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On Determining Cluster Size of
Randomly Deployed Heterogeneous WSNs

Cüneyt Sevgi and Altan Koçyig̃it

Abstract— Clustering is an efficient method to solve scalability
problems and energy consumption challenges. For this reason it
is widely exploited in Wireless Sensor Network (WSN) applica-
tions. It is very critical to determine the number of required
clusterheads and thus the overall cost of WSNs while satisfying
the desired level of coverage. Our objective is to study cluster
size, i.e., how much a clusterhead together with sensors can cover
a region when all the devices in a WSN are deployed randomly.
Therefore, it is possible to compute the required number of nodes
of each type for given network parameters.

Index Terms— Cluster size, random deployment, wireless sen-
sor networks (WSNs).

I. INTRODUCTION

SCALABILITY and energy consumption are among the
most important challenges for WSN applications. Several

hierarchical architecture and protocols are proposed to tackle
these challenges. Devices in WSNs form clusters where the
clusterheads aggregate and fuse data to conserve energy.

In this paper, we consider a randomly deployed
heterogeneous WSN. A mixture of two different types
of devices, clusterheads and ordinary sensors (or simply
sensors), is assumed to be scattered over a region of interest.
In this scenario, randomly deployed clusterheads form clusters
with the nearby sensors. For such a network, we determine
the cluster size, which is the area covered by a clusterhead
together with the sensors connected to it.

The remainder of the paper is organized as follows. Sec-
tion II presents the coverage and connectivity equations for
randomly deployed sensors based on the Boolean coverage
disk model. In Section III, we derive the expected value of
the cluster size for randomly deployed heterogeneous WSNs.
Section IV concludes the paper.

II. COVERAGE AND CONNECTIVITY

Coverage is one of the fundamental issues in WSNs. A
point is said to be covered if it is within the sensing range
of at least one sensor. This coverage would be meaningful
only when the sensor is able to transmit its data to the sinks.
Therefore, coverage and connectivity should be analyzed
jointly.
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Recently, some research has been carried out to describe
the relationship between coverage and connectivity. In [2]
and [3], it is independently proven that “transmission range
at least twice the sensing range” is the sufficient condition for
connectivity as long as full coverage is guaranteed for a convex
region. Both of the studies focus on analyzing the condition
for a fully covered network to guarantee connectivity.

While in some WSN applications the goal is to gather data
about an entire region of interest (full coverage), for many
other, partial coverage is realistic and feasible since full cover-
age in randomly deployed WSNs reveals asymptotic behavior.
This is because when the number of sensors scattered or the
sensing range are increased beyond a threshold value, the
coverage increases only marginally. Therefore, we primarily
consider the partial coverage of a randomly deployed mixture
of clusterheads and sensors.

In this letter, we adopt the following network model.

• The WSN consists of two different types of devices:
sensors and clusterheads.

• We assume that NH clusterheads and NS sensors are
deployed randomly over a planar region D.

• Both sensors and clusterheads have sensing capabilities
and their sensing range is rs.

• Sensors can only transmit their sensing data to a cluster-
head and clusterheads transmit data to sinks. Communi-
cation among sensors is not allowed.

• A sensor can communicate with a clusterhead if it is
within the communication range rt of the clusterhead.
The clusterheads are assumed to be connected to the sink.

In the following sections, coverage and connectivity equa-
tions are presented separately. In Section III, cluster size
and connected coverage equations are derived by using these
equations.

A. Coverage

Suppose a large planar area D is to be covered by N
identical sensors which are scattered randomly over the area
according to a Poisson point process. Suppose the area sensed
by each sensor is a perfect disk with radius rs and λ is the
average number of sensors per unit area. The probability of a
point in D being covered Pcov can be found as [1]:

Pcov = 1 − e−λπr2
s (1)

In this letter, all subsequent discussions are based on the
similar approach used for the derivation of Eqn. 1 by Koskinen
in [1].

Note that in the above equation, coverage probability is
independent of the geometry of the (convex) region sensed
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by a sensor and if the sensing region covered by any sensor
was AS , the coverage probability would be:

Pcov = 1 − e−λ AS (2)

Both sensors and clusterheads have sensing capability and
their sensing region is a perfect disk. We have N = NH +NS

sensing devices scattered randomly over the area. Therefore,
without considering connectivity, the coverage probability
could be found as:

Pcov = 1 − e−
(NH+NS)πr2

s
D (3)

B. Connectivity

Like coverage, connectivity is another requirement to be
satisfied in WSNs. If a sensor can reach the clusterhead
directly, then this sensor is said to be connected. However,
by using an approach similar to the approach employed in
deriving coverage probability, the probability that a sensor is
within the communication range of a clusterhead Pcon could
be derived as:

Pcon = 1 − e−
NH πr2

t
D (4)

III. CLUSTER SIZE IN A HETEROGENEOUS WSN

Up to this point, the concepts of connectivity and coverage
have been described separately. However, we should only take
into account the part of the sensing area covered by connected
sensors. In order to find the actual coverage probability we
first determine Scluster, the expected value of area covered
by each clusterhead together with the sensors connected to it.
Then it is possible to find the actual coverage (i.e., connected
coverage probability) by using Eqn. 2:

Pcov = 1 − e−
NH Scluster

D (5)

Let the average number of sensors connected to a single
clusterhead be ns. Since there are NS sensors and NH

clusterheads scattered over region D, ns can be found using
Eqn. 4 as follows:

ns =
NS

NH

(
1 − e−

NH πr2
t

D

)
(6)

Therefore, in order to find Scluster, we need to find the area
covered by the clusterhead and ns sensors connected to it. For
the sake of simplicity, consider that a single clusterhead and
a set of sensors are scattered over a region D (Fig. 1).

