteration of for

loop) that the new job jk meets its demand Ek over the interval [Ak, d̄k]. That is:

demand(jk, Ak, d̄k) ≤ dbi(Λ, d̄k −Ak) (6.25)

Given Equation 6.24 and 6.25, and a monotonic increasing rate dbi, we must show that when Ak ≥ d̄last:

∀i ≤ k,demand(J ∪ jk, Ai, d̄k) ≤ dbi(Λ, d̄k −Ai) (6.26)

The worst-case demand for the new job is equal to the interface, i.e., demand(jk, Ak, d̄k) = dbi(Λ, d̄k−
Ak). Since S is idle for the interval [d̄last, Ak), this implies demand(jk, d̄last, Ak) = 0, thus, demand-

(jk, Ak, d̄k) = demand(jk, d̄last, d̄k). Therefore, demand(jk, d̄last, d̄k) = dbi(Λ, d̄k−Ak) ≤ dbi(Λ, d̄k−
d̄last). Also we assume that for any of the prior demand-points stored by the algorithm for the interval

[Ai, d̄last], ji ∈ J , demand is maximum, that is, demand(J,Ai, d̄last) = dbi(Λ, d̄last − Ai). We have to

show that the demand over the new interval [Ai, d̄k] will meet the demand interface for this case.

By the monotonic increasing property of the dbi, we obtain:

dbi(Λ,d̄last−Ai)
d̄last−Ai ≤ dbi(Λ,d̄k−Ai)

d̄k−Ai
=> (d̄k −Ai)dbi(Λ, d̄last −Ai) ≤ (d̄last −Ai)dbi(Λ, d̄k −Ai)

(6.27)

Similarly,

dbi(Λ,d̄k−d̄last)
d̄k−d̄last ≤ dbi(Λ,d̄k−Ai)

d̄k−Ai
=> (d̄k −Ai)dbi(Λ, d̄k − d̄last) ≤ (d̄k − d̄last)dbi(Λ, d̄k −Ai)

(6.28)
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Table 6.1: Periodic dbi parameters
p 7 15 9 19 21 27 35 11

e 0.1 1.1 0.18 0.4 0.22 5.2 4 1.7

By adding Equation 6.27 and 6.29, we obtain:

(d̄k −Ai)(dbi(Λ, d̄last −Ai) + dbi(Λ, d̄k − d̄last))
≤ (d̄k − d̄last + d̄last −Ai)dbi(Λ, d̄k −Ai)

=> dbi(Λ, d̄last −Ai) + dbi(Λ, d̄k − d̄last) ≤ dbi(Λ, d̄k −Ai)
=> dbi(Λ, d̄last −Ai) + dbi(Λ, d̄k −Ak) ≤ dbi(Λ, d̄k −Ai)

(6.29)

Similarly, for all other interval [Ai, d̄k], ji ∈ J , it can be shown that the demand will be less or equal

the dbi, which implies Equation 6.26. Thus, S can be safely reset once it is idle after last admitted job’s

deadline d̄k, hence, by Definition 20, reset time IS equals 0.

Corollary 16 If a subsystem S is specified by a super-additive interface Λ, that is, for ∀T1, T2 ∈ R+,

dbi(Λ, T1) + dbi(Λ, T2) ≤ dbi(Λ, T1 + T2), then S can be reset at the instant it becomes idle after last

admitted job’s deadline, that is, IS = 0.

6.6 Simulation Results

In this section, we evaluate the performance of EXACTAC (Algorithm 8) and APPROXIMATEAC(Algorithm 9)

by running them over synthetically generated MAD jobs. While we use the results obtained in Section 6.4

in the simulation, we do not include the results obtained in Section 6.5. During simulation we used fol-

lowing parameters and value ranges.

• We use a periodic demand interface with set of 8 periodic tasks with period p and execution e as

shown in Table 6.1, and a total utilization of 0.5. The periods are randomly generated in the range

[5, 40] and task utilizations are generated using UUniFast algorithm [25]. The generated tasks have

a hyperperiod H equal to 197505.

• For MAD job ji, we generate following parameters from uniform distribution: interarrival time x

between successive jobs is in the range [0, 20] (i.e.,Ai = Ai−1 + x); the relative deadline parameter
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Figure 6.7: Execution Time vs Arrival Time of Jobs
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Figure 6.8: Execution Time vs Accepted Jobs

y is in the range [0, 50] (i.e., Di = max{Ai−1, d̄i−1} −Ai + y); and the execution time Ei is in the

range [1, Di].

• A 2.33 GHz Intel Core 2 Duo E6550 machine with 2.0GB RAM is used. The simulation runs until

Ai ≥ 4H .

• We use ε = [0.01, 0.1, 0.2].

We compare our proposed algorithms using two metrics: execution time and the number of accepted jobs

over time. Figure 6.7 shows the execution time trace over time for each of the algorithms. Each point

in the plot represents the execution time of corresponding algorithm in microseconds for the job arrival

at time shown in the horizontal axis. Note, since this plot shows execution time for every run of the

algorithm (it might accept or reject the job), the execution time highly fluctuates. Execution time is higher

for the “accept” cases than “reject” cases, as it checks every interval in the list and updates all of them.

On the other hand, an admission controller might “reject” a job at the very first line (see the algorithms in

Section 6.3.1, 6.3.3), or after checking the corresponding list of intervals partially.

The next plot (Figure 6.8) compares the execution time required for acceptance (i.e., the worst-case) of

the algorithms, given that the algorithm has already accepted the number of jobs indicated in the horizontal

axis. For example, a point in the red curve at x = 100 represents time required by the approximate

algorithm (ε = 0.01) to admit a job in the system with already 100 jobs in the system. Note that set of

accepted jobs for different algorithms will be different, however, the time required by the algorithm does

not depend on job specific parameters, rather on the number of already accepted jobs by that algorithm. The
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plot certifies this by showing linear growth in the execution time for the exact and saturated execution time

for the approximate algorithms. Thus, we have a significant reduction in running time for the approximate

admission controller over the infeasible exact admission controller.

The last plot shown in Figure 6.9 compares the number of jobs admitted by each of the algorithms over

time. The leftmost curve represents total number of jobs that arrived in the system over time. The exact

algorithm admits more jobs to the system then the approximate algorithms which is intuitive. We observe

that the approximate algorithm with ε = 0.01 performs very close to the exact algorithm.

6.7 Admission Controller for Arbitrary Aperiodic Jobs

In this section we relax the constraint of the MAD property for the aperiodic jobs in the system; that is,

jobs may arrive in the system at any order of deadline (Figure 3.2 in Section 3.1.1). In this case, when a

new job jk is admitted to the system the demand over all intervals corresponding to the nodes in the list L

(xy-plane data structure) will not increase the same amount (i.e., δy = Ek). Since we insert nodes in L in

deadline order, when a job arrives in the system in MAD order, we insert a new node at the beginning of

the list corresponding to the new job’s arrival to deadline interval, and update the existing nodes in the list

to increase the intervals and to reflect the new job’s demand in these intervals. This ensures that L is sorted

in interval length order. When job jk arrives in arbitrary order, then there might be some nodes (intervals)

in L which represent intervals with arrival time later than jk’s arrival time Ak. Now, if these intervals

correspond to jobs with absolute deadline earlier than jk’s absolute deadline, than the demand over these
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intervals will not increase after admitting jk. All the intervals which represent arrival time earlier than Ak

and absolute deadline earlier than d̄k will be updated similar to MAD case after admitting jk in the system.
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Figure 6.10: EXACTAC is insufficient for arbitrary aperiodic jobs.

First, we show via an example why the approach for MAD-sequenced job will not work for arbitrary

aperiodic jobs. Consider our two-step dbi example (Section 6.3.2, Figure 6.2) and a sequence of aperiodic

jobs j1(0, 1, 2), j2(1, 1, 1.9), and j3(1.5, 0.8, 1) shown in Figure 6.10. For the [Ai, d̄i] interval for each ji,

dbi(Λ, d̄i−Ai) > Ei. The EXACTAC in Algorithm 8 will admit j1. When j2 arrives, the algorithm checks

if the demand over the intervals [Ai, D2], i = 1, 2 is met. When j3 arrives (with d̄3 < d̄2), the algorithm

will check whether all the intervals ending at d̄3 will meet their demand, i.e., the demand over the intervals

[Ai, d̄3], i = 1, 2, 3 will not violate dbi (red points in Figure 6.10(b)). However, if j3 is admitted the

demand over the interval [A2, d̄2] will also increase by E3 amount since A2 < A3 and d̄2 > d̄3, and this

will cause a violation of the dbi, which EXACTAC will not be able to determine. Therefore, along with

checking the demand of intervals ending at or before the new job’s deadline, we need a procedure to check

the demand over the intervals ending after the new job’s deadline.

6.7.1 Algorithm Description

For each job arrival, the admission controller must ensure that the demand of all intervals representing

both absolute deadline earlier than the new job or later than the new job are less or equal the dbi. We use

a two step approach in this case to extend our admission controller for MAD jobs. We maintain a data

structure B which contains admitted active jobs in the system ordered by their absolute deadline, similar

to the list we used for admission control in single step demand interface in Section 6.2.2. Each node in B
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Algorithm 11 Pseudo-code for approximate admission control of arbitrary aperiodic jobs where interface
is an arbitrary demand-curve.

APPROXIMATEAC-A(Λ, jk, ε)

1 if dbi(Λ, Dk) < Ek
2 Reject jk.
3 Insert a node in B corresponding to jk in absolute deadline order.
4 Copy the list L to a list L′.
5 for each node in B corresponding to job ji with d̄i ≤ d̄k
6 Perform UPONJOBDEADLINE-A(ji) on list L′, without

deleting the node corresponding to ji from B.
7 if any INSERT, SHIFT or MERGE violates dbi
8 Delete list L′. Remove node in B corresponding to jk.
9 Reject jk.

10 end for
11 Delete list L′.
12 Accept jk.

UPONJOBDEADLINE-A(jk)

1 δx ← d̄k − d̄last; δy ← Ek
2 UPDATE-A(δx, δy, jk)
3 d̄last ← d̄k
4 Delete the node corresponding to jk from B.

contains arrival time Ai, absolute deadline d̄i and execution Ei for admitted active job ji. If the admission

controller accepts a job, it is first inserted into B and stored until its deadline elapse, at that time it is

removed from B, and a node is added to L corresponding to this job, and existing nodes in L are updated

to reflect the demand of this job.

