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The incessant progress of robotic technology and rationalization of human
manpower induces high expectations in society, but also resentment and
even fear. In this paper, we present a quantitative normalized comparison
of performance, to shine a light onto the pressing question, “How close is
the current state of humanoid robotics to outperforming humans in their
typical functions (e.g., locomotion,manipulation), and their underlying structures
(e.g., actuators/muscles) in human-centered domains?” This is the most
comprehensive comparison of the literature so far. Most state-of-the-art robotic
structures required for visual, tactile, or vestibular perception outperform human
structures at the cost of slightly higher mass and volume. Electromagnetic
and fluidic actuation outperform human muscles w.r.t. speed, endurance, force
density, and power density, excluding components for energy storage and
conversion. Artificial joints and links can compete with the human skeleton. In
contrast, the comparison of locomotion functions shows that robots are trailing
behind in energy efficiency, operational time, and transportation costs. Robots
are capable of obstacle negotiation, object manipulation, swimming, playing
soccer, or vehicle operation. Despite the impressive advances of humanoid
robots in the last two decades, current robots are not yet reaching the dexterity
and versatility to cope with more complex manipulation and locomotion tasks
(e.g., in confined spaces). We conclude that state-of-the-art humanoid robotics
is far from matching the dexterity and versatility of human beings. Despite the
outperforming technical structures, robot functions are inferior to human ones,
even with tethered robots that could place heavy auxiliary components off-
board. The persistent advances in robotics let us anticipate the diminishing of
the gap.

KEYWORDS

humanoids, robotics, human performance, human robot comparison, walking robots,
service robotics, robotic structures, robotic functions

Introduction

Motivation

During the last decades, society has been confronted with an incessant advance
of robotictechnologies in the human work environment. First, the production industry
deployed robots for well defined, heavy lifting, and high accuracy assembly tasks that are
characterized by a high number of repetitions, e.g., in the automotive industry. Robots with
more versatile functions were not existing or reliably functioning. Now, robots advancemore
and more into the field of service tasks that require more demanding behaviors with respect
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to perception, adaptation, and cooperation with humans, in
human-centered domains such as private households or clinical
facilities. Latest developments in humanoid and legged robotics
demonstrate that technology advances to accomplish an increasing
number of functions that are typical for humans (Miki et al., 2022;
Boston Dynamics Support Center, 2021; Boston Dynamics, 2017).
Furthermore, parathletes such as Heinrich Popow or Markus Rehm
are using high-tech lower leg prostheses for sprint and broad
jump disciplines, respectively. Their performances belong to the
best among all athletic achievements, including those without
amputations (Hassani et al., 2015; Beckman et al., 2017).

Humanoids and legged robots in general experienced impressive
advancement in the last decades. The story of legged robots
started, e.g., with Mark Raibert's hopping machines in the 1980ies
(Raibert, 1986) or Honda's Asimo in the 1990ies (Sakagami and
Watanabe). Since these first endeavors in the field, remarkable
improvements were made afterwards. Very powerful und skilled
walking and running robots have been introduced in the last
decade with robots such as Atlas, MIT Cheetah, ANYmal, Spot,
or Cassie (Boston Dynamics, 2022; Seok et al., 2014; Hutter et al.,
2016a; Boston Dynamics Support Center, 2021; Gong et al., 2019)
and its commercially available successor Digit (C et al., 2021;
NED Directory, 2023; Robots, 2019). Performance of robots
showcased at events such as the DARPA Robotics Challenge
2015 and 2021 (Johnson et al., 2015), the ANA Avatar XPRize
(Luo et al., 2022) or the Cybathlon 2016 and 2020 (Riener, 2016;
Wolf and Riener, 2018; CYBATHLON, 2022); they show impressive
technological achievements close to being applicable in daily
live.

This impressive advancements in robotics together with
the progressive rationalization and outperformance of human
labor by robotic technology induces resentment or even fear
in society (Nestik et al., 2018), whereas stirring up hope to
cede all dangerous and wearing tasks to machines. The image
of robots as superior to humans has also been pushed by the
entertainment industry with movies such as Terminator, Ironman,
or I-Robot. This might foster high expectations for robotic
technology, thereby creating the public belief, that humanoid
robots and artificial limbs are readily available, and that they can
fully replace or even outperform the functions of our biological
limbs.

So where are we today? Do robots already outperform
human beings with respect to sensory, computational, and motor
performance? Can robots now replace humans acting in typical
human-centered domains? This paper attempts to shine a light
into this pressing question by comparing state-of-the-art robotic
performance with that of human beings.

Goal

The goal of this study is to perform an objective (i.e.,
a normalized) comparison between existing humanoid robotic
devices with human beings with respect to their structures
and functions in human domains. Structures include sensory,
computational, and motor components in both robots and humans.
They are required to enable functions such as locomotion and haptic
interactions within these domains.

Comparisons of robotic systems with biological ones is
not a straight-forward process, because the technical systems
are not built by biological cells that can regenerate, grow, and
adapt to (slowly) changing conditions. On the other hand,
technology can easily outperform a human when focused on
a single and repetitive function, as the technology can be
optimized or just enhanced with respect to performance of only
a single function. For example, a robot can become stronger
and faster, when choosing larger and more powerful actuators.
A robotic arm can also reach higher when choosing longer
links. And, a robot can work longer and thus highly repetitive,
without fatigue and endurance limitations like in humans,
when choosing larger batteries with higher capacities or when
harvesting external energy sources, e.g., solar energy. However,
all these enhancements come at a cost: the robotic system usually
becomes much larger or heavier (or both) than a human, which
limits other functions such as agility, portability, dexterity, or
versatility.

Therefore, it is important when conducting any type of
functional or structural comparison to relate a concrete, measurable
feature (i.e., a physical quantity), against a respective normative
base, a common “denominator,” such as size, mass, available
(battery) power, or cost of transport (Tucker, 1975; Kashiri et al.,
2018). With such a normalization, the relation of the feature to
the denominator is approximated to be linear, which should be
an accurate estimation in close proximity to the normalization
point and is commonly performed to compare features at different
scales, e.g., power to weight ratio. The comparison refers to
environments and tasks that are made and/or accessible for
human beings and serve them in their everyday leisure or work
lives.

Furthermore, robot and human performancemust be compared
in similar environments, while doing similar tasks. For example,
the performance of a vacuum cleaning task should not be assessed
with measures relevant for outdoor locomotion or performance
in the assembly line of a car manufacturer. We focus this
review work on humanoid robots, to allow a “fair” (apples to
apples) comparison and to limit the scope of the comparison.
We assume that general structures, comprising legs and limbs in
a slender appearance, can act within human-centered domains
and interact with humans for a series of different human-like
tasks.

Related work mostly focused on comparisons of specific
structural components between technological and biological
systems. Aubin et al. (2022) investigated embodied energy
storage. Rothemund et al. (2021) discuss the benefits of flexible
structures in biological systems and the potential of material
science to provide technological counterparts. Yin et al. (2021)
review control and perception methods for deformable object
manipulation. Furthermore, many publications compare the
performance of biological and technological actuation systems
(Higueras-Ruiz et al., 2021; Liang et al., 2020; Acome et al., 2018).
Skorka and Joseph (2011) compared visual sensors. Yamane
and Murai (2016) discussed the similarities and differences
between human and humanoid robot structures qualitatively.
A comprehensive comparison of structures and functions
between the human and humanoid robots is not known to the
authors.
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Method of comparison

Comparing apples with apples

It is neither trivial nor meaningful to compare, for instance, the
speed of an autonomous robotic car with that of a sprinting human;
the costs of machine maintenance with the costs of sustaining
human life; or aspects of technical deterioration with biological
aging. Moreover, a robot devoid of feelings cannot be compared
to the human experience of emotion. Robots, however, can move,
perceive, and communicate, but at present they are incapable
of experiencing an emotional spectrum, for example, feelings of
happiness after successfully completing a task or frustration in times
of failure. Since robots do not yet have an emotional framework,
comparison in this context is not meaningful as the tasks and
contexts differ.

Robots are technological systems developed with the purpose of
serving humans, and in some cases, they do this by replacing human
operators. Therefore, we compare “apples with apples”, i.e., similar
“structures” that perform “functions” of similar activities (Figure 1)
and take place in similar “domains”, shared by humans and robots.
Such meaningful comparisons are those of walking or running (on
legs) in human-centered domains, grasping, manipulating objects
relevant for daily life, learning new movements, perceiving the
environment, and processing this information with some level of
“cognition,” computing a motor task, or consuming energy for
comparable motor tasks to name just a few.

Comparing robots and humans with respect to their common
structures and functions in similar tasks and contexts allows us to
refer to applications, where a robot can support or replace humans
or a part of the human body to serve society in any task that
is relevant for aspects of our private or work lives. Therefore, we

focus on “service functions” for humans and include movement
and interaction tasks in human-centered domains, elaboration, and
communication of information perceived from such domains. Our
human domains have evolved in a way that we can function well
within these domains with our structures including legs, arms,
fingers, eyes, ears, etc. Therefore, we assume that robotic structures
that serve to support humans in their domains must have humanoid
structures, and consequently, we focus on robots with legs and
hands, with all the sensors carried by the robot. Structures and
functions that are required for self-sustaining, such as breathing,
cardiovascular functions, eating, or digestion, are not taken into
consideration (Figure 1).

In this paper, we first confront anatomical structures such as
bones, joints, muscles, eyes, brain etc. with corresponding technical
systems like links, bearings, actuators, cameras, and processing units
by comparing features such as YoungModulus, friction, force, power
generation, power consumption or spatial and temporal resolution.
Then we move toward humanoid functions that are based on the
presented structures. For example, given the common function
“locomotion,” we compared features such as walking or running
speed.

Human-centered domains

The performance of humans and robots regarding their
functions and structures must be compared with respect to defined
domains and related tasks. The domains and tasks must allow a
replacement of humans or parts of humans by robots. Examples of
domains are indoor environments or rooms, outdoor environments,
environments that involve objects, devices, and machines (e.g., cars
to drive, buses to enter, buttons to press, or signs to read) or other

FIGURE 1
Overlap of functions and structures in human and robotic domains.
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humans with whom robots would need to interact (e.g., to listen, to
talk, or to communicate).

We can distinguish natural and artificial conditions of domains.
Typical natural environmental conditions to be considered are
exposure time for service and resting, environmental temperature,
inclination of the ground, nature of the ground (such as texture,
gravel, or sand), friction between feet and natural ground (dry,
wet, snow, or ice), exposure to radiation, water or any other
media, brightness, etc. Artificial environmental conditions are room
temperature, type and intensity of room lighting, and obstacles to be
negotiated (e.g., slippery artificial floors, steps, escalators, or doors).
Further, conditions are determined by the properties of objects and
devices that require interaction.

