
Master Thesis

University of Bergen

Department of Informatics

Introduction to Lattices and
Its Applications in

Compute-and-Forward Strategy

Author:
Maria van der Reek
Lidsheim

Supervisors:
Hsuan-Yin Lin,

Maiara Francine Bollauf,
Øyvind Ytrehus

June 1, 2023

Acknowledgements
I want to thank my supervisors Hsuan-Yin Lin, Maiara Francine Bollauf and Øyvind
Ytrehus for the guidance and mentoring throughout the thesis and the courses re-
lated to it. I would also like to thank my friends and family for being there for me
and supporting me along the way.

i

Abstract
The Compute-and-Forward (CF) strategy was proposed as a physical layer network
coding (PNC) framework by Nazer and Gastpar in 2011. CF exploits interference to
obtain higher rates between users in a network. This thesis focuses on studying the
application of the lattice network coding (LNC) for CF strategy using maximum-
likelihood (ML) decoding through four influential papers in the area.

iii

List of Figures

2.1 Voronoi partition of the points u1, u2 and u3. 12

3.1 A channel model given three sources and one relay. 26
3.2 fσ,Λ(y) for Λ = 2Z2, σ2 = 0.3, 0.5, and 0.8. 34
3.3 Sm = 30, ρ = 40 . 40
3.4 Sm = 90, ρ = 40 . 40
3.5 Sm = 80, ρ = 50 . 41
3.6 p(y/λ) for h = [−1.274 0.602]T, a = [2 − 1]T, SNR = 40dB, x1 =

−2 and x2 = 3. p(y/λ) is maximized for one value, λ = −7 in the left
sub-figure, while it is maximized for several values of λ in the right one. 42

v

List of Tables

2.1 Addition table for GF(2) . 7
2.2 Multiplication table for GF(2) . 7

3.1 Reproduced from Zhang, Liew and Lam, PNC mapping overview . . . 37

vii

Contents

Acknowledgements . i
Abstract . iii
List of Figures . v
List of Tables . vii
Contents . ix

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 2
1.3 Thesis Organization . 3

2 Preliminary Concepts from Codes, Lattices, and Information The-
ory 7
2.1 Algebra . 7

2.1.1 Finite Fields . 7
2.1.2 Principal Ideal Domains . 7
2.1.3 Inhomogeneous Diophantine Approximation 8

2.2 Lattices . 8
2.2.1 Voronoi Cell . 10
2.2.2 Cosets . 13
2.2.3 Lattice Codes and Nested Lattices 13
2.2.4 Dual Lattice . 14
2.2.5 Hermite Normal Form . 14
2.2.6 The use for Hermite Normal Form 18
2.2.7 Theta Series of a Lattice . 18
2.2.8 The Jacobi Theta Function 19
2.2.9 The Fourier Transform . 19

2.3 Information Theory and Coding Preliminaries 20
2.3.1 Entropy and mutual information 20
2.3.2 Channel Coding . 21
2.3.3 Wiretap Channel . 21
2.3.4 Network Coding . 21
2.3.5 Physical Layer Network Coding 22
2.3.6 Nested-lattice-based Physical Layer Network Coding 22
2.3.7 Lattice Network Coding . 22
2.3.8 Maximum Likelihood Decoding 23
2.3.9 Lattice Decoding . 23

ix

3 Review of the proposed papers 25
3.1 Comparison of the papers . 25

3.1.1 Channel model . 26
3.1.2 CF protocol for PNC . 26
3.1.3 CF Protocol for ML decoding 29
3.1.4 Deriving the conditional probability formula from the paper . 31

3.2 The Flatness Factor . 31
3.2.1 The Flatness Factor Definition 31
3.2.2 The Smoothing Parameter . 32
3.2.3 The Flatness Factor in LNC 33
3.2.4 Visualizing different values for the flatness factor 33

3.3 The CF method . 35
3.3.1 How does PNC work? . 35
3.3.2 Analysis of the paper by Belfiore and method of reproduction 39
3.3.3 Constellation size . 40
3.3.4 Understanding the methods 43
3.3.5 Recovering the linear equations 44

4 Conclusions and future work 47
4.1 Conclusion . 47
4.2 Future work . 47

References 48

Appendices 51

A Code for reproducing flatness factor figure 52
A.1 Defining the variables . 52
A.2 Extended Euclidean Algorithm . 52
A.3 Determining the gcd . 53

A.3.1 Plot the figure . 53

B Hermite Style Normal Form Algorithm 55
B.1 Hermite Normal Style Form Algorithm 55

B.1.1 Row style hermite normal form 55
B.1.2 With standard basis . 56
B.1.3 Hermite Normal Form . 56
B.1.4 ZmoduleHomomorphishm . 57
B.1.5 HNF row . 63

B.2 Voronoi partition . 64

x

Chapter 1

Introduction

1.1 Motivation
Nazer and Gastpar proposed a new strategy for communication in wireless networks
called Compute-and-Forward (CF) [1]. CF works in a scenario where each of the
transmitting nodes sends a message to a distant receiver through an intermediate
relay. The relay receives a noisy linear combination of the incoming packets and
forwards a representation of this combination to the receiver. In the traditional
approach, each packet is viewed as an annoying interference to the others, and in
the common interpretation, interference equates to noise. Such an approach lowers
the possible transmission rate. Instead, the CF strategy aims to recover the noiseless
linear equations of the transmitted messages using the noisy linear combination input
provided by the channel. The receiver at the destination can solve the linear system
for its desired messages with enough linear combinations and recover the message.
Lattice Network Coding (LNC) was proposed as a promising approach by applying
lattices for the CF strategy [1]. In particular, by mapping transmitted messages over
a finite field into points of several lattices, LNC ensures that the linear combination
of the lattice points can be decoded reliably and works in a way that the decoder
recovers a linear system of equations of the transmitted lattices’ points.

In [2,3], the authors study LNC for CF using Maximum Likelihood (ML) decod-
ing, where the goal is to maximize the conditional probability of the received signal
at one relay, given the sum of the transmitted signals through the channel. The ML
decoder aims to maximize the conditional probability formula, which is shown to be
equivalent to studying the so-called flatness factor for the additive independent and
identically distributed (i.i.d.) Gaussian noise. We will discuss the details in Chap-
ter 3.2.4. The authors in [3] explain why it is deemed important that the flatness
factor of the designed lattice of LNC has to be as large as possible to prevent bad
ML decoding performance [3], making it possible to recover the correct message.
One important thing to note from [3] is that they conjecture that maximizing the
ML metric is equivalent to solving an inhomogeneous Diophantine approximation in
large dimensions. Note that the flatness factor definition presented in [2] is slightly
different from that of [3], which has studied the flatness factor’s properties more
deeply and how it can be related to LNC for CF using ML decoding.

It is worth mentioning that a closely related parameter of the flatness factor,
called the smoothing parameter of a lattice, has been introduced to be a key feature
in [4] for lattice-based cryptography. The close relations between the flatness factor

1

and smoothing parameter have also been studied in [5], where the authors’ has
focused on applying the flatness factor for security application over Gaussian wiretap
channels.

In [6], the authors consider the same LNC approach over Gaussian channels
as [2, 3] for CF strategy using ML decoding, but focus on the implementation in
practical aspects, where only a one-dimensional lattice and two users are considered.
Moreover, it is shown that in the one-dimensional case, the implementation of the
ML decoding is equivalent to using an Inhomogeneous Diophantine Approximation
algorithm.

In [7], the authors consider the practical aspects of the CF strategy with LNC
based on ML decoding like [6]. For one-dimensional lattice, they examined sub-
optimal decoding techniques like the Diophantine approximation and the Minimum
Mean Square Error Generalized Decision Feedback Equalizer (MMSE-GDFE), ap-
plied by the Sphere Decoder [7, Sec. IV]. Moreover, they extended the study to
the multi-dimensional case for the design of LNC. They concluded the paper by
saying that more research is required on the error probability function and lattice
constructions that optimize the flatness factor for multi-dimensional lattices.

In [2], the author presented an analysis of the LNC for ML decoding. The author
has introduced a notion of the flatness factor. In [3], they studied the properties
of the flatness factor after changing the definition to be more consistent with [4, 5].
In [6], the authors studied a decoding technique for one-dimensional finite con-
stellations. In [7], they consider the practical implementation of the CF strategy
and study the case for a two-dimensional lattice coding. Despite using different
techniques, all papers [2, 3, 6, 7] build on the application of LNC for CF using ML
decoding but for different lattices, where the ideas are based on the inhomogeneous
Diophantine approximation, the use of the flatness factor of a lattice and the HNF
algorithm. In this thesis, we want to understand the differences in the approaches
presented in the papers.

1.2 Objective
We present a literature review together with an analysis of the implemented meth-
ods, including the CF framework and the connection with lattices. In terms of
specific objectives, we aim to:

• Explain how lattice coding can be applied in LNC and how it can improve the
achievable coding rate.

• Describe how the HNF algorithm can help analyze LNC using ML decoding.

• Provide practical and theoretical examples through code snippets, graphs, and
tables.

• Show how the diversity order and constellation size affect the results.

Finally, we also point out perspectives of future work.

2

1.3 Thesis Organization
The thesis is organized as follows:

• Chapter 2: Preliminary concepts from information theory

• Chapter 3: Review of the proposed papers [2, 3, 6, 7]

• Chapter 4: Conclusions and future work

• Chapter 5: Appendix

3

Nomenclature

EM Electro-magnetic

QPSK Quadrature Phase Shift Keying

BPSK Binary Phase Shift Keying

BER Bit Error Rate

PAM Pulse Amplitude Modulation

CF Compute-and-Forward

SNR Signal-to-Noise Ratio

AWGN Additive White Gaussian Noise

NN Nearest-Neighbor

BEP Bit Error Probability

WLAN Wireless Local-Area Network

HNF Hermite Normal Form

LLL Lenstra-Lenstra-Lovasz algorithm

SVP Shortest Vector Problem

CVP Closest Vector Problem

ML Maximum-likelihood

PNC Physical Layer Network Coding

MIMO Multiple-input Multiple-output

PID Principle Ideal Domain

LNC Lattice-based Network Coding

VNR Volume-to-Noise Ratio

CSI Channel Side Information

MMSE Minimum Mean Square Error

dB Decibel

4

gcd Greatest Common Divisor

x n-dimensional vector

X Matrix

X Set

X Random variable

R Set of real numbers

Z Set of Integers

FT{·} Fourier Transform

† Hermitian Transpose

dE(x,y) Euclidean Distance

∥x∥ The Euclidean norm of a vector x

⟨·⟩ Inner Product

R Bit Rate

C Shannon Capacity

R Ring

i Imaginary number (
√
−1)

Rcomp Computation Rate

GF Galois Field/Finite Field

Λ Lattice

λ Lattice point

Λ⋆ Dual lattice

Λx Coset of a lattice Λ

QΛ Lattice Quantizer

rpack(Λ) Packing Radius of a lattice Λ

rcov(Λ) Covering Radius of a lattice Λ

V0 Voronoi cell

P(Λ) Fundamental Region of a lattice Λ

QNN
Λ Nearest-Neighbor Quantizer

εΛ Flatness Factor of a lattice Λ

5

G Lattice Generator Matrix

p(y/λ) Conditional Probability Function, where λ is a point of a lattice

GGT Gram Matrix

GLn(Z) Group of invertible matrices with integer coefficients

r Radius

Z[i] Gaussian Integers

Z[ω] Eisenstein Integers, where ω = e2πi/3

Vol(Λ) Volume of Fundamental Region of a lattice Λ

ΘΛ Theta series of a lattice Λ

6

Chapter 2

Preliminary Concepts from Codes,
Lattices, and Information Theory

2.1 Algebra

2.1.1 Finite Fields

Definition 2.1.1. A finite field is a field that contains only finitely many elements.
A field is an integral domain, which is a ring with identity and no zero divisors. For
example, Z/(p) with p a prime has p elements. It is also called a Galois field. The
order is always a prime or a power of a prime. For each prime power, there exists
exactly one finite field GF(pn).

Example 2.1.1. For example, the finite field GF(2) consists of elements 0 and 1
which satisfies the following addition and multiplication tables:

+ 0 1
0 0 1
1 1 0

Table 2.1: Addition table for GF(2)

× 0 1
0 0 0
1 0 1

Table 2.2: Multiplication table for GF(2)

2.1.2 Principal Ideal Domains

From [8], Principle Ideal Domain (PID) is explained as follows.

Definition 2.1.2. For a ring R, its nonzero elements is denoted by R/{0}. If
ab = 0, for some b ∈ R, an element in R/{0} is called a zero-divisor. The integers
Z form a PID, where a PID is an integral domain where every ideal is principle.

Definition 2.1.3. Gaussian integers are the set Z[i] ≜ {a+ bi : a,∈ Z} [8].

7

Remark. The Gaussian integers have four units (±1,±i), and are called a Gaussian
prime if it is a prime in Z[i]. This happens if and only if it satisfies one of the
following [8]:

• |a| = |b| = 1

• Either |a| or |b| are zero and the other is a prime number in Z of the form
4j + 3.

• Both |a| and |b| are nonzero and a2 + b2 is a prime number in Z of the form
4j + 1.

Definition 2.1.4. Eisenstein integers are the set Z[ω] ≜ {a+ bω : a, b ∈ Z}. Eisen-
stein integers are complex numbers with integer real and imaginary parts in a par-
ticular lattice in the complex plane [8].

Remark. The Eisenstein integers Z[w] have six units, and are called an Eisenstein
prime if it is a prime in Z[w] [8]. This happens if and only if

• a + bω is a product of a unit in Z[ω] and a prime number in Z of the form
3j + 2.

• |a+ bω| = a2 − ab+ b2 is a prime number in Z.