A straightforward extension of APPROXIMATEAC in Algorithm 9 for MAD aperiodic jobs to approx-

imate admission control of arbitrary aperiodic jobs is given in APPROXIMATEAC-A (Algorithm 11). We

give the update operation in UPDATE-A, which inserts a new node to the list L in appropriate position

(instead of at the head of the list for MAD case) and updates all the nodes accordingly. The procedure

UPONJOBDEADLINE-A is invoked when the deadline of any node in list B elapses. Other operations on

L for this algorithm (e.g., APPROXIMATEAC-INIT, INSERT, DELETE, SHIFT, MERGE) are similar to the

subroutines shown in Algorithm 9. The steps for admission control procedure of an arbitrary aperiodic job

are as follows:
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UPDATE-A(δx, δy, jk)

� Start from the head of the list
1 P̂p ← null; P̂c ← P̂h

� Update intervals less than Dk

2 while P̂c.xr < Dk − δx
3 SHIFT(P̂c, δx, 0)

4 P̂p ← P̂c; P̂c ← P̂c.next
5 end while
6 if P̂c.xl ≤ Dk − δx < P̂c.xr
7 P̂c.xl ← P̂c.xl + δx
8 P̂c.xr ← P̂c.xr + δx; P̂c.yr ← P̂c.yr + δy
9 if P̂c.yl and P̂c.yr not in same region

10 Split the left and right anchors of P̂c into two nodes P̂ lc and P̂ rc
11 Add P̂ = INSERT(Dk, P̂

l
c .yl + δy), between P̂ lc and P̂ rc

12 if P̂ lc and P̂ are in same region
13 MERGE(P̂ lc , P̂ ) ; P̂p = P̂ rc
14 else if P̂ and P̂ rc are in same region
15 MERGE(P̂ , P̂ rc ); P̂p = P̂
16 else
17 P̂p = P̂ rc
18 P̂c = P̂p.next
19 else
20 P̂p ← P̂c; P̂c ← P̂c.next
21 else
22 if P̂p is null

23 P̂p ← INSERT(Dk, δy)� Insert at the beginning of the list
24 else
25 P̂c ← INSERT(Dk − δx, P̂p.yr)
26 P̂c.next← P̂p.next

27 P̂p.next← P̂c
� Update intervals greater than Dk

28 while P̂c not null

29 SHIFT(P̂c, δx, δy)

30 if P̂p and P̂c are in same region
31 MERGE(P̂p, P̂c)

32 P̂p ← P̂c; P̂c ← P̂c.next
33 end while
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• When a new job jk arrives in the system, we first check if the condition dbi(Λ, Dk) ≥ Ek holds.

Then, we insert it in B in absolute deadline order. For all the nodes in B with absolute deadline less

or equal the new node, we simulate the UPONJOBDEADLINE-A operation on a duplicate list L′. If

any insert. merger of shift operation violates dbi, we reject jk.

• When the deadline of job jk in B elapses, UPONJOBDEADLINE-A is invoked, which performs

UPDATE-A on list L and removes the node corresponding to jk from the front of B.

• In the UPDATE-A operation, we first update all the intervals in L which have smaller length than the

interval Dk− δx (Lines 2 to 5). Then we check if any approximation point P̂i in the list has Dk− δx
in between its anchors (P̂i.xl ≤ Dk − δx < P̂i.xr ). A new point corresponding to jk is inserted in

between them if it is not within the redundancy region of P̂i. Finally in Lines 28 to 33, we update

all the nodes in L which have interval lengths greater or equal Dk − δx.

• Note that, while inserting a new node corresponding to jk in L, we ensure that it is inserted in the

order of its interval length Dk. Further, we ensure that the demand corresponding to this interval

is computed to represent the demand of all the jobs that have both arrival and deadline within this

interval.

• Since the insertion point of jk’s interval Dk in L cannot be pre-determined (unlike the MAD case,

where new interval is always inserted at the head of the list), the demand overDk is not known when

jk arrives, and two different types of shift needs to be done based on whether the points in L are

before or after Dk, it is not trivial for the admission controller to decide whether to accept jk or not.

For these reasons, we simulate the UPONJOBDEADLINE-A on a duplicate list L′ for all active jobs

that have deadline less or equal d̄k. If any operation violates the interface, we reject the job.

6.7.2 Algorithm Correctness

The correctness of APPROXIMATEAC-A is given by Theorem 16. The admission controller will not

accept a job if any MERGE, SHIFT or INSERT on the duplicate list L′ violates Equation 6.1 (Line 7). When

it accepts a job, the interval corresponding to it will be inserted to L in absolute deadline (using listB). We

show that after running APPROXIMATEAC-A and UPONJOBDEADLINE-A for each accepted jobs, there

is a node in L for each interval, and demand over all intervals are correctly updated (similar to Lemma 46
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P̂1

P̂2

P̂3

Figure 6.11: While inserting the interval Dk in L, UPDATE-A shifts P̂1 by (δx, 0), P̂3 by (δx, δy). The
anchors of P̂2 are updated according to their position.

and Lemma 47). As we use the same MERGE operation as in Algorithm 9, Lemma 45 also holds for this

algorithm.

Theorem 16 If APPROXIMATEAC-A(Λ, jk, ε) returns “Accept”, then jk may be admitted without vio-

lating the demand-curve interface Λ.

Lemma 56 After the call to APPROXIMATEAC-INIT() and the k’th invocation of APPROXIMATEAC-A-

(Λ, jk, ε) where k ∈ N, for aperiodic jobs j1, j2, . . . , jk, define Jk to be the set of jobs admitted by the

approximate admission controller. For each job ji ∈ Jk, after executing UPONJOBDEADLINE-A(ji),

there exists an approximation point P̂ in list L such that P̂ .xl is at most d̄last − Ai and P̂ .yr is at least

demand(Jk, Ai, d̄last). Furthermore, d̄last equals max
{
{0} ∪ {d̄i | ji ∈ Jk}

}
.

Proof: We prove the lemma by induction on k.

Base Case: When k = 0, APPROXIMATEAC-INIT() has been invoked and thus no jobs have been

admitted; i.e, J0 = ∅. The lemma is clearly true as L is initialized to ∅ and d̄last is initialized to zero.

Inductive Hypothesis: Assume that the lemma holds for each i (i = 1, 2, . . . , k − 1) successive calls

to APPROXIMATEAC-A(Λ, ji, ε) and UPONJOBDEADLINE-A(ji).

Inductive Step: When APPROXIMATEAC(Λ, jk, ε) returns “reject”, Jk−1 is identical to Jk and d̄last

is not changed by any instruction in the execution path to “reject”. Thus, by the inductive hypothesis, the

lemma continues to hold as the state is identical to after the call to APPROXIMATEAC-A(Λ, jk, ε).



151

Now, consider the case when APPROXIMATEAC-A(Λ, jk, ε) returns “accept”. After executing UPON-

JOBDEADLINE-A(jk), line 3 of the procedure sets d̄last equal to d̄k. Let the updated value of d̄last and

L be denoted by d̄new
last and Lnew respectively. Let d̄old

last and Lold denote the value of the d̄last and L, prior

to the invoke of UPONJOBDEADLINE-A(jk). By the inductive hypothesis, for each job ji ∈ Jk−1, there

exists P̂ ∈ Lold such that P̂ .xl is at most d̄old
last − Ai and P̂ .yr is at least demand(Jk−1, Ai, d̄

old
last). We

have δx = d̄new
last − d̄old

last and δy = Ek.

After the call to UPONJOBDEADLINE-A(jk), a point corresponding to jk is inserted in L in deadline

order. UPDATE-A(δx, δy, jk) ensures that all the approximation points with P̂ .xr ≤ Dk are to the left

of the new point. The new point corresponds to the interval [Ak, d̄k], and the demand over this interval

is the demand for this job and demand for all the job ji ∈ Jk such that Ai ≥ Ak and d̄i < d̄k. This

implies demand(Jk, Ak, d̄k) = Ek + demand(Jk, min
i|Ai>Ak

Ai, d̄last). If jk is inserted in MAD order after

jlast, i.e., Ak ≥ Alast, demand(Jk, Ak, d̄k) = Ek. Thus, for jk after inserting point P̂ , P̂ .xl is at most

d̄new
last −Ak and P̂ .yr equals demand(Jk, Ak, d̄

new
last) (before any MERGE operation).

There are three cases we need to consider while performing UPDATE-A and subsequent MERGE op-

erataions after inserting jk in absolute deadline order in L as shown in Figure 6.11.

• Case 1. P̂ .xr < Dk − δx. This case represents all the points in L that correspond to an interval

[Ai, d̄i] such that Ai ≥ Ak and d̄i < d̄k for ji ∈ Jk (node P̂1) in Figure 6.11). By definition

of demand, in [Ai, d̄k] interval, the demand will remain unchanged (δy = 0). Thus we perform

SHIFT(δx, 0) to update these points (Line 2 to 5). Note that, for these intervals, since the points are

shifting only in X-axis to the right, no MERGE operation will be needed. The above proposition

holds for these points.

• Case 2. P̂ .xl ≥ Dk − δx. This case represents all the points in L that correspond to an interval

[Ai, d̄i] such that Ai ≤ Ak and d̄i ≤ d̄k (node P̂3) in Figure 6.11). We perform update similar to

MAD in this case using SHIFT(δx, δy) for all approximation points to the right ofDk−δx. Lemma 45,

implies that if any approximation point P̂ is deleted by a MERGE, then Lnew has an approximation

point P̂ ′ with P̂ ′.xl ≤ P̂ .xl and P̂ .yr ≤ P̂ ′.yr. Thus, each P̂ ∈ Lold is now (P̂ .xl + δx, P̂ .yr +

δy) ∈ Lnew or has an approximation point P̂ ′ that covers it. Furthermore, P̂ .xl + δx is at most

(d̄new
last − d̄old

last) + d̄old
last −Ai = d̄new

last −Ai and P̂ .yr + δy is at most demand(Jk−1, Ai, d̄
old
last) +Ei.

The last expression is equivalent to demand(Jk, Ai, d̄
new
last) since increasing the interval length by
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δx includes only the new job jk in the interval [Ai, d̄
new
last ].

• Case 3. P̂ .xl ≤ Dk − δx < P̂ .xr. The last case (P̂3 in Figure 6.11) is when Dk falls in between

the left and right anchor point of an approximation point P̂ (node P̂2) in Figure 6.11). We shift left

anchor similar to Case 1 (Line 7) and right anchor similar to Case 2 (Line 8). This ensures that P̂ .xl

is atmost d̄new
last − Ai and P̂ .yr includes the demand of the added job (δy). If the anchors are in the

same region after shift, the new point corresponding to jk will also be in the same region due to the

fact that demand(Jk, Ak, d̄k) = P̂ .yl +Ek ≤ P̂ .yr (after the shift of right anchor). In this case, the

point corresponding to jk will be within the redundancy region by Definition 19. Thus, no INSERT

is needed in this case.

