39 research outputs found

    Computing subdominant unstable modes of turbulent plasma with a parallel Jacobi-Davidson eigensolver

    Full text link
    In the numerical solution of large-scale eigenvalue problems, Davidson-type methods are an increasingly popular alternative to Krylov eigensolvers. The main motivation is to avoid the expensive factorizations that are often needed by Krylov solvers when the problem is generalized or interior eigenvalues are desired. In Davidson-type methods, the factorization is replaced by iterative linear solvers that can be accelerated by a smart preconditioner. Jacobi-Davidson is one of the most effective variants. However, parallel implementations of this method are not widely available, particularly for non-symmetric problems. We present a parallel implementation that has been included in SLEPc, the Scalable Library for Eigenvalue Problem Computations, and test it in the context of a highly scalable plasma turbulence simulation code. We analyze its parallel efficiency and compare it with a Krylov-Schur eigensolver. © 2011 John Wiley and Sons, Ltd..The authors are indebted to Florian Merz for providing us with the test cases and for his useful suggestions. The authors acknowledge the computer resources provided by the Barcelona Supercomputing Center (BSC). This work was supported by the Spanish Ministerio de Ciencia e Innovacion under project TIN2009-07519.Romero Alcalde, E.; Román Moltó, JE. (2011). Computing subdominant unstable modes of turbulent plasma with a parallel Jacobi-Davidson eigensolver. Concurrency and Computation: Practice and Experience. 23:2179-2191. https://doi.org/10.1002/cpe.1740S2179219123Hochstenbach, M. E., & Notay, Y. (2009). Controlling Inner Iterations in the Jacobi–Davidson Method. SIAM Journal on Matrix Analysis and Applications, 31(2), 460-477. doi:10.1137/080732110Heuveline, V., Philippe, B., & Sadkane, M. (1997). Numerical Algorithms, 16(1), 55-75. doi:10.1023/a:1019126827697Arbenz, P., Bečka, M., Geus, R., Hetmaniuk, U., & Mengotti, T. (2006). On a parallel multilevel preconditioned Maxwell eigensolver. Parallel Computing, 32(2), 157-165. doi:10.1016/j.parco.2005.06.005Genseberger, M. (2010). Improving the parallel performance of a domain decomposition preconditioning technique in the Jacobi–Davidson method for large scale eigenvalue problems. Applied Numerical Mathematics, 60(11), 1083-1099. doi:10.1016/j.apnum.2009.07.004Stathopoulos, A., & McCombs, J. R. (2010). PRIMME. ACM Transactions on Mathematical Software, 37(2), 1-30. doi:10.1145/1731022.1731031Baker, C. G., Hetmaniuk, U. L., Lehoucq, R. B., & Thornquist, H. K. (2009). Anasazi software for the numerical solution of large-scale eigenvalue problems. ACM Transactions on Mathematical Software, 36(3), 1-23. doi:10.1145/1527286.1527287Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019Romero, E., Cruz, M. B., Roman, J. E., & Vasconcelos, P. B. (2011). A Parallel Implementation of the Jacobi-Davidson Eigensolver for Unsymmetric Matrices. High Performance Computing for Computational Science – VECPAR 2010, 380-393. doi:10.1007/978-3-642-19328-6_35Romero, E., & Roman, J. E. (2010). A Parallel Implementation of the Jacobi-Davidson Eigensolver and Its Application in a Plasma Turbulence Code. Lecture Notes in Computer Science, 101-112. doi:10.1007/978-3-642-15291-7_11Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen*). (1846). Journal für die reine und angewandte Mathematik (Crelles Journal), 1846(30), 51-94. doi:10.1515/crll.1846.30.51G. Sleijpen, G. L., & Van der Vorst, H. A. (1996). A Jacobi–Davidson Iteration Method for Linear Eigenvalue Problems. SIAM Journal on Matrix Analysis and Applications, 17(2), 401-425. doi:10.1137/s0895479894270427Fokkema, D. R., Sleijpen, G. L. G., & Van der Vorst, H. A. (1998). Jacobi--Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils. SIAM Journal on Scientific Computing, 20(1), 94-125. doi:10.1137/s1064827596300073Morgan, R. B. (1991). Computing interior eigenvalues of large matrices. Linear Algebra and its Applications, 154-156, 289-309. doi:10.1016/0024-3795(91)90381-6Paige, C. C., Parlett, B. N., & van der Vorst, H. A. (1995). Approximate solutions and eigenvalue bounds from Krylov subspaces. Numerical Linear Algebra with Applications, 2(2), 115-133. doi:10.1002/nla.1680020205Stathopoulos, A., Saad, Y., & Wu, K. (1998). Dynamic Thick Restarting of the Davidson, and the Implicitly Restarted Arnoldi Methods. SIAM Journal on Scientific Computing, 19(1), 227-245. doi:10.1137/s1064827596304162Sleijpen, G. L. G., Booten, A. G. L., Fokkema, D. R., & van der Vorst, H. A. (1996). Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT Numerical Mathematics, 36(3), 595-633. doi:10.1007/bf01731936Balay S Buschelman K Eijkhout V Gropp W Kaushik D Knepley M McInnes LC Smith B Zhang H PETSc users manual 2010Hernandez, V., Roman, J. E., & Tomas, A. (2007). Parallel Arnoldi eigensolvers with enhanced scalability via global communications rearrangement. Parallel Computing, 33(7-8), 521-540. doi:10.1016/j.parco.2007.04.004Dannert, T., & Jenko, F. (2005). Gyrokinetic simulation of collisionless trapped-electron mode turbulence. Physics of Plasmas, 12(7), 072309. doi:10.1063/1.1947447Roman, J. E., Kammerer, M., Merz, F., & Jenko, F. (2010). Fast eigenvalue calculations in a massively parallel plasma turbulence code. Parallel Computing, 36(5-6), 339-358. doi:10.1016/j.parco.2009.12.001Merz, F., & Jenko, F. (2010). Nonlinear interplay of TEM and ITG turbulence and its effect on transport. Nuclear Fusion, 50(5), 054005. doi:10.1088/0029-5515/50/5/054005Simoncini, V., & Szyld, D. B. (2002). Flexible Inner-Outer Krylov Subspace Methods. SIAM Journal on Numerical Analysis, 40(6), 2219-2239. doi:10.1137/s0036142902401074Morgan, R. B. (2002). GMRES with Deflated Restarting. SIAM Journal on Scientific Computing, 24(1), 20-37. doi:10.1137/s106482759936465

