9 research outputs found

    On Design of Interval Observers with Sampled Measurement

    Get PDF
    International audienceNew design of interval observers for continuous-time systems with discrete-time measurements is proposed. For this purpose new conditions of positivity for linear systems with sampled feedbacks are obtained. A sampled-data stabilizing control is synthesized based on provided interval estimates. Efficiency of the obtained solution is demonstrated on examples

    Fault tolerant control of uncertain dynamical systems using interval virtual actuators

    Get PDF
    This is the peer reviewed version of the following article: Rotondo D, Cristofaro A, Johansen TA. Fault tolerant control of uncertain dynamical systems using interval virtual actuators. Int J Robust Nonlinear Control. 2018;28:611–624, which has been published in final form at https://doi.org/10.1002/rnc.3888. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.In this paper, a model reference fault tolerant control strategy based on a reconfiguration of the reference model, with the addition of a virtual actuator block, is presented for uncertain systems affected by disturbances and sensor noise. In particular, this paper (1) extends the reference model approach to the use of interval state observers, by considering an error feedback controller, which uses the estimated bounds for the error between the real state and the reference state, and (2) extends the virtual actuator approach to the use of interval observers, which means that the virtual actuator is added to the control loop to preserve the nonnegativity of the interval estimation errors and the boundedness of the involved signals, in spite of the fault occurrence. In both cases, the conditions to assure the desired operation of the control loop are provided in terms of linear matrix inequalities. An illustrative example is used to show the main characteristics of the proposed approach.Peer ReviewedPostprint (author's final draft

    Fault tolerant control of uncertain dynamical systems using interval virtual actuators

    Get PDF
    This is the peer reviewed version of the following article: Rotondo D, Cristofaro A, Johansen TA. Fault tolerant control of uncertain dynamical systems using interval virtual actuators. Int J Robust Nonlinear Control. 2018;28:611–624, which has been published in final form at https://doi.org/10.1002/rnc.3888. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.In this paper, a model reference fault tolerant control strategy based on a reconfiguration of the reference model, with the addition of a virtual actuator block, is presented for uncertain systems affected by disturbances and sensor noise. In particular, this paper (1) extends the reference model approach to the use of interval state observers, by considering an error feedback controller, which uses the estimated bounds for the error between the real state and the reference state, and (2) extends the virtual actuator approach to the use of interval observers, which means that the virtual actuator is added to the control loop to preserve the nonnegativity of the interval estimation errors and the boundedness of the involved signals, in spite of the fault occurrence. In both cases, the conditions to assure the desired operation of the control loop are provided in terms of linear matrix inequalities. An illustrative example is used to show the main characteristics of the proposed approach.Peer ReviewedPostprint (author's final draft
    corecore