194 research outputs found

    Development of a Hybrid Powered 2D Biped Walking Machine Designed for Rough Terrain Locomotion

    Get PDF
    Biped robots hold promise as terrestrial explorers because they require a single discrete foothold to place their next step. However, biped robots are multi-input multi-output dynamically unstable machines. This makes walking on rough terrain difficult at best. Progress has been made with non-periodic rough terrain like stairs or inclines with fully active walking machines. Terrain that requires the walker to change its gait pattern from a standard walk is still problematic. Most walking machines have difficulty detecting or responding to the small perturbations induced by this type of terrain. These small perturbations can lead to unstable gait cycles and possibly a fall. The Intelligent Systems and Automation Lab at the University of Kansas has built a three legged 2D biped walking machine to be used as a test stand for studying rough terrain walking. The specific aim of this research is to investigate how biped walkers can best maintain walking stability when acted upon by small perturbations caused by periodic rough terrain. The first walking machine prototype, referred to as Jaywalker has two main custom actuation systems. The first is the hip ratchet system. It allows the walker to have either a passive or active hip swing. The second is the hybrid parallel ankle actuator. This new actuator uses a pneumatic ram and stepper motor in parallel to produce an easily controlled high torque output. In open loop control it has less than a 1° tracking error and 0.065 RPM velocity error compared to a standard stepper motor. Step testing was conducted using the Jaywalker, with a passive hip, to determine if a walker with significant leg mass could walk without full body actuation. The results of testing show the Jaywalker is ultimately not capable of walking with a passive hip. However, the walking motion is fine until the terminal stance phase. At this point the legs fall quickly towards the ground as the knee extends the shank. This quick step phenomenon is caused by increased speeds and forces about the leg and hip caused by the extension of the shank. This issue can be overcome by fully actuating the hip, or by adding counterbalances to the legs about the hip

    Control motion approach of a lower limb orthosis to reduce energy consumption

    Get PDF
    By analysing the dynamic principles of the human gait, an economic gait‐control analysis is performed, and passive elements are included to increase the energy efficiency in the motion control of active orthoses. Traditional orthoses use position patterns from the clinical gait analyses (CGAs) of healthy people, which are then de‐normalized and adjusted to each user. These orthoses maintain a very rigid gait, and their energy cosT is very high, reducing the autonomy of the user. First, to take advantage of the inherent dynamics of the legs, a state machine pattern with different gains in eachstate is applied to reduce the actuator energy consumption. Next, different passive elements, such as springs and brakes in the joints, are analysed to further reduce energy consumption. After an off‐line parameter optimization and a heuristic improvement with genetic algorithms, a reduction in energy consumption of 16.8% is obtained by applying a state machine control pattern, and a reduction of 18.9% is obtained by using passive elements. Finally, by combining both strategies, a more natural gait is obtained, and energy consumption is reduced by 24.6%compared with a pure CGA pattern

    Stretch reflex improves rolling stability during hopping of a decerebrate system

    Get PDF
    When humans hop, attitude recovery can be observed in both the sagittal and frontal planes. While it is agreed that the brain plays an important role in leg placement, the role of low-level feedback (the stretch reflex) on frontal plane stabilization remains unclear. Seeking to better understand the contribution of the soleus stretch reflex to rolling stability, we performed experiments on a biomimetic humanoid hopping robot. Various reflex responses to touching the floor, ranging from no response to long muscle activations, were examined, and the effect of a delay upon touching the floor was also examined. We found that the stretch reflex brought the system closer to stable, straight hopping. The presence of a delay did not affect the results; both the cases with and without a delay outperformed the case without a reflex response. The results of this study highlight the importance of low-level control in locomotion for which body stabilization does not require higher-level signals.This is the accepted manuscript. The final version is available at http://iopscience.iop.org/article/10.1088/1748-3190/10/1/016008/meta;jsessionid=8394D6E9724906C836DC3624B5BF2F90.c1

    Do robots outperform humans in human-centered domains?

    Get PDF
    The incessant progress of robotic technology and rationalization of human manpower induces high expectations in society, but also resentment and even fear. In this paper, we present a quantitative normalized comparison of performance, to shine a light onto the pressing question, "How close is the current state of humanoid robotics to outperforming humans in their typical functions (e.g., locomotion, manipulation), and their underlying structures (e.g., actuators/muscles) in human-centered domains?" This is the most comprehensive comparison of the literature so far. Most state-of-the-art robotic structures required for visual, tactile, or vestibular perception outperform human structures at the cost of slightly higher mass and volume. Electromagnetic and fluidic actuation outperform human muscles w.r.t. speed, endurance, force density, and power density, excluding components for energy storage and conversion. Artificial joints and links can compete with the human skeleton. In contrast, the comparison of locomotion functions shows that robots are trailing behind in energy efficiency, operational time, and transportation costs. Robots are capable of obstacle negotiation, object manipulation, swimming, playing soccer, or vehicle operation. Despite the impressive advances of humanoid robots in the last two decades, current robots are not yet reaching the dexterity and versatility to cope with more complex manipulation and locomotion tasks (e.g., in confined spaces). We conclude that state-of-the-art humanoid robotics is far from matching the dexterity and versatility of human beings. Despite the outperforming technical structures, robot functions are inferior to human ones, even with tethered robots that could place heavy auxiliary components off-board. The persistent advances in robotics let us anticipate the diminishing of the gap

    Evidence for Avian Intrathoracic Air Sacs in a New Predatory Dinosaur from Argentina

    Get PDF
    Background: Living birds possess a unique heterogeneous pulmonary system composed of a rigid, dorsally-anchored lung and several compliant air sacs that operate as bellows, driving inspired air through the lung. Evidence from the fossil record for the origin and evolution of this system is extremely limited, because lungs do not fossilize and because the bellow-like air sacs in living birds only rarely penetrate (pneumatize) skeletal bone and thus leave a record of their presence. Methodology/Principal Findings: We describe a new predatory dinosaur from Upper Cretaceous rocks in Argentina, Aerosteon riocoloradensis gen. et sp. nov., that exhibits extreme pneumatization of skeletal bone, including pneumatic hollowing of the furcula and ilium. In living birds, these two bones are pneumatized by diverticulae of air sacs (clavicular, abdominal) that are involved in pulmonary ventilation. We also describe several pneumatized gastralia (‘‘stomach ribs’’), which suggest that diverticulae of the air sac system were present in surface tissues of the thorax. Conclusions/Significance: We present a four-phase model for the evolution of avian air sacs and costosternal-driven lung ventilation based on the known fossil record of theropod dinosaurs and osteological correlates in extant birds: (1) Phase I—Elaboration of paraxial cervical air sacs in basal theropods no later than the earliest Late Triassic. (2) Phase II—Differentiation of avian ventilatory air sacs, including both cranial (clavicular air sac) and caudal (abdominal air sac) divisions, in basal tetanurans during the Jurassic. A heterogeneous respiratory tract wit
    corecore