Now, after the shift of the anchors, if they move to different regions, then we need to ensure that the

above proposition holds. We split P̂ into two points P̂l and P̂r, and perform INSERT(Dk, P̂ .yl+Ek)

into L between these points. For each of these points, the above proposition holds. Finally we check

whether any two points among these three falls in the same region, in which case we perform MERGE

on them and Lemma 45 ensures that each point in L is covered after the merge.

Therefore, for each of the cases the lemma holds for Jk.

The next lemma shows that the approximate admission controller returns “Accept” for a job jk only

when it is safe to do so.

Lemma 57 After the call to APPROXIMATEAC-INIT() and the k’th invocation of APPROXIMATEAC-A(Λ, jk, ε)

where k ∈ R, for aperiodic jobs j1, j2, . . . , jk, define Jk to be the set of jobs admitted by the approximate

admission controller. It must be that Equation 6.1 holds for Jk and Λ.

We can prove this lemma using similar techniques of Lemma 47. Theorem 16 immediately follows from

the above lemma.

Essentially, the above approach uses B as a “staging” data structure to force nodes to be added to L in

order of absolute deadline. To check whether we may admit a new job, we are essentially simulating the

insert operation of the arrived active jobs in deadline order and checking to see if any interface violations

occur. Thus, the above extension will add an additional multiplicative factor ofN (i.e., the largest length of

listB) to the overall time complexity. Future research is needed to determine whether this time complexity

can be reduced further with a more sophisticated technique or data structure.
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CHAPTER 7: ENFORCEMENT: APPLYING IN

SLACK RECLAMATION

In this section we focus on efficiently determining runtime system slack to allocate unused processing

resources at runtime while still enforcing the given subsystem interface. For such systems that can uti-

lize slack, we are interested in finding an answer to the question: given a compositional system where a

component represents an EDF-schedulable sporadic tasks system [70], how much slack can be allowed at

runtime to an active job such that the component is guaranteed to remain schedulable for any future job ar-

rival scenarios? To obtain optimal runtime system slack, along with the currently active jobs, we consider

worst-case future job arrival scenario, and by allowable we mean future jobs will continue to meet their

deadlines even if all subsequently scheduled jobs execute for their WCET. Although slack reclamation

is well investigated in the literature for different system models, previous approaches either focused on

more restrictive task models (e.g., strictly periodic tasks) or obtaining sufficient (but not necessary) lower

bounds on slack. In contrast, our approach permits a more flexible task model and obtains optimal lower

bound on slack at runtime i.e., if more slack is reclaimed beyond this lower bound, a deadline miss is ob-

tainable if all future jobs execute to their WCET and subsequent future jobs are released with a minimum

inter-arrival time separation.

Given an interface Λ and a sporadic task system τ where τ is EDF-schedulable upon Λ in an

“off-line” setting, our objective is to determine optimal system slack at any time T , such that

the system remains schedulable for the current jobs and all subsequent jobs released by τ in

any T ′ ≥ T , that is, the interface is never violated.

With this goal in mind, our contributions in this chapter can be listed as follows:

• We characterize the optimal runtime system slack at any time T with the guarantee that all future jobs

will remain schedulable and give a straightforward slack determination mechanism (Section 7.2).

• To address the spatial complexity of the above approach, we investigate the use of space-filling

curves along with advance tree data structure (Section 7.3).
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• We propose a simple approximation on the stored slack data to further reduce the space complexity

in Section 7.4 and perform simulation to compare the proposed approaches (exact and approximate).

We observe significant improvement in space complexity (Section 7.5).

7.1 Optimal Runtime Slack

We assume a compositional system with each component as a sporadic task system for this chapter (refer

to Section 3.1.2 for a description of sporadic task system), and characterize optimal runtime slack for the

component.

7.1.1 Task and Workload Models

Recall from Section 3.1.2 that a sporadic task τi is characterized by three parameters: worst-case execution

time ei, relative deadline di and minimum inter-arrival separation pi. We assume constrained deadline

sporadic tasks, i.e., di ≤ pi. Each task τi in the sporadic task system τ generates a potentially infinite

sequence of jobs. Task system τ consists of n sporadic tasks.

We consider a discrete time system, and denote each discrete time point as T . At any time T ∈ N, let

τi(T ) represent the “most-recently released job” of task τi with arrival time ai(T ) and absolute deadline

d̄i(T ). We say τi(T ) is “active” if its deadline has not elapsed yet, that is, ai(T ) ≤ T < d̄i(T ). Since we

assumed di ≤ pi for each task τi, the system consists at most one active job at any time T . Let τi(T ) has

remaining execution of ei(T ) amount at time T where ei(T ) ≤ ei. If τi does not have any active job in the

system (T > d̄i(T )), ei(T ) = 0.

At any time T , let τ ′i(T ) represent the “earliest future job” of task τi. Since pi is the minimum inter-

arrival separation time among successive jobs, τ ′i(T ) will have worst-case arrival time ai(T ) + pi and

absolute deadline d̄i(T ) + pi. Let oi(T ) represent the release offset of τ ′i(T ) at time T , defined as follows.

oi(T )
def
=





ai(T ) + pi − T, if T − ai(T ) < pi;

0, Otherwise.
(7.1)

This value represents earliest possible release time of τ ′i(T ), with respect to the arrival time of most

recently released job τi(T ). When there is no active job of τi present in the system and T ≥ ai(T ) + pi,

the offset oi(T ) equals zero and τ ′i(T ) can be released immediately. Let oτ (T ) = {oi(T )}i=1:n represent
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the set of offset values for all τi ∈ τ at time T .

§Offline Workload Functions. For determining schedulability of a sporadic task system at design time, it

is often useful to quantify the maximum amount of execution that must complete over any given interval.

We rephrase the definition of demand bound function from Section 3.2. We denote a time interval-length

by t in contrast to a discrete time point denoted by T .

Definition 21 (Demand-Bound Function [21]) For any time interval-length t > 0 and task τi, the demand-

bound function (dbf) quantifies the maximum cumulative execution requirement of all jobs of τi that could

have both an arrival time and deadline in any interval of length t. Baruah et al. [21] have shown that, for

sporadic tasks, dbf can be calculated as follows.

dbf(τi, t)
def
= max

(
0,

⌊
t− di
pi

⌋
+ 1

)
· ei. (7.2)

Observe from the above definition that the dbf has discontinuities at time points of the form t ≡ di+b ·
pi where b ∈ N+. Let DBF(τ, t)

def
=
∑

τi∈τ dbf(τi, t). The necessary and sufficient schedulability condition

for a sporadic task system upon a preemptive uniprocessor platform of unit speed is given by the condition

DBF(τ, t) ≤ t,∀t : 0 ≤ t ≤ P (τ) [21], where P (τ) is an upper bound on the maximum time instant

that the schedulability condition must be verified at. P (τ) is at most the hyperperiod Hτ = lcmτi∈τ{pi}
(exponential) for the above model. A pseudo-polynomial bound is given by the following equation when

Uτ < 1 and dmax = maxi=1:n{di}:

P (τ)
def
= min

[
Hτ ,max

(
dmax,

1

1− U
n∑
i=1

Ui · (pi − di)
)]

. (7.3)

For a compositional system with component interface specified by dbi(Λ, t), we rewrite the schedula-

bility condition in Theorem 1 of Section 4.1 ( [39]) when components are scheduled by EDF.

Theorem 17 (from [39]) A sporadic task system τ is EDF-schedulable upon an arbitrary demand-interface

Λ, if and only if,

DBF(τ, t) ≤ dbi(Λ, t), ∀t ≤ P (τ) (7.4)

where P (τ) equals lcmτi∈τ{pi} + maxτi∈τ{di} when Uτ ≤ 1 and P (τ) is given by Equation 7.3 when

Uτ < 1.

This condition needs to be verified at each point in the testing set. As the size of the testing set is expo-
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nential when Uτ ≤ 1 and pseudo-polynomial when Uτ < 1 the complexity of the test is exponential and

pseudo-polynomial respectively.

In general, the term “slack” for any time interval-length t represents the amount of processing resource

that is not demanded (over any interval of length≥ t) by the tasks present in the system. A characterization

of minimum slack for sporadic task system is given in [16].

Definition 22 (Minimum Offline Slack) In a compositional system where a component C is character-

ized by an interface dbi(Λ, t), minimum offline slack represents the minimum of the difference between

processing resource and workload demand over any interval of time.

Sτ (t)
def
= min

δ≥t
{dbi(Λ, δ)− DBF(τ, δ)} (7.5)

Equation 7.5 gives a lower bound on system slack. However, this function does not accurately capture

system slack at runtime, since it does not account for already executed and remaining execution times for

active jobs in the system.

§Runtime Workload Functions. To obtain an accurate characterization of runtime system slack, we now

quantify the maximum active workload at any time T for any task τi.

Definition 23 (Active Job Demand) The active job demand (dbf-a) of a task τi ∈ τ quantifies the max-

imum execution requirement of the most recently released job τi(T ) that is currently active in the system,

i.e., ai(T ) ≤ T < d̄i(T ).

dbf-a(τi, T, t)
def
=

 0, if T > d̄i(T ) and d̄i(T ) ≤ T + t;

ei(T ), Otherwise.
(7.6)

Let DBF-A(τ, T, t)
def
=
∑

τi∈τ dbf-a(τi, T, t) represent cumulative active demands. Recall that each

τi ∈ τ have at most one active job in the system since we assumed di ≤ pi.

Definition 24 (Projected dbf) At any T , the projected demand-bound function (dbf-p) quantifies the

maximum cumulative execution requirement of all jobs of τi that may have both an arrival time and dead-

line in the interval [T, T + t], with respect to offset oi(T ) of the earliest future job τ ′i(T ).

dbf-p(τi, oi(T ), t)
def
= max

(
0,

⌊
t− di − oi(T )

pi

⌋
+ 1

)
· ei (7.7)
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Let DBF-P(τ, oτ (T ), t)
def
=
∑

τi∈τ dbf-p(τi, oi(T ), t) be the cumulative projected demand-bound func-

tion. The intuition behind the above definition is, at any time T we can obtain the offset oi(T ) of the

earliest future job of τi and assume that the subsequent jobs will arrive as early as possible to incur worst-

case demand in the future. Thus, at any time instant, projected demand bound function dbf-p(τi, oi(T ), t)

represents maximum demand for future jobs of τi within time interval [T, T + t).