In this paper, we target a generic comparison between robots and
humans in natural and artificial domains that confront us in daily
life conditions. Thus, the natural environmental conditions chosen
are 24 h service and rest cycles with 8–16 h of service exposure, and
temperature that can vary between −10°C and 40°C depending on
location, season, and time of the day. We compare walking grounds
to include flat and rough terrains, dry, sticky, or even slippery due
to snow or ice. Brightness resulting from the typical outdoor light
conditions during daytime, 100′000 lux on average (Kelley et al.,
2006), and 0.0001 lux at nighttime (Engineering Toolbox,
2022a).

Artificial conditions considered in this study are typical indoor
environments that comprise even terrains on flat floors but may
also contain steps or stairs, barriers such as doors with handles, and
objects such as chairs or tables. The human or robot can interact
with different objects and interfaces of vehicles that are actively
driven by the user, or that passively transport the user to different
locations. Room temperature is in the range of about 18°C–32°C
(World Health Organisation, 2018).

Our comparisons focus on robots and humans analyzed
in usual conditions of industrialized societies. Therefore, we
assume augmentative technologies such as shoes, clothes, and
eyeglasses, that can enhance human performances in special indoor
and outdoor environments, as “natural” parts that belong to
the humans. In contrast, powered devices worn or carried by
humans to enhance their performance and often include some
level of technical intelligence, such as smartphones, exoskeletons,
bikes, and other means of transportation are excluded in this
study.

Functions and structures are derived from
ICF standard

The International Classification of Functioning, Disability and
Health (ICF) released by the WHO (World Health Organisation,
2007) can be used as a starting point for collecting different functions
and structures of both humans and robots. The ICF distinguishes
between human body structures (joints, limbs, or organs, etc.), body
functions (joint movement, leg movement, vision, etc.), activities
related to tasks and actions of an individual (walking, using public
transportation, or cooking) and participation as an involvement in a
life situation (visit lectures, participate and cultural events, or playing
in a music band). These aspects are viewed as a complex interaction

between the personal factors of the individual and the contextual
factors of the domain.

The starting point for the choice of the compared functions
and structures is a human being as classified by the ICF. Starting
with the human helps us finding the concrete robotic functions and
structures out of a virtually infinitive number of different robotic
designs.

The ICF itself highlights the importance of environmental
factors and lists the most relevant in the classification of human
structures and functions.

To compare the functions and structures of robots
and humans quantitatively, measurable “features” have been
introduced–whenever possible. Examples of features to evaluate
functions are gait speed for walking, typing speed - rate for writing
on a keyboard, or words per minute for speaking. Examples of
features to evaluate structures are mass for a body segment or the
entire body, image resolution for the vision system, or power density
(e.g., power/mass ratio) for an actuator.

Functions to be compared are derived from ICF
functions and include aspects of activities and participation
(World Health Organisation, 2007) and applied to the environment
and the robot representatives. In this study, we collected robots and
their applications with respect to the following functions:

• Movement: Walking, running, climbing stairs, changing, and
maintaining basic body positions, negotiating rough terrain,
crawling, jumping, and swimming.

• Physical interaction: Driving a vehicle, lifting, and carrying
objects with upper extremities, kicking objects with the legs,
and use of hands and arms.

• Elaboration: Basic motor learning

In addition, the non-haptic interaction functions are presented
in Supplementary Appendix SB:

• Elaboration: attention and multi-tasking functions, reading,
and writing.

• Communication: Conversation, i.e., listening and producing
verbal and non-verbal messages

These functions are resulting out of a complex interplay
of sensory, motor and cognitive components and their sub-
functions–in both humans and robots. The execution of functions
depends on the existence of physical structures. Structures were
derived from the above-listed functions performed by the human
or robot, as defined by the ICF, and include:

• Sensory structures: for vision (eye and cameras), tactile
perception (skin and tactile sensors), proprioception, and
balance (vestibular structures of the inner ear and inertial
measurement units)

• Motor structures: for actuation (muscles and actuators)

In addition, the structures for non-haptic interaction and
computational abilities are presented in Supplementary Appendix SB.

• Motor structures: speaking (organ of speech and
speakers)
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• Sensory structures: hearing (ears and microphones)
• Computational structures: formemory and computation (brain

and CPU/storage devices.

Denominators

We normalize the features by common denominators and make
them comparable among different systems. For example, the payload
of a large and heavy-lifting robot used for construction should
be downscaled (i.e., normalized) by using a denominator that
takes care of the size of the system. Like features, denominators
should be measurable, so that they are applicable for normalization.
Denominators can be picked among those features of functions
and structures that are usually not the primary focus for the
design of the robot or the evolution of the human. They are
rather a consequence of the physical implementation of the
primary design features that are required to obtain desired (e.g.,
service) functions. Measurable features of functions and structures
were compared (i.e., normalized) with respect to the following
denominators:

• Mass, in kg.
• Size, in m, for example, body height, main dimension, nominal

length.
• Power consumption, usually in W, including dissipated

power.
• The inverse of the operational time (under normal conditions),

in s-1. The inverse has been taken to get the same polarity of the
respective feature to better compare the features in relation to
different denominators.

• Cost of Transport (CoT), a dimensionless metric
• Material density, in kg m-3.

Cost of transport CoT (or specific resistance) is a common
normalizedmetric that refers to energy consumption for locomotion
(Kashiri et al., 2018; Tucker, 1975):

CoT = E
mgd
= P
mgv
,

where E is the energy inserted into the system, m the mass of the
system, d the distance it travels, g the gravity acceleration, v the
velocity, and P the input power.

The linear dashed line drawn in many of the figures, symbolizes
a linear scaling of the feature (of certain functions or structures)
with respect to a denominator based on the values found for the
human.Values of robots that are placed above this dashed linesmean
that the robot performs “better” than the human with respect to the
single feature taken into account, with respect to the denominator
chosen. The application of denominators to “normalize” the features
in a linear way based on a linear scaling of the feature quality
using the denominator. For many of the features the relation to
the denominators is non-linear. In these cases, the comparison
of human and robot features by the linear approximation is only
reliable in close proximity to denominator values typical for humans.
Thus, we indicate the 2nd percentile female to 98th percentile male
interval for each denominator as indication for the magnitude of
scaling.

Choice of robots and human representative

Out of a collection of thousands of different service robots in
existence today, we have chosen those that fulfill the requirements
to be in principle able to function in human-centered domains:

• Legged robots excel in negotiating rough terrain by leveraging
their ability to select footholds and cross gaps (TheIHMC,
2019). Thereby, they can reach locations that similarly sized
wheeled-only systems struggle with, while having less impact
on the soil. Furthermore, the capability of stepping rather than
rolling over obstacles is a significant advantage in narrow and
cluttered home environments and environments that include
steps and stairs. Therefore, we restrict the comparison to
legged robots. This includes bipedal robots, such as Asimo
(ASIMO, 2022) or Atlas (Boston Dynamics, 2022), four-
legged robots, such as Spot (Boston Dynamics Support Center,
2021) or ANYmal (Hutter et al., 2016a), and even legged
robots with wheels, such as Handle (Boston Dynamics, 2017;
IEEE Spectrum Robots, 2021) or Ascento (Ascento, 2022).
Robots with wheels or tracks only are excluded, e.g., Eve [by
Halodi Robotics AS, (Halodi Robotics, 2021)] or autonomous
wheeled vehicles.

• The robots must be of slender appearance to fit through doors
or move in narrow spaces, e.g., in human crowds. Very broad
and bulky robots are excluded, such as BigDog [by Boston
Dynamics, (Playter et al., 2006)].

• The robotsmust have sufficient body height to be able reach and
grasp objects on tables and shelves. Assuming that an additional
robotic arm can be added to reach higher, a minimum body
height of 0.5 m might be sufficient. Smaller robots, such as
Robotis OP 2 (Robotis, 2023) or JO-ZERO (ikinamo, 2009a),
are excluded.

• The robots must be powered to perform energy demanding,
daily tasks, such as opening a door and they must be strong
enough to carry objects that are relevant for daily life activities.
Therefore, weak or unpowered robots, such as passive walking
machines (Collins et al., 2005) are excluded. Also flying drones
are excluded due to the negative effects of the strong downwash.

• The robots must be able to perform simple manipulations.
Therefore, they must be equipped with arms such as Atlas
(Boston Dynamics, 2022), iCub (Beira et al., 2006), or Digit
(C et al., 2021) or be able to get equipped with an arm or any
manipulative device such as Cassie (Gong et al., 2019).

• The robots must have sensors to perceive the environment
to perform locomotion and manipulation tasks robustly in
dynamic environments.

• The robots must not produce too much noise or exhaust gases,
as they would be not acceptable in human-centered indoor
environments. Thus, machines such as BigDog are excluded
(Playter et al., 2006).

In this study, we analyze 27 robots that match these criteria,
such as iCub, Atlas, ASIMO, or Sarcos (see Table 1). Not all robots
have human appearance, as they might have no trunk, shortened
arms, small or no heads, etc. And the robots can comprise structures
that are not existing in mammals such as shaft-hub connections or
prismatic joints. A nice example of a (nameless) bipedal robot with
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prismatic knee joints has been presented by SCHAFT, Japan some
years ago (Ackerman and Guizzo, 2016).

To the best of our knowledge, none of these robots have been
used in ordinary real-life scenarios perhaps with one exception: Just
recently, robot Digit came out as the successor of Cassie (Gong et al.,
2019). It is commercialized by the spin-off Agility Robotics. The
company seems to lead the commercial development of humanoid
robots with the aim of relieving humans from certain tasks and
to compensate for the increasing decline in qualified workers as a
result of demographic change. Most of the other robots are only
available as lab devices that require extra efforts to be used outside
the lab. Others do not comprise trunk and arms, which limits
their functions. Even those robots that are commercially available,
have not been tested in random real-life situations, but only in
standardized “fake-like” settings, e.g., Atlas within the DARPA
challenge. Others were used for entertainment shows and soccer
challenges, e.g., Asimo or iCub. Tesla's Optimus Robot (Youtube -
 Tesla Bot Update, 2023) is another promising humanoid released
recently. However, not many technical specifications have been
published yet, and despite the remarkable development efforts and
results, experts were assessing the robot's performance as not too
spectacular (Ackerman and Guizzo, 2022). However, substantial
improvements were introduced with the updated version (Youtube -
 Tesla Bot Update, 2023).

The human representative, the so called “reference man”, was
defined according to the International Commission on Radiological
Protection's 1974, as someone being between 20 and 30 years of age,
170 cm of height, weighing 70 kg, and living in a climate with an
average temperature of 10°C–20°C (Snyder et al., 1974). We have
chosen this source because it provided a large amount of available
data and is used and cited in many other projects. More recent
models of the standard person confirmed similar values for average
weight and height, with only slightly larger values for males (Ellis,
1990). An adult, average person consumes about 300 W–450 W for
walking (Radhakrishnan, 1998; Das Gupta et al., 2019) and between
700 W and 1500 W for running depending on the speed (Riddick
and Kuo, 2022). These values include the power consumption of
both mechanical and metabolic activity. The parameter operational
time is defined as the time an average adult can operate without
needing a rest for recreation, sleep, or food intake. We estimate the
operation time of an average human for walking to be about 8 h and
for running to be about 1 h, which is a reasonable duration for a
healthy adult who is jogging or engaging in moderate exercise.