Since there should be ns sensors in the communication
range of the clusterhead, the number of sensors in the square,
Cs, should be:

ns

Cs
=

πr2
t

D
⇐⇒ D =

Cs

ns/πr2
t

⇐⇒ Cs =
Dns

πr2
t

(7)

Since we already know that any point within rs from the
center is covered by the clusterhead at the center, any point
outside the inner circle can only be covered by the sensors
connected to the clusterhead. To find the probability of a point
p outside the inner disc to be covered, there should be one or
more “connected sensors” sensing the point p. That is, there
should be one or more sensors in region I(x), which is the
shaded region in Fig. 1.

Fig. 1. Area covered by a clusterhead and a single sensor.

I(x) is the region formed by the intersection of two discs,
and its area is a function of the distance between the centers
of these two discs (denoted by x) and their radii rt and rs.
We can examine two different cases to find the area of the
shaded region.

Case 1: When rt-rs<x≤rt+rs the area I(x) can be found
as in [4]:

I(x) = r2
s cos−1

(
x2 + r2

s − r2
t

2xrs

)
+

r2
t cos−1

(
x2 + r2

t − r2
s

2xrt

)
− 1

2√
(rs + rt − x)(x + rs − rt)(x − rs + rt)(x + rs + rt)

(8)

Case 2: When x≤rt-rs,

I(x) = πr2
s (9)

Let Pp1(x) be the probability that point p is not sensed by
a single sensor connected to the clusterhead at the center. In
order for a point p not to be sensed, the sensor node should
not be in the intersected area. Therefore,

Pp1(x) =
(

1 − I(x)
D

)
(10)

We have Cs sensors in region D. Therefore, the probability
of having no sensor in the shaded area is:

Pp−nc(x) =
(

1 − I(x)
D

)Cs

(11)

As Cs goes to infinity we have:

Pp−nc(x) = lim
Cs→∞

⎛
⎝1 −

I(x)ns

πr2
t

Cs

⎞
⎠

Cs

= e
− I(x)ns

πr2
t (12)

Therefore, the probability that a point p which is x units
away from the clusterhead at the center is sensed by “at least
one sensor” connected to the clusterhead at the center can be
found as:

Ppc(x) = 1 − e
− I(x)ns

πr2
t (13)

By using the individual point connectivity probabilities
derived above, we can find “the expected value of the area
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Fig. 2. I(x) vs. x (x is the distance between the centers of the two discs)
where rt = 25 unit and rs = 20 unit.
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Fig. 3. Scluster vs. rt where D = 1000 × 1000 unit2 and rs = 10 unit.

covered ” by the clusterhead and the sensors connected to it.
For this purpose, we can integrate in cylindrical coordinates
as:

Scluster =
∫ rs+rt

x=rs

∫ 2π

φ=0

x(1 − e
− I(x)ns

πr2
t )dφdx

= 2π

∫ rs+rt

x=rs

x(1 − e
− I(x)ns

πr2
t )dx (14)

By rearranging the terms, we have:

Scluster = πr2
s + 2π

∫ rs+rt

x=rs

x(1 − e
− I(x)ns

πr2
t )dx (15)

A. Linear Approximation for Cluster Size

To find Scluster, the complex integral in Eqn. 15 should
be performed. So as to simplify the integration, I(x) can be
approximated by a line segment whose equation is (see Fig. 2):

I(x) = −(πrs/2)x + (πrs/2)(rs + rt) (16)

Case 1: If rt≤2rs then area covered by a clusterhead and
sensors connected to it can be found as:

Scluster = πr2
s+

2π

∫ rs+rt

x=rs

x(1 − e
− [−(πrs

2 )x+(πrs
2 )(rs+rt)]ns

πr2
t )dx(17)

Then Scluster can be found as:

Scluster = π(rs + rt)2+
2π

α

[
(
1
α
− rs)(1 − e−αrt) − rt

]
(18)

where
α =

nsrs

2r2
t

(19)

Case 2: If rt>2rs then area covered by a clusterhead and
sensors connected to it can be found as:

Scluster = πr2
s + 2π

∫ rt−rs

rs

x(1 − e
−πr2

sns

πr2
t )dx+

2π

∫ rs+rt

rt−rs

x(1 − e
− [−(πrs

2 )x+(πrs
2 )(rs+rt)]ns

πr2
t ))dx(20)

Then Scluster can be found as:

Scluster = π(rs + rt)2 − πrt(rt − 2rs)e−2αrs−
2π

α2

[
(α(rt − rs) − 1)(1 − e−2αrs) + 2αrs

]
(21)

We performed extensive simulations to validate derived
cluster size equations by using a simulator we developed in
Java. The number of experiments for each cluster size value
is determined according to a confidence interval of ±5% with
the probability of 0.95. Fig. 3 shows that there is at most
2% discrepancy between simulation results and the analytical
findings. This variation is due to the edge effect because Fig.
3 demonstrates that for smaller values of rt, analytical and
simulation values do not deviate significantly. However, as the
rt values get larger, the variation increases.

IV. CONCLUSION

In this letter, we derived general equations (Eqn. 18 and
Eqn. 21) for cluster size in randomly deployed heterogeneous
WSNs and we validated the equations through simulations.
The result obtained in this letter enables one to compute
the number of required devices and therefore the optimum
proportion of the different types of devices. Issues related to
finding the optimum number of different types of devices are
currently under study.
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