122 research outputs found

    Bilayer Low-Density Parity-Check Codes for Decode-and-Forward in Relay Channels

    Full text link
    This paper describes an efficient implementation of binning for the relay channel using low-density parity-check (LDPC) codes. We devise bilayer LDPC codes to approach the theoretically promised rate of the decode-and-forward relaying strategy by incorporating relay-generated information bits in specially designed bilayer graphical code structures. While conventional LDPC codes are sensitively tuned to operate efficiently at a certain channel parameter, the proposed bilayer LDPC codes are capable of working at two different channel parameters and two different rates: that at the relay and at the destination. To analyze the performance of bilayer LDPC codes, bilayer density evolution is devised as an extension of the standard density evolution algorithm. Based on bilayer density evolution, a design methodology is developed for the bilayer codes in which the degree distribution is iteratively improved using linear programming. Further, in order to approach the theoretical decode-and-forward rate for a wide range of channel parameters, this paper proposes two different forms bilayer codes, the bilayer-expurgated and bilayer-lengthened codes. It is demonstrated that a properly designed bilayer LDPC code can achieve an asymptotic infinite-length threshold within 0.24 dB gap to the Shannon limits of two different channels simultaneously for a wide range of channel parameters. By practical code construction, finite-length bilayer codes are shown to be able to approach within a 0.6 dB gap to the theoretical decode-and-forward rate of the relay channel at a block length of 10510^5 and a bit-error probability (BER) of 10410^{-4}. Finally, it is demonstrated that a generalized version of the proposed bilayer code construction is applicable to relay networks with multiple relays.Comment: Submitted to IEEE Trans. Info. Theor

    Structured Error Recovery for Codeword-Stabilized Quantum Codes

    Full text link
    Codeword stabilized (CWS) codes are, in general, non-additive quantum codes that can correct errors by an exhaustive search of different error patterns, similar to the way that we decode classical non-linear codes. For an n-qubit quantum code correcting errors on up to t qubits, this brute-force approach consecutively tests different errors of weight t or less, and employs a separate n-qubit measurement in each test. In this paper, we suggest an error grouping technique that allows to simultaneously test large groups of errors in a single measurement. This structured error recovery technique exponentially reduces the number of measurements by about 3^t times. While it still leaves exponentially many measurements for a generic CWS code, the technique is equivalent to syndrome-based recovery for the special case of additive CWS codes.Comment: 13 pages, 9 eps figure

    New insights on neutral binary representations for evolutionary optimization

    Get PDF
    This paper studies a family of redundant binary representations NNg(l, k), which are based on the mathematical formulation of error control codes, in particular, on linear block codes, which are used to add redundancy and neutrality to the representations. The analysis of the properties of uniformity, connectivity, synonymity, locality and topology of the NNg(l, k) representations is presented, as well as the way an (1+1)-ES can be modeled using Markov chains and applied to NK fitness landscapes with adjacent neighborhood.The results show that it is possible to design synonymously redundant representations that allow an increase of the connectivity between phenotypes. For easy problems, synonymously NNg(l, k) representations, with high locality, and where it is not necessary to present high values of connectivity are the most suitable for an efficient evolutionary search. On the contrary, for difficult problems, NNg(l, k) representations with low locality, which present connectivity between intermediate to high and with intermediate values of synonymity are the best ones. These results allow to conclude that NNg(l, k) representations with better performance in NK fitness landscapes with adjacent neighborhood do not exhibit extreme values of any of the properties commonly considered in the literature of evolutionary computation. This conclusion is contrary to what one would expect when taking into account the literature recommendations. This may help understand the current difficulty to formulate redundant representations, which are proven to be successful in evolutionary computation. (C) 2016 Elsevier B.V. All rights reserved

    Advances in Syndrome Coding based on Stochastic and Deterministic Matrices for Steganography

    Get PDF
    Steganographie ist die Kunst der vertraulichen Kommunikation. Anders als in der Kryptographie, wo der Austausch vertraulicher Daten für Dritte offensichtlich ist, werden die vertraulichen Daten in einem steganographischen System in andere, unauffällige Coverdaten (z.B. Bilder) eingebettet und so an den Empfänger übertragen. Ziel eines steganographischen Algorithmus ist es, die Coverdaten nur geringfügig zu ändern, um deren statistische Merkmale zu erhalten, und möglichst in unauffälligen Teilen des Covers einzubetten. Um dieses Ziel zu erreichen, werden verschiedene Ansätze der so genannten minimum-embedding-impact Steganographie basierend auf Syndromkodierung vorgestellt. Es wird dabei zwischen Ansätzen basierend auf stochastischen und auf deterministischen Matrizen unterschieden. Anschließend werden die Algorithmen bewertet, um Vorteile der Anwendung von Syndromkodierung herauszustellen

    Practical Source Coding with Side Information

    Get PDF

    Introduction to Lattices and Its Applications in Compute-and-Forward Strategy

    Get PDF
    The Compute-and-Forward (CF) strategy was proposed as a physical layer network coding (PNC) framework by Nazer and Gastpar in 2011. CF exploits interference to obtain higher rates between users in a network. This thesis focuses on studying the application of the lattice network coding (LNC) for CF strategy using maximum-likelihood (ML) decoding through four influential papers in the area.Masteroppgave i informatikkINF399MAMN-PROGMAMN-IN
    corecore