94,452 research outputs found

    Constructing bibliometric networks: A comparison between full and fractional counting

    Full text link
    The analysis of bibliometric networks, such as co-authorship, bibliographic coupling, and co-citation networks, has received a considerable amount of attention. Much less attention has been paid to the construction of these networks. We point out that different approaches can be taken to construct a bibliometric network. Normally the full counting approach is used, but we propose an alternative fractional counting approach. The basic idea of the fractional counting approach is that each action, such as co-authoring or citing a publication, should have equal weight, regardless of for instance the number of authors, citations, or references of a publication. We present two empirical analyses in which the full and fractional counting approaches yield very different results. These analyses deal with co-authorship networks of universities and bibliographic coupling networks of journals. Based on theoretical considerations and on the empirical analyses, we conclude that for many purposes the fractional counting approach is preferable over the full counting one

    Scientometrics: Untangling the topics

    Get PDF
    Measuring science is based on comparing articles to similar others. However, keyword-based groups of thematically similar articles are dominantly small. These small sizes keep the statistical errors of comparisons high. With the growing availability of bibliographic data such statistical errors can be reduced by merging methods of thematic grouping, citation networks and keyword co-usage.Comment: 2 pages, 2 figure

    Betweenness and Diversity in Journal Citation Networks as Measures of Interdisciplinarity -- A Tribute to Eugene Garfield --

    Get PDF
    Journals were central to Eugene Garfield's research interests. Among other things, journals are considered as units of analysis for bibliographic databases such as the Web of Science (WoS) and Scopus. In addition to disciplinary classifications of journals, journal citation patterns span networks across boundaries to variable extents. Using betweenness centrality (BC) and diversity, we elaborate on the question of how to distinguish and rank journals in terms of interdisciplinarity. Interdisciplinarity, however, is difficult to operationalize in the absence of an operational definition of disciplines, the diversity of a unit of analysis is sample-dependent. BC can be considered as a measure of multi-disciplinarity. Diversity of co-citation in a citing document has been considered as an indicator of knowledge integration, but an author can also generate trans-disciplinary--that is, non-disciplined--variation by citing sources from other disciplines. Diversity in the bibliographic coupling among citing documents can analogously be considered as diffusion of knowledge across disciplines. Because the citation networks in the cited direction reflect both structure and variation, diversity in this direction is perhaps the best available measure of interdisciplinarity at the journal level. Furthermore, diversity is based on a summation and can therefore be decomposed, differences among (sub)sets can be tested for statistical significance. In an appendix, a general-purpose routine for measuring diversity in networks is provided

    Using noun phrases extraction for the improvement of hybrid clustering with text- and citation-based components. The example of “Information Systems Research”

    Get PDF
    The hybrid clustering approach combining lexical and link-based similarities suffered for a long time from the different properties of the underlying networks. We propose a method based on noun phrase extraction using natural language processing to improve the measurement of the lexical component. Term shingles of different length are created form each of the extracted noun phrases. Hybrid networks are built based on weighted combination of the two types of similarities with seven different weights. We conclude that removing all single term shingles provides the best results at the level of computational feasibility, comparability with bibliographic coupling and also in a community detection application

    Collaboration in sensor network research: an in-depth longitudinal analysis of assortative mixing patterns

    Get PDF
    Many investigations of scientific collaboration are based on statistical analyses of large networks constructed from bibliographic repositories. These investigations often rely on a wealth of bibliographic data, but very little or no other information about the individuals in the network, and thus, fail to illustrate the broader social and academic landscape in which collaboration takes place. In this article, we perform an in-depth longitudinal analysis of a relatively small network of scientific collaboration (N = 291) constructed from the bibliographic record of a research center involved in the development and application of sensor network and wireless technologies. We perform a preliminary analysis of selected structural properties of the network, computing its range, configuration and topology. We then support our preliminary statistical analysis with an in-depth temporal investigation of the assortative mixing of selected node characteristics, unveiling the researchers' propensity to collaborate preferentially with others with a similar academic profile. Our qualitative analysis of mixing patterns offers clues as to the nature of the scientific community being modeled in relation to its organizational, disciplinary, institutional, and international arrangements of collaboration.Comment: Scientometrics (In press

    On Fractional Approach to Analysis of Linked Networks

    Full text link
    In this paper, we present the outer product decomposition of a product of compatible linked networks. It provides a foundation for the fractional approach in network analysis. We discuss the standard and Newman's normalization of networks. We propose some alternatives for fractional bibliographic coupling measures
    • 

    corecore