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Abstract

This thesis considers the computation of the band structure (spectrum) of
3D photonic crystals. Photonic crystals are artificial periodic dielectric ma-
terials, which exhibit some special electromagnetic properties, e.g. waves of
certain frequencies cannot propagate. A wide application of the photonic
crystals in optics, lasers and electronics may push technologies to the next
level.

Mathematically the problem turns into solving a family of Maxwell eigen-
value problems on the periodicity domain with an appropriate boundary
conditions. The transformation from the whole space to a bounded periodic
domain is done by the Bloch-Floquet theory and results in appearance of the
shifted operators ∇+ik. The problem is considered in the frequency domain
and formulated in a mixed form for the H(curl) space, which is a natural
space for 3D Maxwell equations.

For the discretization we use the finite element method with special
H(curl)- and H1-conforming k-modified elements. They allow to adapt the
usual H(curl)- and H1-conforming discretizations for the case of the shifted
operators ∇+ik and the periodic boundary condition. It is required in order
to obtain a correct numerical approximation of the spectrum. We use the
lowest and higher order hierarchical finite element construction with the local
exact sequence property, which provides a useful representation of gradient
fields at the level of shape functions.

The eigenvalue problem is solved by a preconditioned iterative eigenvalue
solver, which is a modification of the LOBPCG method extended by a pro-
jection onto the divergence-free vector fields, what allows to apply the solver
to the Maxwell curl curl operator with a large kernel. The projection is based
on the discrete Helmholtz decomposition and is performed in the potential
space by solving an auxiliary linear Laplace problem with a multigrid itera-
tive solver. The preconditioning of the eigenvalue solver is done by solving a
regularized linear Maxwell problem with a multigrid iterative solver.

The multigrid method for the regularized Maxwell problem is based on
a multilevel nodal decomposition, which results in the standard multigrid
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V-cycle with a special hybrid smoother. The hybrid smoother respects the
discrete Helmholtz decomposition and provides robust convergence rate of
the Maxwell multigrid method. In the case of higher order finite elements
the Maxwell multigrid and the Laplace multigrid are realized as a two-level
p-multigrid method with the lowest order elements at the coarse level.

Band structure computations of the 3D photonic crystal require a lot of
computing power, the multigrid solvers are the most computation-intensive
parts. We use a parallel multigrid method for the distributed memory model
(MPI parallelization) based on a concept of the geometric-centered data
structures. This approach leads to an efficient and highly scalable software
implementation, which suits well for modern high performance parallel clus-
ters.

The theory is confirmed by the numerical computations. We provide re-
sults of the eigenvalue computations for two different 3D crystal structures
with a full band gap, obtained with the lowest and higher order finite ele-
ments. We compute the band structures and perform the computer-assisted
perturbation proof for band gap. The eigenvalue solver convergence, the con-
vergence of the finite elements and the parallel performance are discussed.

The main contribution of this work is a complete description of the theory,
algorithms and implementation issues required for band structure computa-
tions of 3D photonic crystals. Many results for the standard Maxwell formu-
lation have to be adopted for the periodic formulation. It leads to significant
changes in the finite element construction (k-modified elements), what results
in the changes in representation of differential operators and the multigrid
interpolation / restriction operations. As far as we know, these issues and
the parallel implementation have not been described in detail before. We
also present an improved LOBPCG algorithm and the perturbation proof
for spectrum of the 3D Maxwell operator, which is a part of the computer-
assisted proof for band gap. All algorithms in the thesis are realized as a
part of the free open source parallel finite element software “M++”.
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Chapter 1

Introduction

1.1 Problem statement

1.1.1 Maxwell’s equations

We start with the classical macroscopic Maxwell’s equations in R3 written
in SI units

∇× E = −∂B
∂t
,

∇ · B = 0,

∇×H =
∂D
∂t

+ J ,

∇ · D = ρ,

(1.1)

where E is the electric field intensity, B is the magnetic field intensity, D
is the electric displacement field, H is the magnetic induction field, ρ is the
charge density, J is the current density field. All quantities are functions
of position x ∈ R3 and time t ∈ R. The electromagnetic field is defined by
four vector fields E , B, D and H. The sources of the electromagnetic field
are scalar field ρ and vector field J . Henceforth a bold font means a vector
quantity.

Maxwell’s equations in electrodynamics represent a large scientific area,
we will mention only the key facts and results. For physical explanation and
detailed problem statement one may refer to a general book about electro-
dynamics, e.g. [20].

Usually photonic crystals are constructed of dielectric materials, for that
special case we make some simplifications, namely, put ρ = 0 (no free charge
is present) and J = 0 (material is non-conducting).

We consider only the case of linear medium. For such a medium there
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are two linear constitutive laws, which relate D to E and B to H as

D = εE ,
B = µH.

(1.2)

So, any linear dielectric material is determined by two properties: the electric
permittivity ε and the magnetic permeability µ.

We assume that the medium has no frequency dependence (material dis-
persion), what means that ε and µ depend on position x only. Moreover,
we suppose that the medium is lossless, i.e. no absorption of electromagnetic
energy occurs inside the medium. It follows that for isotropic medium ε
and µ are scalar real-valued positive functions. In a more general case of
anisotropic medium they are matrix functions, for any x ∈ R3 ε and µ are
real positive definite 3× 3 matrices. If the medium were lossy then ε and µ
could have an imaginary part.

Since most of materials used for production of photonic crystals have
no magnetic properties, we assume that µ = 1. Laws (1.2) together with
equations (1.1) let us obtain a simplified form, where we keep only two vector
fields of four:

∇× E = −∂H
∂t

,

∇ · H = 0,

∇×H = ε
∂E
∂t
,

∇ · (εE) = 0.

(1.3)

From the time-dependent problem we go to the time-harmonic form. In
this case it is supposed that electromagnetic field is monochromatic, i.e. has
one temporal frequency ω > 0 and varies sine-like in time. This assumption
simplifies the problem, but does not restrict generality, because from Fourier
analysis it follows that any solution can be represented by harmonic modes.
We apply the following ansatz:

E(x, t) = Re
(
eiωtE(x)

)
,

H(x, t) = Re
(
eiωtH(x)

)
,

where E and H are complex vector fields. Combining the ansatz and equa-
tions (1.3) one gets a time-harmonic form of Maxwell’s equations, where time
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t is excluded:

∇× E = −iωH, (1.4)

∇ ·H = 0, (1.5)

∇×H = iωεE, (1.6)

∇ · (εE) = 0. (1.7)

The current system can be simplified further. It is possible to decouple
the equations and extract a problem with only one vector field, let it be H.
From equation (1.6) one gets

E = − i

ω
ε−1∇×H, (1.8)

together with equations (1.4) and (1.5) it gives

∇×
(
ε−1∇×H

)
= ω2H, (1.9)

∇ ·H = 0. (1.10)

The second equation can be derived from the first one for ω > 0, but we
keep it for the moment since this property is a very important one. We
consider equation (1.9) as an eigenvalue problem, so for a given ε we look for
eigenvalues λ = ω2 and eigenfunctions H. As soon as this problem is solved
and H is found, E may be restored by formula (1.8).

1.1.2 Periodicity, Bloch-Floquet theory

Photonic crystals are a kind of periodic structures. In modelling we assume
that a crystal is unbounded and occupies the whole R3 space. It is an ab-
straction developed from the idea that the whole crystal is large with respect
to one element of the periodic structure. Different physical aspects of crystal
structures are studied in the book [22], a useful overview of mathematical
approaches is given in [27].

In our model, a photonic crystal is completely defined by distribution of
the electric permittivity ε, which is uniformly bounded away from zero and
has certain periodicity. Let d ∈ {1, 2, 3}, suppose that there exist linearly
independent vectors r1, . . . , rd ∈ R3 s.t.

ε(x) = ε(x + rj) for all x ∈ R3 j = 1, . . . , d, (1.11)

then the medium is called d-dimensional periodic medium (photonic crystal),
{rj} with the minimal lengths are called the primitive vectors. For such a
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medium one may define d-dimensional Bravais lattice

Λ =

{
d∑
j=1

ljrj | l1, . . . , ld ∈ Z

}
.

(1.11) means that the medium actually has a certain unique domain and all
space consists of copies of that domain. A d-dimensional domain Ω is called
fundamental domain if for any x ∈ Rd there exists a ∈ Λ s.t. either a is
unique and x + a ∈ Ω, or a is not unique and x + a ∈ ∂Ω. So we can write

Rd =
⋃
a∈Λ

(Ω + a),

where Ω + a1 and Ω + a2 may have intersection only along their boundaries.
In solid-state physics such a domain is called Wigner-Seitz cell. An example
of a fundamental domain is a domain that consists of x ∈ Rd which are closer
to the origin than to any a ∈ Λ.

Shape of the fundamental domain and distribution of materials inside
the domain may have symmetries, e.g. ones with respect to rotations and
reflections. It is an important aspect, we will see later that the symmetries
can significantly reduce amount of computations needed to solve the Maxwell
eigenvalue problem.

From mathematical point of view problem (1.9) is a system of partial
differential equations with periodic coefficients. The main tool to work with
such a kind of equations is Floquet-Bloch theory. For a detailed explanation
about this theory we refer to [26], one of the early publications with proofs
is [33].

For a set of primitive vectors {rj} let us define linearly independent vec-
tors r̂1, . . . , r̂d ∈ R3 s.t.

ri · r̂j = 2πδij for any i, j ∈ {1, . . . , d},

they are called primitive reciprocal vectors. The d-dimensional reciprocal
lattice Λ̂ is defined by

Λ̂ =

{
d∑
j=1

lj r̂j | l1, . . . , ld ∈ Z

}
.

By analogy with Wigner-Seitz cell, the domain K consisted of k ∈ Rd which
are closer to the origin than to any â ∈ Λ̂ is called the (first) Brillouin zone.
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We consider a function f : Rd → C which is defined on a periodic medium.
Provided that |f(x)| decays sufficiently fast while ‖x‖ → ∞, we define the
Floquet transform UΛf of function f with respect to the lattice Λ by formula

(UΛf)(x,k) =
1√
|K|

∑
a∈Λ

f(x− a)eik·a, (1.12)

where k ∈ Rd is called quasi-momentum.
One can easily notice the following properties of the Floquet transform.

For any x,k ∈ Rd, a ∈ Λ, â ∈ Λ̂

(UΛf)(x + a,k) = eik·a(UΛf)(x,k), (1.13)

(UΛf)(x,k + â) = (UΛf)(x,k). (1.14)

The first relation is the Floquet condition, it means that it is sufficient to
know (UΛf)(·,k) on the closure of a fundamental domain Ω to extend it to
the whole Rd. The second relation exposes that the transform is periodic
with respect to quasi momentum k, so it is enough to know (UΛf)(x, ·) on
the closure of the first Brillouin zone K. Therefore we will consider that the
Floquet transform is defined only for x ∈ Ω and k ∈ K.