Comparison of structures

Vision systems

The human eyeball has a diameter of 21–27 mm
(Bekerman et al., 2014) and it weighs about 7.5 g (Todd et al.,
1940). Power consumption due to retinal, metabolic, and muscular
activities is less than 10 mW (Skorka and Joseph, 2011). The
monocular visual field of a healthy adult extends maximally 135° in
the vertical and maximally 160° in the horizontal directions (Skorka
and Joseph, 2011). The spatial resolution of the eye is 576 MPX
(Syawaludin et al., 2019) with highest resolution at the center and
gradually declining resolution toward the periphery. The highest

resolution is at least 1 arc minute (1/60)°, which corresponds to a
visual acuity of 1 or 100%. The shortest duration required to detect
unknown images is 13 m (Potter et al., 2014), which translates to
a detection frequency of 77 Hz. Other publications estimate that
in typical office conditions, the human eye can detect temporal
changes at 65 Hz, and frequencies greater than 80–90 Hz at high
luminance levels (Skorka and Joseph, 2011). The perceived light is
in the visible spectrum characterized by wavelengths in the range of
380 nm–740 nm.

The human eye can adapt to different brightness conditions,
yielding a very large dynamic range, or luminance, reaching from
10–6 cd/m2 in the dark (scotopic threshold) to 108 cd/m2 during
daylight (damage threshold) (Spillmann and Werner, 2012). Hence,
over different scenes, a luminance range of 1014 can be detected
by the human eye. Other sources state a luminance range of
1010 (Ferwerda, 2001). However, it requires several seconds to
minutes until the human vision system adjusts to a new illumination
condition. For a specific scene, the contrast ratio approaches 120 dB,
which corresponds to a luminance ratio of 106 (Rosenthal et al.,
2004; Durini and Arutinov, 2020). Color vision, or photopic vision,
occurs at luminance greater than 3 cd/m2. Vision at a luminance
lower than 0.001 cd/m2, in which only rods are operative, is called
dark vision, or scotopic vision–the corresponding luminance value
is called “dark limit” (Skorka and Joseph, 2011).

Human depth perception is possible due to a variety of different
cues, including static and dynamic monocular cues, oculomotor
cues (accommodation and convergence), and binocular cues
(stereopsis, i.e., binocular disparity) (Schiller et al., 2011; Riener
and Harders, 2012). Based on the human ability to detect depth
differences at 30 arcseconds disparity (Coutant andWestheimer), we
estimate the resolution for depth perception at 10 m distance to be
around 0.25 m using basic trigonometry.

Traditional RGB cameras based on charged-coupled device
(CCD) or complementary metal-oxide-semiconductor (CMOS)
chip technologies have a narrower dynamic range than the human
eye, although the gap is closing. Skorka and Joseph (2011) have
published a comparison between the human vision system and
artificial vision sensors in 2011. At that time, some CCD image
sensors achieved higher spatial resolutions and temporal resolutions
than the human eye. On the other hand, dynamic ranges and dark
limits were still significantly less than in the human eye with a
difference of 1.6–4.5 orders of magnitude. Denominator values of
power consumption, mass, and size were significantly higher than
those of the human eye. Even when checking the data sheets of the
newest CCD and CMOS cameras, these values have not improved.

The work from Skorka and Joseph did not include lens systems
and sensors with extremely wide field of view (FOV) or very high
framerate. “Fish-eye lenses” on modern devices can provide a 360°
FOV by adding only a little mass (less than 150 g) and volume (less
than 0.16 L) (Insta360, 2022). Ultra-high-speed cameras can reach
up to 1 million frames per second; however, with a rather large
mass (about 8 kg), size (about 10 L), and power consumption (about
300 W) (Phantom, 2022).Most camera sensors easily cover the color
range of the visible light spectrum, some specialized sensors can
detect images even in the infrared or ultraviolet light range.

Latest technologies are event-based cameras, which offer
attractive properties compared to traditional cameras: they come
with high temporal resolutions (in the order of kHz to MHz), high
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TABLE 1 Compared robots. List of robots considered in this study. The robots have been selected among those currently existing as of 2021. All are potentially
capable of taking over human-centered service tasks. The numbers on the far right indicate the year of release of the respective robots.

Nr. Name Type Notes References Year

1 ATRIAS Biped Walking robot only with torso, no
arms. Inspired by a spring-mass
model. ATRIAS = Assume the
robot is a sphere

Hubicki et al. (2016); Dynamic
Robotics Laboratory (2015);
Dynamics Laboratories (2015)

2015

2 Asimo Biped Taken as reference for Honda
robots. Superior to both E-Series
and P-Series

ASIMO (2022) 2000

3 HR 18 Biped Small sized humanoid prototype Hemker et al. (2009) 2009

4 HRP Biped HRP-2 Model Kaneko et al. (2011); Stasse et al.
(2018)

2002

5 HUBO Biped HUBO 2 IEEE Spectrum (2010) 2009

6 iCub Biped Kid-sized humanoid Beira et al. (2006), Romualdi et al.
(2018), Romualdi et al. (2018),
Pontes (2019), Fakultät für
Elektrotechnik und
Informationstechnik (2022),
Tktronix (2022)

2009

7 LOLA Biped The most recent robot of the two
tethered TUM bipeds Johnnie and
LOLA.

IEEE Spectrum Robots (2022b) 2010

8 Mahru III Biped MAHRU III version, which can be
connected to external AI.

Kwon et al. (2007) 2007

9 NAO Biped Doll-sized humanoid used in
RoboCUP soccer competitions

Aldebaran Documentation (2020);
Robots (2021); Aldebaran (2008);
Cristiano et al. (2011)

2008

10 REEM Biped REEM humanoid model C PAL Robotics (2022) 2013

11 Sarcos Biped Sarcos experimental humanoid
(not the Sarcos exoskeleton)

Morimoto et al. (2007) 2008

12 Sony QRIO Biped Small sized humanoid prototype IEEE Spectrum Robots (2018) 2003

13 Atlas Biped Last version of one of the best
performing robots in the world

Boston Dynamics (2022); Smith
Marshal and Marshal Smith
Technology (2018)

2021

14 Toyota Partner Biped Humanoid running robot Toyota Motor (2022); Ota (2010) 2000

15 WABIAN Biped Humanoid WABIAN model 2 Biped humanoid robot group
(2013); Mu et al. (2012)

2006

16 Durus Biped Efficient gait robot with up to 8 h of
battery life and 5 h of walking
battery life

Wevolver (2022) 2013

17 Walk-Man Biped Built to operate in dangerous
environments

Thomson Reuters (2015);
Ackerman and Guizzo (2021);
EurekAlert (2018); Instituto
Italiano di Technologia (2018);
Kashiri et al. (2018)

2015

18 Cassie Biped Maximum walking speed 2.1 m/s.
For longer distance walk only
1.57 m/s achieved

Xie et al. (2019); Gong et al. (2019);
IEEE Spectrum ROBOTS (2022a);
Lundeberg (2021); Kashiri et al.
(2018)

2016

(Continued on the following page)
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TABLE 1 (Continued) Compared robots. List of robots considered in this study. The robots have been selected among those currently existing as of 2021. All are
potentially capable of taking over human-centered service tasks. The numbers on the far right indicate the year of release of the respective robots.

Nr. Name Type Notes References Year

19 TORO Biped 10 kg payload. No running or fast
walking. 250 W in steady state.
Stair climbing only up to 5 cm steps

DLR (2022); Englsberger et al.
(2014)

2013

20 Flame Biped Legs-and-torso-only walking robot TU DELFT (2022); BotJunkie
(2008); Hobbelen et al. (2008)

2005

21 Handle Biped with wheels With wheeled legs. It can reach
high speeds and jump up to 1.2 m
and carry 45 kg boxes. No
information found, whether it can
climb stairs

Boston Dynamics (2017), IEEE
Spectrum Robots (2021)

2019

22 Ascento Biped with wheels With wheeled legs. It can step and
climb stairs, and reach high rolling
speeds; can jump up to 0.4 m.
Battery life of 8 h

Ascento (2022); Zürich (2022) 2020

23 Spot Quadruped Quadrupedal robot. Maximum
speed
1.6 m/s, able to run and trot

Boston Dynamics Support Center
(2021); IEEE Spectrum Robots
(2019)

2020

24 ANYmal Quadruped Quadrupedal robot for inspection
and maintenance in industrial
environments

Hutter et al. (2016a) 2016

25 Titan XIII Quadruped Sprawling type, all-terrain robot Kitano et al. (2016) 2016

26 MIT Cheetah Quadruped One of the fastest running robot
ever developed

MIT News | Massachusetts Institut
e of Technology (2013)

2012

27 ANYmal on wheels Quadruped with
wheels

Quadrupedal robot for inspection,
home delivery, and rescue missions

Bjelonic et al. (2020); Bjelonic et al.
(2019); Swiss Mile (2022)

2020

dynamic ranges, and rather low power consumption (Gallego et al.,
2017). Embedded event-camera systems, where the sensor is
directly interfaced to a processor, have shown system-level power
consumption (i.e., sensing plus processing) of 100 mW and even
less. At the die level, most event-based cameras use about 10 mW,
and some prototypes achieve less than 10 μW, thus, reaching or even
outperforming the values of the human eye. The shortest detectable
event of these devices lies in the range of microseconds. Therefore,
event-based cameras are used in applications that require high
refresh rates and low latencies. Image information from event-based
cameras can be fused with signals from depth and RGB perception
sensors to obtain accurate depth information (Gallego et al., 2017).
Dynamic ranges of event-based cameras are above 120 dB, notably
exceeding the 60 dB of high-quality, frame-based cameras, making
them able to acquire information from moonlight to daylight,
comparable to the performance of the human eye. Chip size is in
the range of only 1 cm2, not including other hardware components
(Gallego et al., 2017). Consequently, with the advent of event-based
cameras, we experience artificial vision that is indeed starting to
measure up to the human eye.

Lightweight 3D camera systems with time-of-flight or
stereoscopic sensors (e.g., Kinect V2 or IntelRealsense D415) have
a depth perception uncertainty of around 1.5 mm and a bias of
2–5 mm at a distance of 1 m (Giancola et al., 2018). These sensors

have a restricted sensing range of up to a couple of meters, while the
sampling rate goes up to 90 Hz (Intel Realsense, 2021). The portable
LIDAR sensor Ouster OS34, can measure with a precision of 80 mm
at up to 240 m distance, which is clearly outperforming the human
depth perception (Ouster, 2021). However, themeasurement system
does not allow simultaneousmeasurement in the whole field of view
and the update rate for a single line of sight is limited, e.g., to 20 Hz
for the Ouster OS2.