The difference between the projected demand bound function DBF-P and the demand-bound function

DBF is that the former one is a function of current time T and varies with respect to the offset values (of

earliest future job), and the later one represents demand over any interval assuming the worst-case (imme-

diate) arrival time for all future jobs. Since our goal is to determine runtime system slack, the reasoning

behind separating active demand (dbf-a) and projected demand (dbf-p) is analogous to separating dynamic

part of the demand with static (or pre-computable) part of the demand. This will be more apparent in the

next few sections.

7.1.2 Runtime System Slack

We are now prepared to extend the traditional notion of offline system slack for slack calculated at runtime.

Definition 25 (Runtime System Slack) At any time T , the minimum runtime system slack for task system

τ represents the minimum difference between the available processor time and the total potential demand

over any time interval [T, T + t). Formally,

Sτ (T, t)
def
= min

δ≥t
{dbi(Λ, δ)− DBF-P(τ, oτ (T ), δ)− DBF-A(τ, T, δ)} (7.8)

In the above definition, the processing resource represents the demand-interface dbi(Λ, t) of the task

system (component). We obtain runtime slack at time T for any interval t by subtracting the projected

demand and the active demand from the interface for all possible time intervals δ ≥ t. We can separate

the pre-computable part of the above slack definition (i.e., the part that does not depend upon the active

jobs). We will store these values for each task and oτ (T ) combination in a table called an offset table (as

described in the next section).

Sstaticτ (T, t) = min
δ≥t
{dbi(Λ, δ)− DBF-P(τ, oτ (T ), δ)} (7.9)
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By substituting Equation 7.9 into Sτ (T, t), we can reformulate the calculation as:

Sτ (T, t) = min
δ=d̄i(T )−T :

(τi∈τ)∧(T≤d̄i(T ))∧(T+t≤d̄i(T ))

{Sstaticτ (T, δ)− DBF-A(τ, T, δ)} (7.10)

Note that, from Definition 23, active demand for task τi is only valid for intervals t ≤ d̄i(T )− T . This is

reflected in the subscript of the above equation of Sτ .

Using the above definition and a simple extension of standard EDF-schedulability analysis [21], we

may prove a necessary and sufficient test where an active job may utilize the system slack at time T .

Theorem 18 Consider an active job τi(T ) at time T of any task τi; job τi(T ) may safely utilize the ξ ≥ 0

units of system slack (e.g., by running ξ units beyond its WCET ei), if and only if,

ξ ≤ Sτ (T, d̄i(T )− T ) (7.11)

Proof: (⇒) We prove this direction by contrapositive. That is, assume that τi(T ) runs ξ units beyond its

WCET ei such that ξ > Sτ (T, d̄i(T ) − T ). We show that this will violate the demand interface dbi(Λ, t)

for any t ≥ d̄i(T )− T . In the worst case, all the tasks release their future jobs as early as possible i.e., the

demand over the interval d̄i(T ) − T is given by DBF(τ, d̄i(T ) − T ). Considering the overrun of τi(T ),

the total demand is DBF(τ, d̄i(T ) − T ) + ξ. By the definition of slack in Equation 7.8, there will be at

least one time point T ′ ≥ d̄i(T ) such that the cumulative demand of all the current and future jobs will be

greater than the interface. Therefore, the interface will be violated.

(⇐) Taking contrapositive for this direction, assume that demand over any time interval t ≥ d̄i(T )−T
increased such that dbi(Λ, t) is violated. We must show that ξ > Sτ (T, d̄i(T )− T ) for any τi(T ) at time

T . The maximum cumulative demand over interval [T, T + d̄i(T )] is given by DBF(τ, d̄i(T )− T ). Since

the demand over this interval is greater than dbi(Λ, t), from Equation 7.8 Sτ (T, t) < 0. Since ξ > 0, it

must be that ξ > Sτ (T, t).

Therefore, the slack defined above can be used to allow active jobs to safely overrun at most the slack

amount along with the guarantee that all future jobs will meet their deadlines. Please note that once the

system permits the overrun by ξ units; the remaining execution time of τi(T ) should be increased by ξ to

keep track of the overrun.
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7.2 Determining Exact Runtime Slack

For a sporadic task system τ , at any time instant T , the worst-case runtime system slack depends on two

factors: 1) the demand from the active jobs currently in the system (Equation 7.6); and 2) the demand

from the future jobs (Equation 7.7). Considering these two factors, the obtained slack will be such that if

any active job of τi overruns by at most the value obtained in Equation 7.11, the system will still remain

schedulable in the future (Theorem 18). The first part of the slack depends on the demand from the active

jobs in the system, and the second part can be precomputed using Equation 7.9. In the next section we

describe how a slack table is computed.

7.2.1 Computing Slack Table

What is the online computational complexity of determining runtime system slack? If the system consists

of n tasks, then for a given offset oτ (T ), there are only n active jobs in the system at time T . Thus, we

can precompute Sstaticτ (T, d̄i(T ) − T ) for all τi ∈ τ . (Note that d̄i(T ) − T is entirely dependent upon

the values of oτ (T ) and can also be determined offline). The offline complexity of the precomputation is

pseudo-polynomial time (based on Equation 7.3). However, at runtime, we can use Equation 7.10 to do

the computation online in O(n) time using the precomputed offset table.

Consider the case when τ consists of a single task τi. At any time T , the most recently released job

τi(T ) can be either active (T ≤ d̄i(T )) or completed execution (T > d̄i(T )). In the first case, the offset

oi(T ) for the earliest future job τ ′i(T ) is ai(T ) + pi − T (Equation 7.1). Since T > ai(T ) and time is

discrete, we can have at most pi (0 to pi−1) distinct offset values for τ ′i(T ). If τi(T )’s deadline has elapsed,

i.e., there is no active job in the system, the next job can arrive immediately. That is, offset oi(T ) = 0. If

we pre-compute static slack (Equation 7.9) for each of these distinct offset values assuming active demand

dbf-a = 0, we can easily determine the runtime slack for τi (Equation 7.10) using the active demand ei(T )

of τi(T ) at time T .

For n tasks, each with pi distinct offset values, there are
n∏
i=1

pi distinct offset combinations. We denote

these n-tuples as offset-tuple (i.e., oτ (T )). The idea is: we determine static slack for each task for a given

offset n-tuple, using Equation 7.9, and store them in a table. Storing pre-computed slack values for all

possible task offset combinations for each task requires an exponential size n-dimensional hypercube,

where each dimension i represents the range of offset value for task τi. This data structure gives constant
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lookup for the static slack values; however, the space requirement of the table is exponential. (We will

address this drawback in the next section).

7.2.2 Exact Algorithm

The basic steps to compute slack Sτ for any d̄i(T )− T at time instance T are described below.

• Iterate through all larger active-job interval lengths δj ≥ dj(T )− T for all τj : d̄j(T ) ≥ d̄i(T ):

We determine slack for each interval as follows:

1. Lookup static slack from offset table: For each δj and offset-tuple oi(T ), we lookup in the

slack table for corresponding slack-tuple.

2. Compute slack at each interval: We determine slack at each δj using Equation 7.10. The

active demand dbf-a at δj can be obtained via EDF scheduler’s ready queue.

• Obtain minimum slack We take the minimum among all the slack values obtained for each τi ∈ τ
in the previous step to obtain minimum slack for interval [T, d̄i(T )).

The lookup can be done in constant time; while iterating through the larger active-job intervals and calcu-

lating dbf-a can be done in linear time. Thus, the total time complexity for determining runtime system

slack is O(n).

7.2.3 Example

The following example describes how we compute and populate the offset table. The cell values are

denoted by “slack-tuple”, and the cell index is denoted by “offset-tuple”. Let τ ≡ {τ1 = (1, 3, 4), τ2 =

(1, 5, 6)}. For this example, the table shown in Table 7.1(b) is of size 24 (p1× p2). Cell (i, j) corresponds

to offset combination (o1, o2) and contains minimum slack value at each active interval (d̄i(T ) − T ) of

all the tasks. Cell (0, 0) contains tuple (2, 2) which represents slack for tasks τ1 and τ2 at active demand

intervals of length 0 and 0. Cell (5, 1) has slack tuple (3, 3), this means for task τ1, minimum slack at

active demand interval length o1(T )− (p1 − d1) = 5− (4− 3) = 4 is 3. Similarly, for τ2, active demand

interval is 0, since o2(T ) < p1 − d1 = 2, and minimum slack for the system is 3.



161

Table 7.1: Computation of offset table
(a) Tasks

Task ei di pi

τ1 1 3 4
τ2 1 5 6

(b) Offset-table

o1 = 0 o1 = 1 o1 = 2 o1 = 3

o2 = 0 {2,2} {3,3} {3,3} {4,4}
o2 = 1 {2,2} {3,3} {4,4} {4,4}
o2 = 2 {2,2} {3,3} {4,4} {5,5}
o2 = 3 {2,2} {3,3} {4,4} {5,5}
o2 = 4 {2,2} {3,3} {4,4} {5,5}
o2 = 5 {3,2} {3,3} {4,4} {5,5}

7.3 Efficient Implementation of Slack Table

The space complexity of the slack table is exponential, which makes it infeasible to use in practice. In

this section we aim to improve the straight forward hypercube data structure to an index tree (B-tree).

Further, to take the advantage of the spacial locality of data, we use a special mapping to convert the n-D

offset-tuple to 1-D index using space filling curves.

7.3.1 Space-Filling Curves

A space-filling curve [77] is a way of mapping multi-dimensional space into one-dimensional space. The

curve passes through every cell element in n dimensional space exactly once. Two widely-used curves are

Hilbert curves and Z-order curves. The difference between different curves is in their order of mapping

the data to one dimensional space. In Figure 7.1, these curves are shown, where for each type of curve a

mapping function is used to convert the 2-D table to one dimensional curve, preserving the spacial locality

of the data.

For the n-dimensional offset table, we first map each offset-tuple to a point in a space filling curve.

Since the curve will preserve spacial locality, adjacent tuples with same slack-tuple value will be clustered

in the curve. The overall space complexity is then reduced by taking distinct slack-tuples which are

adjacent in space, that is, can be represented by a range in one dimension. We construct a B-tree from the

mapped 1-D value of the offset-tuple. Each intermediate node in the tree represents mapped offset, and

each leaf node contains slack-tuples. We only store distinct slack-tuples in the leaves, that is, for a range of

same adjacent slack-tuples, we add a leaf for the first index. In the simulation section we show the space

reduction using this approach.
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Figure 7.1: Space Filling Curves

To lookup an index in the B-tree, we first convert the lookup index (offset-tuple) to 1-D value. Then

perform a lookup in the B-tree to find the data. The search complexity is O(r + lgN) in the worst case

where r is size of the 1-D index in bits and N is the number of nodes in the tree. The size of N is bounded

by O(pnmax), thus, the search complexity is O(r + n lg pmax), i.e., polynomial in the representation of the

task system.