Let L(x,∇x) be a linear uniformly elliptic partial differential operator
with Λ-periodic coefficients. The operator is associated with L(x,∇x), a
symbolic form of differential operator, which has no domain. Due to period-
icity the operator commutes with the transform

UΛ(L(x,∇x)f) = L(x,∇x)(UΛf). (1.15)

Let us discuss the right hand side of the relation. The differential operator is
applied to a function of x and k, but the derivative is taken with respect to x
only. Moreover, (UΛf)(·,k) is a function which holds the Floquet condition
(1.13) on ∂Ω. Although the differential expression of the operator is inde-
pendent of k, its domain is different for every k. So, we conclude that the
Floquet transform turns the periodic differential operator L(x,∇x) acting on
{f : Rd → C} to a family of differential operators Lk = L(x,∇x) acting on

D(Lk) = {g : Ω→ C | g(x + a) = eik·ag(x), a ∈ Λ, x,x + a ∈ ∂Ω}.

It is important that now the functions are defined on a compact manifold Ω.
Let us introduce a complex Hilbert space L2(Rd) with the inner product

〈u, v〉 =

∫
Rd

u(x)v(x) dx, u, v ∈ L2(Rd).
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Theorem 1.1. by Paley-Wiener (see [27, Theorem 7.2])
The transform UΛ : L2(Rd)→ L2(K,L2(Ω)) is an isometric isomorphism. Its
inverse transform is defined by

(U−1
Λ g)(x) =

1√
|K|

∫
K

g(x,k)dk,

where g(·,k) ∈ D(Lk) for a fixed k ∈ K.

We assume that the operator L(x,∇x) is formally self-adjoint with re-
spect to 〈·, ·〉. For a fixed k ∈ K we consider an eigenvalue problem for the
operator Lk

L(x,∇x)ψ = λψ,

ψ(x + a) = eik·aψ(x), a ∈ Λ, x,x + a ∈ ∂Ω.
(1.16)

It is a symmetric eigenvalue problem in L2(Ω), where Ω is a compact mani-
fold. Together with the ellipticity condition for L(x,∇x) it follows that the
operators Lk have compact resolvents and hence discrete spectrum

0 < λ1(k) ≤ . . . ≤ λs(k)→∞ as s→∞,

with orthonormal and complete set of eigenfunctions ψ1(·; k), . . . , ψs(·; k),
which are called Bloch modes.

Using the Floquet transform and Theorem 1.1 one can prove completeness
of the set of the Bloch modes. The next theorem formulates it as follows.

Theorem 1.2. (see [33, Theorem 1])
The set of the Bloch modes {ψj(x; k)}, where k varies over the Brillouin zone
K and j ∈ N, is complete.

For any f ∈ L2(Rd) and l ∈ N, define

fl(x) =
1√
|K|

l∑
s=1

∫
K

〈(UΛf)(x,k), ψs(x; k)〉ψs(x; k)dk.

Then fl → f in L2(Rd) while l→∞.

We may define φs(x; k) = e−ik·xψs(x; k). One can check that

∇xψs(x; k) = eik·x(∇x + ik)φs(x; k).

It allows us to rewrite (1.16) in the form

L(x,∇x + ik)φ = λφ,

φ(x + a) = φ(x), a ∈ Λ, x,x + a ∈ ∂Ω.
(1.17)
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So, from the fixed differential operator Lk with a k-dependent domain (the
quasi-periodic boundary condition) we go to the k-dependent differential op-
erator Lper

k = L(x,∇x + ik) with a fixed domain (the periodic boundary
condition). The eigenvalues stay the same, the completeness property re-
mains.

1.1.3 Spectrum of operator, band structure

According to (1.15) and Theorem 1.1, the Floquet transform expands the self-
adjoint periodic operator L(x,∇x) into the direct integral of the operators
Lk. One can prove the following representation of the spectrum (see [26])

σ
(
L(x,∇x)

)
=
⋃
k∈K

σ
(
Lper

k (x,∇x + ik)
)

=
⋃
k∈S

σ
(
Lper

k (x,∇x + ik)
)
,

where S is a dense subset in K. The latter representation allows us to drop
a finite set of k points (e.g. k = 0) from K without affecting the spectrum.

For each j ∈ N an eigenvalue λj(k) of the operator Lper
k is a continuous

function of parameter k ∈ K (see [26]). This follows from the fact that
the coefficients in the problem (1.17) depend continuously on k. λj(·) is
called a band function and its graph is called a band. For j ∈ N define
Ij = {λj(k) | k ∈ K}, since K is compact and connected, Ij is a compact
real interval. It gives another representation of the spectrum

σ
(
L(x,∇x)

)
=
⋃
j∈N

Ij.

If there exist some m ∈ N and an interval (a, b) s.t. for any x ∈ Im, y ∈
(a, b), z ∈ Im+1 we have x < y < z, then the interval (a, b) is called a band gap
between the bands m and m + 1. In two and especially in three dimensions
different Ij usually are significantly overlapping. In order “to open” a band
gap one needs a special material distribution with high contrast in ε (see
[27]).

A very important practical aspect is redundancy of the bands due to
symmetries. Let G : R3 → R3 be an orthonormal linear operator (in a basis it
can be represented as a rotation with respect to some axis and / or reflections
with respect to some planes) s.t. ε(Gx) = ε(x) for all x ∈ Ω. One may check
that if (φ, λ) is a solution of the problem (1.17) for some k = k0, then
(φ ◦G−1), λ) is a solution of the problem for k = Gk0 (see e.g. [21, Chapter
3]).

We conclude that if there are symmetries in the material distribution ε,
then we have some redundancy within the Brillouin zone. In order to get the
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Figure 1.1: A fundamental domain (left) and the corresponding Brillouin
zone (right) with the triangular irreducible Brillouin zone.

full spectrum we do not need to consider the problem (1.17) for all k ∈ K.
The smallest region within the Brillouin zone which cannot be obtained via
symmetries is called the irreducible Brillouin zone. For example, a simple
square lattice made of circular rods has a square Brillouin zone, but the
irreducible Brillouin zone is just a triangle with the area only 1/8 of the
whole zone, since the lattice is symmetric with respect to three reflections:
x→ −x, y → −y and x→ y, so the same reflections cut the Brillouin zone.
The situation is shown at Figure 1.1.

1.1.4 Maxwell equations in periodic media

We assume that ε is a positive piecewise continuous scalar function. For
simplicity let us take the lattice Λ = Z3, so

ε(x) = ε(x + z), for all z ∈ Λ, x ∈ R3.

Let the fundamental domain be Ω = [0, 1]3, so the corresponding first Bril-
louin zone is K = [−π, π]3.

We make the ansatz in form of the Bloch modes

H(x) = eik·xH̃(x), (1.18)
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where k ∈ K and H̃(x) is a periodic function in Ω, i.e. for all x1, x2, x3 ∈ [0, 1]

H̃(x1, x2, 1) = H̃(x1, x2, 0),

H̃(x1, 1, x3) = H̃(x1, 0, x3),

H̃(1, x2, x3) = H̃(0, x2, x3).

Inserting the ansatz (1.18) into the Maxwell equations (1.9) we obtain the
following formulation (assume ε is smooth for the moment).

∇k×
(
ε−1∇k×H̃

)
= ω2H̃ in Ω,

∇k · H̃ = 0 in Ω,

where ∇k = ∇+ ik. Later we use ω2 = λ to simplify the notations.
The formulation in form of a partial differential equations does not allow

to handle the practical important case of a jumping ε. An integral formula-
tion is more appropriate for this. We need to introduce the periodic versions
of the usual Sobolev spaces. Let L2(Ω) = L2(Ω,C) and L2(Ω) = L2(Ω,C3)
be scalar and vector valued L2-functions.

Definition 1. Let Ω be a bounded, simply-connected Lipschitz-domain. De-
fine spaces of infinitely differentiable functions

C∞(Ω) ={f : Ω→ C | there exists
∂l+m+nf

∂xl∂ym∂zn
for any l,m, n ∈ {0} ∪ N},

C∞1 (Ω) ={f ∈ C∞(Ω) | f(x + a) = f(x), a ∈ Λ; x,x + a ∈ ∂Ω},
C∞curl(Ω) ={u ∈ (C∞(Ω))3 | u(x + a)× n = −u(x)× n, a ∈ Λ; x,x + a ∈ ∂Ω},
C∞div(Ω) ={u ∈ (C∞(Ω))3 | u(x + a) · n = −u(x) · n, a ∈ Λ; x,x + a ∈ ∂Ω},

where n is the normal vector at the boundary. Define inner products

(f, g)L2 =

∫
Ω

fg dx,

(f, g)H1 =

∫
Ω

∇f · ∇g dx + (f, g)L2 ,

(u,v)H(curl) =

∫
Ω

∇× u · ∇ × v dx + (u,v)L2 ,

(u,v)H(div) =

∫
Ω

(∇ · u)(∇ · v) dx + (u,v)L2 ,
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they induce the norms ‖ · ‖H1 , ‖ · ‖H(curl), ‖ · ‖H(div). Now construct periodic
spaces as closures with respect to the corresponding norms

H1
per(Ω) = C∞1 (Ω)

‖·‖H1

,

Hper(curl,Ω) = C∞curl(Ω)
‖·‖H(curl)

,

Hper(div, Ω) = C∞div(Ω)
H(div)

.

1.1.5 The main properties of ∇k

In this thesis we work with the modified operator ∇k. Due to the periodicity
of medium we have to use it all the time, so it is important to summarize
some of its properties. In [13] it is shown that using the operator ∇k we still
have the most of the properties associated with the standard operator ∇.

Note that we always assume k 6= 0. When k = 0 it is a special regime,
which leads to some complications. In the computations we avoid that by
approximating k = 0 with a vector of very small magnitude.

Theorem 1.3. Helmholtz decomposition. (see [13, Theorem 3.1])
Let k 6= 0, for any given u ∈ L2(Ω), there exist unique functions v ∈ H1

per(Ω)
and q ∈ H1

per(Ω) s.t.

u = ∇k×v +∇k q,

∇k ·v = 0.

Moreover, for some s ≥ 0 it holds

‖v‖1 + ‖q‖1 ≤ C‖u‖,
‖v‖1+s ≤ C‖∇k×v‖s,
‖q‖1+s ≤ C‖∇k q‖s.

Corollary 1.1. From the theorem it easily follows that

q = 0 ⇔ ∇k ·u = 0,

v = 0 ⇔ ∇k×u = 0.

Corollary 1.2. (see [13]) The following sequence is exact, i.e. the range of
each differential operator coincides with the kernel of the following operator.