2.1.3 Inhomogeneous Diophantine Approximation

The inhomogeneous Diophantine approximation approximates real numbers by ra-
tionals with a given denominator. We are given a real number α and a positive
integer q: ∣∣∣∣α− p

q

∣∣∣∣ < ∣∣∣∣α− p′

q′

∣∣∣∣. (2.1)

One way to find the inhomogeneous Diophantine approximation is to use the ex-
tended Euclidean algorithm [9, Ch. 4.3].

2.2 Lattices
A lattice is a discrete set of points within a additive subgroup. If a point λ is in the
lattice, then its inverse is also in the lattice. Since a lattice is an additive subgroup
of Rn, then for two points λ1 and λ2, their respective sum is also in the lattice.
The lattice Λ contains all integer multiples of any lattice point λ and all integer
linear combination of all combinations of any two lattice points since it is an infinite
set [10].
The definition of a lattice Λ is given by:

Definition 2.2.1. A lattice is a discrete subset of Rn, which can be represented as

Λ = {x = uGm×n : u = (u1, ..., um) ∈ Zm}, (2.2)

where the m rows of G is a linearly independent set of vectors in Rn. When m = n,
the lattice Λ is said to be full-rank.

8

The generator matrix is not unique for each lattice.
Now we will present an example from [11].

Example 2.2.1. Consider the set A2 of all vectors in (x1,x2,x3) ∈ Z3 such that
x1 + x2 + x3 = 0. This set is parameterized by letting two coordinates be free
and forcing the third one to be negative sum of the two free coordinates (if we let
x1,x3 free, then x2 = −x1−x3), showing that we can describe A2 by integer linear
combinations of two independent vectors. This is a rank 2 lattice in R3, since a
generator matrix for it is

G =

 1 0
−1 1
0 −1

 . (2.3)

Definition 2.2.2. The Gram matrix is GGT. If the elements of the Gram matrix are
integers, then the lattice is called integral. If the determinant of the Gram matrix
is 1, then the lattice is called unimodular [10, Ch. 2.5].

Example 2.2.2. We will now give an example of a Gram Matrix. Suppose we are
given two vectors:

g1 = (1, 3, 5), g2 = (2, 4, 6). (2.4)

To compute the Gram matrix, we need to compute GGT, where GT denotes the
transpose of G.

G =

(
1 3 5
2 4 6

)

GT =

1 2
3 4
5 6

GGT =

(
1 3 5
2 4 6

)
·

1 2
3 4
5 6

=

(
1 · 1 + 3 · 3 + 5 · 5 1 · 2 + 3 · 4 + 5 · 6
2 · 1 + 4 · 3 + 6 · 5 2 · 2 + 4 · 4 + 6 · 6

)
=

(
35 44
44 56

)
Therefore, we know the Gram matrix GGT for the vectors g1 and g2 is

GGT =

(
35 44
44 56

)
(2.5)

Definition 2.2.3. The Euclidean distance [11, Ch. 2] between two points x =
(x1, ..., xn), y = (y1, ...yn) ∈ Rn is given by:

dE(x,y) =
√

(y1 − x1)2 + (y2 − x2)2 + · · ·+ (yn − xn)2. (2.6)

Example 2.2.3. Say we are given two vectors x = (1, 2) and y = (3, 4). The
Euclidean distance between them are:

dE(x,y) =
√

(3− 1)2 + (4− 2)2

=
√
22 + 22

=
√
8 = 2

√
2.

9

A lattice is a periodic arrangement of points in the n-dimensional Euclidean
space. For higher dimensions, the problems of packing and covering are not equiva-
lent. Packing and covering defined as given in [10, Ch. 3.1.1 and 3.1.2]:

Definition 2.2.4. For a given lattice Λ and a radius r, the set Λ+Br is a packing [10,
Ch. 3.1.1] in the Euclidean space, where B is the ball surrounding the lattice point
λ, if for all distinct lattice points λ,λ′ ∈ Λ, we have

(λ+ Br) ∩ (λ′ + Br) = ∅. (2.7)

This means that as long as the spheres do not intersect, it is a packing of the lattice
Λ. The packing radius rpack(Λ) of the lattice is defined by the largest balls the lattice
can pack:

rpack(Λ) = sup{r : Λ + Br is a packing}. (2.8)

It is determined by how big the balls can get without overlapping with each other.

Now, we will define the covering of a lattice Λ.

Definition 2.2.5. The set Λ + Br of spheres centered around a lattice point, is a
covering [10, Ch. 3.1.2] in the Euclidean space if

Rn ⊆ Λ + Br, (2.9)

which means that each point λ is covered by at least one sphere, and the spheres
can overlap and there is no space in the lattice Λ not covered by the spheres. The
radius of the covering rcov(Λ) of the lattice Λ is

rcov(Λ) = min{r : Λ + Br is a covering} (2.10)

which is also the outer radius of the Voronoi cell, i.e., the minimum radius of a
(closed) ball containing the fundamental Voronoi cell V0.

Definition 2.2.6. The volume of a (full rank) lattice Λ is given by:

Vol(Λ) = det(Λ) = |det(G)|, (2.11)

where det(·) denotes the determinant and G denotes the generator matrix of a lattice
Λ.

2.2.1 Voronoi Cell

Broadly speaking, the Voronoi cell of a point is the set of all points in a space closer
to that point than any other point in the set. The fundamental Voronoi cell is
denoted as V0, and it is the Voronoi cell associated with the origin, which is the
lattice point that equals the zero-vector λ = 0. All Voronoi cells are shifted versions
of the fundamental Voronoi cell V0 [10, Ch. 4]. A Voronoi partition uses a nearest-
neighbour (NN) rule, which is the most important division of a given lattice Λ. We
now define Voronoi partition as given in [10, Ch. 4].

10

Definition 2.2.7. Let ∥·∥ denote the Euclidean norm. The distance of a point x
in Rn from Λ is defined as

∥x− Λ∥ ≜ min
λ∈Λ
∥x− λ∥. (2.12)

The NN quantizer Q
(NN)
Λ (·) maps x to its closest lattice point:

Q
(NN)
Λ (x) = argmin

λ∈Λ
∥x− λ∥, (2.13)

and the Voronoi cell Vλ is the set of all points which are quantized to λ:

Vλ = {x : Q
(NN)
Λ (x) = λ}. (2.14)

Example 2.2.4. We are given three points:

u1 = (−1, 1), u2 = (2, 3), u3 = (0,−2).

The partition here involves three cells, one for each point, so we know that the
points in each cell are closer to that point than to the other two points. The
boundaries between each cell are called Voronoi edges. The perpendicular bisectors
of the connecting points form the Voronoi edges. We need to find the perpendicular
bisectors of the segments connecting the points. The perpendicular bisector of the
segment connecting u1 and u2 is the line passing through in the middle of that
segment, which is (1/2, 2). Perpendicular to the vector pointing from u1 to u2 is
(2, 2). We can call these two lines x and y, then we get the equation x − y =
(1/2, 2) − (2, 2) = (−3/2, 0), and therefore divides the plane into two. One cell is
now the Voronoi cell for u1, while the other is the Voronoi cell for u2. We can do
the same to find the Voronoi cell for u3 by considering the perpendicular bisectors
of the segments connecting u3 with u1 or u2.

Figure 2.1 shows the cell around u1 will contain the set of points closer to u1

than to u2 or u3. The cell around u2 will contain the set of points closer to u2 than
u1 or u3. The cell around u3 will contain the set of points closer to u3 than to u1

or u2.

11

−2 −1 0 1 2 3

−2

−1

0

1

2

3

Figure 2.1: Voronoi partition of the points u1, u2 and u3.

−2 −1 0 1 2

−2

−1

0

1

2

(a) Voronoi cell of a cubic lattice Z2

−2 −1 0 1 2

−2

−1

0

1

2

(b) All Voronoi cells in a cubic lattice Z2

Example 2.2.5. We see in Figure 2.2a, the Voronoi region of the Z2 lattice, V0. In
Figure 2.2b, we see that all the Voronoi cells are shown for each lattice point λ for
the cubic lattice Z2.

12

2.2.2 Cosets

A coset is a discrete set of points such that the difference vector between every pair
of points belongs to the lattice.

A coset is defined as found in [10, Ch. 2.1.2]:

Definition 2.2.8. For a lattice Λ and the vector x ∈ Rn:

Λx = x+ Λ = {x+ λ : λ ∈ Λ}. (2.15)

A coset is not a lattice since it does not consist of the origin. The union of Λx

of all shifts x covers the entire space Rn, but with many overlaps. A Voronoi cell is
the set of all points which are quantized to λ. The Voronoi partition refers to the
Euclidean norm.

2.2.3 Lattice Codes and Nested Lattices

A lattice code is a code whose codewords are represented as the points from a lattice
Λ. We want to use lattice codes because they have some symmetric properties which
are relevant to approach communication problems. A q-ary linear code is a subspace
of Fq

Definition 2.2.9. A q-ary linear code C, where q-ary means the finite field has q
elements, induces a modulo-q lattice, which is a lattice Λ, where all operations are
done with modulo q [11, Ch. 3]:

ΛC = {x ∈ Zn : x mod q ∈ C}. (2.16)

We will now give an example of such construction for q = 2.

Example 2.2.6. Say we are given the codeword C = {(0, 0, 0, 0), (1, 0, 1, 1)} ⊆ F4
2.

Then:

ΛC = {(0, 0, 0, 0) + 2(z1, z2, z3, z4)}
⋃
{(1, 0, 1, 1) + 2(z1, z2, z3, z4)} (2.17)

z = (z1, z2, z3, z4) ∈ Z (2.18)

Remark. An important property of a lattice code is that the cell volume is equal
to the number of integer cosets, and is given by

Vol(ΛC) = |Zn/ΛC| = qn/M, (2.19)

where M is the size of the code C [10, Ch. 2].

Nested lattices [10, Ch. 8.1] are a lattice construction where one lattice is con-
tained within another. A nested lattice can provide a more efficient representation
of the transmitted or encrypted data and they can reduce the complexity in lattice
network coding regarding encoding and decoding. They allow a reduction in the
amount of information that needs to be transmitted over the network by allowing
the intermediate nodes to compute the linear combinations of the lattice points
closer to the points at the destination.

Definition 2.2.10. A pair of lattices are nested if

Λ2 ⊂ Λ1, (2.20)

meaning that Λ2 is a sublattice of Λ1.

Remark. Λ1 is called the fine lattice, and Λ2 is called the coarse lattice [10, Ch. 8.1].

13

2.2.4 Dual Lattice

A dual lattice defined as given in [10, Def. 4.2.3]:

Definition 2.2.11. Two lattices Λ and Λ⋆ in Rn are dual if their inner products of
the points are integers. This means that ⟨λ,λ⋆⟩ ∈ Z for all λ ∈ Λ, λ⋆ ∈ Λ⋆. In
other words, if G is a generator matrix of Λ, then (G−1)T is the generator matrix of
Λ⋆.

2.2.5 Hermite Normal Form

We will now explain the HNF as given in [12].

Definition 2.2.12. We are given an m×n matrix M = mi,j with integer coefficients.
The matrix M is in HNF if r ≤ n and there exist a strictly increasing map from
[r + 1, n] to [1,m] which satisfies:

• For r + 1 ≤ j ≤ n, mf(j),j ≥ 1, mi,j = 0 if i ≥ f(j) and 0 ≤ mf(k),j < mf(k),k

if k < j.

• The first r columns of M are equal to 0.

Remark. In the important special case where m = n and f(k) = k(or equivalently
det(M) ̸= 0), M is in HNF if it satisfies the following conditions.
(1) M is an upper triangular matrix, i.e. mi,j = 0 if i > j.
(2) For every i, we have mi,i > 0.
(3) For every j > i we have 0 ≤ mi,j < mi,i.

More generally, if n ≥ m, a matrix M in HNF has the following shape
0 0 . . . 0 ∗ ∗ . . . ∗
0 0 . . . 0 0 ∗ . . . ∗
...

...
...

0 0 . . . 0 0 . . . 0 ∗

 , (2.21)

where the last m columns form a matrix in HNF.

We will now give a theorem for HNF [12, Thm. 2.4.3]:

Theorem 2.2.7. Let A be an m × n matrix with integer coefficients. Then there
exists a unique m×n matrix B = (bi,j) in HNF of the form B = AU with U ∈ GLn(Z),
where GLn(Z) is the group of matrices with integer coefficients which are invertible,
i.e. whose determinant is equal to ±1.

Remark. Even though B is unique, matrix U is not. The matrix W formed by the
non-zero columns of B is the HNF of A [12].

We give the proof of Theorem 2.2.6 as Algorithm 1 from [12], where we are given
an m× n matrix A with integer coefficients (ai,j). The algorithm finds the HNF of
A.

14

Algorithm 1: Finding the Hermite Normal Form
Input : An m× n matrix A with integer coefficients ai,j
Output: The matrix W, which is the HNF of A
i← m, k ← n;

if m ≤ n then
l← 1;
else

l← m− n+ 1;

while Not finished do
for j < k do

if ai,j = 0 then
if ai,k < 0 then

Replace column Ak by −Ak;

for j ≤ k do
if ai,j ̸= 0 then

Choose min |ai,j| if j0 ≤ k then
Exchange column Ak by −Ak;

b← ai,k ;
for j = 1, ..., k − 1 do

q ← ⌊ai,j/b⌉, Aj ← qAk, go to step 2;

b← ai,k;
if b = 0 then

k ← k + 1, go to step 6;
if j > k then

q ← ⌊ai,j/b⌉, Aj ← Aj − qAk;

if i = l then
for j = 1, ..., n− k + 1 do

Wj = Aj+k−1, Terminate algorithm;

i = i− 1, k = k − 1, go to step 2;
return W

15

The algorithm terminates since one can easily prove that |ai,k| is strictly decreas-
ing each time we return to step 2 from step 4. Upon termination, it is clear that W
is in HNF, and since it has been obtained from A by elementary column operations
of determinant ±1, W is the HNF of A.