7.4 Determining Approximate Runtime Slack

To further reduce the space complexity of the offset-table data structure, we approximate the stored slack-

tuples based on a given approximation parameter ε. Let S(O) = {Si}i=1:n represent slack-tuple for the

corresponding offset-tuple O (Section 7.1) in the offset table.

• Instead of grouping adjacent same-valued slack-tuples in the B-tree, we use approximation to obtain

larger group of adjacent slack-tuples with same approximate value.

• For each dimension, we divide the range of slack values into distinct values 1, (1+ε), (1+ε)2, (1+ε)3

etc. For each slack-tuple, we map each of the slack values to a lower approximate value from

previous line. In this way we obtain approximate slack-tuple where each values Si within the range

(1 + ε)k ≤ Si < (1 + ε)k+1 is mapped to the value (1 + ε)k.
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• Let Ŝ(O) represent the approximate slack for offset O. Then for each task, the slack value in the

approximate slack tuple is computed as follows:

Ŝi
def
=





(1 + ε)blog1+ε Sic, if Si ≥ (1 + ε);

0, Otherwise.
(7.12)

• The approximation reduces the number of slack values from pseudo-polynomial to polynomial in n

and 1
ε .

7.5 Simulation

Since we have efficient time bounds on the runtime search operation, our evaluation focuses on the draw-

back of the proposed approach: space complexity and the error introduced in the approximation. We

compare the size of the offset table data structure used in the exact and approximate tests. We syntheti-

cally generate sporadic tasks with random periods and utilizations, and compare the size of the offset table

for different implementations. The parameters used for simulation are as follows:

• The system utilization Uτ is taken from the range [0.1, 0.9] at 0.2-increments and individual task

utilizations ui are generated using UUniFast algorithm [25]. For a specific system utilization Uτ ,

this algorithm generates n random numbers in the range [0, Uτ ] from uniform distribution which

sum to Uτ .

• Each sporadic task τi = (ei, di, pi) has a period pi uniformly drawn from the interval [5 − 20]. (A

small period range is used to keep Hτ from becoming too large). The execution time ei is set to

ui × pi.

• We use ε = [0, 0.01, 0.1, 0.5, 1]. Each of the point is an average of 10 simulation runs.

We measure three metrics for our simulation: 1) size reduction: ratio between the exact and the pro-

posed data structure; 2) average maximum relative error: for each data point, we take the maximum of

the ratio ( exact−approximateexact ) among each dimension, and then take average of this value for all the data in

the offset table; 3) distinct tuple ratio: ratio between the size of the offset table and the number of distinct

tuple in the table. Size reduction shows the improvement of spatial complexity using space filling curves
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Figure 7.2: Simulation results comparing space complexity of our approach

and B-tree data structure. The average relative error gives a comparison among the actual approximation

in the data with the approximation parameter used to generate the data. Finally, the last metric depicts an

upper bound on any size reduction.

In Figure 7.2.1 and 7.2.2, we compare the ratio between offset table size and the reduced data structure

size for 4-D data (|τ | = 4). For each system utilization in the range [0.1-0.9], we determine the size of

the data structure for different values of ε. As expected, the size reduction is greater with higher values of

ε. The data shows an order of magnitude improvement for ε = 1. We observe that mapping using Hilbert

curve gives better reduction in size than mapping using Z-order curve. As an example of absolute space

reduction, the entire table for 4 tasks (without spacing filling curves) would be≈6KB; for the Hilbert curve

≈1.8KB; and for ε = .5 ≈ 0.9KB.
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The next plot (Figure 7.2.3) compares relative error in our approximations for 4D data. Observe that

the average maximum relative is around one third to half, i.e., for ε = 0.1 it is around 0.04, for ε = 1, it

is around 0.3. Finally, Figure 7.2.4 measures the ratio between the size of the offset table and number of

distinct slack-tuples in it. For utilization Uτ = 0.5, and ε = 0, the ratio is around 10 where as the size

reduction we obtained using both Z-order and Hilbert curve is around 2.5. This implies that the nature of

the spatial locality of our data is not entirely captured by the existing curves that we have used. In future,

we would like to improve upon this ratio.

7.6 Discussion

As argued in the Chapter 1, the runtime determination of slack is important for permitting tasks to extend

their execution (e.g., in energy-aware systems). Towards this, we proposed an optimal runtime slack

determination scheme which stores precomputed portions of slack in an offset table. We observed that the

number of distinct tuples in the offset table is very small compared to the exponential size of the table and

applied space-filling curves to reduce the space complexity. Although the space-filling curves we used in

our experiments take advantage of spatially local data, they are unable to accurately capture the ranges

of indices with similar (or approximately similar) data. In future, we will investigate the problem further

to derive better space-filling curves to accurately capture spatial locality and obtain the optimal minimum

space complexity. We also plan to compare our approach with existing solutions to slack reclamation

problem in the context of EDF-scheduled sporadic task system.

The slack determination mechanism proposed in this chapter might be applied to predict allowable

overrun in a system. For example, in mixed-criticality systems if the system slack is know at any time, this

can be utilized to accommodate running lower criticality tasks at higher criticality mode. We could also

potentially apply our approach to minimize the overhead and Cache Related Preemption Delay (CRPD)

of popular preemptive scheduling for real-time systems. By efficiently computing the length of non-

preemption region of execution for a job, the blocking overhead from critical tasks along with the preemp-

tion costs can be reduced.
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CHAPTER 8: SUMMARY AND FUTURE WORK

In this chapter, we summarize our contribution in this thesis, and discuss potential future research direc-

tions from this work.

8.1 Our Contribution

In this thesis, we propose a thorough investigation of approximation algorithms for the minimization of in-

terface bandwidth (MIB-RT) problem for server-based compositional frameworks. Previous work [83] has

shown that exact algorithms for MIB-RT problem on periodic resources may require exponential time.

Furthermore, current over-provisioned solutions have constant-factor approximation ratios, but cannot

guarantee an approximation closer than a factor of 3
2 larger than optimal. Therefore, to guarantee an

arbitrary level of accuracy for the system designer, we propose a parametric approximation algorithm for

the problem, which trades accuracy for computation time. We consider explicit-deadline periodic (EDP)

resource model as real-time compositional framework for our approximation algorithm. For this model

and any sporadic task system, our algorithm returns bandwidth that is at most a factor of (1 + ε) greater

than the optimal minimum bandwidth, for any ε > 0. Furthermore, it is shown that our algorithm is an

FPTAS as it has time complexity that is polynomial in the number of tasks in the sporadic task system and

the term 1/ε. Simulation results have shown that our approximation algorithm is effective at reducing the

relative error over synthetically generated tasks, while maintaining a low runtime complexity.

For demand-based compositional frameworks, we address the problem of enforcing and policing the

demand-curve interface for a subsystem of a compositional real-time system. We propose a simple de-

mand interface model called the single-step demand interface (SSDI) and deriving efficient admission

control algorithms for a subsystem with this demand-based interface. We provide a constant-time admis-

sion controller for jobs with MAD arrivals and generalize it for arbitrary aperiodic jobs. For a complex,

arbitrary demand interface, we propose an exact admission control algorithm to police the subsystem load

according to the interface, and show that for long-running online systems, this approach is infeasible. As

an alternative we develop efficient polynomial time approximation algorithm for admission control. The

development of these techniques should make it possible to utilize the rich theory developed for demand-
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curve interfaces such as RTC and also ensure strong temporal isolation for this model. In our proposed

algorithms, we have used list data structures to store intervals for the ease of presentation; the complexity

of the approximate admission controller can be improved further by using advanced data structures (e.g.

AVL tree).

Researchers applied compositional framework in avionics domain to schedule the ARINC 653 specied

software components of the system. Our proposed bandwidth allocation algorithms can be applied in

this setting which will signicantly speed up the analysis while exploring the design parameters in design

phase. Further, another potential area of application may be in designing thermally constrained real-

time systems, where the power-aware components dynamically tune their interfaces to meet the temporal

and thermal constrains with the change in environmental temperature. For systems with large number

of thermal operating modes, exact schedulability analysis will take long time, whereas, an approximate

bandwidth allocation technique can help the system achieve this goal efciently.

Efficient policing and enforcement techniques for demand-curve interface models such as real-time

calculus framework can be applied for online load reduction, QoS adaption etc. In the last part of this

thesis, we focus on applying interface enforcement in efficient determination and reclamation of system

slack. Given an interface, we give a novel technique using space filling curves to compute “allowable”

system slack for a set of sporadic tasks at runtime. In designing an energy-aware system, the biggest

challenge is to minimize energy consumption, thus, maximizing system idle time. Our proposed slack

reclamation algorithm will help to decide whether the system will move to idle state or not by determining

the energy savings from the slack period.

8.2 Future Work

In this section we briefly discuss future research directions from this doctoral dissertation.

8.2.1 Enforcing Demand-Curve Interface for Multiprocessor

As future work of arbitrary demand-interface model, we will extend these techniques to develop interface-

policing policies for distributed and multiprocessor real-time systems. The multi supply function abstrac-

tion proposed by Bini et. al [26] and the improved parallel supply function abstraction [24] provide virtual

processor abstractions for underlying physical multiprocessor platforms. These abstractions are equiva-
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lent to a component interface of a compositional real-time system where components are scheduled upon

a multiprocessor platform. For both of these abstractions, authors proposed sufficient time schedulability

test which might be used for admission control of set of sporadic tasks as a component and scheduled by

EDF. Given the abstractions for multiprocessor platforms, we can extend our admission controller for

online systems with aperiodic workload and improve computational efficiency of the current approach.

8.2.2 Implementation of Admission Controller in Operating System

To evaluate the interface policing techniques, we plan to implement the proposed admission controllers

(Chapter 6) in real-time operating systems (e.g., RTLinux). System will consist of several real-time appli-

cations, each specified by a demand-curve interface. Each application will have an associated admission

controller which will enforce the demand-interface for dynamically arriving jobs in the system. In this

way we will be able to evaluate the efficiency of the proposed admission controller for actual systems.

8.2.3 Further Extensions

Apart from the goals of our dissertation stated in the previous sections, we now discuss further research

directions to the solutions obtained in our thesis. Since our online admission control algorithm does not

have any assumption on the demand-interfaces, we can potentially use this approach to design real-time

systems in an unpredictable environment where power or temperature may dynamically change along with

the workload. In our admission control algorithms, we compute slack of demand from the interface and

store minimum slack at any point of time. For power-aware systems, we can use this information to safely

turn the CPU to a low power-mode for the duration of the slack period to save energy dynamically while

still meeting the demand of the admitted jobs in the system.