Tactile, proprioceptive and vestibular
systems

Human density of tactile receptors varies among different areas
of the body and is highest on the tongue. Most relevant is the
tactile perception on the fingertips as the fingers are important for
manipulation tasks. At the fingertips, humans can perceive a spatial
resolution of 1.8 mm, a sensitivity of 0.2 g/mm2, response threshold
range of 0–100 g/mm2, and a frequency response of up to 100 Hz
(Dargahi and Najarian, 2004). Assuming signal propagation speeds
between 2 m/s and 100 m/s and nerve lengths of maximally 1 m,
signal latencies are about 10–500 m (Dargahi and Najarian, 2004).
The complete coverage of the skin with tactile sensors allows the
human to perceive and interact with the environment in a highly

Frontiers in Robotics and AI 08 frontiersin.org



Riener et al. 10.3389/frobt.2023.1223946

versatile way by including arbitrary body parts in interactions with
the environment.

The latest artificial pressure sensor matrices can outperform
all these biological values easily. Sensing devices reach localization
accuracies of up to 0.1 mm at a sampling frequency of 100 Hz
(Yan et al., 2021). Some of them are inspired by the human
vibrotactile sensing principle (Chun et al., 2021; Dahiya et al.,
2009). Visual-tactile sensors were successfully used to detect slip
(Yuan et al., 2015; Xia et al., 2022). Li et al., present a comprehensive
recent review of the state of the art in tactile perception
and application (Li et al., 2020a). The progress in tactile sensor
developments leads to increased functionality and performance
for robotic manipulation (Kappassov et al., 2015; Luo et al., 2017;
Yin et al., 2021; Xia et al., 2022).

Standard kinematic sensors can measure angles and distances
proprioceptively in the range of angular seconds and micrometers,
respectively (Azibil Corporation, 2023). Inertial measurement units
canmeasure angleswith 0.6° accuracy and 0.1° precision (Leah et al.,
2017) while sensor fusion approaches combine the high precision
and accuracy of proprioceptive, and visual sensors with the
robustness and reliability of vestibular sensors (Wisth et al., 2023).
Thus, they easily match or excel the performance of the human
proprioceptive or vestibular systems. For example, conventional
position sensors and inertial measurement units provide high
quality signals about posture, movement, and balance. Technical
systems are rather compact and lightweight, and do not need a lot of
power, so that they can be easily implemented in humanoid robots.

Next to tactile sensing, also proprioceptive force perception
plays an essential role for humans to control haptic interactions
with the environment. Although the human body does not have any
receptors that detect force directly, it can sense different amounts of
forces or weights by integrating tactile and proprioceptive receptor
information. Proprioceptive force perception is used to robustly
track interaction forces, e.g., when polishing objects, dancing with
a partner, or steering a vehicle. Similarly like in humans, force
perception can be realized using the intrinsic properties of artificial
actuators, e.g., with series-elastic or quasi-direct electric motor
actuation comparable or even more accurate perception of joint
loads to humans can be achieved. More accurately, forces and
torques can also bemeasured by commercially available force/torque
sensors that function on resistive, capacitive or optical measurement
principles. Typical force sensors used in robotics can have accuracies
better than 1% of themeasurement range (Cao et al., 2021).They are
easily outperforming the human sense.

Actuation systems

The human muscle is a powerful and efficient organ that can
produce high muscle forces requiring little energy supply (see
Table 2). For example, the biceps brachii muscle of an average
adult human produces a continuous mechanical power output of
50 W/kg (Hunter and Lafontaine, 1992; Hunter et al., 1991a; Huxley,
1980) and peak power to mass values of 100–400 W/kg (Hunter
and Lafontaine, 1992; Josephson, 1985; Hill, 1922; Lupton, 1922).
Mammalian muscle force normalized by cross-sectional area as a
denominator for size can reach values up to 0.35 MPa for peak
forces and about 0.1 MPa for sustainable muscle force (Hunter and

Lafontaine, 1992; Huxley, 1980).Thus, the sustainable muscle power
and force is about 30% (Schoenfeld et al., 2021) to 40% (Leng et al.,
2021) or less of the peak value. Mechanical output power in relation
to power consumption yields an efficiency of 40% for the biceps
muscle (Leng et al., 2021) which is similar for other mammals
(Curtin et al., 2018), as work is produced not only mechanically
but also metabolically resulting in heat. A specialty of mammalian
muscles is their capability to regenerate after injuries and to adapt
their dynamic properties (speed, amount of force, fatigue behavior)
to slowly varying conditions. The deformable nature of muscles
allows a tight packaging spanning one or multiple joints, such as at
the shoulder or vertebrae. Further, the series-elasticity introduced
by the tendons as well as the antagonistic system allows storage of
mechanical energy and selective stiffening up of a joint. For instance,
the Achilles tendon can store energy during the stance phase
that is released during toe push-off by leveraging the remarkable
eccentric strengths of muscles. Moreover, the structure and selective
recruitment ofmuscles enables the impressive versatility fromhighly
delicate interaction to application of large forces and high power.

Most humanoid robots are equipped with electromechanical
motors, while for instance Atlas is actuated by hydraulics. Further
actuation technologies applied in robotics are pneumatic actuators,
such as pneumatic artificial muscles (PAMs such as McKibben
actuators), shapememory alloys (SMAs), and electroactive polymers
(EAPs). EAPs include dielectric elastomer actuators (DEAs) and
relaxor ferroelectric polymers (RFPs).The latest devices also include
ionic polymer metal composites (IPMCs) or hydraulically amplified
self-healing electrostatic (HASEL) actuators.

Depending on the type and ratio of the accompanying
transmission, electromagnetic actuators, also called
electromechanical motors, can produce quasi-arbitrarily high
forces. Power density values range from 312 W/kg, when using
rare earth magnets, and twice that when they are actively cooled
(Madden, 2007). Power efficiencies of motors can achieve up to 96%
(Burt et al., 2008). Thus, modern electromagnetic actuators have a
slightly higher power density compared to humans.

High-pressure hydraulic cylinders for heavy-duty applications,
e.g., the RC10010 (by Enerpac Ltd., United States) can be operated
with 70 MPa. However, smaller cylinders and valves built for mobile
robotic applications in a scale that is comparable to humans, are
typically rated for operation with 20 MPa–30 MPa (Barasuol et al.,
2018), e.g., Model E081-115 by Moog uses 21 MPa according to
the company data sheet. When considering the outer cylinder
diameter, the force per area can be substantially lower, e.g., by a
factor of 0.53 for RC1514 (by Enerpac Ltd., United States). Thereby,
this actuator achieves a power density of 817 W/kg based on the
company data sheet and when using the weight reported for the
academic equivalent ISA V5 (Barasuol et al., 2018). Thus, hydraulic
cylinders achieve force densities that are two magnitudes higher
than human muscles are capable of and around double the power
density. MPa Pneumatic cylinders and PAMs can generate forces in
the range of 0.7 MPa–1.2 MPa and about 3.5-times higher power
densities compared to the human muscle (Chou and Hannaford,
1996; Liang et al., 2020). Efficiencies of PAMs are up to 49%,
whereas pneumatic cylinders are below 4% (Chou and Hannaford,
1996). However, these numbers found for hydraulic and pneumatic
actuators do not include the weight of the means for pressure
generation and storage.
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TABLE 2 Actuator Principles. Comparison of different actuation technologies in power density, efficiency (excluding transmission), and force density.

Actuator
technology

Working principle Power/mass Force/cross-
sectional area

Efficiency Ref

Human Muscle Biological muscle fibers
(contracting actin and
myosin filaments)

50 W/kg (sustainable) 0.1 MPa (sustainable) 40% Hunter and Lafontaine
(1992); Hunter et al.
(1991a); Huxley (1980);
Josephson (1985); Hill
(1922); Lupton (1922)100–400 W/kg (peak) 0.35 MPa (peak)

SMA Shape memory effect of
metallic alloys

50 kW/kg 200 MPa 1%–10% Hunter et al. (1991b);
Liang et al. (2020)

EAP Electroactive polymers 100–600 W/kg 0.2–100 MPa 25%–80% Youn et al. (2020)

Pneumatic cylinders Air pressure used to
actuate a piston of a
cylinder

350 W/kg 0.7–1.2 MPa 4% Chou and Hannaford
(1996); Liang et al.
(2020)

PAM Pneumatic artificial
muscles

350 W/kg 0.7–1.2 MPa 49% Chou and Hannaford
(1996); Liang et al.
(2020)

Hydraulic cylinders Oil pressure used to
actuate a piston in a
cylinder

817 W/Kg 20–30 MPa (comparable
size to human muscle)
70 MPa (heavy duty)

53% Barasuol et al. (2018)

Electromagnetic
actuators

Electromagnetic fields
used to actuate metallic
coils or magnets

312 W/kg Depends on adopted
transmission

96% Madden (2007);
Burt et al. (2008)

SMAs produce forces of 200 MPa and power densities of
50 kW/kg; with an efficiency of only about 1%–10% (Hunter et al.,
1991b; Liang et al., 2020). EAPs generate very high force densities of
0.2 MPa–100 MPa (Youn et al., 2020). Power densities are between
100 to W/kg600 W/kg and efficiencies between 25% and 80%
(Youn et al., 2020; Higueras-Ruiz et al., 2021). HASEL actuators
produce comparable force densities 0.3 MPa and higher power
densities and 614 W/kg, but smaller efficiencies when compared
to human muscle (Acome et al., 2018; Liang et al., 2020). IPMC
actuators produce higher force densities, but smaller power densities
and efficiencies when compared to human muscle (Kim and
Shahinpoor, 2003; Liang et al., 2020). So far, these actuation
principles are mainly used in nano and micro-robotics, because
of their good performance at small scale. Successful application in
human-scaled multi-DOF robots was not yet demonstrated.

Combustion machines are rarely used in robotics (and were
excluded for the use in human-centered domains in this study),
although the continuous power density is about 10 times greater
than the continuous power output of muscles (Madden, 2007) and
the forces can be high using transmissions with high gear ratios.
Furthermore, gasoline has a high energy per unit mass that is about
20 times higher than that of a good battery, even after accounting
for the approximately 30% efficiency that is typical in combustion
processes.

All these actuation technologies (except for IPMCs) outperform
human skeletal muscles with respect to force and power densities,
when neglecting the weight of energy storage and pressure
generation. Besides pneumatic cylinders and SMAs, they are also
providing higher power efficiency.

Most artificial actuators outperform the human muscle
concerning speed and endurance because the generation of
muscular force is bound to rather slow electrochemical processes
and the force levels cannot be kept constant over long time periods
due to muscular fatigue.