We will now try to demonstrate how this can be done:
We give the basis for a lattice Λ by the following vectors v1,v2 and v3:

v1 = (6,−4,−7), (2.22)
v2 = (3, 5, 14), (2.23)
v3 = (−3, 7, 16). (2.24)

The first step is now to find the Greatest Common Divisor (gcd) of the first entries
of the three vectors. We see that the gcd(6, 3,−3) is 3. Since the gcd = 3, we want
a vector that has a 3, which in our case is v2, in the first position to get rid of the
leading coefficients of the other vectors v1 and v3.

v4 = v1 − 2v2 = (0,−14,−35) (2.25)
v5 = v3 + v2 = (0, 12, 30). (2.26)

Next, we want to shorten the second entries of the vectors. We see that the
gcd(−14, 12) is 2, so we want to get as close to 2 as possible, so we get

v7 = −(v4 + v5) = (0, 2, 5). (2.27)

Next, we see that if we add together v4 + 7v7, we get the (0, 0, 0)-vector.
At last, we want to look at v2. Here we can take

v2 − 2v7 = (3, 1, 4) (2.28)

and we end up with the basis 3 1 4
0 2 5
0 0 0

 . (2.29)

We can check this with a program which calculates the HNF of a matrix.
The program used here is a short program using already existing functions which
we will explain. The program can be found in Appendix B.1 and is as follows with
the built-in libraries taken from [13]:

from hsnf import row_style_hermite_normal_form
import numpy as np

M = np.array([[6, -4, -7],
[3, 5, 14],
[-3, 7, 16]])

H, R = row_style_hermite_normal_form(M)

print(f’H = {H}’)

16

The program uses the function row_style_hermite_normal_form() from Appendix
B.1.1, which uses the class-method with_standard_basis() from Appendix B.1.2
and the function
hermite_normal_form() from Appendix B.1.3 in the function
ZmoduleHomomorphish() from Appendix B.1.4. The first function
row_style_hermite_form() from Appendix B.1.1 calculates the row-style HNF of
the given matrix M. It uses the library hsnf to calculate the HNF.
The function takes one argument M, which is a NumPy array of shape (m,n), and
contains the integer matrix for which the HNF is to be calculated.
The function returns a tuple (H,R), where H is the HNF of M and R is a unimodular
matrix, so H = R ·M. The HNF is an upper-triangular integer matrix that reduces
the basis M to a better basis. The unimodular matrix R is a matrix with integer
entries and determinant ±1.

The function first creates an instance of the class ZmoduleHomomorphishm() from
Appendix B.1.4, by using the basis M as the matrix representation. It then uses the
method hermite_normal_form() from Appendix B.1.3 in the class
ZmoduleHomomorphishm() from Appendix B.1.4 to calculate the HNF and return
the basis.
The class ZmoduleHomomorphishm() from Appendix B.1.4 has three instance vari-
ables:

• _A, which is a NumPy array containing the matrix representation of the ho-
momorphism.

• _basis_from, which is a NumPy array containing the standard basis vector
for the domain(source) of the homomorphism.

• _basis_to, which is a NumPy array containing the standard basis vector for
the co-domain(target) of the homomorphism.

The class ZmoduleHomomorphishm() from Appendix B.1.4 uses two methods in this
case, which are _hnf_row() from Appendix B.1.5 and
hermite_normal_form() from Appendix B.1.3.

• The method _hnf_row() calculates the HNF using row operations and returns
the HNF of the matrix and the unimodular matrix.

• The method hermite_normal_form() copies the instance variables
_A, _basis_from and _basis_to and then calls the method _hnf_row() to
calculate the HNF of the matrix. It then reverts the instance variables to their
original values and returns the result.

When we run the program, we get that the better basis, or the HNF for

v1 = (6,−4,−7), (2.30)
v2 = (3, 5, 14), (2.31)
v3 = (−3, 7, 16), (2.32)

turns out to be 3 1 4
0 2 5
0 0 0

 . (2.33)

17

If we run the program on the second matrix, we see that we get the same basis so
we know that it is the best basis, since it is already in HNF.

2.2.6 The use for Hermite Normal Form

We can use HNF to solve Diophantine equations [6] and to determine if a Diophan-
tine equation has solutions and what the solutions are. The HNF yields a basis
where the vectors are shorter and more orthogonal, which makes the computations
simpler and more accurate. The Lenstra-Lenstra-Lovász (LLL) algorithm is the
most used and is generally faster than the HNF algorithm, especially when it comes
to larger matrices. The HNF on the other hand can provide a unique representation
of the lattice, whereas the LLL only provides an approximation of the lattice basis.
We can also use the HNF to find a better basis for a lattice and to solve for the
Shortest Vector Problem (SVP) and the Closest Vector Problem (CVP) [11]. The
SVP is the problem of finding the shortest non-zero vector in a given lattice. The
problem wants to find the non-zero vector x ∈ Λ with the smallest Euclidean norm
∥x∥, which is the lattice point λ closest to the origin.
The CVP is the problem of finding the lattice point closest to a given y ∈ Rn. For a
given lattice Λ and a vector y ∈ Rn, the problem aims to find λ = argminx∈Λ∥y −
x∥ ∈ Λ. The same applies here to the basis optimization problem. The HNF will
transform the problems of SVP and CVP into simpler problems by transforming the
basis into an HNF basis, all though for some small dimensions the SVP and CVP
will still be hard problems.

The LLL algorithm is a commonly used algorithm for basis reduction in lattice
problems. The algorithm takes as input a basis for a lattice and produces a new
basis that is almost as good as the HNF basis but with a much lower computational
cost. It reduces the size of the basis vectors and improves the orthogonality of
the basis. We will not go into more depth on the LLL algorithm, as it is outside
the scope of this thesis, but if the reader wants to learn more we refer to this
book [14, p. 439]. The HNF algorithm works well for small matrices, while for
bigger matrices, the algorithm can be computationally expensive, since the number
of operations required to perform the algorithm increases.

2.2.7 Theta Series of a Lattice

The theta series [15] is the generating function for the number of vectors with norm
n in the lattice and is called the theta function of a lattice. There are tables where
you can find the first terms of the theta series for various lattices, indicating how the
lattice looks and is structured. The theta series is a power series with coefficients
that tell you the number of lattice points λ at each distance from the origin of the
lattice. The function of the theta series of a lattice is given by [2]:

ΘΛ(q) =
∑
x∈Λ

q∥x∥
2

, (2.34)

where q = eiπz, Im(z) > 0 is a complex variable, Λ is the lattice. The theta series is
a modular form which means the modular group is a discrete subgroup of the group
of linear transformations, which satisfies some properties. Properties of the theta
series are:

18

• It is a modular form of weight n/2, where n is the dimension of the lattice,
which means it is invariant under modular transformations of a complex vari-
able q.

• It satisfies the Jacobi inversion formula [16]. The formula let the theta series
be a product of certain theta functions associated with the dual lattice of the
original lattice.

2.2.8 The Jacobi Theta Function

The definition of the Jacobi theta function is as follows [17]:

Definition 2.2.13.

ϑ2(z) =
∞∑

m=−∞

q(m+1/2)2 , (2.35)

ϑ3(z) =
∞∑

m=−∞

qm
2

, (2.36)

ϑ4(z) =
∞∑

m=−∞

(−q)m2

. (2.37)

Jacobi theta functions are the elliptic analogs of exponential functions. The theta
functions are quasi-doubly periodic, which means that it satisfies the following two
conditions of periodicity with two independent periods:

• f(z + ω1) = f(z)

• f(z + ω2) = f(z)

The value of f(z) is the same when z is shifted by an integer multiple of either ω1

or ω2. Since ω1 and ω2 are quasi, it means that they are not necessarily multiples
of each other.

2.2.9 The Fourier Transform

The Fourier transform is the mapping that transforms a discrete-time signal from a
time domain to a frequency domain, which is represented by a lattice.

Definition 2.2.14. For a function g : Rn → R1, given that g is periodic, its Fourier
transform ĝ = FT{g} is given by [10]:

ĝ(λ⋆) =
1

Vol(Λ)

∫
P0

g(x) · e−i2π⟨λ⋆,x⟩dx, for λ⋆ ∈ Λ⋆, (2.38)

where i =
√
−1 and P0 is the fundamental cell of Λ.

If g is not periodic, then its Fourier transform ĝ(f) = FT{g} is defined as:

ĝ(f) =

∫
Rn

g(x) · e−i2π⟨f ,x⟩dx, for f ∈ Rn. (2.39)

19

To find an algorithm that maximizes ρ(y/λ) in an efficient way, we need the
Fourier transform and the Jacobi Theta functions. If ρ(y/λ) is constant or flat,
there will be a high probability of error, which is why we want to maximize it.

Since fσ,Λ is periodic on Λ, its Fourier transform is defined on the dual lattice Λ⋆.
fσ,Λ(y) is the n-variable Gaussian measure over a lattice. The Fourier expansion of
fσ,Λ(y) is:

fσ,Λ(y) =
1

Vol(Λ)

∑
q⋆∈Λ⋆

e−2π2σ2∥q⋆∥2e2πi⟨q
⋆,y⟩, for y ∈ Rn. (2.40)

We can then use the Fourier transform to express the Gaussian measure and the
Jacobi Theta function.

2.3 Information Theory and Coding Preliminaries

2.3.1 Entropy and mutual information

We will now give the definition for the entropy and mutual information as given
by [10, Appendix. A.1].

Definition 2.3.1. The entropy of a discrete random variable X is given by

H(X) = −
∑
x

p(x) log2 p(x), (2.41)

where p(x) denotes the probability distribution for X. H is a non-negative and
upper bounded by the logarithm of the size of the alphabet A:

0 ≤ H(X) ≤ log |A|. (2.42)

Definition 2.3.2. The conditional entropy:

H(X|Y) =
∑
y

p(y) ·H(X|Y = y) =
∑
x,y

p(x, y) log p(x|y), (2.43)

where p(x, y) represents the joint probability distribution between X and Y .

Definition 2.3.3. The joint entropy satisfies the chain rule given by:

H(X|Y) = H(X) +H(Y |X) = H(Y) +H(X|Y). (2.44)

Definition 2.3.4. The mutual information between two random variables is the
reduction in the entropy of one of them when the other becomes available:

I(X;Y) = H(X)−H(X|Y) (2.45)
= H(Y)−H(Y |X) (2.46)
= H(X) +H(Y)−H(X, Y). (2.47)

20

2.3.2 Channel Coding

In channel coding, one transmits a noisy channel or stores the information on a stor-
age device. The goal is to add redundancy to the transmitted signal, making it dis-
tinguishable from the noise. Coding over a channel consists of two stages which are
the error-correcting coding stage and the modulation stage. In the error-correcting
coding stage, redundancy is added in the discrete alphabet domain, whereas in the
modulation stage, the codeword is mapped into the vector x. The constellation is
the set of all possible input vectors x. A lattice constellation is a shortened version of
an n-dimensional lattice. The Shannon capacity is defined as the maximum amount
of information sent over a channel. This means that the higher the Signal-to-Noise
Ratio (SNR) and more channel bandwidth, the higher the possible data rate.
We will now give a definition of Shannon’s capacity as given in [10]:

Definition 2.3.5. The Shannon capacity is defined as the maximum amount of
information sent over a channel per channel use:

C =
1

n
max I(X;X + Z), (2.48)

where the maximization is over all valid random channel inputs X.

An Additive White Gaussian Noise (AWGN) channel mimics the effect of random
processes that can occur in a channel. It adds white Gaussian noise to the signal
which passes through the channel. It represents the effects of noise on a signal during
transmission. It is added to the original signal and has a flat power spectral density
across all frequencies, meaning it has the same power at all frequencies. It follows
a normal distribution, also referred to as a Gaussian distribution. The amount of
noise added to the signal depends on the SNR, which is the ratio of the original
signal’s power to the noise’s power.

2.3.3 Wiretap Channel

The wiretap channel is a setting where one aims to provide information-theoretic
privacy of communicated data based solely on the assumption that the channel from
sender to the adversary is "noisier" than the channel from sender to receiver [18].
Say we are given a sender called Alice, a receiver called Bob, and an eavesdropper
or wiretapper called Eve. The goal of Eve is to listen to the channel and recover the
message sent between Alice and Bob. The goal of Alice and Bob is to communicate
over a channel without being intercepted or listened to by a third party, namely
Eve, meaning that Alice can send a message, and Bob will successfully recover this
message at his end. Ideally, Eve is further away from Alice than Bob is, so the
interference of the channel will not affect Bob’s received message as much as it will
affect Eve. The goal in such a channel is, therefore, to minimize the decoding error
of Bob and maximize the decoding error of Eve. This way, we can ensure that Bob
will recover the message without Eve being able to know what the message is.

2.3.4 Network Coding

Network coding is used to improve the efficiency and performance of data transmis-
sion by allowing nodes to combine and manipulate packets to increase the amount

21

of information transmitted and reduce the amount of redundant data. Each node
in the network can encode packets it receives before transmitting them to the next
node. This technique lets network coding achieve higher throughput and lower re-
sponse time than similar techniques. The complexity of network coding has to do
with the encoding and decoding of packets and the need for synchronization between
nodes. In a standard packet-switching network, nodes act as routers and wish to
find the best route under the current conditions. A physical layer network coding
strategy aims to exploit the linear combination taken by the channel as part of an
end-to-end network code. By using appropriately chosen lattice codes, it is possible
for each receiver to decode a linear combination of the codewords directly [1].

2.3.5 Physical Layer Network Coding

PNC improves the network throughput and efficiency. PNC combines and processes
signals at the physical layer of the communication system, whereas usually, it is done
in higher network layers. PNC lets two wireless nodes simultaneously transmit data
to a third node by allowing overlapping of signals transmitted by the two nodes in
the air. The two signals are superimposed and transmitted as a single signal by the
two nodes. The third node receives the superimposed signal and separates the two
original signals. By using PNC, you can get reduced latency and improved network
throughput. The decoding part of the PNC method is complex, which imposes a
challenge. One method to use for PNC is the CF method, which has been developed
as a candidate for realizing PNC [19]. We will explain more about PNC in Section
3.3.1.