We can apply our approach to minimize the overhead and Cache Related Preemption Delay (CRPD)

of popular preemptive scheduling for real-time systems. By efficiently computing the length of non-

preemption region of execution for a job at any given time in an online system, the blocking overhead

from critical tasks along with the preemption costs can be reduced.
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8.3 Concluding Remarks

Compositional design has a wide range of applicability from automotive to avionic systems [41]. Re-

cent research is moving towards incorporating real-time frameworks to cyber-physical systems [40]. We

envision that the compositional resource sharing frameworks will provide theoretical foundation for archi-

tectures like IMA, AUTOSAR etc. Further, component-based design with hierarchical scheduling allows

establishing frameworks for real-time open environments in both uniprocessor and multiprocessor plat-

forms. In this thesis we have addressed efficient resource allocation and interface enforcement problem in

the context of compositional systems which is a very promising area of research.

We believe that the attainment of parametric approximation algorithms for MIB-RT problem under a

variety of compositional frameworks will provide a real-time component designer with a valuable choice in

determining how much interface bandwidth to trade for decreased speed-of-analysis. Extending the work

contained in this thesis to more general task models (e.g., generalized multi-frame tasks [18], arbitrary

deadline tasks) remains as future work. Furthermore, we expect that parametric approximation algorithms

for MIB-RT on uniprocessor frameworks will also extend to multiprocessor compositional frameworks

(e.g., [24, 26, 80]).

Our approach of enforcing arbitrary demand-interface would be invaluable for policing systems de-

signed according to demand/supply-curve interfaces such as the real-time calculus models. As future

work, we will extend these techniques to interface-policing techniques for distributed and multiprocessor

real-time systems.



APPENDIX A

Proofs from Chapter 6

Proof of Lemma 39

Case (T > d̄i): By Lemma 37, φ(J,Λ, T ) equals min {ψ(J,Λ, Ak, T ) | jk ∈ J}. Thus, since Ai ≥
maxjk∈J{Ak} and d̄i < T , demand(J ∪ {ji}, Ak, T ) = demand(J,Ak, T ) + Ei for all jk ∈ J . Thus,

by Equation 6.3, ψ(J ∪ {ji},Λ, Ak, T ) = ψ(J,Λ, Ak, T ) − Ei. There is one new interval ending at

T that must be considered according to Lemma 37: [Ai, T ]. The value of ψ(J ∪ {ji},Λ, Ai, T ) equals

dbi(Λ, T − Ai) − Ei (there are no jobs other than ji completely contained in the interval). These two

observations on the value of ψ imply the second case of Equation 6.5.

Case (T < d̄i): Unlike the previous case, the demand over [Ak, T ] does not change under the addition

of ji as T < d̄i. Thus, ψ(J ∪ {ji},Λ, Ak, T ) equals ψ(J,Λ, Ak, T ) for all jk ∈ J . This implies the third

case of Equation 6.5.

Case (T = d̄i): We must consider the value of ψ over all intervals [Ak, d̄i] such that jk ∈ J ∪{ji}. For

[Ai, d̄i] clearly ψ(J ∪ {ji},Λ, Ai, d̄i) is dbi(Λ, Di) − Ei. For [Ak, d̄i] such that jk ∈ J , we first observe

that d̄i − Ak ≥ ν. If this was not true, then dbi(Λ, Dk) equals zero, since Dk ≤ d̄i − Ak < ν. However,

since φ(J,Λ, d̄k) ≥ 0, this implies that 0 ≥ demand(J,Ak, d̄k) ≥ Ek which is a contradiction. Thus, by

Equation 3.12, we may rewrite dbi(Λ, d̄i −Ak) as

σ(d̄i −Ak − ν) + ρ

= σ(d̄last(J, ji)−Ak − ν) + ρ+ σ(d̄i − d̄last(J, ji))
= dbi(Λ, d̄last(J, ji)−Ak) + σ(d̄i − d̄last(J, ji))

170
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since d̄last(J, ji)−Ak ≥ Dk ≥ ν. Using the new expression for dbi(Λ, d̄i −Ak) in ψ, we obtain

ψ(J ∪ {ji},Λ, Ak, d̄i)
= dbi(Λ, d̄i −Ak)− demand(J ∪ {ji}, Ak, d̄i)
= dbi(Λ, d̄last(J, ji)−Ak) + σ(d̄i − d̄last(J, ji))

−demand(J ∪ {ji}, Ak, d̄last(J, ji))− Ei
= ψ(J ∪ {ji},Λ, Ak, d̄last(J, ji)) + σ(d̄i − d̄last(J, ji))− Ei.

The second to last expression is due to the fact that ji is the only job of J ∪ {ji} that arrives after Ak but

has deadline after d̄last(J, ji). Taking the minimum over all possible Ak values implies the first case of

Equation 6.5.

Proof of Lemma 40 Initialization: Let us use the convention that j0 is a dummy job that has deadline

at time zero. Initially, d = 0, md = ∞, and the job set is empty. By Equation 6.2 of Definition 16,

φ(∅,Λ, T ) =∞ for all T > 0 and the lemma initially holds.

Induction: Assume the lemma continues to hold after i − 1 invocations. By Lemma 39, we may

calculate φ({j1, j2, . . . , ji−1, ji},Λ, d̄i) by

min





dbi(Λ, Di)− Ei,
φ({j1, j2, . . .},Λ, d̄i−1) + σ(d̄i − d̄i−1)− Ei



 .

As md equals φ({j1, j2, . . .},Λ, d̄i−1) and φ({j1, j2, . . .},Λ, T ) ≥ 0 for all T > 0 at the start of the

i’th invocation and Line 1 update md according to the above expression and md satisfies the lemma.

The variable d is set to d̄i. The only value that φ changes for is T = d̄i (according to Lemma 39 and

the fact there are no jobs with later deadline than ji). Since Line 2 checks that md ≥ 0, this implies

φ({j1, j2, . . . , ji−1, ji},Λ, T ) ≥ 0 for all T > 0. Thus, the lemma continues to hold after the invocation

MAD-ADMISSIONCONTROL(ji).

Proof of Lemma 41 The “only if” direction of the lemma is trivial as Ai and d̄` are elements of R and

Ai ≤ d̄`. Thus, Equation 6.1 directly implies Equation 6.7.

For the “if” direction of the lemma, we will assume that Equation 6.7 is true, but Equation 6.1 is false
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for some T1, T2 ∈ R where 0 ≤ T1 < T2; that is,

demand(J, T1, T2) > dbi(Λ, T2 − T1). (1)

If J = ∅, then the demand over any interval is zero; since dbi is non-negative for all positive inputs, this

leads to a contradiction of Equation 1. So, it must be that J 6= ∅. LetA0 and d0 denote zero andA|J |+1 and

d̄|J |+1 denote ∞. Consider two partitions of the interval [0,∞) into two sets of subintervals (Ai−1, Ai]

where 1 ≤ i ≤ |J | + 1 and [d̄`, d̄`+1) where 0 ≤ ` ≤ |J |. Since 0 ≤ T1, there exists some i : (1 ≤ i ≤
|J | + 1) where T1 ∈ (Ai−1, Ai]. Observe that demand(J, T1, T2) = demand(J,Ai, T2), since no jobs

arrive in the interval (Ai−1, Ai). Similarly, there exists some ` : (0 ≤ ` ≤ |J |) where T2 ∈ [d̄`, d̄`+1)

and demand(J,Ai, T2) = demand(J,Ai, d̄`). Thus, demand(J, T1, T2) = demand(J,Ai, d̄`). By

Equation 6.7, demand(J, T1, T2) ≤ dbi(Λ, d̄` − Ai) is true. Since d̄` ≤ T2, T1 ≤ Ai, and dbi is

monotonically non-decreasing, it must be that dbi(Λ, d̄`−Ai) ≤ dbi(Λ, T2−T1). These last two statements

together imply that demand(J, T1, T2) ≤ dbi(Λ, T2−T1) which contradicts Equation 1. Thus, the lemma

is true.

Proof of Lemma 42 We prove the lemma by induction on k.

Base Case: When k = 0, EXACTAC-INIT() has been invoked and thus no jobs have been admitted;

i.e, J0 = ∅. The lemma is clearly true as S is initialized to ∅ and d̄last is initialized to zero.

Inductive Hypothesis: Assume that the lemma holds for each i (i = 1, 2, . . . , k − 1) successive calls

to EXACTAC(Λ, ·).

Inductive Step: We must show that the lemma holds for the k’th call to EXACTAC(Λ, jk). The admis-

sion controller can either return “accept” or “reject”. Let us first consider the case that EXACTAC(Λ, jk)

returns “reject”. Then, Jk−1 is identical to Jk and d̄last is not changed by any instruction in the execution

path to “reject”. Thus, by the inductive hypothesis, the lemma obviously continues to hold as the state is

identical to after the call to EXACTAC(Λ, jk−1).

Now, consider the case when EXACTAC(Λ, jk) returns “accept”. Line 13 of the procedure sets d̄last

equal to d̄k; Let the updated value of d̄last and S be denoted by d̄new
last and Snew respectively. Let d̄old

last

and Sold denote the value of the d̄last and S variables, prior to EXACTAC(Λ, jk). By the inductive

hypothesis, for each job j` ∈ Jk−1, there exists (x, y) ∈ Sold such that x equals d̄old
last − A` and y

equals demand(Jk−1, A`, d̄
old
last). The for-loop of Lines 9 to 12 shifts each point (x, y) to the right by
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δx = d̄new
last − d̄old

last and up by δy = Ek. Thus, each (x, y) ∈ Sold that corresponds to j` ∈ Jk−1 is now

(x+ δx, y+ δy) ∈ Snew. Furthermore, x+ δx equals (d̄new
last − d̄old

last) + d̄old
last−A` = d̄new

last −A` and y+ δy

equals demand(Jk−1, A`, d̄
old
last) + E`. The last expression is equivalent to demand(Jk, A`, d̄

new
last) since

increasing the interval length by δx includes only the new job jk in the interval [A`, d̄
new
last ]. Finally, adding

the point {(Dk− δx, Ek− δy)} in Line 2 and shifting by δx and δy is equivalent to adding (Dk, Ek) which

equals (d̄new
last −Ak,demand(Jk, Ak, d̄

new
last)). Thus, the lemma holds for Jk.

Proof of Lemma 43 We prove the lemma by induction on k.