    A parallel multigrid method for band structure computation of 3D photonic crystals with higher order finite elements

    Get PDF
    The band structure computation turns into solving a family of Maxwell eigenvalue problems on the periodicity domain. The discretization is done by the finite element method with special higher order H(curl)- and H1-conforming modified elements. The eigenvalue problem is solved by a preconditioned iterative eigenvalue solver with a projection onto the divergence-free vector fields. As a preconditioner we use the parallel multigrid method with a special Hiptmair smoother

    KSPHPDDM and PCHPDDM: Extending PETSc with advanced Krylov methods and robust multilevel overlapping Schwarz preconditioners

    Full text link
    [EN] Contemporary applications in computational science and engineering often require the solution of linear systems which may be of different sizes, shapes, and structures. The goal of this paper is to explain how two libraries, PETSc and HPDDM, have been interfaced in order to offer end-users robust overlapping Schwarz preconditioners and advanced Krylov methods featuring recycling and the ability to deal with multiple right-hand sides. The flexibility of the implementation is showcased and explained with minimalist, easy-to-run, and reproducible examples, to ease the integration of these algorithms into more advanced frameworks. The examples provided cover applications from eigenanalysis, elasticity, combustion, and electromagnetism.Jose E. Roman was supported by the Spanish Agencia Estatal de Investigacion (AEI) under project SLEPc-DA (PID2019-107379RB-I00)Jolivet, P.; Roman, JE.; Zampini, S. (2021). KSPHPDDM and PCHPDDM: Extending PETSc with advanced Krylov methods and robust multilevel overlapping Schwarz preconditioners. Computers & Mathematics with Applications. 84:277-295. https://doi.org/10.1016/j.camwa.2021.01.0032772958