2.3.6 Nested-lattice-based Physical Layer Network Coding

LNC, as described in [20], is a type of CF relaying strategy. It is an information
transmission scheme in Gaussian relay networks. LNC exploits the property that
integer linear combinations of lattice points are again lattice points. Relays in
LNC attempt to decode their received signals into integer linear combinations of
codewords, which can be forwarded. The transmitted information can then be
recovered by solving a linear system.

2.3.7 Lattice Network Coding

Let T be a PID. A Lattice Network Coding (LNC) scheme is a T -linear PNC scheme
based on a finite lattice quotient, where each transmitter sends an information-
embedding coset through a coset representative, and each receiver recovers one or
more T -linear combinations for the transmitted coset representatives. The destina-
tion decodes all information-embedding cosets from the transmitters.
We will now define an LNC scheme as done in [8]:

Definition 2.3.6. An LNC scheme is a lattice-partition-based approach to a PNC
which generalizes Nazer and Gastpars’ CF approach. Here, E denotes the encoder.
φ denotes the homomorphishm Λ → Rk

π, such that Λ is the kernel of φ. φ̄ denotes
the injective map Rk

π → Λ that the transmitter l sends [8, Eq. 1]:

xl = E(wl) = φ̄(wl) + dl −QΛ(φ̄)(wl) + dl. (2.49)

22

QΛ : Cn → Λ′ is a lattice quantizer for the sublattice Λ and dl is a dither uniformly
distributed over the fundamental region P(Λ). dl is known to transmitter l and
to the receiver. The transmitted signal xl ∈ P(Λ). The average power of the
transmitted signal xl is determined by the second moment of the fundamental region
P(Λ). The receiver then computes:

û = D(y|h, ā) = φ

(
DΛ

(
αy −

L∑
l=1

aldl

))
, (2.50)

where α ∈ C and a = (a1, ..., aL) ∈ RL are receiver parameters. The linear combina-
tion u is computed correctly if and only if the effective noise n satisfies DΛ(n) ∈ Λ
The connection between the decoder D(·|h,a) for LNC and the decoder D(·|h, ā)
for PNC is that for any receiver parameter a, the corresponding coefficient vector
ā is given by ā = σ(a).

2.3.8 Maximum Likelihood Decoding

Maximum Likelihood (ML) decoding minimizes the average error probability by
maximizing the probability of the noise over all input vectors x. For AWGN, this
amounts to the lattice point closest to y. The ML decoder is optimal but complex.
The complexity of the ML decoder when using lattices is that it must take into
account the shaping region V0 = V0(Λ). Unless Λ is a simple cubic lattice, ML
decoding of a Voronoi constellation is complicated because of the joint structure of
the two nested lattices [2].
A simple cubic lattice can be efficiently solved using a lattice reduction algorithm,
reducing the search space for the closest lattice point to a sphere centered at the
received point. For this we can use, for example, the Fourier transform which breaks
down a complex signal into several frequencies. This makes it less comprehensive in
terms of analysis and manipulation of the signal. The complexity of such a decoding
algorithm is polynomial in the dimension of the lattice. For other lattice structures,
for example, with high degree of symmetry, the minimum distance between the
lattice points are significantly smaller, and it may take several iterations to find
the closest lattice point λ, which makes the computational complexity significantly
higher than for simpler structures.
A problem with ML decoding is that since codewords near the edge of a shaping
region have fewer neighbours than the ones closer to the middle, the complexity is
usually more minor. It is also more consuming and complex for the inner, since they
are more significant, rather than for the outer codewords.

2.3.9 Lattice Decoding

Lattice decoding is less complicated than ML decoding and does not consider the
shaping region V0(Λ) [2]. The output for a lattice decoder is quantized to the fine
lattice Λ1 [10, Ch. 8.1] and the associated coset is found. For AWGN, the quan-
tization is to its nearest lattice point. The lattice decoder can be improved by
pre-processing the channel output before decoding. We then get the Euclidean lat-
tice decoder, which considers the estimation of the channel output and the Euclidean
distance. The complexity for a lattice decoder is identical for all messages, whereas,
for the ML decoder, it varies depending on where in the Voronoi region the point is.

23

In lattice decoding, a lattice structure represents multiple possible paths through a
system. It then gives the path a score for probability or likelihood, to see how likely
the path is to be the correct one.

24

Chapter 3

Review of the proposed papers

In this chapter we have studied papers [2,3,6,7] with the help of the authors in [21],
and now we present them in a comparative basis, describing how the authors examine
the data-transfer in PNC-based networking, and how it is vulnerable to wiretap
attacks. We describe how the CF protocol is used and applied in the papers and
how the flatness factor is defined. We also introduce the channel model given for
these cases in Section 3.1.1 and we derive the conditional probability formula p(y/λ)
in Section 3.1.4.

3.1 Comparison of the papers
In [21] the authors examine how data transfer in PNC-based networking is vulner-
able to wiretapping attacks. It is possible to apply the existing lattice coset coding
to obstruct attackers from obtaining information from the data communicated over
the network. The paper introduces the major drawbacks of conventional data se-
curity schemes based on cryptography. A requirement in these schemes is that the
keys must be shared somehow among the communicating parties, and sent over the
communication channel. There is always a risk that the keys may be revealed to
the adversary. Wiretap channels are vulnerable to eavesdropping attacks because of
their broadcast characteristics. A wiretap channel is a communication channel that
is vulnerable to eavesdropping by a third party, often referred to as a wiretapper.
The wiretappers goal is to listen to or intercept the communication between the
legitimate sender and the receiver without them knowing.

Wyner first introduced a degraded wiretap channel where he applied coset cod-
ing to protect the message against an attacker whose receiver SNR is less than
at the intended destination. Csiszar later generalized the idea where he made no
crucial assumptions on the quality of the channels experienced by the legitimate
receiver and the attacker. Another technique, called cooperative jamming, uses in-
terference from several network nodes to combat the attacks. This is done by using
Gaussian noise or structured codes as the interfering signal or through interference
alignment methods. Interference alignment methods is a linear precoding technique
that attempts to align interfering signals in time, frequency, or space. In MIMO
networks [10], interference alignment uses the spatial dimension multiple antennas
offer for alignment.

Another way is to use artificial noise in the MIMO channel. A sender will
generate an auxiliary signal from the null space of the receiver’s channel and sends it

25

along with its information-bearing signal. The signal will be noise at the attacker’s
receiver while it is cancelled out at the intended receiver.

3.1.1 Channel model

One relay receives messages from k sources s1, ..., sk and transmits a linear combi-
nation of these k messages. We will now present the CF strategy as studied by [3].

The received signal at the relay is expressed as [3, Eq. 1]:

y =
k∑

j=1

hjxj + z. (3.1)

The variable hj is the channel coefficient between source sj and the relay. xj is the
vector transmitted by source sj. The variable z is the noise at the relay. The first
part

∑k
j=1 hjxj represents the signal transmitted by all k users, while the second

part z is the noise at the relay, which is an AWGN channel.

h
1x1

h2x2

h3x3

S1

S2

S3

Relay

Figure 3.1: A channel model given three sources and one relay.

3.1.2 CF protocol for PNC

Consider a wireless network comprising transmitters, multiple relays, and receivers.
Each transmitter consist of an encoder that maps the message vector m from a finite
field to a codeword vector x in Rn. The channel coefficients h are only required at
the relays, not at the transmitters. Upon receiving the vector y, which consists
of the transmitted messages, we aim to decode a linear combination. The first
component of y represents a linear combination of the transmitted codewords with

26

integer coefficients, while the remaining components represent the effective noise.
For this purpose, the codebook must be closed under integer linear combinations to
ensure that the sum results in a valid codeword. Lattices satisfy this property.

The effective noise should be independent of the codeword vector x, and the
codebook must correspond to the message space Fn. To achieve these desired prop-
erties, we can select a codebook with a linear structure, such as nested lattices.
In this case, the codewords closely resemble points from an n-dimensional lattice
partition. The unknown integer coefficients can be determined by maximizing the
achievable rate. If the message rate is lower than the achievable rate, the relays can
successfully recover an integer linear combination of the transmitted codewords [1].

Imagine a scenario where Alice wants to send a message to Bob, while ensuring
that Eve cannot intercept the message. In this setup, there are two separate Additive
White Gaussian Noise (AWGN) channels: one between Alice and Bob, and another
between Alice and Eve. Alice takes her message vector, denoted as m, consisting
of k data symbols, and encodes it into a codeword x over the real numbers. This
codeword represents a point selected from an n-dimensional lattice ΛB ⊂ Rn that
is designated for Bob. Within this lattice, there exists a sublattice ΛE ⊂ ΛB. To
define a coset of ΛE, we consider a translation of ΛE in the form of ΛE + λ, where
λ ∈ Rn represents the coset leader. This coset leader is an n-dimensional vector that
does not belong to ΛE. Each coset ΛE + λ is associated with an information vector
m ∈ Fkp, where Fkp denotes a finite field. The number of disjoint cosets is equal
to pk, which ensures that each coset is uniquely assigned to an information vector.
Consequently, the original lattice ΛB is divided into pk separate and non-overlapping
cosets. This partitioning is presented as:

ΛB = Um∈Fk
p
(ΛE + λm) (3.2)

For Gaussian wiretap coding, Alice selects a point x at random from the coset
ΛE +λm and transmits c subsequently. Bob and Eve receive yB and yE, both in Rn

as [21, Eq. 6]:

yB = x+ zB (3.3)
yE = x+ zE. (3.4)

Let zB ∼ N (0, σB2) and zE ∼ N (0, σE2) represent the noise terms associated with
Bob and Eve’s channels, respectively, with noise powers per dimension. Upon re-
ceiving y, Bob’s objective is to decode it by finding the nearest lattice point in ΛB

to yB, while Eve aims to do the same. They must then determine the coset to which
the decoded lattice point belongs and extract the message m.

The primary objective in wiretap code design is twofold: to maximize the proba-
bility of Bob’s successful decoding and to minimize the probability of Eve’s successful
decoding. To ensure Bob’s successful decoding, ΛB must be an AWGN-good lattice.
On the other hand, for Eve’s probability of successful decoding to be low, ΛE must
be chosen as a secrecy-good lattice, characterized by a small flatness factor [2]. By
assuming a discrete Gaussian distribution for Bob’s lattice and selecting a secrecy-
good lattice with a small flatness factor for Eve, we can achieve nearly uniformly
distributed cosets. This ensures that Bob can achieve a high rate of information
transfer since the cosets appear to be evenly distributed. In contrast, Eve will en-
counter maximum confusion because the cosets seem to be selected almost randomly
from her perspective.

27

Now, let’s examine the PNC implemented using the CF relaying strategy in the
context of a Gaussian wiretap channel. The wireless network comprises transmitters,
relays, and receivers. The relays utilize the CF strategy to transmit data from
information source nodes to their respective destinations.
When an eavesdropper intends to gain information from the signal of a certain
transmitter, the signal received by the attacker is [21, Eq. 8]:

yE = hlxl +
∑

ℓ∈Λ\{l}

hℓxℓ + zE, (3.5)

where the coefficients hℓ and hl refer to the channel coefficients corresponding to
the channels between the transmitters and the attacker, and zE ∼ N(0, σ2

EI). The
goal of the attacker is to recover the x [21].

The CF technique involves a relay decoding a linear combination of messages
instead of individually recovering them. This prevents attackers from extracting
specific users’ data, as they can only access a mixture of information from multiple
users.

The most significant vulnerability in a CF-based PNC network arises when at-
tackers emulate relays by processing received signals. This poses a substantial secu-
rity risk to the network.

To address these concerns, lattice Gaussian coding provides a solution for secure
information transfer in networks that employ physical layer network coding as their
data routing strategy. By incorporating lattice-based PNC, higher data rates can be
achieved compared to existing multi-user wireless communication schemes. However,
ensuring information security becomes a primary concern in such scenarios.

By incorporating nested lattices that are both AWGN-good and secrecy-good, a
multi-user transmission strategy can be established. This approach not only enables
higher data rates but also ensures the privacy of each user’s information within the
network.

Denoting yi as the received signal at the ith relay Reli, we have [21, Eq. 1]:

yi =
L∑
l=1

hi,lxl + zi, (3.6)

where hi,l ∈ R is a real-valued channel given corresponding to the relay Reli and the
transmitter Txl.

Properties of the channel:

• xl is the codeword ∈ Rn

• Txl is the l’th transmitter that maps the message ml ∈ Fk
p into xl ∈ Rn

• z ∼ N(0, 1) denotes the AWGN

We are given the following [21, Eq. 3]:

yi =
Λ∑
1

hi,lxl + zl (3.7)

=
Λ∑
1

ai,lxl +
Λ∑
1

(hi,l − ai,l)xl + zi. (3.8)

28

The first part of the equation is the linear combination of the transmitted codewords
with integer coefficients ai,l ∈ Z, and the second part is the effective noise, which is
independent of xi [2], [6].

The papers [2, 6] are based on Nazer and Gastpar’s proposed CF strategy as a
PNC scheme. Nazer and Gastpar described a code structure based on nested lattices
whose algebraic structure makes the scheme reliable and efficient. The CF strategy
exploits interference to obtain higher end-to-end transmission rates between users in
a network. The relays are required to decode noiseless linear equations of the trans-
mitted messages using the noisy linear equations provided by the channel. In [6],
Osmane and Belfiore consider implementing their scheme for real Gaussian channels
and one-dimensional lattices. They relate the maximization of the transmission rate
to the lattice SVP. They show that the ML criterion can be implemented using an
inhomogeneous Diophantine approximation algorithm, as we will explore in the next
section.