Efficiency values were obtained primarily from Higueras-
Ruiz et al. (2021); they consider the total system including off-
board energy storage to output work. However, the force and
power density data of the technical actuator systems do not
include components that store and provide electric, fluidic, or
thermal power (e.g., battery, compressor, pressure tank, heating
system, respectively). They also do not include components that
are required to change actuator speeds (e.g., transmissions and
clutches), that which take away the heat (e.g., air ventilation or
liquid cooling systems), or any other components such as sensors,
cables, electric, and thermic or acoustic isolations. As many of
those components can be rather bulky and heavy, they would
weaken the force and power density values, which likely gives the
human actuator an advantage over artificial ones. Unfortunately,
the weight of those auxiliary components is largely unreported in
the literature; and it varies a great deal between different solutions
and applications. Other studies investigating methods for embodied
energy strive towards more lightweight and untethered energy
supply and conversion methods (Aubin et al., 2022). For most of
such concepts, demonstrations were either performed at a very
small, micro-robotic scale, on isolated actuator systems, or on robots
with the primary purpose to showcase the actuation method.

Series-elastic actuation is frequently used in walking systems
(Hutter et al., 2016a) or in robots that are in interactionwith humans
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(Vallery et al., 2008; Zimmermann et al., 2019). The energy-storing
and release capability of these actuators was often envisioned,
however, so far barely successfully exploited by state-of-the-art
systems. Series-elastic actuators have further advantages that can
be nicely exploited in robotic applications, e.g., the ability to
withstand shocks due to mechanical compliance. However, the
design and control of robots with such actuators is challenging,
because of the additionalmechanical components that lead to higher
compliance. Many demonstrators with novel series-elastic actuators
including variable impedance control exist in the scientific literature
(Ham et al., 2009; Vanderborght et al., 2013; Verstraten et al., 2016).
There have been a number of approaches for tendon-driven series
elastic actuation approaches for bipedal humanoid robot locomotion
aiming for utilization of the passive synchronization properties of
the mono and biarticular muscle groups like in the human leg
(Seyfarth et al., 2009; Sharbafi et al., 2016; Sharbafi et al., 2016).

Systems realizing more efficient use of materials by embedded
energy storage (i.e., combining energy storage with actuation) were
demonstrated in less versatile robots applied to less complex cases
than humanoid robots (Aubin et al., 2022). Soft actuation principles
promise to close the gap in power density and more optimized
system integration due to the flexible structures. However, these
technologies are to date still in an early phase where prototypes are
mostly investigated in isolated settings and not incorporated in full
robotic systems (Rothemund et al., 2021).

Skeletal systems

The skeletal systems of the human and robot are comprised by
links (i.e., bones) and joints that connect the links allowing relative
movement. Human bones can transfer rather high mechanical loads
and have impressive self-healing capabilities and other relevant
functions, such as blood cell production. Most joints in the human
body are synovial joints. Ligaments, tendons, and other connective
tissues form the articular capsule with a synovial cavity between the
bones. Synovial joints are self-lubricating, almost frictionless, and
able to withstand heavy loads in the magnitude of the body weight
(and higher), while still executing smooth and precise movements.
Human synovial joints are difficult to outperform by artificial joints
(Table 3). Only very dedicated pairs of materials or ball bearings can
compete with the friction properties of human joints. In contrast,
robotic joints can have larger ranges of motion, even up to 360° or
more, which is not possible with physiological joints.

The adult human body comprises 206 bones that are connected
by joints. Each of these joints has negligible, one, or multiple degrees
of freedom. The number of degrees of freedom per joint depends
on the complexity of the kinematic model. For example, the knee
joint not only flexes in the sagittal plane of the body, but it can also
move outside the sagittal plane (“varus-valgus”) or rotate around its
longitudinal axes. Due to the mechanical compliance of the joint
capsule and cartilage, it can even move in translational directions.
Thus, knee joint models can vary between one and six DOF. Even
simpler models count about 155 DOF (Venture et al., 2007) in the
human skeleton. This high number of DOF enables a large range
of motion at certain body regions such as the shoulder or the
trunk, allowingmanyfold, dexterous grips of the hand, and generates
vast kinematic redundancy of the extremities when interacting with

TABLE 3 Friction coefficients of different joints and pairs of materials and a
human joint (Serway andVuille, 2014; Sagbas, 2016;
Koyo Bearings/JTEKT CORPORATION, 2022; Engineering ToolBox, 2022b;
Copper, 2022).

Joint or pair of artificial materials Friction coefficient

Human joint 0.003

Ball bearings 0.002

Steel on steel (lubricated) 0.16

Steel on bronze (clean and dry) 0.08–0.14

Artificial hip joint (metal on polymer) 0.06

TABLE 4 The number of degrees of freedom (DOF) of different robots in
comparison to a simplifiedmodel of the human (Takiyama et al., 2020;
Yamane et al., 2005; Li, 2006; ROBOTIS, 2022; ikinamo, 2009b; Samson et al.,
2001b; Hutter et al., 2016b).

System Degrees of freedom (DOFs)

Human 155 (model)

Asimo 57

HUBO 32

iCub 53

NAO 25

Atlas 28

objects, humans, or other robots. The most advanced humanoid
robots are counting maximally only one-third of the DOF of the
human skeleton (Table 4).

In robots, bones are represented by rigid links (bars) made of
metal, polymers, or carbon composites. Many metals and carbon
composites do have better stiffness and fracture properties than
human bones (Figure 2).

Comparison of functions

Walking

Normal walking is one of the most developed functions of
humanoid robots. The preferred natural walking speed of humans
is about 1.4 m/s (Samson et al., 2001a). We compared the natural
human walking speed with those of the 22 bipedal robots found in
this study.Walking speed has been related to the denominatorsmass,
size, power consumption and inverse of the operational time.

When relating natural human walking speed to mass or size
(Figures 3A, B), one can see that many of the robots cannot compete
with humans, because their walking speeds in relation to their
physical dimensions (expressed by robot mass and robot height) are
lower than that of humans. In contrast, Cassie clearly outperformed
the human test case with respect to natural gait stepping speed.
However, Cassie does not have a torso nor arms and head, giving
it an advantage with respect to its mass. The quadruped robots
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FIGURE 2
Two features to describe the properties of bones are elasticity expressed by the Young Module (A) and Fracture Stress (B). Features are normalized by
the denominator bone density, which correlates to the mass of the material. (The world material, 2022; Cameron et al., 2000; HABA, 2021; Garrison,
1990; Cao et al., 2009; HABA, 2021; Garrison, 1990; Reed and Brown, 2001). The dotted line indicates the linear extrapolation of the normalized
average human performance.

FIGURE 3
Comparison of robots' walking speeds for bipeds (x), quadrupeds (□), and legged robots with rolls (o) with respect to denominators mass (A), height (B),
power consumption (C), and the inverse of the maximum operational time (D). Bipeds without humanoid upper bodies (without torso, or without
functional hands or head) are marked by a star (x*). Maximum operational time and power consumption refer to common activities, such as walking.
Note that not all robot sources provided data about all features studied. For the human test case, the so-called “preferred walking speed”
(Samson et al., 2001a) was chosen. For Cassie (no. 18) two different walking speeds have been reported in the literature. Both are displayed and
connected by a vertical line. The dotted line indicates the linear extrapolation of the normalized average human performance. The blue shade indicates
a typical range of the denominator for humans (2nd percentile female to 98th percentile male).

Spot, ANYmal, and Titan clearly outperformed the human test case
with respect to natural gait stepping speed. Other robots, such as
HR 18, NAO, QRIO, Asimo, LOLA, and Atlas are showing similar
walking speed performances to humans. Flame performs about as
well as humans when relating gait speed to its mass, but not when
relating it to its height, because this robot is rather “skinny,” thus,
lightweight, and tall (only around 16 kg at heights of more than
1.2 m). From a pure kinematic point of view, a tall robot has an

easier job performing large steps leading to a higher gait speed. Also,
when relating natural walking speed to power consumption, not
many robots can outperform humans (Figures 3C). Human power
consumption duringwalkingwas assumed to be 450 W.OnlyCassie,
NAO and Robotis are outperforming human walking speed when
relating it to power consumption. All these robots have very small
masses and heights, making it obviously easier to realize an efficient
energy concept. Cassie, a robot without even a torso and one of the
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TABLE 5 Comparison of Cost of Transport (CoT) and power consumption of different robots for walking.

Number Name Type References Power consumption (inW) CoT

References human Biped Tucker (1975) 450 0.381 to 0.472

2 Asimo Biped ASIMO (2022) 1800 2

16 Durus Biped Wevolver (2022) 350 1.5

17 Walk-Man Biped Thomson Reuters (2015);
Ackerman and Guizzo
(2021); EurekAlert (2018);
Instituto Italiano di Technologia
(2018)

510 1.35

18 Cassie Biped Xie et al. (2019); Gong et al.
(2019);
IEEE Spectrum ROBOTS
(2022a)

200 0.7

Results are presented only for those robots where data has been found in the literature or robot data sheets. The human values are repored for walking fast (1) and jogging (2).

newest bipedal robots, reaches amaximumwalking speed of 2.1 m/s
(Michigan Robotics, 2020); it consumes about 200 W, when walking
with a speed of 1 m/s (Kashiri et al., 2018). In contrast, Atlas requires
more than ten times more power to reach about the same walking
speed as Cassie. Digit (C et al., 2021; NED Directory, 2023; Robots,
2019), the successor of Cassie, has amaximumwalking speed of only
1.5 m/s. Furthermore, Digit is heavier than Cassie (42.2 kg–48 kg,
depending on source, vs. 31 kg) and taller than Cassie (1.55–1.58 m
vs. 1.15 m), which worsens the robot's features when normalizing
them with respect to denominators mass and size. Digit's run time
is equal to the one of Cassie (light duty run time: 3 h, heavy duty
run time: 1.5 h). It seems that Digit's additional trunk and arms
(despite the great additional functions) reduces its performance in
our metrics compared to Cassie.

Instead of power consumption, also Cost of Transport (CoT),
can be used to normalize walking speed and compare it among
different robots and the human. CoT, also called “specific resistance,”
expresses power consumption, and relates it tomass and locomotion
speed.TheCoTof biological systems is far superior to those of robots
(see Table 5) The reported CoT values of humans and robots are
sample values taken from the mentioned references. The CoT is a
function of the gait type, walking speed conditions, the kinematic
characteristics of the individual, etc. Thus, reported CoT might vary
between references.

The data found on operational time refers to normal usage
conditions, and not any extreme condition. All robots functioning
with an autonomous energy supply (i.e., portable batteries) exhibit
performance inferior to the human test case when relating their
walking speed to the operational time (Figures 3D). Although robots
such as Cassie, and Atlas are reaching rather high walking speeds,
their operational time is significantly lower compared to humans.

Running

Running is defined as a legged locomotion pattern that includes
a short flight phase in which both feet do not touch the ground.
Running can be characterized by running speed and endurance.