H1
per(Ω)

∇k−→ Hper(curl,Ω)
∇k×−→ Hper(div, Ω)

∇k ·−→ L2(Ω).
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1.2 The eigenvalue problem

For u,v ∈ Hper(curl,Ω) and p, q ∈ H1
per(Ω) we define the sesquilinear forms

m(u,v) = (u,v)L2 =

∫
Ω

u · v dx

ak(u,v) = (ε−1∇k×u,∇k×v)L2 ,

bk(v, q) = (v,∇k q)L2 ,

ck(p, q) = (∇k p,∇k q)L2 .

We define the constraint space

Vk = {v ∈ Hper(curl,Ω): bk(v, q) = 0 for all q ∈ H1
per(Ω)},

so Vk = Hper(curl,Ω)∩ (∇kH
1
per(Ω))⊥. The forms m(·, ·), ak(·, ·), ck(·, ·) are

Hermitian, m(·, ·) is positive definite.
Define operatorAk : Hper(curl,Ω)→ L2(Ω) s.t. 〈Aku,v〉 = ak(u,v) for all

v ∈ Hper(curl,Ω). From Corollary 1.2 we have that ker(Ak) = ker(∇k×) =
∇kH

1
per(Ω), so the operator Ak is positive definite on Vk if k 6= 0.

Let us prove that ck(·, ·) is coercive for k 6= 0. In terms of Fourier basis

q(x) =
∑
n∈Z3

qne
2πin·x, where qn =

∫
Ω

q(x)e−2πin·x dx,

we see that
ck(q, q) =

∑
n∈Z3

|2πn + k|2q2
n‖e2πin·x‖2.

Since k ∈ K = [−π, π]3 the term |2πn + k| is zero only when k = n = 0, so
for k 6= 0 ck(·, ·) is coercive.

1.2.1 Mixed formulation

Problem 1.1. Eigenvalue problem in the mixed form (k 6= 0).
Find triple (u, p, λ) ∈ Hper(curl,Ω)×H1

per(Ω)×R s.t. (u, p) 6= (0, 0) and for
all v ∈ Hper(curl,Ω), q ∈ H1

per(Ω)

ak(u,v) + bk(v, p) = λm(u,v), (1.19)

bk(u, q) = 0. (1.20)
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This formulation is often used for theoretical investigations. It directly en-
forces the divergence condition and allows to work in a larger space Hper(curl,Ω),
not in Vk.

One can figure out that the solutions of the system actually have the
form (u, 0, λ), where u ∈ Vk. The last one comes out from equation (1.20).
To show that p = 0 let us put v = ∇k p in equation (1.19), then we get
bk(∇k p, p) = ck(p, p) = 0, what gives p = 0.

Let us define the solution operator T : L2(Ω)→ L2(Ω) of Problem 1.1 as
follows. For all f ∈ L2(Ω), T f = u, where u is a solution of the following
problem: find (u, p) ∈ Hper(curl,Ω) ×H1

per(Ω) s.t. for all v ∈ Hper(curl,Ω),
q ∈ H1

per(Ω)

ak(u,v) + bk(v, p) = m(f ,v),

bk(u, q) = 0.

Lemma 1.4. (see [8, Lemma 2])
The operator T is compact and self-adjoint from L2(Ω) into itself.

As a conclusion, Problem 1.1 has an increasing sequence of eigenvalues

0 ≤ λ1 ≤ . . . ≤ λn ≤ . . .

with finite dimensional eigenspaces.

1.2.2 Discretization

We apply the Galerkin projection method to construct a discrete approxi-
mation to Problem 1.1. Let Xh ⊂ Hper(curl,Ω) and Qh ⊂ H1

per(Ω) be finite
dimensional subspaces. Define

Vh,k = {vh ∈ Xh : bk(vh, qh) = 0 for all qh ∈ Qh}.

Note that Vh,k is not a subset of Vk.
We require that the discrete spaces satisfy periodic boundary condition

as the continuous spaces do. In practice it is done by identification of degrees
of freedom, this will be explained later in Chapter 5.

Problem 1.2. Discrete form of Problem 1.1 (k 6= 0).
Find a triple (uh, ph, λh) ∈ Xh × Qh × R s.t. (uh, ph) 6= (0, 0) and for all
vh ∈ Xh, qh ∈ Qh

ak(uh,vh) + bk(vh, ph) = λhm(uh,vh),

bk(uh, qh) = 0.
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The advantage of this formulation over one for the space Vh,k is that
we look for a solution in space Xh, for which there exists conforming finite
elements (will be explained later).

We say that a discrete form of the eigenvalue problem is a spectrally
correct approximation of the original eigenvalue problem, if all eigenvectors
and eigenvalues (uh, λh) of the discrete form converge to the eigenvectors and
eigenvalues (u, λ) of the original eigenvalue problem while h → 0, and vice
versa, all (u, λ) are approximated by (uh, λh) respecting their multiplicity.
We want Problem 1.2 to be a spectrally correct approximation of Problem
1.1. In order to analyze the convergence of the discrete eigenvalue solutions
to the continuous ones we apply the abstract theory developed in [7] and [6].

By analogy with the solution operator T of Problem 1.1 we define the
discrete solution operator Th : L2(Ω) → Xh of Problem 1.2 as follows. For
all f ∈ L2(Ω), Thf = uh ∈ Xh, where uh is from the following problem.

Find (uh, ph) ∈ Xh ×Qh s.t. for all vh ∈ Xh, qh ∈ Qh

ak(uh,vh) + bk(vh, ph) = m(f ,vh),

bk(uh, qh) = 0.

Theorem 1.5. (see [8, Theorem 2])
If the spaces Xh, Qh, Vh,k satisfy the conditions below, then the sequence Th
converges uniformly to T in L(L2(Ω),Hper(curl,Ω)), i.e. there exists ρ3(h),
tending to zero as h→ 0 s.t.

‖T f − Thf‖curl ≤ ρ3(h)‖f‖0 for all f ∈ L2(Ω).

The conditions are:

1. Ellipticity on Vh,k

There exists C > 0 s.t.

ak(uh,uh) ≥ C‖uh‖2
L2 for all uh ∈ Vh,k,

2. Weak approximability of H1
per(Ω)

There exists ρ1(h) > 0, tending to zero as h→ 0 s.t.

sup
vh∈Vh,k

bk(vh, q)

‖vh‖curl

≤ ρ1(h)‖q‖H1 for all q ∈ H1
per(Ω),

3. Strong approximability of Vk

For some r > 0 there exists ρ2(h) > 0, tending to zero as h → 0 s.t.
for any u ∈ Vk ∩ (H1+r(Ω))

3
there exists uh ∈ Vh,k satisfying

‖u− uh‖curl ≤ ρ2(h)‖u‖H1+r .
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Here we should recall the result of Lemma 1.4, that T is a compact
and self-adjoint operator. For such an operator, the uniform convergence
Th → T in the operator norm, which is a result of Theorem 1.5, is a sufficient
and necessary condition to have discrete convergence of the spectrum. It is
formulated in the next theorem.

Theorem 1.6. (see [8, Theorem 3])
There exists a constant C s.t. for all f ∈ L2(Ω) it holds

‖T f − Thf ||curl ≤ Cht‖f‖0,

where t > 0 depends on the regularity of the material distribution ε.
Let λj be an eigenvalue of Problem 1.1 with multiplicity mj, and de-

note by Ej the corresponding eigenspace, then exactly mj discrete eigenvalues
λh,j1 , . . . , λh,jmj of Problem 1.2 converge to λj. Moreover, for some h < h0∣∣∣∣∣ 1

mj

mj∑
n=1

λh,jn − λj

∣∣∣∣∣ ≤ Ch2t,

dist(span{uh,j1 , . . . ,uh,jmj }, Ej) ≤ Cht.

As we see, Theorems 1.5 and 1.6 state that under the proper conditions
Problem 1.2 is a spectrally correct approximation of Problem 1.1.

1.3 Computer-assisted proof for band gap

Theorem 1.6 states that for a given k one can obtain approximations to the
exact eigenvalues. So, defining a mesh in K one can compute an approxi-
mated band structure for a given material distribution and then look for band
gaps. It may happen that some band gaps we observe in the approximated
band structure for a finite set of k will disappear after adding some more
k-points or improving precision of the eigenvalue computations. So what we
observe in the approximated band structure is just a hint at real band gap
and we need a theory to prove that it does exist.

In the paper [19] it is presented a way to prove existence of a band gap
using eigenvalue bounds for a fixed k and a perturbation analysis to extend
these bounds between nodes of a finite mesh in K. In such a way it is possible
to prove existence of true band gaps.

Note that the result in [19] was obtained for the 2D case of polarized
waves, where the eigenvalue problem is solved in H1

per(Ω). Therefore, the
result cannot be directly applied to our more general case of Hper(curl,Ω).
More precisely, the eigenvalue bounds for a fixed k are not valid, but similar
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perturbation argument still can be used. The 3D case will be considered in
[5].

First, we need to find a material distribution which exhibits a “numerical”
band gap for a finite set of k-points. Technically it means that we look for
a periodic function ε for which Problem 1.2 gives eigenvalue approximations
λk,h,j, j ∈ {1, . . . , n} and k ∈ K, where K is a grid in K. Moreover, we
assume there exists l s.t. maxk∈K{λk,h,l} < mink∈K{λk,h,l+1}.

Second, one applies a numerical procedure to obtain bounds for the exact
eigenvalues λk,j, let us denote them λk,j ≤ λk,j ≤ λk,j, for any j ∈ {1, . . . , n}
and k ∈ K. As it was already mentioned, [19] describes an algorithm how to
get such bounds for the 2D case of polarized waves. For our 3D case there is
no algorithm yet, nevertheless let us assume that λk,j and λk,j are available.
In practice one can obtain reasonably precise estimates by considering h-
convergence of λk,h,j on a sequence of embedded meshes. If the eigenvalues
converge monotonically (usually monotonically decreasing), then one bound
is the value on the finest mesh, another bound can be well estimated by
extrapolating the h-convergence. After that stage assume that we confirmed
the gap and maxk∈K{λk,l} < mink∈K{λk,l+1}.

Third, we use the a perturbation argument. We know that λ ∈ (λk,l, λk,l+1)
is not an eigenvalue of Problem 1.1 for any k ∈ K. Let us consider pertur-
bation of the eigenvalues when k has a small variation h. In case K is
“sufficiently dense” in K, we may expect that λ is not in the spectrum for
any k ∈ K.

For simplicity let us denote X = Hper(curl,Ω), H = L2(Ω). They build
a Gelfand triple X ⊂ H ⊂ X ′.

For δ > 0 the shifted operator Aδk : X → X ′ is defined by

〈Aδku,v〉 = (ε−1∇k×u,∇k×v)L2 + δ(u,v)L2 .

The spectrum of the operator Aδk is the spectrum of the operator Ak shifted
with δ to the right.

We fix k ∈ K and δ. Let us define a scaled norm ‖ ·‖H and the associated
energy norm ‖ · ‖X

‖u‖H =
√
δ‖u‖L2 , ‖u‖X =

√
‖ε− 1

2 ∇k×u‖2
L2 + ‖u‖2

H .