3.1.3 CF Protocol for ML decoding

The paper [2] focuses on ML decoding. The system model and assumptions are
common for all four papers [2, 3, 6, 7], which are the main focus of the thesis. They
consider one relay receiving messages from k sources s1, ..., sk and transmitting a
linear combination of these k messages. The relay observes a noisy linear combina-
tion of the transmitted signals through the channel. Received signal at the relay is
expressed as Formula 3.6. hj is the channel coefficient between source sj and the
relay. xj is the vector transmitted by source sj. The relay searches for the integer
coefficient vector a = [a1 a2 · · · ak]T that maximizes the transmission rate. It then
decodes a noiseless linear combination of the transmitted vectors [2, Eq. 2]:

xR =
k∑

j=1

ajxj (3.9)

and retransmits it to the destination or another relay. The channel is complex-valued
with complex inputs and output. The channel coefficients hj are complex, circular,
i.i.d. Gaussian. The fact that the channel coefficients are complex means that they
have both magnitude and phase. The circular part means that the phase of the
channel coefficients is uniformly distributed between 0 and 2π radians. This as-
sumption is made to simplify the analysis and to provide a better approximation for
the practical aspect. The channel coefficients are also i.i.d. Gaussian, which means
the real and imaginary parts of the channel coefficients are independent and identi-
cally distributed random variables with a Gaussian distribution, so hi ∼ N (0, 1). z
is Gaussian, zero mean, with variance σ2 = 1(z ∼ N (0, 1)). Let h = [h1 h2 · · ·hk]

T

denote the vector of channel coefficients. The source vectors xj are taken from a
lattice code. The sources have no channel-side information (CSI). The CSI is only
available at the relay [2].

For the CF strategy, the paper uses the computation rate Rcomp given by [1]
to find the vector a maximizing the computation rate. This is found by applying
the SVP in a lattice. The SVP in a lattice is the problem of finding the shortest
non-zero vector v in a lattice such that the length ∥v∥ is minimized. the achievable
computation rate relays can recover any set of linear equations with coefficient vector

29

a as long as the message rates are less than the computation rate [2, Eq. 3]:

Rcomp(h,a) = log

((
|a|2 − SNR|h†a|2

1 + SNR∥h∥2

)−1)
. (3.10)

The rate is achievable by scaling the received signal by the MMSE coefficient, which
is the Minimum Mean Square Error (MMSE) coefficient. The MMSE coefficient
minimizes the mean square error between the estimated and accurate signals. We
want to find the coefficient vector with the highest computation rate. From [2,
Theorem 1]:

Theorem 3.1.1. For a given h ∈ CN , Rcomp(h,a) is maximized by choosing a ∈ Z[i]
as

a = argmin
a̸=0

(a†Ga) (3.11)

where,

G = I− SNR

1 + SNR∥h∥2
H. (3.12)

H = [Hij], Hij = hih
⋆
j , 1 ≤ i, j ≤ N .

We will now present the proof as found in [6]:

Proof. Maximizing Rcomp(h,a) is equivalent to the following minimization

min
a̸=0

{
∥a∥2 + SNR∥h∥2∥a∥2 − SNR|h†a|2

}
. (3.13)

We can write

|h†a|2 =
∑
i,j

hih
⋆
ja

⋆
i aj. (3.14)

As H = [Hij], Hij = hih
⋆
j , 1 ≤ i, j ≤ N , it follows that

∑
i,j hih

⋆
i a

⋆
i aj = a†Ha. Using

these notations, we can write (3.15) as

(1 + SNR∥h∥2)min
a̸=0

a†
[
I− SNR

1 + SNR∥h∥2
H

]
a. (3.15)

I− SNR
1+SNR∥h∥2H has N strictly positive eigenvalues. It is then positive definite. Now,

the problem is reduced to the minimization of a†Ga.

Searching for the vector that minimizes a is equivalent to the SVP for the lattice
Λ whose Gram matrix is G. The proof for this can be found in [2].

30

3.1.4 Deriving the conditional probability formula from the
paper

The conditional probability formula p(y/λ) is maximized in the ML decoder by [2,
Eq. 10-11].

p(y/λ) =
∑

x1,...,xk,
∑k

j=1 ajxj=λ

p(y/x1, ...xk)p(x1, ..., xk) (3.16)

p(y/x1, ..., xk) ∝ exp

[
−
∥y −

∑k
j=1 hjxj∥2

2σ2

]
. (3.17)

∝ denotes the proportionality between the two expressions. Further, we have:

=
∑

t∈Z[i](k−1)n

exp

[
− ∥y − Ct− DB−1λ∥2

2σ2

]
(3.18)

C =
k∑

j=1

hj

aj

MjUj (3.19)

D =

(k∑
j=1

hj

aj

MjVj

)
B−1λ (3.20)

ω(λ) = y − D (3.21)

g(λ) =
∑
q∈Λ

exp

[
− ∥ω − q∥2

2σ2

]
. (3.22)

For some values of the parameters, g(λ) can be flat, which prevents it from maxi-
mizing.

3.2 The Flatness Factor
The flatness factor is an essential parameter for a lattice Λ when it comes to decod-
ing, and more specifically, the CF scheme, using ML decoding. The flatness factor
depends on the theta series of a lattice Λ. The goal of finding the ML decoding
solution is to minimize the flatness factor [2].

The flatness factor provides a measure of how curved a lattice is at a given point.
The measure is related to the minimum distance between lattice points, which is im-
portant mainly for pure communication of lattice-based crypto schemes. The larger
the flatness factor, the more flat the lattice is and the smaller the minimum distance
between lattice points. A lattice with a large flatness factor is more vulnerable to
attacks that exploit the shortness of lattice vectors, such as the LLL algorithm.
This is why analyzing the flatness factor of a lattice is important in general security
schemes.

The advantage of the flatness factor is that it gives precise characterization by
the theta series, and it can handle both large and small values, whereas, for example,
the smoothing parameter only deals with small values [5].

3.2.1 The Flatness Factor Definition

The flatness factor is defined by [2, Def. 3].

31

Definition 3.2.1. The flatness factor εΛ of the lattice Λ is defined as the ratio

εΛ ≜
Ey(ϕΛ(y))

maxy∈R ϕΛ(y)
, (3.23)

where the n-variable function ϕΛ(y) is defined as:

ϕΛ(y) =
∑
x∈Λ

e−
∥y−x∥2

2σ2 . (3.24)

The average, which is given by [2, Eq. 15]:

Ey(ϕΛ(y)), (3.25)

is the average value of the n-variable function ϕΛ. The other function is the maxi-
mum of the n-variable function ϕΛ given by [2, Eq.16]:

max
y∈R

ϕΛ(y) = ΘΛ

(
e

1
2σ2

)
. (3.26)

Equation 2.34 is the theta series of the lattice Λ, and σ2 is the variance. The proofs
for these can be seen in [2]. The flatness factor tells you how evenly spaced the
lattice points λ are in the lattice Λ. The smaller the flatness factor, the more
evenly spaced the points λ ∈ Λ are. The definition for the Flatness Factor as given
by Equation 3.23 is related to the flatness factor given in [3]. The authors in [3]
has changed the definition for the flatness factor for it to be more consistent with
the problem of physical-layer security. In [5], the author defines the flatness factor
sightly different, where they take into account the minimum variation of fσ,Λ(x),
whereas in the definition from the author of [2], they only consider the maximum
variation of fσ,Λ(x).

3.2.2 The Smoothing Parameter

The Smoothing Parameter of a lattice Λ is the smallest amount of Gaussian noise
that smooths out the discrete structure of Λ up to the number of errors. From [4],
we give the definition for the smoothing parameter of a lattice:

Definition 3.2.2. For a lattice Λ and real ε > 0, the smoothing parameter ηε(Λ)
is the smallest s > 0 such that Q1/s(Λ

⋆\{0}) ≤ ε, where Q is the Gaussian function
not including the zero-vector.

Remark. Q1/s(Λ
⋆\{0}) [4, Sect. 3] is a continous and strictly decreasing function

of s, such that

lim
s→0

Q1/s(Λ
⋆\{0}) =∞ (3.27)

lim
s→∞

Q1/s(Λ
⋆\{0}) = 0. (3.28)

The smoothing parameter was first introduced by the authors in [4]. They ex-
plained it as a new lattice parameter with a few fundamental properties. If one
were to pick a noise vector from a Gaussian distribution with radius at least as
large as the smoothing parameter, and reduce the noise vector modulo the funda-
mental parallelepiped of the lattice, then the resulting distribution is very close to
uniform [4, Sect. 1.1].

32

3.2.3 The Flatness Factor in LNC

Nazer and Gastpar proposed a CF strategy as a PNC scheme. The code structure
is based on nested lattices with an algebraic structure making the scheme reliable
and efficient. Niesen and Whiting later revealed an important limitation of the
decoder used in Nazer and Gastpar’s CF strategy. For this paper, Belfiore and Ling
consider maximum-likelihood decoding of the CF strategy as a way to get around
the limitation of Nazer and Gastpar limitation. The new decoding algorithm is
based on the inhomogeneous Diophantine approximation.

Before this section, we described the PNC concept introduced in [19], which
explains how PNC is used to turn the broadcast property of the wireless channel
into a capacity-boosting advantage.

In [2], an analysis of the CF strategy was introduced where ML decoding is used.
The flatness factor, which we introduced in Definition 3.2.1 in the context of wiretap
attacks is now being implemented to measure the quality of ML decoding. In [3], the
properties of the flatness factor are studied more deeply and give more knowledge
of lattice network coding.

3.2.4 Visualizing different values for the flatness factor

We have now defined the flatness factor. Further, the flatness factor of the Gaussian
measure is defined as the maximum ratio fσ,Λ(y) that can deviate from the uniform
distribution.

Definition 3.2.3. For a given lattice Λ and a vector y, we can consider the n-
variable function given in [3]:

fσ,Λ(y) =
1

(2πσ)n

∑
q∈Λ

e∥y−q∥2/2σ2

. (3.29)

The function represents a sum of Gaussian functions centred at each point q in
the lattice Λ. The Gaussian function at each point q is weighted by the distance
between y and q. The parameter σ decides how far apart the Gaussian functions
are. Larger values of σ result in smoother and more spread-out functions, whereas
smaller values of σ give sharper functions. We will show this in the following figures
reproduced from [3, Fig. 1].

33

2.01.51.00.50.00.51.01.52.0 2.0
1.5

1.0
0.5
0.0

0.5
1.0

1.5
2.0

0.0
0.2
0.4

0.6

0.8

1.0

1.2

(a) σ2 = 0.3

2.01.51.00.50.00.51.01.52.0 2.0
1.5

1.0
0.5
0.0

0.5
1.0

1.5
2.0

0.0
0.2
0.4

0.6

0.8

1.0

1.2

(b) σ2 = 0.5

2.01.51.00.50.00.51.01.52.0 2.0
1.5

1.0
0.5
0.0

0.5
1.0

1.5
2.0

0.0
0.2
0.4

0.6

0.8

1.0

1.2

(c) σ2 = 0.8

Figure 3.2: fσ,Λ(y) for Λ = 2Z2, σ2 = 0.3, 0.5, and 0.8.

34

We notice that when σ2 is lower, the waves in the graphs becomes higher and
steeper, which is what we want for the flatness factor. We want to avoid that
the n-variable function fσ,Λ(y) becomes flat for the value of Λ. We know that the
flatness factor is the factor in which the maximum ratio fσ,Λ(y) can deviate from the
uniform distribution ϵΛ(σ), and the flatness factor can handle both small and large
values compared to the smoothing parameter which only deals with small values.
When we have the flatness factor of Λ as large values, we ensure that the maximum
likelihood metric is as different as possible from the other likelihood metrics of the
point of Λ. For the decoding of the CF strategy to be good, we need a large theta
series. The reason for this is that the theta series, potentially making the structure
more complex, also provides more degrees of freedom and improve the performance
of the CF. It may require more computational resource in order to get the desired
outcome. So, depending on what is important, a smaller theta series gives a less
complex structure of the lattice, and can be more efficient, while a larger theta series
will give better performance, but be less efficient [7].

This is a lot of the problem when it comes to lattices. Having bigger lattice
structures, leads to better performance, but in a lot of the cases it ends up being
inefficient, and therefore we need to come up with strategies being just as good, but
efficient enough for us to get the right trade-off out of it.

3.3 The CF method
Interference Alignment

Interference alignment [11] is a linear precoding technique that attempts to align
interfering signals in time, frequency, or space. In Multiple-input Multiple-output
(MIMO) networks, interference alignment uses the spatial dimension offered by mul-
tiple antennas for alignment.

yi =
L∑

l=1

ai,lxl +
L∑

l=1

(hi,l − ai,l)xl + zi (3.30)

= x2 + y2. (3.31)

The term
∑L

l=1 ai,lxl corresponds to a linear combination of the transmitted code-
words with integer coefficients ai,l ∈ Z. The term

∑L
l=1(hi,l − ai,l)xl + zi is the

effective noise. The relay computes ui by decoding the first term in Equation 3.30.
If we choose nested lattices, we know that all necessary conditions for the sum to
result in a valid codeword will be met. We find the unknown integer coefficients a by
maximizing the achievable rate R(h,a), which is given by Equation 3.10. According
to [21], any message rate Rl satisfying [21, Eq. 5]

Rl < R(h,a), (3.32)

is achievable so that the relays can recover an integer linear combination of the
transmitted codewords.

3.3.1 How does PNC work?

PNC, described in [19], applies network coding directly within the radio channel
at the physical layer. The authors proposes a strategy related to network coding,

35

which deals with reception and modulation of Electro-Magnetic (EM) signals. [19]
show that the capacity of a two-way relay channel increases by 100% compared to
a scheme without network coding and by 50% compared to network coding.