    Schnelle Löser für Partielle Differentialgleichungen

    Get PDF
    The workshop Schnelle Löser für partielle Differentialgleichungen, organised by Randolph E. Bank (La Jolla), Wolfgang Hackbusch (Leipzig), and Gabriel Wittum (Frankfurt am Main), was held May 22nd–May 28th, 2011. This meeting was well attended by 54 participants with broad geographic representation from 7 countries and 3 continents. This workshop was a nice blend of researchers with various backgrounds

    Experiments on a Parallel Nonlinear Jacobi–Davidson Algorithm

    Get PDF
    AbstractThe Jacobi–Davidson (JD) algorithm is very well suited for the computation of a few eigen-pairs of large sparse complex symmetric nonlinear eigenvalue problems. The performance of JD crucially depends on the treatment of the so-called correction equation, in particular the preconditioner, and the initial vector. Depending on the choice of the spectral shift and the accuracy of the solution, the convergence of JD can vary from linear to cubic. We investigate parallel preconditioners for the Krylov space method used to solve the correction equation.We apply our nonlinear Jacobi–Davidson (NLJD) method to quadratic eigenvalue problems that originate from the time-harmonic Maxwell equation for the modeling and simulation of resonating electromagnetic structures

    Parallel eigensolver for H(curl) problems using H1-auxiliary space AMG preconditioning

    Full text link

    On the computation of probabilities and eigenvalues for random and non-random matrices

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from PDF version of thesis.Includes bibliographical references (p. 43-44).Can you imagine doing hundreds of millions of operations on non-integers and not obtaining a single round-off error? For n < 12, the algorithm used in this thesis does exactly that. We took advantage of a floating point property that we have not seen used before. If only we had quad precision we could have gone even further and extended the algorithm without round-off error for higher values of 'n'. The problem in question concerns whether the eigenvalues are real or complex. The eigenvalues of an n-by-n real random matrix whose elements are independent random variables with standard normal are examined. An exact expression to determine the probability Pn,k that exactly k eigenvalues are real are derived in [1]. This expression was used to compute the probabilities Pn,k, but the computation was achieved only up to n = 9. For higher values of n, the symbolic expressions generated during the course of an algorithm to compute an exact probability as expressed in Mathematica code requires large amounts of memory. In this thesis, we target development of a more efficient algorithm. The symbolic algorithm implemented in Mathematica is converted into an equivalent numerical version and is implemented using MATLAB. After implementing the serial code in MATLAB, the code is parallelized using a client-server parallel computing platform named Star-p. This modified code implementation along with superior hardware in terms of better processor speeds and larger memory, has enabled the probability evaluation for all values of k up to n= 11, and for certain k values for n = 12 and 13.(cont.) An expression for the expected number of real eigenvalues En=o kpn,k is obtained in paper [2]. Results relating the rational and irrational parts of the summations n =o kpn,ki, En k=0 (Pk n,k and En= - n,k 0 k)Pn,k are conjectured. Three eigenvalue algorithms, the block Davidson, the block KrylovSchur and the Locally optimal Block Pre-conditioned Conjugate Gradient Method (LOBPCG) are analyzed and their performance on different types of matrices are studied. The performance of the algorithms as a function of the parameters , block size, number of blocks and the type of preconditioner is also examined in this thesis. The block Krylov Schur Algorithm for the matrices which are used for the experiments have proved to much superior to the others in terms of computation time. Also its been more efficient in finding eigenvalues for matrices representing grids with Neumann boundary conditions which have at least one zero eigenvalue. There exists one optimal combination of block size and number of blocks at which the time for eigenvalue computation is minimum. These parameters have different effects for different cases. The block Davidson algorithm has also been incorporated with the locking mechanism and this implementation is found to be much superior to its counterpart without the locking mechanism for matrices which have at least one zero eigenvalue.by Vignesh Peruvamba Sundaresh.S.M
    corecore