Base Case: When k = 0, EXACTAC-INIT() has been invoked and thus no jobs have been admitted;

i.e, J0 = ∅. Clearly, demand(Jk, T1, T2) is zero for all valid choices of T1 and T2. Therefore, Equation 6.1

is trivially true.

Inductive Hypothesis: Assume that Equation 6.1 holds for each i (i = 1, 2, . . . , k − 1) successive

calls to EXACTAC(Λ, ·). That is, Ji satisfies Equation 6.1. Furthermore, if job ji is rejected, Equation 6.1

is false for Ji−1 ∪ {ji}.

Inductive Step: We must show that, given the inductive hypothesis, 1) Equation 6.1 holds for Jk, and

2) if job jk is rejected, then Equation 6.1 is false for Jk−1∪{jk}. During the call EXACTAC(Λ, jk), the ad-

mission control can either return “accept” or “reject”. Let us first consider the case that EXACTAC(Λ, jk)

returns “reject”. Then, Jk−1 is identical to Jk; since Equation 6.1 holds for Jk−1, by the inductive hy-

pothesis, it obviously continues to hold for Jk. To see that Equation 6.1 is false for Jk−1 ∪ {jk}, let

Sold be the value of S before EXACTAC(Λ, jk) and Snew be the value after the procedure call. δx

is set to d̄old
last − d̄k and δy is set to Ek. Observe that Line 4 must have evaluated to “true” for some

(x, y) ∈ Sold∪{(Dk−δx, Ek−δy)}. If (x, y) equals (Dk−δx, Ek−δy), then dbi(Λ, Dk) < Ek which im-

plies dbi(Λ, d̄k−Ak) < demand(Jk−1∪{jk}, Ak, d̄k); in this case, Equation 6.1 is violated. Otherwise, if

(x, y) ∈ Sold, then dbi(Λ, x+δx) < y+δy implies that dbi(Λ, d̄k−A`) < demand(Jk−1∪{jk}, A`, d̄k)
for some j` ∈ Jk−1 by Lemma 42.

Now consider the case when EXACTAC(Λ, jk) returns “accept”. Lemma 42 implies that each (x, y) ∈
S corresponds to

(
d̄k −A`,demand(Jk, A`, d̄k)

)
for some job j` ∈ Jk. The fact that the jk was accepted

implies Line 4 was satisfied for each (x, y) and thus x ≥ y; that is,

∀j` ∈ Jk,dbi(Λ, d̄k −A`) ≥ demand(Jk, A`, d̄k). (2)
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The inductive hypothesis implies that prior to the invoke of EXACTAC(Λ, jk), Equation 6.1 held; therefore,

∀ji, jj ∈ Jk−1 : d̄i ≤ d̄j :: demand(Jk−1, Ai, d̄j) ≤ dbi(Λ, d̄j −Ai). (3)

Since d̄k is later than any other d̄i in Jk−1, jk does not increase the demand in the above term demand-

(Jk−1, Ai, d̄j). Thus, the condition still holds when the left-hand side of the inequality is replaced with

demand(Jk, Ai, d̄j). This observation regarding Equation 3 along with Equation 2 satisfy the supposition

of Lemma 41 for the job set Jk; therefore, Equation 6.1 is satisfied for Jk.

Proof of Lemma 45 A node is deleted only in Line 9 or 13 of APPROXIMATEAC(Λ, jk, ε) or in the

MERGE subroutine. Clearly, in both cases, this only deletes the node that was inserted in Line 4; thus,

by the note above this lemma, we do not consider this to be an approximation point. Therefore, the

only subroutine that can delete nodes from L is the MERGE subroutine. Recall that when we merge

approximation points P̂1 and P̂2, a new point P̂ ′ =
(

mink∈{1,2}{P̂k.xl},maxk∈{1,2}{P̂k.yr}
)

is created.

It is obvious that P̂1 and P̂2 are in the redundancy regionR(P̂ ′) (refer to Figure 6.4(b)). Thus, for the two

points deleted by the merge operation, by definition of redundancy region, P̂ ′.xl ≤ P̂k.xl and P̂ ′.yr ≥
P̂k.yr for k ∈ {1, 2}.

Proof of Lemma 47 We prove the lemma by induction on k.

Base Case: When k = 0, APPROXIMATEAC-INIT() has been invoked and thus no jobs have been

admitted; i.e, J0 = ∅. Clearly, demand(Jk, T1, T2) is zero for all valid choices of T1 and T2. Therefore,

Equation 6.1 is trivially true.

Inductive Hypothesis: Assume that Equation 6.1 holds for each i (i = 1, 2, . . . , k − 1) successive

calls to APPROXIMATEAC(Λ, ji, ε). That is, Ji satisfies Equation 6.1.

Inductive Step: We must show that, given the inductive hypothesis, Equation 6.1 holds for Jk. During

the call APPROXIMATEAC(Λ, jk, ε), the admission control can either return “accept” or “reject”. Let us

first consider the case that APPROXIMATEAC(Λ, jk, ε) returns “reject”. Then, Jk−1 is identical to Jk;

since Equation 6.1 holds for Jk−1, by the inductive hypothesis, it obviously continues to hold for Jk.

Now consider the case that APPROXIMATEAC(Λ, jk, ε) returns “accept”. Lemma 46 implies that for

each j` ∈ Jk there is an approximation point P̂ with P̂ .xl ≤ d̄k − A` and P̂ .yr ≥ demand(Jk, A`, d̄k).
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The fact that the jk was accepted implies Line 8 was satisfied for each approximation point; that is,

∀j` ∈ Jk,dbi(Λ, d̄k −A`) ≥ demand(Jk, A`, d̄k). (4)

The inductive hypothesis implies that prior to the invoke of APPROXIMATEAC(Λ, jk, ε), Equation 6.1

held; therefore,

∀ji, jj ∈ Jk−1 : d̄i ≤ d̄j :: demand(Jk−1, Ai, d̄j) ≤ dbi(Λ, d̄j −Ai). (5)

Since d̄k is later than any other d̄i in Jk−1, jk does not increase the demand in the above term demand(Jk−1, Ai, d̄j).

Thus, the condition still holds when the left-hand side of the inequality is replaced with demand(Jk, Ai, d̄j).

This observation regarding Equation 5 along with Equation 4 satisfy the supposition of Lemma 41 for the

job set Jk; therefore, Equation 6.1 is satisfied for Jk.

Proof of Lemma 48 Observe the only operations that change an approximation point are INSERT, SHIFT,

and MERGE. We will show that, if the invariant initially holds for a point, the invariant will continue to

hold after each operation. The INSERT operation creates a new approximation point with left anchor point

equal to the right anchor point; thus, the invariant of the lemma initially holds. Now consider the SHIFT

operation applied to an approximation point P̂ where the invariant holds. The SHIFT operation is only

called from Lines 2 and 5 of UPDATE. Let P̂ ′ represent the approximation point after the application of

SHIFT(P̂ , δx, δy); thus, P̂ ′.yr = P̂ .yr + δy and P̂ ′.yl = P̂ .yl + δy. If the invariant is true prior to the

SHIFT call, then P̂ ′.yr = P̂ .yr + δy ≤ (1 + ε)P̂ .yl + δy ≤ (1 + ε)(P̂ .yl + δy) = (1 + ε)P̂ ′.yl. Thus, the

invariant continues to hold after SHIFT.

Finally, to see that the invariant holds after MERGE, observe that the algorithm only merges two con-

secutive points P̂` and P̂`+1 in the list L when both anchor points of these approximation points are com-

pletely within some region Ai. For consecutive points P̂` and P̂`+1 in L, it may be shown (Lemma 51 in

Section 6.3.3) that P̂`.yr ≤ P̂`+1.yr. This observation taken together with the fact that the points are com-

pletely withinAi implies thatAi.lb ≤ P̂`.yl ≤ P̂`.yr ≤ P̂`+1.yr ≤ Ai.ub = (1+ε)Ai.lb; the last inequal-

ity follows from Definition 17. SinceAi.lb ≤ P̂`.yl, it must be that P̂`+1.yr ≤ (1+ε)Ai.lb ≤ (1+ε)P̂`.yl.

The MERGE operation will make a new approximation point P̂ ′ with P̂ ′.yl = P̂`.yl and P̂ ′.yr = P̂`+1.yr;

thus, the invariant continues to hold for P̂ ′.
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Proof of Corollary 14 Lets denote the left anchor as PL and right anchor as PR. Given PL ∈ Ai and

PL ∈ Aj where j < i, we prove the proposition by contradiction. Assume j = i − 2, that is, left anchor

PL is in region Ai−2. Let q denote the distance of the anchor points in y-axes, that is q = P̂ .yr − P̂ .yl.
By our assumption, q must be greater then the width of the region Ai−1, i.e., q > (1 + ε)i−2. Since

approximation points with anchors in different regions are only created by shifting the points (upward

and right), P̂ must have been formed as an approximation point in any region A`, where ` ≤ i − 2 (as

P̂L ∈ Ai−2). By definition of (1 + ε)-regions, the width of any such region is less or equal (1 + ε)i−3.

When an approximation point is created, both the anchors are within the same region, thus, the distance

q in y-axes between P̂L and P̂R must be less or equal the width of region Ai−2. This contradicts our

assumption, since the relative distance between the anchors stays same after the shift operation which

moved P̂R to Ai, and no merge is performed when anchors are in different regions . Therefore, we can

conclude that P̂L must reside in region Ai−1.

Proof of Lemma 49 We prove the lemma by induction on k.

Base Case: When k = 0, APPROXIMATEAC-INIT() has been invoked and thus no jobs have been

admitted; i.e, J0 = ∅. Clearly, L is empty and the lemma is vacuously true.

Inductive Hypothesis: Assume after i (i = 1, 2, . . . , k−1) successive calls to APPROXIMATEAC(Λ, ji, ε)

there is a corresponding exact interval for Ji for each left anchor point P̂ ∈ L.

Inductive Step: If APPROXIMATEAC(Λ, jk, ε) reject jk, then the points of L are unaffected and Jk−1

equals Jk; thus, by the inductive hypothesis, the lemma holds. If APPROXIMATEAC(Λ, jk, ε) accepts

jk, then we must argue that each approximation point continues to have its left anchor point correspond

to the exact demand of Jk over some interval. The only subroutines that could affect the approximation

points of list L are INSERT, UPDATE, and MERGE. For INSERT, the newly-inserted point corresponds to

the demand of job jk. For UPDATE each point (including anchors) is shifted upwards δy = Ek and to

the right by δx = d̄k − d̄last. By the inductive hypothesis, for any P̂ ∈ L, there exists j` ∈ Jk−1 such

that P̂ .xl = d̄last − A` and P̂ .yl = demand(Jk−1, A`, d̄last). Let P̂ ′ ∈ L be the resulting point after the

SHIFT; thus, P̂ ′.xl = d̄last−A`+ d̄k− d̄last = d̄k−A` and P̂ ′.yl = demand(Jk−1, A`, d̄last)+Ek which

equals demand(Jk, A`, d̄k); furthermore, d̄last gets updated to d̄k. Thus, the lemma holds after a SHIFT.