In terms of the energy norm we have

〈Aδku,u〉 ≥ ‖u‖2
X

〈Aδku,v〉 ≤ ‖u‖X‖v‖X .
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This shows that Aδk : X → X ′, which is isometric (in the energy norm) and,
in particular, (Aδk)−1 : X ′ → X exists and ‖(Aδk)−1‖L(X′,X) ≤ 1.

Denote the embedding E : X → H, then E ′ : H → X ′. Since ‖u‖H ≤
‖u‖X we have ‖E‖L(X,H) ≤ 1 and so ‖E ′‖L(H,X′) ≤ 1. Introduce an auxiliary
operator

Bk = E(Aδk)−1E ′ : H → H.

We have the spectrum σ(Bk) = { 1
λ+δ
| λ ∈ σ(Ak)}. The interval between

the eigenvalues [λk,l, λk,l+1] for the operator Ak translates to the interval
[µk,l+1, µk,l] for the operator Bk, where µk,l+1 = 1

λk,l+1+δ
and µk,l = 1

λk,l+δ
.

Theorem 1.7. Perturbation theorem for band gap.
Let B(k, r) = {k′ ∈ R3 | |k′ − k| < r} and εmin = minx∈Ω ε(x). Suppose that
for the operator Ak, there exists an interval [a, b] s.t. for some l ∈ N

1. [a, b] ⊂ (λk,l, λk,l+1) for all k ∈ K,

2. K ⊂
⋃

k∈KB(k, rk), where rk holds

rk <
βk

√
δεmin√

(1 + βk)(1 + 2βk)
,

βk = min

{
a− λk,l

(a+ δ)(λk,l + δ)
,

λk,l+1 − b
(b+ δ)(λk,l+1 + δ)

}
.

Then [a, b] is contained in the spectral gap, i.e. [a, b] ⊂ (λk,l, λk,l+1) for all
k ∈ K.

Proof. Define the resolvent

Rk(µ) = (Bk − µI)−1 : H → H.

One may show that if µ ∈ [µk,l+1 + βk, µk,l − βk], then for any k there exists
Rk(µ) and ‖Rk(µ)‖H ≤ β−1

k . Expanding u ∈ H with respect to a complete
orthonormal system of eigenfunctions {uk,n}n∈N of Bk we estimate

‖Rk(µ)u‖2
H =

∑
n∈N

1

(µk,n − µ)2
|〈u,uk,n〉|2 ≤

1

β2
k

‖u‖2
H .

Now we consider h s.t. |h| < rk, some small perturbation of k. We want
to show that Rk+h(µ) exists. First, let us prove the following representation

Rk+h(µ) = Rk(µ)
(
I + (Bk+h −Bk)Rk(µ)

)−1
. (1.21)
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Simple calculations show that

(Bk+h − µI) = (Bk+h − µI) + (Bk − µI)− (Bk − µI)

= (Bk − µI)
(
I + (Bk+h −Bk)(Bk − µI)−1

)
.

Inverse of this gives us (1.21).
If Rk(µ) exists, then it is enough to show that

‖(Bk+h −Bk)Rk(µ)‖H < 1, (1.22)

hence the right hand term of (1.21) is invertible, and so Rk+h(µ) exists.
Define Sk,h : X → X ′

〈Sk,hu,v〉 = sk,h(u,v) = 〈Aδk+hu,v〉 − 〈Aδku,v〉.

We want to estimate ‖Sk,h‖L(X,X′) ≤ C|h|.

|sk,h(u,v)| =|i(ε−1h× u,∇k×v)L2 − i(ε−1∇k×u,h× v)L2+

+ (ε−1h× u,h× v)L2|
≤‖ε−

1
2 h× u‖L2‖ε−

1
2 ∇k×v‖L2 + ‖ε−

1
2 ∇k×u‖L2‖ε−

1
2 h× v‖L2+

+ ‖ε−1h× u‖L2‖h× v‖L2

≤ε−
1
2

min|h|
(
‖u‖L2‖ε−

1
2 ∇k×v‖L2 + ‖ε−

1
2 ∇k×u‖L2‖v‖L2+

+ ε
− 1

2
min|h|‖u‖L2‖v‖L2

)
.

The last sum in the parenthesis can be represented and estimates as

ad+ be+ cf = (a, b, c)(d, e, f)> = (αa, b,
√
αc)(

1

α
d, e,

1√
α
f)>

=
1

α
(αa, b,

√
αc)(d, αe,

√
αf)> ≤ 1

α
|(αa, b,

√
αc)| · |(d, αe,

√
αf)|,

where α > 0 is some number. If we use this representation to estimate
|sk,h(u,v)|, it follows that

|sk,h(u,v)| ≤ 1

α
ε
− 1

2
min|h|

√
‖ε− 1

2 ∇k×u‖2
L2 + α(α + ε

− 1
2

min|h|)‖u‖2
L2·√

‖ε− 1
2 ∇k×v‖2

L2 + α(α + ε
− 1

2
min|h|)‖v‖2

L2 ,

what gives us

|sk,h(u,v)| ≤ 1

α
ε
− 1

2
min|h|‖u‖X‖v‖X , (1.23)
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if
α(α + ε

− 1
2

min|h|) ≤ δ. (1.24)

Solving (1.24) one obtains

α ≤
√
q2 + 4δ − q

2
, where q = ε

− 1
2

min|h|.

Since we want a large α, we take the boundary and put it into (1.23) and so
obtain the final estimation

|sk,h(u,v)| ≤ 2q√
q2 + 4δ − q

‖u‖X‖v‖X , where q = ε
− 1

2
min|h|.

Let us estimate ‖Bk+h −Bk‖H

Bk+h −Bk = E
(
(Aδk + Sk,h)−1 − (Aδk)−1

)
E ′

= E
(
(I − (Aδk)−1Sk,h)−1 − I

)
(Aδk)−1E ′

= E

(∑
n≥1

((Aδk)−1Sk,h)n

)
(Aδk)−1E ′.

The sum can be estimated by Neumann series, which is converging due to
the assumptions of the theorem

c = ‖(Aδk)−1Sk,h‖L(X,X) ≤ ‖(Aδk)−1‖L(X′,X)‖Sk,h‖L(X,X′) ≤
2q√

q2 + 4δ − q
< 1,

and finally it gives

‖Bk+h −Bk‖H ≤ ‖E‖L(X,H)

(
c

1− c

)
‖(Aδk)−1‖L(X′,X)‖E ′‖L(H,X′).

Recalling the estimates for E, E ′, (Aδk)−1, Sk,h and Rk(µ) we get

‖Bk+h −Bk‖H‖Rk(µ)‖H ≤
(

1

1− c
− 1

)
1

βk

. (1.25)

Now we show that the assumptions of the theorem provide (1.25) can be
estimated by 1, then according to (1.21) and (1.22) the resolvent Rk+h(µ)
exists for any µ ∈ [µk,l+1 + βk, µk,l − βk], what follows that the interval
[µk,l+1 + βk, µk,l − βk] is excluded from the spectrum of Bk+h.

µ ∈ [µk,l+1 +βk, µk,l−βk] corresponds to λ ∈ [a, b] for the operator Ak+h,
where

a =
1

µk,l − βk

− δ, b =
1

µk,l+1 + βk

− δ.
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Then βk can be represented as

βk(a) = µk,l −
1

a+ δ
, βk(b) =

1

b+ δ
− µk,l+1.

At last, in terms of λ it is

βk(a) =
a− λk,l

(a+ δ)(λk,l + δ)
, βk(b) =

λk,l+1 − b
(b+ δ)(λk,l+1 + δ)

.

From the inequality (
1

1− c
− 1

)
1

βk

< 1

one derives

2q√
q2 + 4δ − q

<
βk

1 + βk

, βk = min{βk(a), βk(b)},

then

q <

√
δβk√

(1 + βk)(1 + 2βk)
,

and the final formula for allowed perturbation is

|h| < βk

√
δεmin√

(1 + βk)(1 + 2βk)
.

Since the previous considerations are true for any k ∈ K and the system
of balls B(k, rk) cover the whole K we conclude that the interval [a, b] is
excluded from the spectrum of Ak for any k ∈ K.
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Chapter 2

Finite Elements

2.1 Standard lowest order elements

We are going to recall only necessary facts concerning finite elements. For
further details we refer to standard text books e.g. [28], but many important
facts are also collected in [17].

Definition 2. The Finite Element Method (FEM) is a Galerkin method
which is characterized by the following principles in the construction of a
discrete subspace Xh:

1. The domain Ω̄ is represented as a finite union of non-overlapping poly-
hedral elements Ωc.

2. Xh consists of piecewise polynomials, so that the restriction of Xh onto
an element Ωc is a polynomial space.

3. Xh has a basis consisting of functions with local supports, i.e. the
functions are non-zero only on few elements.

Definition 3. A finite element is the triplet (Ωc,Pc,Σc), where

• Ωc ⊂ Rd is the element domain, a bounded closed set with non-empty
interior and piecewise smooth boundary,

• Pc is the space of shape functions, a finite-dimensional space of func-
tions on Ωc,

• Σc is the set of degrees of freedom, a basis of P ′c (the dual space).
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Let Ω̄ =
⋃
c∈Ch Ω̄c be a decomposition of the domain into axis-parallel

hexahedral cells (bricks) c ∈ Ch. In general all our results can be extended
to unstructured meshes of tetrahedrons, we fix the hexahedral elements just
as an instance. Let Ω̂ = [0, 1]3 be the reference element, ϕc : Ω̂ → Ωc is
the mapping from the reference element to a physical element, ϕc is a C1

one-to-one and onto map. The Jacobian matrix of ϕc is defined by

Fc(x̂) =

(
∂ϕc,i(x̂)

∂x̂j

)
i,j=1,...,d

,

and the Jacobian determinant is Jc(x̂) = det(Fc(x̂)).
Let us define the simplest H(curl)- and H1-conforming finite elements

Xh,0 = {u ∈ Hper(curl,Ω): F T
c u ◦ ϕc ∈ Q0,1,1 ×Q1,0,1 ×Q1,1,0 for all c ∈ Ch},

Qh,0 = {q ∈ H1
per(Ω) : q ◦ ϕc ∈ Q1,1,1 for all c ∈ Ch},

where Ql,n,m is a polynomial space

Ql,n,m =

{
p(x, y, z) =

l∑
p=0

n∑
j=0

m∑
k=0

cpjkx
pyjzk

}
.

Let Vh be the set of all vertices v with the coordinates zv ∈ Ω̄, Eh be
the set of all edges e identified with the two ordered vertices (xe,ye) ⊂ Ω̄.
The edge has the midpoint me = 0.5(xe + ye), the unit tangent vector te =
(ye−xe)/‖ye−xe‖ and the edge curve itself is denoted by Γe = conv{xe,ye}.