We will now give the same assumptions of the channel as given by [19]. The
authors assume the use of a Quadrature Phase Shift Keying (QPSK) modulation,
symbol-level and carrier-phase synchronization and the use of power control, so N1

and N3 arrive at N2 with the same phase and amplitude, where the QPSK data
stream can be considered as two Binary Phase-Shift Keying (BPSK) data streams.
For the data stream we have one in-phase stream and one quadrature-phase stream.
The time slot is defined as the time required for the transmission of one fixed-size
frame and the transmission and reception at a particular node must occur in different
time slots. The passband signal received by N2 during one symbol period is by given
by [19, Eq. 3]:

r2(t) = s1(t) + s3(t) (3.33)
= [a1 cos(ωt) + b1 sin(ωt)] + [a3 cos(ωt) + b3 sin(ωt)] (3.34)
= (a1 + a3) cos(ωt) + (b1b3) sin(ωt). (3.35)

The symbol period can be either 1 or 3. It refers to the bandpass signal transmitted
by Ni, while r2(t) represents the bandpass signal received by N2 during a single
symbol period. ai and bi are the QPSK modulated information bits of Ni, and ω
denotes the carrier frequency. Consequently, N2 will receive two baseband signals.
The first one, called the in-phase signal and denoted as P , corresponds to the input.
The second one is the quadrature phase signal, denoted as Q, which corresponds to
the output [19, Eq. 4].

P = a1 + a3 (3.36)
Q = b1 + b3. (3.37)

A relay node plays a crucial role in facilitating data transfer within a network or
between different networks. In the context of this scenario, N2 functions as a relay
node. However, it does not have the capability to extract the individual information
transmitted by N1 and N3. Instead, it can only access the combined signals P and
Q. To ensure that the end-to-end delivery of information is equivalent to GF(2),
a modulation/demodulation scheme described in [19] is necessary. This scheme
enables the summation of bits from N1 and N3 at the physical layer, resulting in the
desired information delivery.

When s1 and s3 go through modulation, we see clearly from Table 3.1, that
1 maps to 1 and 0 maps to -1. After the mapping of the vectors, N2 obtain the
information bits [19, Eq. 5]:

sP2 = sP1 ⊕ sP3 (3.38)
sQ2 = sQ1 ⊕ sQ3 , (3.39)

which transmits [19, Eq. 6]:

s2(t) = a2 cos(ωt) + b2 sin(ωt). (3.40)

From the received signal s2(t), we can perform QPSK demodulation to obtain sP2
and sQ2 . The bits successfully extracted from sP2 and sQ2 within a specific time slot

36

Modulation mapping at N1 and N3
Demodulation mapping at N2

Input Output

Input Output Modulation mapping at N2

Input Output
sP1 sQ3 a1 a3 a1 + a3 sP2 a2

1 1 1 1 2 0 -1
0 1 -1 1 0 1 1
1 0 1 -1 0 1 1
0 0 -1 -1 -2 0 -1

Table 3.1: Reproduced from Zhang, Liew and Lam, PNC mapping overview

will be used to create S2. To achieve this, we can employ PNC-mapping and utilize
the network coding operation S2 = S1 ⊕ S3.

Table 3.1 is reproduced from [19, Table 1] and shows a modulation mapping at
N1 and N2, and demodulation and modulation mappings at N3. It shows how the
PNC strategy works, so when the inputs sP1 and sP3 are modulated, they receive the
values for a1 and a3. s1 and s3 are modulated to either 1 or -1, which is the set of
aj = {−1, 1}, which is the variable representing the BPSK modulated bit of sPj . If
sPj gives input value 1, the output aj is 1 and if sj is 0, the output aj is modulated
to -1. When we have received the values for a1 and a3, we can demodulate N2, and
the input will be a1 + a3. The input sP2 becomes the sum of these two modulated
by 2. As explained, the input sI2 is then modulated to either 1 or -1. This is all part
of the demodulation of the input a1 + a3, where the final output is the last column
of Table 3.1 for a2.

We will now compare the Bit Error Rate (BER) performance for standard QPSK
modulation, the XOR bit for straightforward network coding and PNC modulation.
We suppose that the received signal energy for one bit is unity, which means that
the energy of the received signal carrying one bit of information is normalized to one
value. This is to simplify the analysis of the performance. The noise is Gaussian
white with density N0/2. When transmitting from N2 to N1 or N3, the BER is
standard BPSK modulation for all three, which is the Q-function Q(

√
2/N0). The

Q function is the complementary cumulative distribution function of the zero-mean,
unit-variance Gaussian random variable. When receiving at N2, the BER for the
XOR bit for straightforward network coding is [19, Sect. 2.D]:

2Q(
√

2/N0)(1−Q(
√

2/N0)). (3.41)

For the PNC modulation, we need to use the maximum posterior probability cri-
terion. We know that a2 is mapped to either 1 or -1 from the table. IEEE 802.11
requires 100% of the time slots that PNC needs because of the differences in the
underlying techniques used for data transmission and network coordination. PNC
uses the combination of XOR and superposition coding to transmit data from two
sources to a destination, as explained above. In the first time slot, the two sources
transmit their signals simultaneously, and in the second, the destination node de-
codes the signals using the PNC technique described. The IEEE 802.11 is a standard
for wireless local area networks (WLAN), and it specifies the physical and data link
layer protocols used in wireless communication. IEEE 802.11 uses a technique called
carrier sense multiple access with collision avoidance (CSMA/CA) to avoid the wire-

37

less nodes colliding. CSMA/CA requires time slots for network coordination. These
include Request to Send (RTS), Clear to Send (CTS) and Acknowledgement (ACK)
messages. As shown in [19, Ch. 2.D], for one frame exchange, the PNC modulation
requires two timeslots, the IEEE 802.11 modulation requires four timeslots and the
straightforward network coding requires three, which means that PNC can improve
the system by a factor of 100% and 50%, respectively.

38

3.3.2 Analysis of the paper by Belfiore and method of repro-
duction

Assumptions for the model [2] is that the channel coefficients are real, i.i.d. Gaussian.
z is Gaussian, zero-mean, with variance σ2 = 1:

hi ∼ N (0, 1), z ∼ N (0, σ2) = N (0, 1)

First, we assign values to the variables Sm, ρ, σN , h and a as seen in Appendix
A.1. Next, we calculate the gcd by using the extended Euclidean algorithm from
Appendix A.2. We then determine the solutions of x1 and x2 by using [6, Eq. 10]:

Definition 3.3.1. The set of all solutions is obtained as followed{
x1 =

u1

g
λ+ a2

g
k

x2 =
u2

g
λ− a1

g
k

(3.42)

g = a1 ∧ a2 is the gcd of a1 and a2, k ∈ Z.

The solutions for x1 and x2 are calculated by Appendix A.3. We have now
calculated the gcd, the set (u1, u2), γ and β and can then start plotting Figure 3.3
using the following code from Appendix A.3.1.

• Set the value y, which is the inner product of vector h and x which are given
to be (x1, x2) = (−2, 3) from Appendix A.3.

• Define lambda λ with the help of the prorgram from Appendix A.3.1.

• Compute the probability for a given y, value of λ, σN, u and a.

• Compute the sum of Gaussians over the given range.

• Give as output the sum returned.

• Set the step size and range for the lambda values, loop over every lambda
value and compute the corresponding probability.

• Plot the curve of the figure.

By changing the constellation Sm, the graph changes the amount of maximum point,
and by setting Sm down to 30 we see that we get that curve is maximized for one
point which is approximately λ = −7, which we can see in Figure 3.3. When we set
Sm = 90, we get that λ is maximized for several points.
The figure deviates from [2, Fig. 1], such that for the values λ is maximized are
lower for our figure. In our figure, the highest point for p(y/λ) is right above 14,
while for [2, Fig. 1], the maximum point is at approximately 23 for p(y/λ). The
difference between Figure 3.3 and Figure 3.4 is the constellation size Sm.

The figures below are reproduced from the same function from [2, Fig. 1] imple-
mented by the code from Appendix A but for different Sm and ρ.

39

−15 −10 −5 0 5

0

5

10

λ

p(
y
/λ

)

Figure 3.3: Sm = 30, ρ = 40

−15 −10 −5 0 5

0

5

10

λ

p(
y
/λ

)

Figure 3.4: Sm = 90, ρ = 40

3.3.3 Constellation size

The diversity is used to mitigate the effects of a signal fading when travelling through
a wireless channel. This involves transmitting multiple copies of the same signal
through multiple paths and combining the signal again at the receiver to improve
the signal [7]. The diversity is defined as how steep or not the curve for error
probability is with respect to the SNR, which can be seen in [6, Fig. 3], where they
are using the inhomogeneous Diophantine approximation, which we have mentioned
previously. So when the constellation size is small, the symbols used to represent
the data have a lower number of bits compared to when the constellation size is
bigger. The diversity order is 1. Having a low constellation size means that there
are limited possibilities to improve the quality of the signal through the diversity
order. The more the constellation size increases, the more the diversity increases.
This can lead to more possibilities for improving the quality of the signal through
diversity. Since the constellation size of the first figure is small, it is easier to decode
the maximum ρ(λ), since we can see the peek in the figure which corresponds to a

40

unique λ where ρ is maximum unlike for the other figure 3.4, which have a larger
constellation size, and diversity order and therefore have several maximum points
along the x-axis.

In the second figure 3.4, the Sm = 90, which means the constellation size is larger
and the diversity order is higher as well. Since ρ depends on the constellation, we
get a large set of the couple (x1, x2) which needs to be calculated and gone through.
The width for ρ, which is the SNR in terms of dB, then becomes larger and therefore
becomes flat on the top of the plot, which we see in Figure 3.4 and Figure 3.5. Since
we can no longer see the value of λ, the diversity becomes worse. The diversity is
less and drops to 1/2, as we can see clearly when putting Sm = 80 and ρ = 50. The
figure has the maximum points for λ = −4 and λ = −10.

−15 −10 −5 0 5

0

5

10

15

λ

p(
y
/λ

)

Figure 3.5: Sm = 80, ρ = 50

41

Figure taken from [6, Fig. 1]

Figure 3.6: p(y/λ) for h = [−1.274 0.602]T, a = [2 − 1]T, SNR = 40dB, x1 =
−2 and x2 = 3. p(y/λ) is maximized for one value, λ = −7 in the left sub-figure,
while it is maximized for several values of λ in the right one.

We know the y-axis to be p(y/λ) and the x-axis to be λ. We are given the values

• h = [−1.274 0.602]T

• a = [2 − 1]T

• SNR = 40dB

• x1 = −2

• x2 = 3

The achievable computation rate relays can recover any set of linear equations with
coefficient vector a as long as the message rates are less than the computation rate
from Equation 3.10. This rate is achievable by scaling the received signal by the
MMSE coefficient. We want to find the coefficient vector with the highest computa-
tion rate, as shown in Theorem 3.1.1. Searching for the vector that minimizes a is
equivalent to the SVP for the lattice Λ whose Gram matrix is G. Using the values
given, we get

exp

[
−
∥1−

∑2
j=1(hjxj)∥2

2σ2

]
(3.43)

= exp

[
− ∥1− ((−1.274 · −2) + (0.602 · 3))∥2

22

]
. (3.44)

The channel-side information (CSI) is the channel property. It describes how a sig-
nal propagates from the transmitter to the receiver and represents the combined

42

effect. CSI is estimated at the receiver, and it is crucial for achieving reliable com-
munications with high data rates in multi-antenna systems.
The smoothing parameter of a Euclidean lattice Λ is the smallest Gaussian noise
that smooths out the discrete structure of Λ.
In [6], the authors relate the maximization of the transmission rate to the lattice
SVP. It shows that the ML criterion can be implemented by using the inhomoge-
neous Diophantine approximation algorithm. The authors in [6] also implement the
CF protocol described by Nazer and Gastpar, and they also explain how to obtain
the integer coefficients that maximize the rate. They propose a decoding technique
based on ML. All the practical aspects are demonstrated for one-dimensional real
constellations. By using [2,6,7], we will try to break down the problems into simpler
problems and explain what is done in the papers in simpler terms.

3.3.4 Understanding the methods

As seen in Figure 3.1, the model used considers one relay receiving messages from
two sources s1 and s2 and transmitting a linear combination of the two messages.
The received signal at the relay is expressed as Equation 3.1, which is used in the
extended Euclidean algorithm to calculate the x’s and y’s for the plot. The relay
will search for the integer coefficient vector a that maximizes the transmission rate.
It will then decode the noiseless linear combination of the transmitted signals and
retransmit them to the destination or another relay. The channel coefficients h1 and
h2 are real, i.i.d. Gaussian h1 ∼ N (0, 1). z is Gaussian, zero-mean, with variance
σ2 = 1. h denotes the vector of channel coefficients h = [h1 h2]

T. So, from this, we
know that σ2 = 1. The source symbols xi are integers and verify

|xi| ∈ S = −sm,−sm + 1, ..., sm. (3.45)

The sm is used later in the plot. The source does not have CSI.
To find the vector a maximizing the computation rate, we use the expression of

the computation rate Rcomp as found in Equation 3.10.
All though they explain in [6] that the rate is achievable by scaling the received
signal, the scale is the MMSE-coefficient and is as follows [7, Eq. 10]:

α = αMMSE =
ρh†a

1 + ρ∥h∥2
. (3.46)

The MMSE coefficient is proved to approach the capacity of linear Gaussian channels
in lattice-based strategies. It is unnecessary for the plotting of this figure we are
trying to explain because it is a one-dimensional lattice. The MMSE-coefficient is
found in [7]. We are also given the vector a in Figure 3.6, so it is not necessary to
calculate the achievable computation rate Rcomp to plot it. From [7, Sect. B.System
Model], we are given the formula for the SNR given by ρ:

ρ =
Eav

σ2
, (3.47)

where ρ denotes the SNR at the relay node and Eav denotes the average energy per
symbol, which is also denoted as Sm, given as one of the variables in Figure 3.6. The
last variable σ2, retrieved from [7] is initially 1. Figure 3.6 uses a one-dimensional

43

lattice, so the transmitted xi are scalars that belong to real Pulse Amplitude Mod-
ulation (PAM) [7] constellations defined by

C = {xi ∈ [−Sm, Sm], Sm ∈ Z}. (3.48)

A PAM [7] is a one-dimensional real constellation. It is a set of points representing
different discrete amplitude levels for a given signal. For more complex systems, one
would use two-dimensional or higher constellations to represent the more complex
values.