In the human-centered domain, there is a high variability of
performance among individuals. The world's best athletes can
finish a marathon distance at an average pace of about 21 km/h
or run 160 km with 10 km elevation gain in little more than
1 day (26.4 h) (Swiss Alps 100, 2021; World Athletics, 2022). For an
average human, we estimate the operational time for running to be at
least 1 h. Assuming an average jogging performance, a healthy young
adult can run at an average pace of 3.06 m/s for quite long times
(Barreira et al., 2010), with an optimal, energy-efficient running
speed of 3.7 m/s for males (Steudel-Numbers and Wall-Scheffler,
2009).

Also, some legged robots can perform a running pattern. One
of the newest and best performing humanoid robots, Atlas, has a
battery cycle time of about 1 h for running, and reaches maximum
running speed of only 2.5 m/s, which is inferior to the human.
Robots ATRIAS, Asimo, and Toyota Partner are jogging with a
similar performance to humans, when referring to their mass and
size (Figure 4). For most robots, there is no data available about
running endurance and power consumption.

The COT of MIT cheetah (0.52) came closest of all robots to
the COT of a human (0.2–0.47). Further, MIT cheetah outperforms
a jogging human: it runs at a pace of 6.1 m/s and weighs only
33 kg (Figures 4A). Obviously, four legs enable much faster running
speeds than two legs. Its drawbacks, however, are that its power
consumption is high [973 W (Seok et al., 2014)] and operational
time cannot compete with that of a jogging human. However,
cheetah did not achieve this performance while transporting means
for manipulation.

Adding trunk and arms for functions other than locomotion,
such as perception and manipulation, would further downgrade
running performance of the robots. One of the reasons, why it is so
difficult to outperform human running performance could be the
fact that mammals like the human comprise elastic components,
tendons, that store and release potential energy and compensate
shocks when the foot touches the ground. This makes the running
very energy efficient and keeps the foot on the ground and avoids too
much shaking of the other parts of the body. Most humanoid robots
do not contain such components yet.
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FIGURE 4
Comparison of running speeds for bipeds (x) and quadrupeds (□) with respect to denominators mass (A) and height (B). Biped robot ATRIAS (no. 1) has
no arms and no head and is, therefore, marked by x*. Note that not all robot sources provided data about all features studied. The running speed of the
human refers to a human jogger running at a pace of 3.06 m/s (Barreira et al., 2010). The dotted line indicates the linear extrapolation of the normalized
average human performance. The blue shade indicates a typical range of the denominator for humans (2nd percentile female to 98th percentile male).

FIGURE 5
Comparison of robots' stair climbing speeds for bipeds (x) and quadruped Spot (□, no. 23) with respect to denominators mass (A) and height (B). Cassie
(no. 18) has no torso and no arms and head and is, therefore, marked by x*. Note that not all robot sources provided data about all features studied.
The dotted line indicates the linear extrapolation of the normalized average human performance. The blue shade indicates a typical range of the
denominator for humans (2nd percentile female to 98th percentile male).

Legged robots rolling on wheels can outperform humans when
referring the feature running speed to the denominatorsmass and/or
size. Some recent examples for such robots are Handle and the
version of ANYmal equipped with wheels connected to its feet
(Bjelonic et al., 2020; IEEE Spectrum Robots, 2021), Ehile the idea
of combining wheels weigh legs is much older and shares a blurry
border with active suspensions (Smith et al., 2006). ANYmal on
wheels achieves a locomotion speed of 6.2 m/s using the wheels
for propulsion (Swiss Mile, 2022). However, comparing the running
speed of an average human might not be a fair comparison, as the
human could also use rolling means of transport (e.g., roller blades).

Stair climbing

The average stair climbing speed of an adult human male
or female is about 0.66 m/s or 0.48 m/s, respectively (Choi et al.,
2014), which corresponds to an average of 1.3 steps per second
(Hinman et al., 2014). Also, most legged robots can ascend and
descend stairs. The stepping speed of the robots has been estimated
from public video material and displayed in relation to mass or

height (Figure 5), see Supplementary Appendix, as there was no
quantitative information available in the literature or in the data
sheets of the devices.

Except NAO, all the stepping robots considered in this paper
can overcome step sizes that are comparable to steps in human-
centered domains, or evenhigher. Asimo andAtlas perform stepping
speeds that are comparable to the human test case. These two robots
have body masses and heights that are like those of an average
human. Only Cassie and Spot outperform a human, as they can
reach about the same numbers of steps per second, as a human,
at human-sized steps. However, Cassie has a body mass that is less
than half of an average human. It seems to have again an advantage,
thanks to its missing torso and arms. However, this prevents its
application for other tasks such as carrying and manipulating
objects. And operational time is probably lower than that of a human
walking.

A company video (Smith Marshal and Marshal Smith
Technology, 2018) shows quadrupedal robot Spot climbing a
normally sized staircase in a human laboratory environment. The
robot climbs 7 steps in about 7 s, thus, achieving a stair climbing
speed of 1 steps/s, see Figure 4.
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Changing and maintaining body postures

There are robots that are designed to specialize in mimicking
human gestures, e.g., the RASA (Meghdari et al., 2019). Other
devices can manipulate their environment, while optimizing
the posture for improved load transfer in confined workspaces
(The Verge, 2015). These robots perform well in tracking precise
end-effector trajectories if the attached load is constant. However,
for tasks involving heavy interaction, e.g., cutting with power
tools or determining precise and accurate position trajectory,
tracking is a challenge (Gawel et al., 2019; The Verge, 2015).
Further relevant human body functions listed by the International
Classification of Functioning, Disability and Health (ICF) are
lying down, squatting, kneeling, sitting, standing, bending, and
shifting the body's center of gravity (World Health Organisation,
2007). Those functions can be performed by some, but
not many humanoid robots (Tektronics Expert, 2016;
Fakultät für Elektrotechnik und Informationstechnik, 2022;
Romualdi et al., 2018; Beira et al., 2006; Pontes, 2019). iCub, for
example, is instrumented with very precise position and inertial
sensors. Consequently, iCub can track trajectories and perform its
postures with a very high repetition accuracy, perhaps comparable
to those of Tai-Chi athletes (Poppy Mosbacher, 2020). Thus, iCub
outperforms the average human with respect to posture accuracy,
as many other robots do, even if their repertoire of implemented
postures is much smaller. Furthermore, robots have a better
postural endurance than humans. The ability to control body
postures in a humanoid robot (as well as posturally stable walking
and running) is closely related to two key functions: the robot's
artificial vestibular sensing system (i.e., an inertial measurement
unit providing sufficiently fast and accurate 3D linear acceleration
and 3D rotational angular velocities, and/or visual sensors) and the
actuators being able to perform sufficiently fast enough motions. In
addition to the actuation system (e.g., electric motor), brake systems
can be deployed that use form fits or friction to lock the robot
joint's. While these systems require only little to no power to hold
the position, they addweight and volume to the system and consume
energy to change the state. Dexterity and velocity in performing such
postures and movements, however, remain superior in humans.

Other movement functions: negotiating
rough terrain, crawling, jumping,
swimming

Comparing capable robots with the average human can provide
valuable information on the agility of these robots in rough
natural terrains. The very dexterous platform, Atlas, can jump
as high as an adult human, do backflips, and negotiate highly
challenging artificial terrains (Boston Dynamics Support Center,
2021). Crawling on the ground can be performed by the small
humanoid, iCub. With an estimated crawling speed of 0.03 m/s
(i. HumanoidRobot, 2010) it is relatively slow with a body
height of 1 m compared to humans crawling up to 1.47 m/s
(Gallagher et al., 2011). The very specialized humanoid robot
Swumanoid (Plastic Pals, 2022) can perform a crawl swim at
0.12 m/s (Nakashima and Kuwahara, 2016), while average human
swimmers reach 0.96 m/s (Seifert et al., 2010). The bipedal rolling

robot Handle can jump up to 1.2 m (Boston Dynamics, 2017;
IEEE Spectrum Robots, 2021). Quadrupedal walking robots like
ANYmal and Spot recently have shown great performance in
negotiating rough terrain robustly. ANYmal was shown to negotiate
rough terrain matching the speed expected for an average human
on a 2.2 km hike and 120 m elevation gain in a total time of
78 min,while being lighter than a human (Miki et al., 2022). Further,
the ANYmal robot demonstrated robust performance in narrow
subterranean tunnels (Tranzatto et al., 2022).

Driving

The DARPA Robotics Challenge required the participating
humanoids to drive a small vehicle a short distance by interacting
with a steering wheel and one pedal. Many platforms have
consequently been programmed to drive autonomously or
teleoperated. As shown by Goswami and Vadakkepat (2019) the
robot HRP2 could successfully perform this task, by driving a small
buggy. A similar performance was observed by IIT robot Walk-
Man (Instituto Italiano di Technologia, 2015) and other robots that
participated at the DARPA Challenge. However, the vehicle was
specially designed for this challenge allowing simplified access and
control, and the driving was relatively slow. The dexterity of the
driving robot was far inferior to that of an average human driver
(Signe Brewster, 2015).

Lifting and carrying objects

The Swiss State Secretariat for Economic Affairs outlines the
maximum allowed loads carried by (human) workers, depending
on their age and gender, and ranging from 10 kg to 25 kg
(Swiss State Secretariat for Economic Affairs, 2016). However, the
weights carried by a well-trained human can be much higher. The
robot, Atlas can successfully lift and carry 5 kg boxes while the
payload to Toro was 10 kg.TheHandle robot can carry weights of up
to 45 kg, but only when it is rolling, not stepping (Boston Dynamics,
2017; IEEE Spectrum Robots, 2021).

Kicking objects with legs and playing
soccer

In the Humanoid League of the RoboCup, autonomous robots
with human-like bodies and senses play soccer against each other
in a competition. Unlike robots outside of the Humanoid League,
walking, running, kicking the ball, balancing, visual perception,
self-localization, localization of the overall soccer scenario, team
play, strategy planning etc. must be human-like. Several of the best
autonomous humanoid robots in the world, such as NAO, compete
in this competition. While these humanoid robots fulfill structural
demands, such as the right anatomy to trap and shoot the ball
and locomote between other (robotic) soccer players, dexterous
motor functions, such as dribbling, sensory functions, such as an
accurate localization of ball and other players, and higher cognitive
functions, such as strategy planning, are still lacking. Consequently,
soccer capabilities, especially game speed and dexterity, are still
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far below that of human soccer players. When establishing the
RoboCup initiative in the nineties of the last century, the organizers
envisioned to build humanoid robots that are capable to beat the
human world champion team playing according to the FIFA rules
in 2050 (Gerndt et al., 2015).