For MERGE, by inductive hypothesis and the fact the lemma holds after INSERT and SHIFT operations, the

left anchors of the two points merged together correspond to the exact demand of Jk over some interval.

By definition of merging, one of the left anchor points of the merged points becomes the new left anchor
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of the new approximation point. Thus, the left anchor point continues to correspond to the exact demand

over the same interval.

Proof of Lemma 50 A node corresponding to a newly-arrived job jk arriving in MAD order will have

the smallest interval length. (Recall that all existing intervals to be checked ending at d̄k. Due to MAD

ordering property, Ak ≥ A` for all j` ∈ Jk, thus [Ak, d̄k] is clearly the smallest interval). Since L is

ordered in increasing x, a newly-inserted approximation point will always be inserted as a node at the

front of list L.

Proof of Lemma 51 Observe that the operations that change an approximation point are INSERT, SHIFT,

and MERGE. We will show that, if the invariant initially holds for a point, the invariant will continue to

hold after each of the operations. Obviously, the invariant holds when we have an initially empty list. Let

us first consider the INSERT operation executed during the acceptance of some job jk. By Lemma 50, we

observed that a new node is inserted at the beginning of the list; furthermore, all subsequent approximation

points (and their respective anchor points) are shifted upwards by δy = Ek. Thus, since the newly created

approximation point has a y-value of Ek for both anchor points and the point is entirely below the y-value

of any other approximation point’s anchor. The invariant will hold for the new point and every other point.

Now consider the SHIFT operation for any two approximation points P̂1 and P̂2. The SHIFT operation

moves each anchor point of P̂1 and P̂2 upwards by the same amount; thus, the invariant continues to hold

for P̂1 and P̂2 after the shift operation is applied to each approximation point in the list.

Finally, for the MERGE operation, consider two successive points P̂ and P̂ ′ in list L that are merged

together to create P̂1. Consider a third point P̂2. If P̂2 appears later in the list, then prior to the call to

MERGE (under the assumption that the invariant holds) we had P̂ .yl ≤ P̂ .yr ≤ P̂ ′.yl ≤ P̂ ′.yr ≤ P̂2.yl ≤
P̂2.yr. After the call to MERGE, the approximation point P̂1 has left anchor point (P̂ .xl, P̂ .yl) and right

anchor point (P̂ ′.xr, P̂ ′.yr). Thus, the invariant continues to hold for this case. The lemma may be shown

symmetrically if P2 precedes P̂ and P̂ ′.

Proof of Lemma 52 The nodes in L are ordered in non-decreasing y-value of right anchors by Lemma 51.

The INSERT operation inserts new node at the beginning of the list by Lemma 50, the SHIFT operation

shifts all the nodes same amount in X and Y -axes, and finally the MERGE operation merges consecutive

nodes that are in same region. Clearly, MERGE will eliminate all but one approximation point for a (1+ε)-

region that may have temporarily contained more than one point.



REFERENCES

[1] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard real-time systems. In Pro-

ceedings of the Real-Time Systems Symposium, pages 3–13, Madrid, Spain, December 1998. IEEE

Computer Society Press.

[2] K. Albers, F. Bodmann, and F. Slomka. Advanced hierarchical event-stream model. In Proceedings

of the EuroMicro Conference on Real-Time Systems, pages 211–220, Prague, Czech Republic, July

2008. IEEE Computer Society.

[3] K. Albers and F. Slomka. An event stream driven approximation for the analysis of real-time systems.

In Proceedings of the EuroMicro Conference on Real-Time Systems, pages 187–195, Catania, Sicily,

July 2004. IEEE Computer Society Press.

[4] L. d. Alfaro and T. A. Henzinger. Interface theories for component-based design. In EMSOFT ’01:

Proceedings of the First International Workshop on Embedded Software, pages 148–165, London,

UK, 2001. Springer-Verlag.

[5] L. Almeida and P. Pedreiras. Scheduling within temporal partitions: Response-time analysis and

server design. In Proceedings of the 4th ACM international Conference on Embedded Software,

pages 95–103, New York, NY, USA, 2004. ACM.

[6] J. Anderson, J. Calandrino, and U. Devi. Real-time scheduling on multicore platforms. In Proceed-

ings of the 12th IEEE Real-Time and Embedded Technology and Applications Symposium, pages

179–190, April 2006.

[7] J. Anderson and A. Srinivasan. Pfair scheduling: Beyond periodic task systems. In Proceedings

of the International Conference on Real-Time Computing Systems and Applications, Cheju Island,

South Korea, December 2000. IEEE Computer Society Press.

[8] B. Andersson. A preliminary idea for an 8-competitive, log2 dmax+log2 log2 1/u asymptotic-space,

interface generation algorithm for two-level hierarchical scheduling of constrained-deadline sporadic

tasks on a uniprocessor. SIGBED Review, 8:22–29, March 2011.

178



179

[9] B. Andersson and C. Ekelin. Exact admission-control for integrated aperiodic and periodic tasks.

Journal of Computer System and Sciences, 73(2):225–241, October 2007.

[10] M. Asberg, M. Behnam, F. Nemati, and T. Nolte. Towards hierarchical scheduling in AUTOSAR.

In Proceedings of the 14th IEEE international Conference on Emerging Technologies & Factory

Automation, ETFA’09, pages 1181–1188. IEEE Press, 2009.

[11] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings. Applying new scheduling theory

to static priority preemptive scheduling. Software Engineering Journal, 8(5):285–292, 1993.

[12] N. C. Audsley. Optimal priority assignment and feasibility of static priority tasks with arbitrary start

times. Technical report, The University of York, England, 1991.

[13] N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell, and A. J. Wellings. Fixed priority preemptive

scheduling: An historical perspective. Real-Time Systems, 8:173–198, 1995.

[14] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard Real-Time Scheduling: The

Deadline Monotonic Approach. In Proceedings 8th IEEE Workshop on Real-Time Operating Systems

and Software, pages 127–132, Atlanta, May 1991.
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Compositional real-time research has become one of the emerging trends in embedded and real-time

systems due to the increasing scale and complexity of such systems. In this design paradigm, a large

system is decomposed into smaller and simpler components, and developed independently. To hide in-

ternal complexity from the entire system, components abstract their temporal requirements via interfaces.

Such systems are mostly implemented by resource partitions which ensure that the components receive re-

sources according to their interfaces. Potential implementations of a resource partition are via server-based

interfaces or demand-based interfaces. In the former model, access to the processing resource for each

component is provided by a server, which ensures that the real-time requirements are satisfied ensuring

temporal isolation among components (e.g., one component is isolated from the potentially faulty tempo-

ral behavior of another component). In the later model, the component demand is accurately modeled by

a demand-curve interface and resource is provided to the component according to the interface.

In this dissertation our goal is to address the following thesis:

Currently, server-based interfaces ensure strong temporal isolation among components at the

cost of resource over-provisioning whereas demand-based interfaces precisely model the re-

source demand of a component without the guarantee of temporal isolation. For both these

models, we show that efficient and effective resource allocation as well as strict temporal iso-

lation among components can be achieved. Specifically, we obtain efficient and near-optimal

bandwidth allocation schemes and admission controllers for periodic resource model and
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arbitrary demand-based interface respectively. Furthermore, efficient slack reclamation tech-

nique can be obtained to allocate unused processing resources at runtime while still enforcing

the given interface.

State-of-the-art bandwidth allocation algorithms for server-based models use either exponential-time

or pseudo-polynomial-time techniques for exact allocation, or linear-time, utilization-based techniques

which may over-provision bandwidth. In this thesis, we propose research into a third possible approach:

parametric approximation algorithms, with the goal to allow a component designer to pre-specify an arbi-

trary level of accuracy for bandwidth computation, and trade increased accuracy for increased computa-

tional complexity. For server-based interfaces, we address efficient resource allocation among components

by proposing fully-polynomial-time approximation schemes (FPTAS) for allocating processing resource

to components scheduled by earliest-deadline-first (EDF) or fixed-priority (FP) scheduling algorithm. Our

algorithms take, as parameters, the task system and an accuracy parameter ε > 0, and return a bandwidth

which is guaranteed to be at most a factor (1 + ε) more than the optimal minimum bandwidth required

to successfully schedule the task system. Furthermore, the algorithm has time complexity that is polyno-

mial in the number of tasks and 1/ε. Via simulation, we show that our algorithms are quite accurate over

synthetically generated task systems even for medium-sized values of ε.

Demand-based interfaces provide a precise characterization of the processing resource demanded by

a component using fine-grained approaches such as Real-Time Calculus. Although such interfaces must

be strictly enforceable to be capable of guaranteeing temporal isolation among safety critical applications,

the model does not guarantee temporal isolation among components. We address the lack of interface-

policing protocols, and propose both exact and near-optimal admission control algorithms for components

specified by demand-interfaces. Given a simple demand-interface, our algorithm runs in constant time for

monotonic absolute deadline (MAD) jobs and O(logN) time for arbitrary aperiodic jobs where N is the

number of active jobs in the system. For arbitrary demand-curve interfaces, we propose exact admission

control scheme for aperiodic workload and show that it is computationally infeasible for long-running

online system. For this setting we propose a parametric approximate admission control algorithm, which

has polynomial time complexity in terms of number of active jobs in the system and the approximation

parameter ε. We implement each of our proposed admission controllers and show that our approximate

approach is both efficient and precise in comparison to the exact approach via simulation.
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In traditional hard real-time systems, worst-case analysis is used to determine the schedulability of the

system. However, the runtime behavior of the system is often unpredictable. Worst-case execution time

(WCET) overestimates resource demand since the actual execution time rarely approaches the worst-case

estimate; jobs that do not execute to their WCET leave some “slack” in the system that can potentially be

reclaimed. In the final part of the thesis, our goal is to address the challenge of determining at runtime

the maximum allowable slack for any job in a system of sporadic real-time tasks while ensuring system

schedulability. We provide a novel technique to optimally and efficiently determine system slack at runtime

considering already arrived jobs and the worst-case job arrival sequences in the future. Our generic solution

is based on slack computation from the system supply and can be potentially applied to various systems

e.g., energy-aware systems, mixed-criticality systems, limited-preemption scheduling etc.
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