33,380 research outputs found

    Output Feedback Stabilization by Reduced Order Finite Time Observers using a Trajectory Based Approach

    Get PDF
    International audienceWe use finite time reduced order continuous-discrete observers to solve an output feedback stabilization problem for a broad class of nonlinear systems whose output contains uncertainty. Unlike earlier works, our feedback control is discontinuous, but it does not contain any distributed terms. We use a trajectory based approach based on a contractivity condition. We illustrate our new control design using a tracking problem for nonholonomic systems in chained form

    Internal stabilization and external LpL_p stabilization of linear systems subject to constraints

    Get PDF
    Having studied during the last decade several aspects of several control design problems for linear systems subject to magnitude and rate constraints on control variables, during the last two years the research has broadened to include magnitude constraints on control variables as well as state variables. Recent work by Han et al. (2000), Hou et al. (1998) and Saberi et al. (2002) considered linear systems in a general framework for constraints including both input magnitude constraints as well as state magnitude constraints. In particular, Saberi et al. consider internal stabilization while Han et al. consider output regulation in different frameworks, namely a global, semiglobal, and regional framework. These problems require very strong solvability conditions. Therefore, a main focus for future research should focus on finding a controller with a large domain of attraction and some good rejection properties for disturbances restricted to some bounded se

    Control of Homodirectional and General Heterodirectional Linear Coupled Hyperbolic PDEs

    Full text link
    Research on stabilization of coupled hyperbolic PDEs has been dominated by the focus on pairs of counter-convecting ("heterodirectional") transport PDEs with distributed local coupling and with controls at one or both boundaries. A recent extension allows stabilization using only one control for a system containing an arbitrary number of coupled transport PDEs that convect at different speeds against the direction of the PDE whose boundary is actuated. In this paper we present a solution to the fully general case, in which the number of PDEs in either direction is arbitrary, and where actuation is applied on only one boundary (to all the PDEs that convect downstream from that boundary). To solve this general problem, we solve, as a special case, the problem of control of coupled "homodirectional" hyperbolic linear PDEs, where multiple transport PDEs convect in the same direction with arbitrary local coupling. Our approach is based on PDE backstepping and yields solutions to stabilization, by both full-state and observer-based output feedback, trajectory planning, and trajectory tracking problems

    Mathematical control of complex systems

    Get PDF
    Copyright © 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
    • 

    corecore