3.3.5 Recovering the linear equations

The goal of the relay is to decode a linear equation of the transmitted messages and
pass it to the destination or another relay. The received signal at the relay is written
on the form

y = λ+ ξ1x1 + ξ2x2 + z, (3.49)

where λ is an integer , ξi = hi−ai and z is an additive white noise. To recover the
linear equation λ, we have to use a linear Diophantine equation to get

λ = a1x1 + a2x2. (3.50)

A Diophantine equation involves only sums, products and power where all the con-
stants are integers. A Diophantine equation will be on the form

ax+ by = c, (3.51)

where integers are the only solution of interest.
By using the extended Euclidean algorithm, we get the set of all solutions obtained
as follows {

x1 =
u1

g
λ+ a2

g
k

x2 =
u2

g
λ− a1

g
k.

(3.52)

g = a1 ∧ a2 is the gcd of a1 and a2, k ∈ Z.
We want to recover the message m. If λ is a multiple of the gcd of a1 and a2, then
the Diophantine equation has infinite solutions.

Now we choose values for A,U.

A =

[
3 3
1 0

]
,U =

[
1 1
0 1

]
. (3.53)

We see from [2] that H = A · U, so

H =

[
3 3
1 0

]
·
[
1 1
0 1

]
=

[
3 6
1 1

]
. (3.54)

From Figure 3.6, we have that k = 2, j = [1, 2], a = [2 −1] and Λj = a1Λ1+a2Λ2,
for k = 2.

Since we know from Theorem 3.1.1, we can now define G:

I =

[
1 0
0 1

]
,H =

[
3 6
1 1

]
. (3.55)

44

From Figure 3.6, we are also given SNR = 40dB and h = [−1.274 0.602]T,

G =

[
1 0
0 1

]
− 40

1 + 40∥[−1.274 0.602]∥
·
[
3 6
1 1

]
(3.56)

G =

[
−1.09 −4.1839
−0.6973 0.3027

]
. (3.57)

Then we can calculate

λ =
k=2∑
j=1

ajxj = (2 · −2) + (−1 · 3) = −7. (3.58)

M is the generator matrix for Λ.[
M1 M2

]
·
[
r1 r2

]T
= λ (3.59)

M =
[
0 1

]
(3.60)

M · U =
[
0 B

]
(3.61)[

0 1
]
·
[
1 1
0 1

]
=

[
0 B

]
,B = 1 (3.62)

Now, from [2, Eq. 8] can be expressed as:[
0 B

]
· U−1 ·

[
r1 r2

]T
= λ. (3.63)

We input the values from Figure 3.6 to find [r1 r2]:[
0 1

]
·
[
1 −1
0 1

]
·
[
r1
r2

]
= −7. (3.64)

From [0 B] ·U−1, we get [0 1]. To get λ = −7, we set [r1 r2]T to be [1 − 7]T. Further
we define t̃ = U−1[r1 r2]. We see that the vector composed of the last n components
of t̃ is equal to B−1λ.
Therefore we can write:

t̃ =
[
t B−1λ

]
(3.65)

t̃ = U−1
[
r1 r2

]T
=

[
1 −1
0 1

]
·
[
1
−7

]
=

[
8
−7

]
. (3.66)

Further, we can now find t, which is a (k−1)n-dimensional vector with components
in Z[i]:

t̃ =
[
t B−1λ

]
=

[
8 −7

]
, (3.67)

so t = 8.
We then decompose the unimodular matrix U into blocks, where matrices Vj are
square n× n matrices:

U =

[
u1 v1
u2 v2

]
=

[
1 1
0 1

]
. (3.68)

We use this information further in the formula for rj

rj = Ujt+ VjB
−1λ. (3.69)

45

For j = 1,

r1 = u1t+ v1B
−1λ (3.70)

r1 = 1 · 8 + 1 · 1 · −7 = 1, (3.71)

which checks out from what we already have for r1.
For j = 2,

r2 = U2t+ V2B
−1λr2 = 0 · 8 + 1 · 1 · −7 = −7, (3.72)

which checks out for what we already have for r2.
Now we can look at the final equality

xj =
1

aj

(MjUjt+MjVjB
−1λ), (3.73)

where t is any vector in Z[i](k−1)n.
With the same numbers, we get:

x1 =
1

2
(0 · 1 · 8 + 0 · 1 · 1 · −7) = 0 (3.74)

x2 =
1

−1
(1 · 0 · 8 + 1 · 1 · 1 · −7) = 7. (3.75)

We now see that we have recovered the original message m = (x1, x2) = (0, 7)

46

Chapter 4

Conclusions and future work

While there is a lot of research on the area of using PNC, LNC related to CF,
the issue is still that the algorithms remains computationally expensive when the
dimension of the lattice grows. Many algorithms work well and is suitable for lower
dimension lattices, but the reliability gain does not weigh up for the computational
cost of the operations as the dimensions increases in size.

4.1 Conclusion
What we have done in this thesis is to present the key points from the papers
in focus, which are mainly [2, 3, 6, 7]. We also want to mention [5], to emphasize
the importance of secrecy good lattice and the use of the flatness factor to gain
the optimal lattice structure to be secrecy-good. The authors in [2, 3, 6, 7] discuss
using the HNF algorithm, LNC and the flatness factor of lattices regarding the CF
strategy and PNC. We have shown how the HNF algorithm can be used in theory
and practically applied to find better basis for lattices, where the vectors are shorter
and more orthogonal, with some coding examples. We have explained how a lattice’s
flatness factor can affect the codings security, and the importance of minimizing the
flatness factor to be able to recover the message sent. We showed three figures with
different notions of constellation size to show how much easier it can be to find a
desired lattice point when the diversity order of a constellation size is one versus
when the constellation size increases, the diversity order halves and there is no longer
one point maximizing the graph. The author in [2] talks about how the metric of the
ML decoder needs to be different from the likelihood metric for the intended receiver
to recover the correct message. We have also seen that the flatness factor needs to
be minimized for the ML decoding to work correctly and for the decoders to recover
the correct message. The flatness factor can be defined for different purposes, where
the author in [5] proposes a definition more suiting for a secrecy-good lattice.

4.2 Future work
For future work, it would be an interesting approach to work more on the graphs
displaying the conditional probability, which are maximized for both one point and
one for several depending on the value for SNR, Sm and ρ and also to know exactly
why the maximized points in the figures we have tried to reproduce are much lower

47

compared to the figure displayed in the paper by [2].
Another interesting approach is to implement other basis-reduction algorithms

to optimize the computational cost and still retain the advantages of using lattices
to work on the approaches introduced in the thesis. As mentioned by the authors
in [7], it is in fact important to optimize the flatness factor and the error probability
function for lattice constructions. Regarding security, the flatness factor makes it
harder for an attacker to exploit a lattice structure and it is therefore important
to research on the area to find ways to use the flatness factor in efficient ways
making it more secure. In terms of efficiency, a lower flatness factor also allows
for compact representations of lattice points, meaning the lattice points are more
evenly distributed and closer to each other in terms of the Euclidean distance. It
can also reduce the computational complexity of the lattice operations, making the
implementations of lattices more efficient.

I think it is important to mention a conjecture from the authors of [3], where they
state that "Maximizing the ML metric is equivalent to solving a multidimensional
inhomogeneous Diophantine approximation problem". All though the conjecture is
not proved, it is an important notion due to the fact that most of the decoding
techniques presented in the papers introduced are presented for one-dimensional
lattices, and it is necessary for future research to solve the issue for higher dimensions
as well.

48

Bibliography

[1] B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing interference
through structured codes,” 2009.

[2] J.-C. Belfiore, “Lattice codes for the compute-and-forward protocol: The flat-
ness factor,” 2011.

[3] J.-C. Belfiore and C. Ling, “The flatness factor in lattice network coding: design
criterion and decoding algorithm,” 2012.

[4] D. Micciancio and O. Regev, “Worst-case to average-case reductions based on
gaussian measures,” in 45th Annual IEEE Symposium on Foundations of Com-
puter Science, pp. 372–381, 2004.

[5] C. Ling, L. Luzzi, J.-C. Belfiore, and D. Stehlé, “Semnatically secure lattice
codes for the gaussian wiretap channel,” 2014.

[6] A. Osmane and J.-C. Belfiore, “The compute-and-forward protocol: Implemen-
tation and practical aspects,” 2011.

[7] A. Mejri, G. R.-B. Othman, and J. C. Belfiore, “Lattice decoding for the
compute-and-forward protocol,” 2012.

[8] C. Feng, D. Silva, and F. R. Kschischang, “Design criteria for lattice network
coding,” 2011.

[9] K. H. Rosen, Discrete Mathematics and Its Applications. McGraw Hill, 2011.

[10] R. Zamir, Lattice Coding for Signals and Networks. Cambridge, U.K.: cam-
bridge, 2014.

[11] S. I. Costa, F. Oggier, A. Campello, J.-C. Belfiore, and E. Viterbo, Lattices Ap-
plied to Coding for Reliable and Secure Communications. Cham, Switzerland:
springer, 2017.

[12] H. Cohen, A Course in Computational Algebraic Number Theory. Germany:
Springer-Verlag Berlin Heidelberg, 1996.

[13] K. Shinohara, “Hsnf 0.3.16.”

[14] J. Hoffstein, J. Pipher, and J. H. Silverman, An introduction to Mathematical
Cryptography. New York, NY, USA: Springer, 2004.

[15] E. W. Weisstein, “Theta series.”

49

[16] J. Koekoek and R. Koekoek, “The Jacobi inversion formula,” 1999.

[17] J. Conway and N. Sloane, Sphere Packings, Lattices and Groups. Springer,
1999.

[18] A. D. Wyner, “The wire-tap channel,” The Bell System Technical Journal,
vol. 54, pp. 1355–1387, October 1975.

[19] Z. Shengli, S.-C. Liew, and P. P. K. Lam, “Physical layer network coding,” 2007.

[20] C. Feng, D. Silva, and F. R. Kschischang, “An algebraic approach to physical-
layer network coding,” IEEE Transactions on Information Theory, vol. 59,
pp. 7576–7596, nov 2013.

[21] V. Forutan and R. F. H. Fischer, “On the security of lattice-based physical-layer
network coding against wiretap attacks,” 2015.

50

Appendices

51

Appendix A

Code for reproducing flatness factor
figure

A.1 Defining the variables

import numpy as np
the upper bound of the source symbols
Sm = 70;
the SNR in terms of dB
rho = 40;
the variance of the Gaussian noise
sigma_N = np.sqrt((Sm**2)/(10**(rho/10)));
the channel coefficients
h = np.array([-1.274, 0.602]);
a maximized
a = np.array([2,-1]);

A.2 Extended Euclidean Algorithm

Python program of extended Euclidean Algorithm
Cf.

https://www.geeksforgeeks.org/python-program-for-basic-and-extended-euclidean-algorithms-2/
Cf. CormenLeisersonRivestStein22_1
function for extended Euclidean Algorithm
def gcdExtended(a, b):

Base Case
if b == 0 :

return a,1,0
gcd,x1,y1 = gcdExtended(b, a%b)
Update x and y using recursive results
x = y1 # //: floor Division
y = x1 - (a//b) * y1

if (a<0 and b<0):
gcd = -gcd;

52

x = -x;
y = -y;

if (a<0 and b>0):
gcd = -gcd;
x = -x;
y = -y;

if (a>0 and b<0):
gcd = -gcd;
x = -x;
y = -y;

u = np.array([x,y]);

return gcd,u

A.3 Determining the gcd

determine the solutions of x1 and x2 by (10)
g, u = gcdExtended(a[0], a[1])
print("gcd(", a[0] , "," , a[1], ") = ", g)
print("(u_1,u_2) = (",u[0], ",", u[1],")")
Other parameters:
gamma_h = (h[0]*u[0]+h[1]*u[1])/g;
print("gamma =",gamma_h);
beta_h = (h[1]*a[0]-h[0]*a[1])/g;
print("beta =",beta_h);

A.3.1 Plot the figure

from mpmath import *
mp.dps = 25; mp.pretty = True;
import matplotlib.pyplot as plt
set the y value
y = np.inner(h, [-2,3]);
Check OsmaneBelfiore11_1sub: Cf. https://arxiv.org/abs/1107.0300
def p_lambda(y,lambda_val,sigma_N,u,a):
test of lambda_val
lambda_val = -14;

sum_Gaussians = 0;
get all the valid boundaries for k
kBounds_x1 =

np.sort([(-Sm*g-u[0]*lambda_val)/a[1],(Sm*g-u[0]*lambda_val)/a[1]]);
kBounds_x2 =

np.sort([(-Sm*g+u[1]*lambda_val)/a[0],(Sm*g+u[1]*lambda_val)/a[0]]);
get the valid values of k for x1 and x2
k_x1Range=np.arange(np.ceil(kBounds_x1[0]),np.floor(kBounds_x1[1])+1,1);
k_x2Range=np.arange(np.ceil(kBounds_x2[0]),np.floor(kBounds_x2[1])+1,1);
kRange = np.intersect1d(k_x1Range,k_x2Range);

53

for k in kRange:
x = [(u[0]*lambda_val+a[1]*k)/g,(u[1]*lambda_val-a[0]*k)/g];
sum_Gaussians = sum_Gaussians + exp(-(y-np.inner(h,

x))**2/(2*sigma_N**2))/(sqrt(2*pi)*sigma_N);
return sum_Gaussians

step_lambda = 1;
lambdaRange = list(np.arange(-15,5+step_lambda,step_lambda));
the curve in terms of lambda
p_lambda_curve = [];
compute all the values of lambda
for lambda_val in lambdaRange:

evaluate the values of rho_lambda
p_lambda_curve.append(p_lambda(y,lambda_val,sigma_N,u,a));

plt.figure()
plot_curve = plt.plot(lambdaRange,p_lambda_curve,’b-’);
plt.grid(True)
plt.xlabel(’lambda’)

54

Appendix B

Hermite Style Normal Form
Algorithm

B.1 Hermite Normal Style Form Algorithm

from hsnf import row_style_hermite_normal_form
import numpy as np

M = np.array([[6, -4, -7],
[3, 5, 14],
[-3, 7, 16]])

H, R = row_style_hermite_normal_form(M)

print(f’H = {H}’)

B.1.1 Row style hermite normal form

def row_style_hermite_normal_form(M: NDArrayInt) -> tuple[NDArrayInt,
NDArrayInt]:
"""
Calculate row-style Hermite normal form of ‘M‘.
Return matrices ‘(H, L)‘ satisfy ‘‘H = np.dot(L, M)‘‘.