Finite elements Xh,0 have edge-based degrees of freedom, for u ∈ Hper(curl,
Ω) s.t. there also exists u|Γe ∈ L2(Γe) define

`e,0(u) =

∫ ye

xe

u · teds for all e ∈ Eh.

Finite elements Qh,0 have vertex-based degrees of freedom, for a sufficiently
smooth q ∈ H1

per(Ω) define

`v,0(q) = q(zv) for all v ∈ Vh.

The finite elements Xh,0 are called the lowest-order Nédélec elements of
the first kind and Qh,0 are called the linear elements.

There exists the nodal basis {ψe,0 : e ∈ Eh} of Xh,0 dual to {`e,0 : e ∈ Eh}
and the nodal basis {φv,0 : v ∈ Vh} of Qh,0 dual to {`v,0 : v ∈ Vh}. The basis
functions and degrees of freedom are identified with so-called nodal points
which are the midpoints of edges {me} and the vertices {zv}, respectively.
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For u and q, which satisfy the assumptions for the degrees of freedom,
we define interpolation operators to the finite element spaces

ΠXh,0
(u) =

∑
e∈Eh

`e,0(u)ψe,0,

ΠQh,0(q) =
∑
v∈Vh

`v,0(q)φv,0.

Since the definition uses the nodal bases, one may check that (ΠXh,0
)2 =

ΠXh,0
and (ΠQh,0)2 = ΠQh,0 . It means that the interpolation operators are

projectors.
In practice the global finite element space (Xh,0 or Qh,0) is assembled

in the following way. There is the reference finite element, a local polynom
space formed of shape functions defined on the reference element Ω̂. With
help of ϕc the shape functions are mapped to a physical element Ωc and so
form a finite element there. Altogether these elements form the global finite
element space. The concrete shape functions we use will be given later in
Section 2.2.

It is important to do the mapping properly to guarantee that the finite
element spaces are subspaces of the related Sobolev spaces.

Lemma 2.1. (see [28, Chapter 5])
For û ∈ H(curl, Ω̂) and q̂ ∈ H1(Ω) the conforming mapping is given by the
following formulas

u = F−Tc û ◦ ϕ−1
c ∈ H(curl, Ω̂c),

∇x × u = J−1
c Fc∇x̂ × û ◦ ϕ−1

c ,

q = q̂ ◦ ϕ−1
c ∈ H1(Ωc),

∇xq = F−Tc ∇x̂q̂ ◦ ϕ−1
c .

For the implementation of the finite element method one needs a numeri-
cal integration, which is used for matrix assembling. In this thesis we always
assume an exact numerical integration.

Although the standard elements work well for the original Maxwell’s equa-
tions, they cannot be directly used for our formulation with the k-shifted
operators. To illustrate why, we give a simple example.

For simplicity let us consider the reference finite element only

Qh = Q1,1,1, Xh = Q0,1,1 ×Q1,0,1 ×Q1,1,0.

As a discrete analog of Corollary 1.2 we would like to have that ∇kQh is
contained in Xh since ∇kH

1
per(Ω) ⊂ Hper(curl,Ω). But for k 6= 0 (∇ +

ik)Q1,1,1 is not contained in Xh, because kQ1,1,1 * Q0,1,1 ×Q1,0,1 ×Q1,1,0.
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That is why we need to use special elements with k-shifted basis functions,
which allow to construct the discrete exact sequence with respect to the
operator ∇k.

2.2 High order finite elements

Although Problem 1.2 can be successfully solved with the help of the lowest
order finite elements, it may not be efficient. If the solution is assumed
to have some additional regularity, one can expect that high order finite
elements provide higher convergence rate and are more efficient in practice.

In construction of high order finite elements we follow an approach pre-
sented in [41]. The approach has the following advantages.

• It provides a sequence of hierarchical finite element spaces with an
arbitrary and variable polynomial order. This flexibility is especially
needed for a hp-adaptive method.

• Shape functions for the H(curl)-conforming finite element space ex-
plicitly includes gradient functions. This fact allows us to construct an
inexpensive discrete gradient operator, which we need in Sections 3.2
and 4.3.

• The resulting finite element space consists of well-structured subspaces.
The exact sequence property (Lemma 2.5) is enforced and even more,
the local exact sequence property exists. The property can be used e.g.
for the construction of an efficient multigrid preconditioner.

• The construction of shape functions is done recursively by using or-
thogonal polynomials and element-based spatial variables. It allows a
simple implementation as well as fast and stable shape function com-
putations.

We will consider finite elements on axis-parallel hexahedra (bricks) only.
Other types including quadrilateral, triangular, prismatic and tetrahedral
elements as well as H(div)-conforming elements can also be constructed, see
e.g. [41, Chapter 5].

2.2.1 Orthogonal polynomials

As building blocks for shape functions we use orthogonal polynomials, namely
the Legendre polynomials. Their short definition and some necessary proper-
ties will be given, while we refer to books e.g. [36] for further details. Let us

29



define the polynomials on interval [−1, 1] recursively

l0(x) = 1,

l1(x) = x,

lj+1(x) =
1

j + 1
((2j + 1)lj(x)x− jlj−1(x)), j ∈ N.

(2.1)

The Legendre polynomials {lj}0≤j≤p form a L2([−1, 1])-orthogonal family
spanning Pp([−1, 1]) ∫ 1

−1

li(x)lj(x) dx =
2

2j + 1
δij.

In fact we are going to use the integrated Legendre polynomials. They
are defined as

Lj(x) =

∫ x

−1

lj−1(y)dy for x ∈ [−1, 1] and j ≥ 2.

As well as the Legendre polynomials they also can be defined recursively

L̃1(x) = x,

L2(x) =
1

2
(x2 − 1),

Lj+1(x) =
1

j + 1
((2j − 1)Lj(x)x− (j − 2)lj−1(x)), j ≥ 2.

(2.2)

Note that here L̃1(x) replaces L1(x) = x+ 1 in order to make the recursive
definition working.

The integrated Legendre polynomials {Lj}2≤j≤p form an orthogonal fam-
ily with respect to H1([−1, 1])-seminorm∫ 1

−1

L′i(x)L′j(x) dx = 0 for i 6= j,

moreover, they are “almost” L2-orthogonal∫ 1

−1

Li(x)Lj(x) dx = 0 for |i− j| > 2.

For j ≥ 2 the polynomials vanish at the boundary points, Lj(−1) = Lj(1) =
0, so {Lj}2≤j≤p span Pp0 [−1, 1].
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2.2.2 Element-based spatial variables

For simplicity we consider the hexahedral element only. First we look at the
reference cell and introduce a local numbering of vertices, edges and faces.
The cell has 8 vertices v1, . . . , v8 with the coordinates

zv1 = (0, 0, 0), zv5 = (0, 0, 1),
zv2 = (1, 0, 0), zv6 = (1, 0, 1),
zv3 = (1, 1, 0), zv7 = (1, 1, 1),
zv4 = (0, 1, 0), zv8 = (0, 1, 1),

there are 12 edges formed by the vertices with numbers

e1 = (2, 1), e5 = (5, 1), e9 = (6, 5),
e2 = (3, 2), e6 = (6, 2), e10 = (7, 6),
e3 = (4, 3), e7 = (7, 3), e11 = (8, 7),
e4 = (4, 1), e8 = (8, 4), e12 = (8, 5),

and 6 faces formed by the vertices with numbers

f1 = (2, 1, 4, 3), f4 = (3, 4, 8, 7),
f2 = (1, 2, 6, 5), f5 = (4, 1, 5, 8),
f3 = (2, 3, 7, 6), f6 = (5, 6, 7, 8).

For every vertex vj let us define auxiliary functions λvj and σvj

λv1 = (1− x)(1− y)(1− z), σv1 = (1− x) + (1− y) + (1− z),
λv2 = x(1− y)(1− z), σv2 = x+ (1− y) + (1− z),
λv3 = xy(1− z), σv3 = x+ y + (1− z),
λv4 = (1− x)y(1− z), σv4 = (1− x) + y + (1− z),
λv5 = (1− x)(1− y)z, σv5 = (1− x) + (1− y) + z,
λv6 = x(1− y)z, σv6 = x+ (1− y) + z,
λv7 = xyz, σv7 = x+ y + z
λv8 = (1− x)yz, σv8 = (1− x) + y + z.

λvj is equal to one at the associated vertex and zero at others. Now we define
another handy functions based on λvj and σvj .

• For an edge ei = (v1, v2) there are a parametrization ξei

ξei = σv2 − σv1 s.t. ξei : R3 ⊃ [zv1 , zv2 ]→ [−1, 1]

and the edge extension parameter λei = λv1 + λv2 s.t. it is equal to one
on the edge ei and zero on edges parallel to ei. Moreover, the tangential
vector for the edge is given by a simple formula τei = 1

2
∇ξei .
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• For a face fi = (v1, v2, v3, v4) (v1 and v3 are not connected by an edge)
there are parametrizations ξfi and ηfi

ξfi = σv2 − σv1 s.t. ξfi : R3 ⊃ [zv1 , zv2 ]→ [−1, 1],

ηfi = σv4 − σv1 s.t. ηfi : R3 ⊃ [zv1 , zv4 ]→ [−1, 1]

and the face extension parameter λfi = λv1 + λv2 + λv3 + λv4 s.t. it is
equal to one on the face fi and zero on the opposite face. Moreover, the
tangential vectors for the face is given by τfi,ξ = 1

2
∇ξfi , τfi,η = 1

2
∇ηfi

and the outer normal by nfi = ∇λfi .

2.2.3 H1-conforming elements

For construction of high order finite elements it is convenient to divide all
shape functions and degrees of freedom into so-called vertex-, edge-, face-
and cell-based (V-E-F-C ) classes. This grouping is very natural because we
construct them to hold certain properties on the corresponding elements of
mesh.

A H1-conforming V-E-F-C basis is given by the following construction.

• The lowest order shape functions (vertex-based)
for i = 1, . . . , 8 consider the vertex vi

φvi = λvi .

• Edge-based shape functions
for i = 1, . . . , 12 consider the edge ei = (v1, v2),
for l = 0, . . . , pei − 2

φlei = Ll+2(−ξei)λei ,
where ξei = σv2 − σv1 and λei = λv1 + λv2 .

• Face-based shape functions
for i = 1, . . . , 6 consider the face fi = (v1, v2, v3, v4),
for l,m = 0, . . . , pfi − 2

φl,mfi = Ll+2(ξfi)Lm+2(ηfi)λfi ,

where ξfi = σv2 − σv1 , ηfi = σv4 − σv1 and λfi = λv1 + λv2 + λv3 + λv4 .

• Cell-based shape functions
for l,m, n = 0, . . . , pc − 2

φl,m,nc = Ll+2(2x− 1)Lm+2(2y − 1)Ln+2(2z − 1).
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As QV , QE, QF , QC we denote the local subspaces spanned by the cor-
responding vertex-, edge-, face- and cell-based shape functions, respectively.
So, the local space Q has a decomposition

Q(Ω̂) = QV (Ω̂)⊕QE(Ω̂)⊕QF (Ω̂)⊕QC(Ω̂).