Manipulation

The human hand has approximately 27 degrees of freedom
(DOF), with 6 actuators and 4 DOF for each finger (Goswami and
Vadakkepat, 2019). The spatial accuracy of the human hand of a
surgeon can reach values of less than 1 mm (Kwartowitz et al., 2007;
Choi et al., 2009), while the same hand is capable of generating fist
forces of more than 484 N (male, mean + 1SD) (Hogrel et al., 2007).
Humans are highly capable of exploring and manipulating objects
due to their efficient sensory andmotor functions. Human sensation
employs sensor fusion of tactile, proprioceptive, visual, and auditory
modalities with high spatial and temporal resolution, leading
to rich information required to interact with the environment.
Furthermore, human muscles are actuated in a highly selective way
with respect to space and time, due to the presence of many small
motor units that can be recruited independently. Therefore, humans
are highly efficient in bimanual manipulation and task execution.
One of the most agile robotic hands integrated into a humanoid,
is the one in iCub, which has 9 DOF in total. Humanoid hands
that are detached from a robotic trunk and mounted to a rigid
frame can have a higher number of DOF (Szkopek and Redlarski,
2019). For example, the Gifu Hand III has 16 DOF (Kawasaki
and Mouri, 2019), and the Shadow Hand even 20 DOF (Rothling
et al.). Recently published review articles present the current state-
of-the-art and future trends of robotic grasping and manipulation,
including sensing, actuation, and control (Billard and Kragic, 2019;
Cui and Trinkle, 2021; Sleiman et al., 2019; Yin et al., 2021).

Purpose-built robots such as the surgical tele-manipulator
DaVinci achieve accuracies of about 1 mm (Kwartowitz et al., 2007)
in dexterous multi-DOF robotic manipulation. Thus, they can
compete with human surgeons regarding accuracy. However, the
DaVinci has a fixed base, is 175 cm tall, and has a mass of 545 kg
(intuitive, 2022). Similarly, robots built for pick-and-place excel
human performance in speed [e.g., YF003N (Kawasaki, 2023)].
However, these robots do not meet our inclusion criteria regarding
mobility.

Human-centered domains challenge robots with a large variety
of shapes, softness, and surface properties of objects to be
manipulated. To cope with this large variety of objects, novel
machine learning methods applied to sensor fusion and control
seem to be promising (Cui and Trinkle, 2021). Rakita et al. (2019)
introduced a method to transfer human bimanual manipulation
strategies to a humanoid robot. A shared-control policy allows
the user to telemanipulate the robot, while being supported by
an assistance controller that identifies typical patterns from a
bimanual action library in the human commands (Rakita et al.,
2019). Understanding the tactile perception of shapes, stiffnesses,
and contact states (e.g., slip) is crucial to advance manipulation
capabilities in robots. The recent developments in visual perception
processing improved vision-based object localization, tracking and
semantic characterization. Many of the methods developed for

visual perception also find their applications in the processing of
tactile sensor signals (Luo et al., 2017). The fusion of tactile, visual,
and proprioceptive sensing modalities leads to versatile and robust
object and contact state perception (Xia et al., 2022). Li et al. (2020b)
demonstrated the use of a multi-modal tactile sensor to classify
objects based on pressure, temperature, and thermal conductivity
information. This progresses also advanced the manipulation of
deformable objects, which is still one of the biggest challenges for
robot manipulation (Yin et al., 2021). Because of the highly efficient
sensory and motor functions in humans, robots are still performing
inferior in dexterousmanipulation tasks, particularly when complex
tactile perception is demanded. Some robotic systems that are
capable of choosing and connecting different robotic hands to their
most distal limb to allow a higher versatility of tasks, e.g., to switch
between precision and power grip (Billard and Kragic, 2019).

Despite the recent advancements in the development of robotic
hands and arms for mobile robots, mobile robotic manipulation
lacks far behind average human skills. One eminent difference
is the lack of versatility in robotic hands preventing them from
performing both precise finger movements as well as powerful
grasping and manipulation tasks using a large number of DOF. Next
to the mechanical challenges, also controls and perception pose
challenges to mobile robotic manipulation. Arguably, the biggest
discrepancy between human and mobile robotic manipulation is
the semantic and physical understanding of the environment the
robot is interactingwith (Billard andKragic, 2019). Likely this is why
work environments for robots are still structured to allow robots that
are less versatile than humans to successfully perform manipulative
tasks.

Basic motor learning

Motor learning performance is difficult to quantify in numbers.
Human and machine learning follow different paradigms but are
becoming more and more comparable as the performances of
CPUs and artificial intelligence algorithms increase. Human motor
learning follows a learning curve that is estimated to lead to
acceptable performances within 20 h of practice; however, more
than 10′000 h are required to be fully proficient in a complex motor
skill, such as surgery (Hirschl, 2015; Kaufman, 2013). Learning
algorithms of machines can be much faster in reinforcement
learning of motor abilities than humans as multiple scenarios
can be evaluated in parallel physics simulations (Miki et al., 2022;
Hwangbo et al., 2019).

Discussion

Robotic vs. human structures

Artificial vision sensors based on traditional CCD and CMOS
chip technology can outperform the eye in temporal and spatial
resolutions. However, comparisons must be interpreted with care,
because biological and artificial vision systems are based on different
design principles and functional paradigms. While digital cameras
work with discrete framerate and pixel numbers, the human eye
follows the laws of neural activation, resulting in a fusion of
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continuous stimulations (Scharnowski et al., 2007). Human vision
works with higher-level interpretations and sensor fusion to
augment the perceived image information.

CCD and CMOS based digital camera systems are inferior to
the eye in other features: they have smaller dynamic ranges and
higher dark limits than the human eye, and the denominators mass,
size, and power consumption are larger. Specialized RGB sensors
can outperform the eye, when dealing with non-visible light or in
very dark environments, where the human eyes do not perform at
all. However, these specialized sensors tend to trail behind nature
regarding other specifications.

At the cost of relatively high mass and volume, LIDAR sensors
can perceive depth with high accuracy, clearly superior to human
eyesight. However, due to the measurement principle, the latency
of measurement updates for a field of view is higher, thus inferior
to the human eye. Therefore, structured light and stereoscopic
sensor technologies, which are characterized by low latency, but
less accurate depth perception, are often used in combination with
LIDAR sensors for the analysis of the environment close to the robot
where fast reactions are needed.

The latest event camera technologies do finally compete with
the performance of the human eye with respect to latency, dynamic
range, motion blur, and power consumption. (Gallego et al., 2017).
However, there are different trade-offs involved, such as latency vs.
power consumption, or sensitivity vs. bandwidth and processing
capacity, or camera size vs. spatial resolution. Overall performance
could be further improved by pairing an event camera with depth
sensor technologies, or an RGB camera to provide 3D depth
information and a larger color range, respectively.

Conventional vision systems on board humanoid robots might
be sufficient formost human-like tasks in human-centered domains,
as for most tasks, optical challenges are not extreme. Furthermore,
only one or two vision sensors are required, and not hundreds
of units (as for the joints and actuators, so that additional mass,
size, and power consumption may not over compromise the entire
robotic system. Last, but not least, the visual perception of the
environment can be augmented by scans obtained from a set of
stationary camera systems and/or cameras mounted on other robots
and unmanned aerial vehicles (UAVs) sharing the same domain.

Artificial microphones outperform the human hearing system
in terms of perceived frequency range and detection threshold
sensitivity. Sound localization accuracy, however, is only better when
using larger microphone setups that may not be carried by mobile
platforms.

Artificial pressure sensormatrices can outperformhuman tactile
perception. Other sensor technologies outperform proprioceptive
and vestibular senses.

The power efficiency of human muscles is better than the one
from SMAs and pneumatic cylinders, but most electromechanical
and hydraulic systems, PAMs, and EAPs outperform human muscle
efficiency, even when considering off-board energy storage. Most
artificial actuator technologies outperform the human muscle also
with respect to maximum speed and endurance.

It seems that many technical actuator systems also outperform
the human muscle with respect to generated force and power
density, but only when excluding the mass of power supply and
other technical components that are required to provide pressure
(compressor, pump, pressure tank/reservoir), heat, or high voltage,

thus, a tethered system. Many actuators require heavy active cooling
systems. Electromechanical actuators require heavy transmissions
to reduce the high rotational speed that they generate (Madden,
2007). Some kinds of EAP technologies require high voltages, which
makes handling difficult or even dangerous (Chen et al., 2020).
Those auxiliary components need to be carried by the robot, if it
is made completely untethered, such as in the hydraulically driven
(and heavy) Atlas robot (Ackerman, 2015).

Unlike artificial actuators' metrics, the metrics for biological
muscles account for the weight of auxiliary components like
power source (organic compounds, such as Adenosine Triphosphate
(ATP), that store and provide energy to drive many cellular
processes. Normalization of human and robot actuation including
the weight of components that are required to run the actuation can
lead to an improvement of the specific metrics of biological muscles
compared to artificial actuators (Higueras-Ruiz et al., 2021).

Internal combustion engines seem to be an attractive option for
use onboard a robot, because of the high energy density of gasoline.
However, according to Madden (Madden, 2007), there are two main
drawbacks of combustion engines: First, the engine operates only
over a narrow range of speeds requiring heavy transmissions and slip
clutches; and second, the machines produce unwanted side-effects
such as heat, noise, and fumes. That's why we have excluded such
engines in the frame of this comparative study.

The human skeleton has a much higher number of degrees of
freedom than even themost advanced robot.This leads to kinematic
redundancies that permit humans to adapt their execution of
movements to environmental, object-specific, and task-specific
constraints (e.g., moving a filled cup of water in a narrow space).
This is one important aspect enabling the enormous task versatility
of humans. Furthermore, mammalian tissues such as bones and
muscles have regenerative, self-healing, capabilities, and can grow
and adapt their properties slowly, if exposed to new conditions in
a repetitive manner. In contrast, robotic joints, and links perform
at least as well as their human counterparts: the range of motion is
much larger in artificial joints, friction properties are comparable,
and robotic links made from carbon or special metals, such as
titanium, outperform stiffness and fracture properties of the human
bone.

Robotic vs. human functions

Humans evolved over millions of years to be able to perform
complex and versatile bodily functions with high levels of dexterity
using highly optimized motor, perception, and computational
structures. For example, the human sensory-motor function of our
nervous system is the product of hundreds of millions of trials and
errors of biological interactions with environments which helped
creating a highly complex network of neurons that lead to optimized
motor control capabilities. In contrast, robot control functions are
extremely primitive.

With respect to natural walking speed, only a few robots,
including several four-legged robots, outperformhuman capabilities
or get close to them. Most recently developed robots tend
to be lightweight and small builds. The power consumption
of some of the robots is within a similar range to human
power consumption, especially when they have been optimized
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for walking like Cassie [see Cassie (Xie et al., 2019; Gong et al.,
2019; IEEE Spectrum ROBOTS, 2022a)]. Cassie seems to have an
advantage because of its low mass due to missing torso, arms, and
head. This changes to the disadvantage of the robot when trunk and
arms would be added to it, such as Cassie's successor Digit, which
walks slower than Cassie. No robot could outperform humans in
terms of gait speedwhen relating it to cost of transport or operational
time.