Parameters

M: array, (m, n)

Integer matrix

Returns

H: Array, (m, n)

Hermite normal form of M, upper-triangular integer matrix
L: array, (m, m)

unimodular matrix
"""

55

zmh = ZmoduleHomomorphishm.with_standard_basis(M)
return zmh.hermite_normal_form()

B.1.2 With standard basis

def with_standard_basis(cls, A):
"""
Create homomorphish with regard A as a matrix representation with

standard basis

Parameters

A: array, (m ,n)

matrix representation of homomorphish: Z^m -> Z^n
"""
A = np.array(A, dtype=int)
if A.ndim !=2:

raise ValueError("matrix representation must be 2s")

m, n = A.shape
basis_from = cls._standard_basis(m)
basis_to = cls._standard_basis(n)

return cls(A, basis_from, basis_to)

B.1.3 Hermite Normal Form

def hermite_normal_form(self):
"""
calculate row-style Hermite normal form

Returns

H: array, (m, n)

Hermite normal form of M, upper-triangular integer matrix
L: array, (m, n)

unimodular matrix s.t. H = np.dot(L, M)
"""
A = self._A.copy()
basis_from = self._basis_from.copy()
basis_to = self._basis_to.copy()

H, L = self._hnf_row(si=0, sj=0)

#revert A, basis_from and basis_to
self._A = A
self._basis_from = basis_from
self._basis_to = basis_to

56

return H, L

B.1.4 ZmoduleHomomorphishm

Copyright (c) 2019 Kohei Shinohara
Distributed under the terms of the MIT License.
from __future__ import annotations

import warnings

import numpy as np

from hsnf.utils import NDArrayInt, get_nonzero_min_abs_full,
get_nonzero_min_abs_row

class ZmoduleHomomorphism:
"""
homomorphism between Z-modules

Parameters

A: array, (m, n)

matrix representation of homomorhism: Z^m -> Z^n
basis_from: array, (m,)

basis of Z^m
basis_to: array, (n,)

basis of Z^n
"""

def __init__(self, A, basis_from, basis_to):
if A.dtype not in [np.int32, np.int64]:

warnings.warn("Decomposed matrix should be integer.")

self._A = A
self._basis_from = basis_from
self._basis_to = basis_to

@property
def num_row(self):

return self._A.shape[0]

@property
def num_column(self):

return self._A.shape[1]

def _swap_from(self, axis1, axis2):
self._basis_from[[axis1, axis2]] = self._basis_from[[axis2, axis1]]
self._A[[axis1, axis2]] = self._A[[axis2, axis1]]

57

def _swap_to(self, axis1, axis2):
self._basis_to[:, [axis1, axis2]] = self._basis_to[:, [axis2,

axis1]]
self._A[:, [axis1, axis2]] = self._A[:, [axis2, axis1]]

def _change_sign_from(self, axis):
self._basis_from[axis] *= -1
self._A[axis, :] *= -1

def _change_sign_to(self, axis):
self._basis_to[:, axis] *= -1
self._A[:, axis] *= -1

def _add_from(self, axis1, axis2, k):
"""
add k times axis2 to axis1
"""
self._basis_from[axis1] += self._basis_from[axis2] * k
self._A[axis1, :] += self._A[axis2, :] * k

def _add_to(self, axis1, axis2, k):
"""
add k times axis2 to axis1
"""
self._basis_to[:, axis1] += self._basis_to[:, axis2] * k
self._A[:, axis1] += self._A[:, axis2] * k

def _is_lone(self, s):
"""
check if all s-th row elements column elements become zero
"""
if np.nonzero(self._A[s, (s + 1) :])[0].size != 0:

return False
if np.nonzero(self._A[(s + 1) :, s])[0].size != 0:

return False
return True

def _get_nextentry(self, s):
"""
return entry which is not diviable by A[s, s]
assume A[s, s] is not zero.
"""
for i in range(s + 1, self.num_row):

for j in range(s + 1, self.num_column):
if self._A[i, j] % self._A[s, s] != 0:

return i, j
return None

def _snf(self, s):
"""

58

determine SNF up to the s-th row and column elements
"""
if s == min(self._A.shape):

return self._A, self._basis_from, self._basis_to

choose a pivot
row, col = get_nonzero_min_abs_full(self._A, s)
if col is None:

if there does not remain non-zero elements, this procesure
ends.

return self._A, self._basis_from, self._basis_to
self._swap_from(s, row)
self._swap_to(s, col)

eliminate the s-th column entries
for i in range(s + 1, self.num_row):

if self._A[i, s] != 0:
k = self._A[i, s] // self._A[s, s]
self._add_from(i, s, -k)

eliminate the s-th row entries
for j in range(s + 1, self.num_column):

if self._A[s, j] != 0:
k = self._A[s, j] // self._A[s, s]
self._add_to(j, s, -k)

if there does not remain non-zero element in s-th row and column,
find a next entry

if self._is_lone(s):
res = self._get_nextentry(s)
if res:

i, j = res
self._add_from(s, i, 1)
return self._snf(s)

elif self._A[s, s] < 0:
self._change_sign_from(s)

return self._snf(s + 1)
else:

return self._snf(s)

def smith_normal_form(self):
"""
calculate Smith normal form

see the following awesome post for a description of this algorithm:
http://www.dlfer.xyz/post/2016-10-27-smith-normal-form/

Returns

D: array, (m, n)
L: array, (m, m)

59

R: array, (n, n)
D = np.dot(L, np.dot(M, R))
L, R are unimodular.

"""
A = self._A.copy()
basis_from = self._basis_from.copy()
basis_to = self._basis_to.copy()

D, L, R = self._snf(s=0)

revert A, basis_from, and basis_to
self._A = A
self._basis_from = basis_from
self._basis_to = basis_to

return D, L, R

def _hnf_row(self, si, sj):
"""
determine row-style HNF up to the si-th row and the sj-th column

elements
"""
if (si == self.num_row) or (sj == self.num_column):

return self._A, self._basis_from

choose a pivot
row, _ = get_nonzero_min_abs_row(self._A, si, sj)

if row is None:
if there does not remain non-zero elements, go to a next

column
return self._hnf_row(si, sj + 1)

self._swap_from(si, row)

eliminate the s-th column entries
for i in range(si + 1, self.num_row):

if self._A[i, sj] != 0:
k = self._A[i, sj] // self._A[si, sj]
self._add_from(i, si, -k)

if there does not remain non-zero element in s-th row, find a
next entry

if np.count_nonzero(self._A[(si + 1) :, sj]) == 0:
if self._A[si, sj] < 0:

self._change_sign_from(si)

if self._A[si, sj] != 0:
for i in range(si):

k = self._A[i, sj] // self._A[si, sj]
if k != 0:

self._add_from(i, si, -k)

60

return self._hnf_row(si + 1, sj + 1)
else:

return self._hnf_row(si, sj)

def hermite_normal_form(self):
"""
calculate row-style Hermite normal form

Returns

H: array, (m, n)

Hermite normal form of M, upper-triangular integer matrix
L: array, (m, m)

unimodular matrix s.t. H = np.dot(L, M)
"""
A = self._A.copy()
basis_from = self._basis_from.copy()
basis_to = self._basis_to.copy()

H, L = self._hnf_row(si=0, sj=0)

revert A, basis_from, and basis_to
self._A = A
self._basis_from = basis_from
self._basis_to = basis_to

return H, L

@classmethod
def _standard_basis(cls, n):

return np.eye(n, dtype=int)

@classmethod
def with_standard_basis(cls, A):

"""
create homomorhism with regard A as a matrix representation with

standard basis

Parameters

A: array, (m, n)

matrix representation of homomorhism: Z^m -> Z^n
"""
A = np.array(A, dtype=int)
if A.ndim != 2:

raise ValueError("matrix representation must be 2d")

m, n = A.shape
basis_from = cls._standard_basis(m)
basis_to = cls._standard_basis(n)

61

return cls(A, basis_from, basis_to)

def smith_normal_form(M: NDArrayInt) -> tuple[NDArrayInt, NDArrayInt,
NDArrayInt]:
"""
Calculate Smith normal form of integer matrix ‘M‘.
Returned matrices ‘(D, L, R)‘ satisfy ‘‘D = np.dot(L, np.dot(M, R))‘‘.

Parameters

M: array, (m, n)

Integer matrix

Returns

D: array, (m, n)

Smith normal form of ‘M‘
L: array, (m, m)

Unimodular matrix
R: array, (n, n)

Unimodular matrix
"""
zmh = ZmoduleHomomorphism.with_standard_basis(M)
return zmh.smith_normal_form()

def row_style_hermite_normal_form(M: NDArrayInt) -> tuple[NDArrayInt,
NDArrayInt]:
"""
Calculate row-style Hermite normal form of ‘M‘.
Returned matrices ‘(H, L)‘ satisfy ‘‘H = np.dot(L, M)‘‘.

Parameters

M: array, (m, n)

Integer matrix

Returns

H: array, (m, n)

Hermite normal form of M, upper-triangular integer matrix
L: array, (m, m)

Unimodular matrix
"""
zmh = ZmoduleHomomorphism.with_standard_basis(M)
return zmh.hermite_normal_form()

62

def column_style_hermite_normal_form(M: NDArrayInt) -> tuple[NDArrayInt,
NDArrayInt]:
"""
Calculate column-style Hermite normal form of ‘M‘
Returned matrices ‘(H, R)‘ satisfy ‘‘H = np.dot(M, R)‘‘

Parameters

M: array, (m, n)

Integer matrix

Returns

H: array, (m, n)

Hermite normal form of M, lower-triangular integer matrix
R: array, (n, n)

Unimodular matrix
"""
zmh = ZmoduleHomomorphism.with_standard_basis(M.T)
H_T, R_T = zmh.hermite_normal_form()
H = H_T.T
R = R_T.T
return H, R

B.1.5 HNF row

def _hnf_row(self, si, sj):
"""
determine row-style HNF up to the si-th row and the sj-th column elements
"""
if (si == self.num_row) or (sj == self.num_column):

return self._A, self._basis_from

choose a pivot
row, _ = get_nonzero_min_abs_row(self._A, si, sj)

if row is None:
if there does not remain non-zero elements, go to a next column
return self._hnf_row(si, sj + 1)

self._swap_from(si, row)

eliminate the s-th column entries
for i in range(si + 1, self.num_row):

if self._A[i, sj] != 0:
k = self._A[i, sj] // self._A[si, sj]
self._add_from(i, si, -k)

if there does not remain non-zero element in s-th row, find a next entry
if np.count_nonzero(self._A[(si + 1) :, sj]) == 0:

if self._A[si, sj] < 0:

63

self._change_sign_from(si)

if self._A[si, sj] != 0:
for i in range(si):

k = self._A[i, sj] // self._A[si, sj]
if k != 0:

self._add_from(i, si, -k)

return self._hnf_row(si + 1, sj + 1)
else:

return self._hnf_row(si, sj)

B.2 Voronoi partition

import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial import Voronoi, voronoi_plot_2d

A = (-1,1)
B = (2,3)
C = (0,-2)
points = (A,B,C)
voronoi = Voronoi(points)
figure = voronoi_plot_2d(voronoi, show_vertices=False,

line_colors=’grey’, line_width=1, line_alpha=1, point_size=3)

plt.show()

64

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Contents
	Introduction
	Motivation
	Objective
	Thesis Organization

	Preliminary Concepts from Codes, Lattices, and Information Theory
	Algebra
	Finite Fields
	Principal Ideal Domains
	Inhomogeneous Diophantine Approximation

	Lattices
	Voronoi Cell
	Cosets
	Lattice Codes and Nested Lattices
	Dual Lattice
	Hermite Normal Form
	The use for Hermite Normal Form
	Theta Series of a Lattice
	The Jacobi Theta Function
	The Fourier Transform

	Information Theory and Coding Preliminaries
	Entropy and mutual information
	Channel Coding
	Wiretap Channel
	Network Coding
	Physical Layer Network Coding
	Nested-lattice-based Physical Layer Network Coding
	Lattice Network Coding
	Maximum Likelihood Decoding
	Lattice Decoding

	Review of the proposed papers
	Comparison of the papers
	Channel model
	CF protocol for PNC
	CF Protocol for ML decoding
	Deriving the conditional probability formula from the paper

	The Flatness Factor
	The Flatness Factor Definition
	The Smoothing Parameter
	The Flatness Factor in LNC
	Visualizing different values for the flatness factor

	The CF method
	How does PNC work?
	Analysis of the paper by Belfiore and method of reproduction
	Constellation size
	Understanding the methods
	Recovering the linear equations

	Conclusions and future work
	Conclusion
	Future work

	References
	Appendices
	Code for reproducing flatness factor figure
	Defining the variables
	Extended Euclidean Algorithm
	Determining the gcd
	Plot the figure

	Hermite Style Normal Form Algorithm
	Hermite Normal Style Form Algorithm
	Row style hermite normal form
	With standard basis
	Hermite Normal Form
	ZmoduleHomomorphishm
	HNF row

	Voronoi partition