Lemma 2.2. (we refer to [41, Theorem 5.11])
The shape functions above are linearly independent and H1-conforming. For
a uniform polynomial order p = pei = pfi = pc they form a basis of Qp,p,p(Ω̂).

2.2.4 H(curl)-conforming elements

A H(curl)-conforming E-F-C basis which explicitly includes gradients of the
H1-conforming basis is given by the following construction.

• The lowest order shape functions (edge-based)
for i = 1, . . . , 12 consider the edge ei = (v1, v2)

ψei = −1

2
λei∇ξei ,

where ξei = σv2 − σv1 and λei = λv1 + λv2 .

• Edge-based shape functions
for i = 1, . . . , 12 consider the edge ei = (v1, v2),
for l = 0, . . . , pei − 1

ψlei = ∇φlei = ∇ (Ll+2(−ξei)λei) .

• Face-based shape functions
for i = 1, . . . , 6 consider the face fi = (v1, v2, v3, v4),
for l,m = 0, . . . , pfi − 1
Type 1

ψl,m1,fi
= ∇φl,mfi = ∇ (Ll+2(ξfi)Lm+2(ηfi)λfi) ,

Type 2

ψl,m2,fi
= λfi

(
L′l+2(ξfi)Lm+2(ηfi)∇ξfi − Ll+2(ξfi)L

′
m+2(ηfi)∇ηfi

)
,

Type 3

ψ∗,m3,fi
= λfiLm+2(ηfi)∇ξfi ,

ψl,∗3,fi
= λfiLl+2(ξfi)∇ηfi ,

where ξfi = σv2 − σv1 , ηfi = σv4 − σv1 and λfi = λv1 + λv2 + λv3 + λv4 .
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• Cell-based shape functions
for l,m, n = 0, . . . , pc − 1
Type 1

ψl,m,n1,c = ∇φl,m,nc = ∇ (Ll+2(2x− 1)Lm+2(2y − 1)Ln+2(2z − 1)) ,

Type 2

ψl,m,n21,c = diag{1,−1, 1}ψl,m,n1,c ,

ψl,m,n22,c = diag{1, 1,−1}ψl,m,n1,c ,

Type 3

ψ∗,m,n3,c = Lm+2(2y − 1)Ln+2(2z − 1)ex,

ψl,∗,n3,c = Ll+2(2x− 1)Ln+2(2z − 1)ey,

ψl,m,∗3,c = Ll+2(2x− 1)Lm+2(2y − 1)ez.

This basis may also be called a N-E-F-C basis, where N means the lowest
order Nédélec elements.

As XN ,XE,XF ,XC we denote the local subspaces spanned by the cor-
responding lowest-order, edge-, face- and cell-based shape functions, respec-
tively. The local space X can be represented as

X(Ω̂) = XN(Ω̂)⊕XE(Ω̂)⊕XF (Ω̂)⊕XC(Ω̂).

Lemma 2.3. (we refer to [41, Theorem 5.12])
The shape functions above are linearly independent and H(curl)-conforming.
For a uniform polynomial order p = pei = pfi = pc the shape functions form

a basis of Qp,p+1,p+1(Ω̂)×Qp+1,p,p+1(Ω̂)×Qp+1,p+1,p(Ω̂).

As we have seen, all the shape functions can be defined in terms of
the functions Lm, ξ, η, λ and their gradients. Moreover, since the functions
ξei , λei , ξfi , ηfi , λfi are just linear combinations of {λvi} and {σvi} one needs
to define only these 16 functions and their gradients. Lm and L′m = lm−1 can
be computed recursively according to (2.1) and (2.2). As a result we have a
very general and implementation-friendly construction.

Assembling of the global high order finite element spaces is done via the
reference element and mapping, in the same way as it was described for the
lowest order finite elements. A tricky point is the orientation problem. The
global basis functions are constructed from shape functions on neighbor el-
ements, which have a common edge or face. A shape function related to
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the common edge or face could jump on boundary of the neighbor elements.
It happens because the shape function is defined in a coordinate system of
an element and the systems may differ on the neighbor elements. For the
high order finite elements, which may have multiple kinds of shape functions
associated with a face or edge, it is also a problem to join the right shape func-
tions. Our treatment of the orientation problem is implementation-specific
and will be explained later in Chapter 5.

Lemma 2.4. (we refer to [41, Theorem 5.32])
The high order finite elements described above satisfy the exact sequence prop-
erty on a finer level, namely they have the local exact sequence property. Ac-
cording to the V-E-F-C (N-E-F-C) structure the global finite element spaces
Qh and Xh can be represented as

Qh = Qh,V ⊕
∑
e∈Eh

QEe ⊕
∑
f∈Fh

QFf ⊕
∑
c∈Ch

QCc ,

Xh = Xh,N ⊕
∑
e∈Eh

XEe ⊕
∑
f∈Fh

XFf ⊕
∑
c∈Ch

XCc .

Their subspaces form the following exact sequences (the range of each discrete
differential operator coincides with the kernel of the following operator)

Qh,V
∇−→ Xh,N , QEe

∇−→ XEe(bijective), QFf

∇−→ XFf , QCc
∇−→ XCc ,

for all e ∈ Eh, f ∈ Fh, c ∈ Ch.

2.2.5 H1-conforming degrees of freedom

The original definition of the degrees of freedom given in [29] and [30] was
made for a uniform polynomial order and does not allow varying polynomial
order. For the latter case one needs another degrees of freedom, e.g. the ones
presented in [11].

Below we use the following notations, integrals of kind
∫
f

denote integra-

tion over a face f ∈ Fh (edge e or cell c), spaces of kind Ppe(e) or Qpf ,pf0 (f)
denote the polynomial spaces over an edge e or face f , the index 0 means a
subspace which vanishes on the boundary.

The following degrees of freedom define an unisolvent H1-conforming fi-
nite elements.

• Vertex-based degrees of freedom
for a vertex v ∈ Vh with the coordinates zv,

`v(q) = q(zv).
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• Edge-based degrees of freedom
for an edge e ∈ Eh with the element of edge-order pe,

`le(q) =

∫
e

∂q

∂s

∂pl
∂s

ds for l = 0, . . . , pe − 2,

where {pl} is a basis of Ppe0 (e).

• Face-based degrees of freedom
for a face f ∈ Fh with the element of face-order pf ,

`l,mf (q) =

∫
f

∇f q · ∇f pl,m dA for l,m = 0, . . . , pf − 2,

where {pl,m} is a basis of Qpf ,pf0 (f) and the surface gradient ∇f is
defined as ∇f q = nf ×∇q × nf .

• Cell-based degrees of freedom
for a cell c ∈ Ch with the element of cell-order pc,

`l,m,nc (q) =

∫
c

∇q · ∇pl,m,n dx for l,m, n = 0, . . . , pc − 2,

where {pl,m,n} is a basis of Qpc,pc,pc0 (c).

2.2.6 H(curl)-conforming degrees of freedom

The following degrees of freedom define a unisolvent H(curl)-conforming fi-
nite elements.

• Edge-based degrees of freedom
for an edge e ∈ Eh with the element of edge-order pe,

`le(u) =

∫
e

(u · te)pl ds for l = 0, . . . , pe,

where {pl} is a basis of Ppe(e) and te is the unit tangent vector.

• Face-based degrees of freedom
for a face f ∈ Fh with the element of face-order pf ,

`lf (u) =

∫
f

curlf u · vl dA for {vl} a basis of Qcurlf ,

`lf (u) =

∫
f

u · vl dA for {vl} a basis of Q∇f ,
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where the surface rotor curlf is defined as curlf v = (∇× v) · nf and

Qcurlf = {curlf v | v ∈ (Qpf ,pf+1(f)×Qpf+1,pf (f)) ∩H0(curl, f)},
Q∇f = {∇f p | p ∈ Q

pf+1,pf+1
0 (f)}.

• Cell-based degrees of freedom
for a cell c ∈ Ch with the element of cell-order pc,

`lc(u) =

∫
c

∇× u · vl dx for {vl} a basis of Qcurl,

`lc(u) =

∫
c

u · vl dx for {vl} a basis of Q∇,

where p1 = pc + 1 and

Qcurl = {∇ × v | v ∈ Qpc,p1,p1 ×Qp1,pc,p1 ×Qp1,p1,pc(c) ∩H0(curl, c)},
Q∇ = {∇ p | p ∈ Qpc+1,pc+1,pc+1

0 (c)}.

As we have seen, the degrees of freedom are rather complex. In case one
uses the finite elements with a uniform polynomial order, it is easier to use
the classical degrees of freedom described in [29].

There is some freedom in tuning the degrees of freedom because the test
functions pl and vl are given in terms of a basis. One can choose the con-
crete pl and vl and so fix the degrees of freedom. It may be used to obtain
degrees of freedom which are dual to some shape functions. Particularly, it
is possible to choose such {pl} and {vl} that the shape functions and the
corresponding degrees of freedom on the reference element form a dual ba-
sis (nodal basis) inside the vertex-, edge-, face- and cell-based groups, e.g.
`le(ψ

m
e ) = δlm for the edge-based shape functions and degrees of freedom.

This can be done by solving a linear system in the form `l(ψm) = δlm with
respect to a parametrized representation of pl and vl.

In our case this task was done in the Wolfram’s Mathematica by using
symbolic calculations. In the first step the shape functions and parametrized
degrees of freedom were constructed in Mathematica. Then, the correspond-
ing linear systems `le(ψ

m
e ) = δlm were solved with respect to parameters in the

degrees of freedom. The resulted parameters provide the local nodal bases
inside the V-E-F-C parts.

2.2.7 Interpolation operators

Let {ϕj} be a basis of the high order finite element space Qh. Our goal is to
construct an operator ΠQh which maps a sufficiently smooth q ∈ H1

per(Ω) to

37



Qh by providing coefficients aj in the basis, s.t.

ΠQh(q) =
∑
j

ajϕj.

In Section 2.1 the interpolation operators ΠXh,0
and ΠQh,0 were defined for

the lowest order finite elements via a nodal basis. Now we need to define
interpolation operators to the high order finite element spaces. It is not so
easy anymore because the nodal basis is not directly available in practice.
To overcome this problem one should use the following “triangular” trick.

Our global finite element space is sum of finite elements for all cells c ∈ Ch.
So the interpolation may also be done cell by cell in such a way that every cell
makes some contribution to the coefficients. Working on cell level we may
notice that, by construction, the cell-based shape functions decay on faces,
the face-based shape functions decay on edges and the edge-based shape
functions decay on vertices. It follows the very important conclusion, if we
number all shape functions {φj} and all degrees of freedom {`i} in the order
they were introduced, then the matrix θij = `i(φj) is block-triangular, its
blocks correspond to vertex-, edge-, face- and cell-based parts. If the degrees
of freedom were chosen such that the V-E-F-C parts have the local nodal
bases, then the matrix θij is triangular with the unit matrices as diagonal
blocks. We may exploit this structure and get the coefficients quite easily.

