1,056 research outputs found

    On determining cluster size of randomly deployed heterogeneous WSNs

    Get PDF
    Cataloged from PDF version of article.Clustering is an efficient method to solve scalability problems and energy consumption challenges. For this reason it is widely exploited in Wireless Sensor Network (WSN) applications. It is very critical to determine the number of required clusterheads and thus the overall cost of WSNs while satisfying the desired level of coverage. Our objective is to study cluster size, i.e., how much a clusterhead together with sensors can cover a region when all the devices in a WSN are deployed randomly. Therefore, it is possible to compute the required number of nodes of each type for given network parameters

    Energy Aware Algorithms for managing Wireless Sensor Networks

    Get PDF
    While the majority of the current Wireless Sensor Networks (WSNs) research has prioritized either the coverage of the monitored area or the energy efficiency of the network, it is clear that their relationship must be further studied in order to find optimal solutions that balance the two factors. Higher degrees of redundancy can be attained by increasing the number of active sensors monitoring a given area which results in better performance. However, this in turn increases the energy being consumed. In our research, we focus on attaining a solution that considers several optimization parameters such as the percentage of coverage, quality of coverage and energy consumption. The problem is modeled using a bipartite graph and employs an evolutionary algorithm to handle the activation and deactivation of the sensors. An accelerated version of the algorithm is also presented; this algorithm attempts to cleverly mutate the string being considered after analyzing the desired output conditions and performs a calculated crossover depending on the fitness of the parent strings. This results in a quicker convergence and a considerable reduction in the search time for attaining the desired solutions. Proficient cluster formation in wireless sensor networks reduces the total energy consumed by the network and prolongs the life of the network. There are various clustering approaches proposed, depending on the application and the objective to be attained. There are situations in which sensors are randomly dispersed over the area to be monitored. In our research, we also propose a solution for such scenarios using heterogeneous networks where a network has to self-organize itself depending on the physical allocations of sensors, cluster heads etc. The problem is modeled using a multi-stage graph and employs combinatorial algorithms to determine which cluster head a particular sensor would report to and which sink node a cluster head would report to. The solution proposed provides flexibility so that it can be applied to any network irrespective of density of resources deployed in the network. Finally we try to analyze how the modification of the sequence of execution of the two methods modifies the results. We also attempt to diagnose the reasons responsible for it and conclude by highlighting the advantages of each of the sequence

    Analyzing Energy-efficiency and Route-selection of Multi-level Hierarchal Routing Protocols in WSNs

    Full text link
    The advent and development in the field of Wireless Sensor Networks (WSNs) in recent years has seen the growth of extremely small and low-cost sensors that possess sensing, signal processing and wireless communication capabilities. These sensors can be expended at a much lower cost and are capable of detecting conditions such as temperature, sound, security or any other system. A good protocol design should be able to scale well both in energy heterogeneous and homogeneous environment, meet the demands of different application scenarios and guarantee reliability. On this basis, we have compared six different protocols of different scenarios which are presenting their own schemes of energy minimizing, clustering and route selection in order to have more effective communication. This research is motivated to have an insight that which of the under consideration protocols suit well in which application and can be a guide-line for the design of a more robust and efficient protocol. MATLAB simulations are performed to analyze and compare the performance of LEACH, multi-level hierarchal LEACH and multihop LEACH.Comment: NGWMN with 7th IEEE Inter- national Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA 2012), Victoria, Canada, 201

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Wireless Sensor Network: At a Glance

    Get PDF

    A Brief Survey on Cluster based Energy Efficient Routing Protocols in IoT based Wireless Sensor Networks

    Get PDF
    The wireless sensor network (WSN) consists of a large number of randomly distributed nodes capable of detecting environmental data, converting it into a suitable format, and transmitting it to the base station. The most essential issue in WSNs is energy consumption, which is mostly dependent on the energy-efficient clustering and data transfer phases. We compared a variety of algorithms for clustering that balance the number of clusters. The cluster head selection protocol is arbitrary and incorporates energy-conscious considerations. In this survey, we compared different types of energy-efficient clustering-based protocols to determine which one is effective for lowering energy consumption, latency and extending the lifetime of wireless sensor networks (WSN) under various scenarios

    Effective Node Clustering and Data Dissemination In Large-Scale Wireless Sensor Networks

    Get PDF
    The denseness and random distribution of large-scale WSNs makes it quite difficult to replace or recharge nodes. Energy efficiency and management is a major design goal in these networks. In addition, reliability and scalability are two other major goals that have been identified by researchers as necessary in order to further expand the deployment of such networks for their use in various applications. This thesis aims to provide an energy efficient and effective node clustering and data dissemination algorithm in large-scale wireless sensor networks. In the area of clustering, the proposed research prolongs the lifetime of the network by saving energy through the use of node ranking to elect cluster heads, contrary to other existing cluster-based work that selects a random node or the node with the highest energy at a particular time instance as the new cluster head. Moreover, a global knowledge strategy is used to maintain a level of universal awareness of existing nodes in the subject area and to avoid the problem of disconnected or forgotten nodes. In the area of data dissemination, the aim of this research is to effectively manage the data collection by developing an efficient data collection scheme using a ferry node and applying a selective duty cycle strategy to the sensor nodes. Depending on the application, mobile ferries can be used for collecting data in a WSN, especially those that are large in scale, with delay tolerant applications. Unlike data collection via multi-hop forwarding among the sensing nodes, ferries travel across the sensing field to collect data. A ferry-based approach thus eliminates, or minimizes, the need for the multi-hop forwarding of data, and as a result, energy consumption at the nodes will be significantly reduced. This is especially true for nodes that are near the base station as they are used by other nodes to forward data to the base station. MATLAB is used to design, simulate and evaluate the proposed work against the work that has already been done by others by using various performance criteria

    An algorithm for enhancing coverage and network lifetime in cluster-based Wireless Sensor Networks

    Get PDF
    Majority of wireless sensor networks (WSNs) clustering protocols in literature have focused on extending network lifetime and little attention has been paid to the coverage preservation as one of the QoS requirements along with network lifetime. In this paper, an algorithm is proposed to be integrated with clustering protocols to improve network lifetime as well as preserve network coverage in heterogeneous wireless sensor networks (HWSNs) where sensor nodes can have different sensing radii and energy attributes. The proposed algorithm works in proactive way to preserve network coverage and extend network lifetime by efficiently leveraging mobility to optimize the average coverage rate using only the nodes that are already deployed in the network. Simulations are conducted to validate the proposed algorithm by showing improvement in network lifetime and enhanced full coverage time with less energy consumptio
    corecore