Some robots can perform fast running patterns, as fast as a
human jogger, or even faster, with lower mass and size properties.
However, within the scope of this study, there is no robot that runs
as fast as a human sprinter, not even the legged robots with wheels.
Several robots can climb stairs, but only the best among those are
reaching climbing (i.e., ascending) speeds that are comparable to
those of an average human when related to body mass or size. All of
those robots cannot compete with the human test case when relating
their performance to maximally possible operation time.

Few robots can perform a rich repertoire of different body
postures–speed of postural changes and dexterity are superior in
humans. However, robots have better postural sensors than humans
allowing them to perform postures and tracking movements with
a higher repetition accuracy, and, depending on actuation and
transmission type, remain in a posture virtually forever, without the
consumption of additional power.

Other humanoid robots can jump, crawl, or swim like humans,
reaching about the performance level of the average human
population. Robots can also lift and carry weights, manipulate
objects, drive cars, or play soccer, etc. The dexterity and versatility of
robotic manipulation improved remarkably within the last decade.
In simple pick and place tasks, robots are even much faster
than humans, e.g., YF003N [by Kawasaki Robotics, (Kawasaki,
2023)]. However, in dynamic manipulation tasks and handling
of deformable materials, robots are still far behind human
performance. In general, robot design is still specialized to perform
a limited number of specific movement patterns or tasks. Thus, the
versatile dexterity of humans is, by far, unmatched by current robotic
systems.

The performance of four-legged robots and the commercial
availability of such platforms has experienced a steep incline during
the last few years. A similar leap in technology can be expected for
two-legged robots in the future. However, the design of a robot to
perform typical human tasks might not have to strictly mimic the
bipedal human structure.

To close the gap between robot and human manipulation
capabilities, sensor fusion approaches should be investigated
merging full-body, high-resolution sensing of tactile,
proprioceptive, visual, and auditory information for environment
perception (e.g., semantic information and physical characteristics).
To date, most robots still rely on a confined set of contact points
limiting the versatile use of their body parts. In contrast, humans
perform multi-contact interactions which enable more efficient
and versatile manipulations. Future research on more integrated
actuation, sensing, and power supply as well as high-resolution
soft tactile sensors will pave the way for advanced manipulation
capabilities.

Perhaps, the functional limitations of robots can be explained
by the fact that human (and animal) anatomy and physiology
are based on different principles. For example, humans comprise

elastic components that make locomotion functions more efficient
and smoother. Control of actuators occurs in different temporal
and spatial resolutions in humans versus robots. And human use
feedforward-control modes to perform movements (e.g., reflexes),
whereas robots predominantly use feedback-controlled principles.
A more thorough comparison of such anatomical and physiological
differences would require another survey paper.

Limitations

Making a “fair” comparison of technical systemswith the human
is not trivial, as robots are made by artificial materials and not
by biological cells, and robots can have different geometrical and
structural appearances, which make it difficult to define a good
normative basis. Furthermore, many devices have been developed
for a specific application case. Typically, only the specifications
relevant to this application case are reported in the scientific
literature, making a thorough comparison of devices difficult that
depicts the design tradeoffs. Nevertheless, we tried to perform
an “apple with apple” comparison, by carefully selecting concrete
functions and structures, with their measurable features that
are relevant in human-centered domains, and scaling them by
meaningful denominators. This scaling was required for a more
inclusive review of the existing technology. Assuming a linear
relationship of the feature value to the denominator near the human
denominator value (i.e., linearization point) allowed to compare
the performance of robots with slightly different weight and size
to the human performance. However, the assumption of a linear
relation between the functional features and denominators could
be refined by incorporating known non-linear relationships, e.g.,
inverse proportionality of power density to weight and volume
(Aubin et al., 2022). Alternatively, restricting the comparison to
actuation technology that was demonstrated to achieve functional
features in the relevant range for the targeted application would
allow for a comparison without the linear approximation. Thereby,
the tradeoff to overlook technologies with high potential in the
near future would have to be accepted. Furthermore, we encourage
establishing a unified set of metrics used in publications, such
that the performance and design trade-offs of related work can be
analyzed more thoroughly.

Outlook

Humans started early in their evolution (phylogenesis) as well
as in their individual development (ontogenesis) to specialize on
a subset of specific tasks to optimize the output of their work
while relying on social structures to substitute the other tasks.
While humans hone the most relevant skills and loose seldomly
used skills, the structural parts of the human body persist which
inflicts bounds on the performance. Robots built to excel in
versatile human functions are not bound to one set of structural
components. Thus, the question emerges if one robot design with a
versatile functionality or a “society” of robot designswith specialized
complementing functions will be favorable.

Even if multiple robot designs collaborate to accomplish the
desired functionality, the state-of-the-art in the integration of
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technical structures to the full robot design would not suffice to
provide the functionality with an applicable robot group size. To
achieve denser functionality regarding volume and weight more
integral combination of the individual components should be strived
for as outlined by Aubin et al. (2022) at the example of embodied
energy.

Such integral system designs are practically highly challenging
to develop, as a high amount of financial and manpower resources
would have to be committed to one project. To date, economic and
academic structures, and funding favor distributed risk by investing
in individual development of modular structures. Thus, in order to
develop a highly integrated system with the functional versatility of
a human, according financial and sustainable project management
structures would be required. To this end, a study investigating the
prevalent limitations in versatility of humanoid robotic systems in
comparison to highly specialized and repetitive tasks would be of
interest.

Disregarding the system integration, most artificial structures
can compete with their biological counterparts. However, the
performance of artificial actuation still has significant gaps
compared to the versatility of human actuators. To date, functionally
high-performing humanoid-like robots rely on electric motors or
hydraulic cylinders as these technologies were refined over the
last century and are well available. However, due to the maturity
of this technology, large leaps in performance are not expected.
Further, functional geometric constraints of these technologies
impede higher system integration with multifunctional structures.

The emerging soft actuation and sensing technology might
comprise solutions to overcome these limitations. However, the
technology requires morematurity to unfold the predicted potential
and interfacing solutions between the components must be
developed to be employed in complex robotic systems like
humanoid robots (Rothemund et al., 2021).

Reliable, robust, and efficient robotic locomotion in rough
and changing terrain experienced impressive progress during
recent years substantially reducing the gap to the average human
performance. In the authors' opinion, robotic manipulation has
a larger performance gap to cover. Robotic motor abilities to
manipulate flexible structures (e.g., textiles) and to leverage the
dexterity of more complex manipulators (e.g., shadow hand) are
consistently improving. However, enhanced integration of tactile
sensing and visual perception in manipulation control algorithms
will be required to close the gap to the humans. Future research
should invest in advancing the cognitive abilities of robots to
understand the kinematic and semantic properties of environments
allowing them to generate elaborate motion plans. Like humans,
future robots might even be able to use and create tools that
help them to improve motor, sensory and cognitive performance
(Stilman et al., 2014).

Conclusion

Despite the impressive advances during the last years, only some
robots, which have been optimized for very specific tasks in semi-
structured environments, reach performances that can compete
with average humans in that specific task. However, no humanoid
robot can compete with the dexterity and versatility of human

movement functions. Such versatile functionality at the scale of
humans might not be needed in certain industrial and rescue
applications, where different specialized robotic systems collaborate
or where environments are not human-centered and have been
shaped or restricted to fit the robotic solutions. One could imagine
that onlyminor restrictions and adaptations of human environments
may let a humanoid robot perform faster and more accurately than
humans. However, for the application of robots in natural (outdoor)
environments, where humans usually stay, in environments that
have been designed for humans or in applications where a robot
closely cooperates with a human, a robotic system keeping up with
the versatile nature of humans would have the best impact. Such
applications could be elderly care in home settings, construction
work in buildings, or any kind of household service.

To achieve such versatile functionality for locomotion and
manipulation tasks performed by a robot at the scale of a human,
a sufficiently tight packaging of the actuation and energy supply
is required. Of course, environments could be structured in a way
that robots can perform well, even with higher speed and accuracy,
however, on the cost of versatility.

The major challenge will be the development of cognitive
functions that understand the contexts and tasks in human-like
environments based on onboard observations and that can derive
meaningful action plans. This topic was not covered in this work.

In contrast, when looking into individual structures that are
required to enable above-mentioned functions, the comparison
sways to an advantage for robots–when ignoring the extra-
ordinary regenerative and adaptive capabilities of human tissues.
Sensing technology can outperform biological sensors in most
aspects when combining different technologies. Joints have larger
ranges of motion than human joints, and friction properties are
comparable among both. Robotic links made from carbon or
titanium outperform the stiffness and fracture properties of the
human bone. Artificial actuators on their own are faster and have
better endurance than the human muscle. However, the means
for energy storage and power conversion required for the artificial
actuators (e.g., reduction gearbox or compressor) prevent current
actuation systems to achieve the required combination of speed,
strength, and haptic accuracy at the weight, size, and efficiency of
human muscles.

With respect to computational function, there is no single,
stand-alone artificial computational system that can outperform the
computational power of the human brain, especially when taking
denominators mass, size, and power consumption into account, see
Supplementary Appendix SB. However, robots might not need the
full capacity required of human brains for the understanding of task-
specific contexts, formulation of action plans, successful execution
of sensory-motor functions, and dexterous movements.

Considering normalized values, then sensors, actuators, and
skeletal systems perform excellently when comparing them with
their biological counterparts. Consequently, one might ask, why the
existing well-performing structures do not result in outperforming
functions? The answer to this question can only be speculated at
this time. Shaping the structural components to the scale of human
system dimensions and integrating them in a compact design might
be a limiting factor. One crucial disadvantage of robots could be the
size and footprint of actuators including their power supplies and
auxiliary components carried on the platform.

Frontiers in Robotics and AI 19 frontiersin.org



Riener et al. 10.3389/frobt.2023.1223946

Conversely, one could conclude that at least tethered humanoids
should have the potential to outperform any human, even the
trained athlete, with respect to movement performance, dexterity,
and versatility. However, it seems that even cabled humanoid
robots are still far away from such a versatile performance level.
Despite the remarkable progression of robotics over the last
few years, scientists and engineers have not yet been successful
in merging powerful structures and specialized solutions to
obtain fully integrated dexterous and versatile systems that are
comparable to the performance of humans.Thepersisting challenges
involve processing vast sensory information into effective actuator
commands; packaging and wiring large numbers of sensors
and actuators into one compact system; implementing smart
control strategies required to handle dexterous and versatile
movement tasks. Another challenge is the dissipation of energy
in computational units, actuators, and other moving parts
that generate heat and need to be removed from the robotic
device.

Versatile and dexterous robots that can outperform humans
do not yet exist–they are still not among us. Hence, human skills
prevail over robotic skills. New sensor fusion, machine learning,
and decision-making strategies may be required to solve the current
functional limitations of robots. However, it will still take some
time for robots to assume universal skills, including human labor
functions. This is especially true for service-oriented tasks within
human-centered domains and in interactions with humans which
demand versatile dexterity and a higher level of problem-solving
cognitive performance.
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