For simplicity assume that we act on the reference element. Let us number
the shape functions, degrees of freedom and coefficients with a double index
(t, j), where t = 1, 2, 3, 4 means the type: vertex, edge, face or cell. The
second index j = 1, . . . , nt is the number inside a type. For a given function
q ∈ H1

per(Ω) the algorithm to get an interpolation (coefficient vector (at,j))
in the local finite element basis is the following.

1. t := 1, fh := 0.

2. at,j = `t,j(q − fh) = `t,j(q)− `t,j(fh) for j = 1, . . . , nt.

3. fh := fh +
∑nt

j=1 at,jφt,j.

4. while t 6= 4, t := t+ 1 and go to 2.

In the same way we define the interpolation operator ΠXh
, which maps to

the high order H(curl)-conforming finite element space Xh.

2.2.8 Static condensation

After assembling of the global finite element spaces the cell-based degrees of
freedom of a cell are decoupled from ones of other cells. It happens because
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support of the global cell-based shape functions is restricted within their own
cells only.

This fact can be used to decrease the size of a problem, e.g. a linear
system. Let us denote quantities related to the cell-based degrees of freedom
with the index C and others with the index R. After a renumbering a linear
system derived from our finite element discretization may be written in the
block form (

ARR ARC
ACR ACC

)(
uR
uC

)
=

(
fR
fC

)
.

Since the cell-based degrees of freedom for different cells are decoupled, the
matrix ACC = diag(Ac1CC , . . . , A

cn
CC), where c1, . . . , cn ∈ Ch and {AcjCC} are the

element-level matrices. Now we can compute the Schur complement with
respect to the C-part. It gives the smaller condensed system AzuR = fz,
where

Az = ARR − ARCA−1
CCACR,

fz = fR − ARCA−1
CCfC .

After the condensed system was solved the cell-based unknowns can be ob-
tained as

uC = A−1
CC(fC − ACRuR).

The static condensation is an important tool for finite elements of order
p ≥ 3 when the fraction of the cell-based degrees of freedom becomes signif-
icant. The condensation can be realized on element level with no expensive
operations. As a result one gets a smaller and better conditioned system
what is advantageous for iterative methods. The condition number is better
because the Schur complement means an orthogonalization of the cell-based
basis functions with respect to the other ones.

2.2.9 Example of shape functions

The definition of hierarchical high order finite elements is rather complex.
As an illustration we provide the exact form of the second order H1- and
H(curl)-conforming elements on hexahedra. The shape functions are defined
on the reference element Ω̂ = [0, 1]3 according to the local numbering and
notations described in Subsections 2.2.2, 2.2.3 and 2.2.4.
H1-conforming element, total 27 shape functions:
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1. The lowest order shape functions (vertex-based)

φv1 = (1− x)(1− y)(1− z), φv5 = (1− x)(1− y)z,
φv2 = x(1− y)(1− z), φv6 = x(1− y)z,
φv3 = xy(1− z), φv7 = xyz,
φv4 = (1− x)y(1− z), φv8 = (1− x)yz.

2. Edge-based shape functions

φ0
e1

= 2(x− 1)x(y − 1)(z − 1), φ0
e7

= 2xy(z − 1)z,
φ0
e2

= −2x(y − 1)y(z − 1), φ0
e8

= −2(x− 1)y(z − 1)z,
φ0
e3

= −2(x− 1)xy(z − 1), φ0
e9

= −2(x− 1)x(y − 1)z,
φ0
e4

= 2(x− 1)(y − 1)y(z − 1), φ0
e10

= 2x(y − 1)yz,
φ0
e5

= 2(x− 1)(y − 1)(z − 1)z, φ0
e11

= 2(x− 1)xyz,
φ0
e6

= −2x(y − 1)(z − 1)z, φ0
e12

= −2(x− 1)(y − 1)yz.

3. Face-based shape functions

φ0,0
f1

= −4(x− 1)x(y − 1)y(z − 1), φ0,0
f4

= 4(x− 1)xy(z − 1)z,

φ0,0
f2

= −4(x− 1)x(y − 1)(z − 1)z, φ0,0
f5

= −4(x− 1)(y − 1)y(z − 1)z,

φ0,0
f3

= 4x(y − 1)y(z − 1)z, φ0,0
f6

= 4(x− 1)x(y − 1)yz.

4. Cell-based shape function

φ0,0,0
c = 8(x− 1)x(y − 1)y(z − 1)z.

H(curl)-conforming element, total 54 shape functions:
1. The lowest order shape functions (edge-based)

ψe1 = {(y − 1)(z − 1), 0, 0}, ψe7 = {0, 0, xy},
ψe2 = {0,−x(z − 1), 0}, ψe8 = {0, 0,−(x− 1)y},
ψe3 = {y(z − 1), 0, 0}, ψe9 = {−(y − 1)z, 0, 0},
ψe4 = {0, (x− 1)(z − 1), 0}, ψe10 = {0, xz, 0},
ψe5 = {0, 0, (x− 1)(y − 1)}, ψe11 = {−yz, 0, 0},
ψe6 = {0, 0,−x(y − 1)}, ψe12 = {0,−(x− 1)z, 0}.
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2. Edge-based shape functions

ψ0
e1

= {2(2x− 1)(y − 1)(z − 1), 2(x− 1)x(z − 1), 2(x− 1)x(y − 1)},
ψ0
e2

= {−2(y − 1)y(z − 1),−2x(2y − 1)(z − 1),−2x(y − 1)y},
ψ0
e3

= {−2(2x− 1)y(z − 1),−2(x− 1)x(z − 1),−2(x− 1)xy},
ψ0
e4

= {2(y − 1)y(z − 1), 2(x− 1)(2y − 1)(z − 1), 2(x− 1)(y − 1)y},
ψ0
e5

= {2(y − 1)(z − 1)z, 2(x− 1)(z − 1)z, 2(x− 1)(y − 1)(2z − 1)},
ψ0
e6

= {−2(y − 1)(z − 1)z,−2x(z − 1)z,−2x(y − 1)(2z − 1)},
ψ0
e7

= {2y(z − 1)z, 2x(z − 1)z, 2xy(2z − 1)},
ψ0
e8

= {−2y(z − 1)z,−2(x− 1)(z − 1)z,−2(x− 1)y(2z − 1)},
ψ0
e9

= {−2(2x− 1)(y − 1)z,−2(x− 1)xz,−2(x− 1)x(y − 1)},
ψ0
e10

= {2(y − 1)yz, 2x(2y − 1)z, 2x(y − 1)y},
ψ0
e11

= {2(2x− 1)yz, 2(x− 1)xz, 2(x− 1)xy},
ψ0
e12

= {−2(y − 1)yz,−2(x− 1)(2y − 1)z,−2(x− 1)(y − 1)y}.

3. Face-based shape functions

ψ0,0
1,f1

= 4{−(2x− 1)(y − 1)y(z − 1),−(x− 1)x(2y − 1)(z − 1),−(x− 1)x(y − 1)y},

ψ0,0
1,f2

= 4{−(2x− 1)(y − 1)(z − 1)z,−(x− 1)x(z − 1)z,−(x− 1)x(y − 1)(2z − 1)},

ψ0,0
1,f3

= 4{(y − 1)y(z − 1)z, x(2y − 1)(z − 1)z, x(y − 1)y(2z − 1)},

ψ0,0
1,f4

= 4{(2x− 1)y(z − 1)z, (x− 1)x(z − 1)z, (x− 1)xy(2z − 1)},

ψ0,0
1,f5

= 4{−(y − 1)y(z − 1)z,−(x− 1)(2y − 1)(z − 1)z,−(x− 1)(y − 1)y(2z − 1)},

ψ0,0
1,f6

= 4{(2x− 1)(y − 1)yz, (x− 1)x(2y − 1)z, (x− 1)x(y − 1)y},

ψ0,0
2,f1

= {−4(2x− 1)(y − 1)y(z − 1), 4(x− 1)x(2y − 1)(z − 1), 0},
ψ0,0

2,f2
= {−4(2x− 1)(y − 1)(z − 1)z, 0, 4(x− 1)x(y − 1)(2z − 1)},

ψ0,0
2,f3

= {0, 4x(2y − 1)(z − 1)z,−4x(y − 1)y(2z − 1)},
ψ0,0

2,f4
= {4(2x− 1)y(z − 1)z, 0,−4(x− 1)xy(2z − 1)},

ψ0,0
2,f5

= {0,−4(x− 1)(2y − 1)(z − 1)z, 4(x− 1)(y − 1)y(2z − 1)},
ψ0,0

2,f6
= {4(2x− 1)(y − 1)yz,−4(x− 1)x(2y − 1)z, 0},
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ψ∗,03,f1
= {4(y − 1)y(z − 1), 0, 0}, ψ0,∗

3,f1
= {0,−4(x− 1)x(z − 1), 0},

ψ∗,03,f2
= {−4(y − 1)(z − 1)z, 0, 0}, ψ0,∗

3,f2
= {0, 0,−4(x− 1)x(y − 1)},

ψ∗,03,f3
= {0, 4x(z − 1)z, 0}, ψ0,∗

3,f3
= {0, 0, 4x(y − 1)y},

ψ∗,03,f4
= {−4y(z − 1)z, 0, 0}, ψ0,∗

3,f4
= {0, 0, 4(x− 1)xy},

ψ∗,03,f5
= {0, 4(x− 1)(z − 1)z, 0}, ψ0,∗

3,f5
= {0, 0,−4(x− 1)(y − 1)y},

ψ∗,03,f6
= {4(y − 1)yz, 0, 0}, ψ0,∗

3,f6
= {0, 4(x− 1)xz, 0}.

4. Cell-based shape functions

ψ0,0,0
1,c =8{(2x− 1)(y − 1)y(z − 1)z, (x− 1)x(2y − 1)(z − 1)z,

(x− 1)x(y − 1)y(2z − 1)},
ψ0,0,0

21,c =8{(2x− 1)(y − 1)y(z − 1)z,−(x− 1)x(2y − 1)(z − 1)z,

(x− 1)x(y − 1)y(2z − 1)},
ψ0,0,0

22,c =8{(2x− 1)(y − 1)y(z − 1)z, (x− 1)x(2y − 1)(z − 1)z,

− (x− 1)x(y − 1)y(2z − 1)},
ψ∗,0,03,c ={4(y − 1)y(z − 1)z, 0, 0},
ψ0,∗,0

3,c ={0, 4(x− 1)x(z − 1)z, 0},
ψ0,0,∗

3,c ={0, 0, 4(x− 1)x(y − 1)y}.

2.3 Modified elements

Following [13] and [8] we introduce k-modified finite elements. We will con-
sider the lowest order elements first and then indicate changes for the high
order elements.

The nodal bases {ψe,0} and {φv,0} of the standard lowest order elements
defined in Section 2.1 are modified by the multiplication by an exponential
factor

ψe,k(x) = e−ik·(x−me)ψe,0(x) e ∈ Eh,
φv,k(x) = e−ik·(x−zv)φv,0(x) v ∈ Vh.

In practice it can be attained by multiplying the corresponding shape func-
tions during assembling of the global finite element spaces. Note that every
basis function gets its own shift me or zv depending on the nodal point. The
modified bases form new finite elements

Xh,k = span{ψe,k : e ∈ Eh},
Qh,k = span{φv,k : v ∈ Vh}.
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To keep the duality the inverse exponential factor is used for the degrees
of freedom

`e,k(u) =

∫ ye

xe

eik·(x−me)u · teds, (2.3)

`v,k(q) =
(
eik·(x−zv)q(x)

)
|x=zv = q(zv) = `v,0(q). (2.4)

Again, the shift is different for every degree of freedom. From (2.4) one may
notice that due to our choice of the shift the degrees of freedom for Qh,k are
actually not changed. Since the exponential factor is shifted with respect to
the nodal point, periodic fields q ∈ H1

per(Ω) and u ∈ Hper(curl,Ω) have the
same degrees of freedom on the identified elements of the periodic boundary.

By the construction there exists a nice property connecting the standard
and modified elements

`e,k(ψe,k) =

∫ ye

xe

eik·(x−me)e−ik·(x−me)ψe,0(x) · teds = `e,0(ψe,0) = 1,

`v,k(φv,k) = e−ik·(x−zv)φv,0(x)|x=zv = φv,0(zv) = `v,0(φv,0) = 1.

(2.5)

Interpolation operators to the modified elements are defined as usual

ΠXh,k
(u) =

∑
e∈Eh

`e,k(u)ψe,k,

ΠQh,k(q) =
∑
v∈Vh

`v,k(q)φv,k.

Doing straightforward computations one can easily check that the bases
{ψe,k} and {φv,k} have the following properties

∇k φv,k(x) = e−ik·(x−zv)∇φv,0(x),

∇k×ψe,k(x) = e−ik·(x−me)∇× ψe,0(x).
(2.6)

The approach presented above can be generalized to high order finite
elements. One needs to modify the shape functions and degrees of freedom
in the same way as it was done for the lowest order elements. So we put
the multiplier e−ik·(x−s) in front of the shape functions and put the inverse
multiplier eik·(x−s) under the integrals for the degrees of freedom. Since the
high order elements have a more complex V-E-F-C structure, the exponential
multiplier e−ik·(x−s) should have a different shift s for vertex-, edge-, face-
and cell-based basis functions and degrees of freedom. The shift has to be a
point on the corresponding element of the mesh, e.g. the midpoints of faces.
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It guarantees that periodic fields q ∈ H1
per(Ω) and u ∈ Hper(curl,Ω) have the

same degrees of freedom on the identified elements of the periodic boundary.
Remember that there could be many basis functions corresponding to one
element of the mesh. They can have the same shift or different shifts inside
the element, both are correct. For the shift we use the nodal point which is
unique for every basis function.

The high order modified elements hold the property (2.6) and a property
similar to (2.5). If we denote sets of the non-modified high order shape
functions and degrees of freedom as {ψj,0} and {`j,0}, then they are connected
with the modified sets as

`j,k(ψj,k) = `j,0(ψj,0) for all j.

In the thesis we use the same notations Xh,k and Qh,k for the modified
high order elements. If in a certain place it is not indicated which type
we consider then it means that it does not matter, otherwise it is given a
separate explanation.

The property (2.6) is a key which makes it possible to prove the next
lemmas for both the lowest and high order elements.

Lemma 2.5. (see [8, Lemma 4])
Let k 6= 0, the spaces Qh,k and Xh,k satisfy the following commuting diagram

(functions must be chosen such that the interpolation operators make sense)

H1
per(Ω)

∇k−→ Hper(curl,Ω)
↓ ΠQh,k ↓ ΠXh,k

Qh,k
∇k−→ Xh,k.

In addition, the spaces and operators above form the exact sequences hori-
zontally.

Lemma 2.6. Discrete Helmholtz decomposition (see [8, Lemma 7]).
For given uh ∈ Xh,k, there exist vh ∈ Xh,k and qh ∈ Qh,k s.t.

uh = vh +∇k qh,

(vh,∇k ph)L2 = 0 for all ph ∈ Qh,k.

The last line implies that vh ∈ Vh,k.

Lemma 2.7. (see [8, Lemmas 8 – 10])
The modified elements do provide ellipticity on Vh,k, weak approximability of
H1

per(Ω) and strong approximability of Vk.
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Combined with Theorems 1.5 – 1.6 it follows that the modified elements
can be used to get a spectrally correct approximation of our eigenvalue prob-
lem.

Practical efficiency of the modified elements was proved in [12], where
they were applied to Problem 1.2.

2.4 Implementation of the modified elements

For solving a problem with the modified elements we need to assemble ma-
trices related to operators of the original problem. The assembling implies
a numerical integration of the basis functions. For the modified elements a
direct numerical integration is problematic since the shape functions include
the exponential multiplier and so are not polynomial anymore. To overcome
this difficulty we need to make an important observation about how the
sesquilinear forms look on the bases of Xh,k and Qh,k.

Using the property (2.6) one obtains

ak(ψe1,k, ψe2,k) = (ε−1∇k×ψe1,k,∇k×ψe2,k)L2

=

∫
Ω

ε−1e−ik·(x−me1 )∇× ψe1,0 · e−ik·(x−me2 )∇× ψe2,0 dx

= eik·(me1−me2 )(ε−1∇× ψe1,0,∇× ψe2,0)L2

= eik·(me1−me2 )a0(ψe1,0, ψe2,0),

m(ψe1,k, ψe2,k) = eik·(me1−me2 )m(ψe1,0, ψe2,0),

bk(ψe,k, φv,k) = eik·(me−zv)b0(ψe,0, φv,0) ,

ck(φv1,k, φv2,k) = eik·(zv1−zv2 )c0(φv1,0, φv2,0) .

One may notice that the matrices for k 6= 0 are obtained from the ma-
trices for k = 0 by multiplication of their coefficients by a phase shift factor,
only the standard shape functions are actually used in the computations.

Although the formulas are given for the lowest order elements the same
holds true for the high order ones. To assemble the matrices we go along all
pairs of the basis functions {ψi,k}, every function has its own shift si, so the
exponential factor is eik·(si−sj) for any sesquilinear form ·(ψi,k, ψj,k).
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Chapter 3

Eigenvalue solver

Although the mixed formulation from Problem 1.2 can be directly used for
practical computations, we choose another formulation, which, we believe,
has some advantages in the implementation. Note that we always assume
k 6= 0, otherwise it is mentioned explicitly.

Problem 3.1. Discrete eigenvalue problem for positive λh.
Find a pair of (uh, λh) ∈ Xh,k × R+, s.t. for all vh ∈ Xh,k

ak(uh,vh) = λhm(uh,vh). (3.1)

Let us test Problem (3.1) with vh = ∇k qh, where qh ∈ Qh,k. Since
∇k×∇k qh = 0, it gives

0 = λh (uh,∇k qh)L2 = λh bk(uh, qh). (3.2)

From (3.2) it follows that uh ∈ Vh,k, so positive eigenvalues and the corre-
sponding eigenfunctions of Problem 3.1 coincide with ones of Problem 1.2,
and so Problem 3.1 is a spectrally correct approximation of Problem 1.1.
The only zero eigenfunctions of (3.1) are ones from the kernel of the opera-
tor ∇k× i.e. functions from ∇kQh,k. If we manage to filter such functions
in practice, then the simple formulation (3.1) can be used.

3.1 Eigenvalue solver with projector

The 3D eigenvalue problem results in an algebraic generalized eigenvalue
problem with huge matrices. Since we are interested in a few smallest eigen-
values only, an iterative eigenvalue solver is preferable. Such solver usually
builds and iteratively improves a search space span{u1, . . . ,un}, which ap-
proximates the smallest eigenvectors. However, there is the drawback, the
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solver tends to converge first to the eigenvector with the smallest eigenvalue.
For the formulation (3.1) it will converge to gradient fields ∇k qh, qh ∈ Qh,k,
corresponding to λh = 0. To overcome this behavior one can modify the
solver by including a projector to the space, which is orthogonal to discrete
gradient field. The approach with a projector is inspired by work [18] and
[41].

Assume that there exists a projector Ph,k : Xh,k → Vh,k, then one can
modify the iterative eigenvalue solver in order to construct a search space
span{Ph,ku1, . . . , Ph,kuN} ⊂ Vh,k. Since all positive eigenvectors of Problem
3.1 belong to Vh,k, the projector does not affect them, but also does not let
the solver converge to eigenfunctions with the eigenvalue zero.

3.2 Projection framework

In Section 3.1 it was mentioned that our formulation of the eigenvalue prob-
lem requires an projector Ph,k : Xh → Vh,k. In order to illustrate the main
idea how to construct such a projector, we first describe a projection in the
simplified case, for the continuous spaces.

Assume that we have a Helmholtz decomposition in form

u = ∇k q +∇k×v,

where u ∈ C1
per(Ω), q ∈ C2

per(Ω) and v ∈ C2
per(Ω). To compute the decom-

position we need to find q :

−∇k ·u = −∆kq + 0, (3.3)

q = (−∆k)−1(−∇k ·u), (3.4)

ũ = u−∇k q = ∇k×v. (3.5)

Since bk(∇k×v, f) = 0 for any v and f ∈ C2
per(Ω), ũ ∈ Vk is the projection

of u.
Now we are ready to formulate the projector for the modified finite ele-

ments. In general, the projection consists of the steps corresponding to (3.3)
– (3.5). Operator definitions extensively use terms from Section 2.3.

Lemma 3.1. The projection Ph,k : Xh,k → Vh,k is given by formula

Ph,k = id− Sh,k ◦ C−1
h,k ◦Bh,k

and consists of three steps:
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1. ”div”.
The operator Bh,k : Xh,k → Q′h,k is defined as follows, for a given vh ∈
Xh,k compute Bh,kvh ∈ Q′h,k by

〈Bh,kvh, φv,k〉 = bk(vh, φv,k), for all v ∈ Vh. (3.6)

2. ”Laplace−1”.
The operator C−1

h,k : Q′h,k → Qh,k is the inverse of operator Ch,k : Qh,k →
Q′h,k, which is defined as follows, for a given qh ∈ Qh,k compute Ch,kqh ∈
Q′h,k by

〈Ch,kqh, φv,k〉 = ck(qh, φv,k), for all v ∈ Vh. (3.7)

The operator C−1
h,k exists, because ck(·, ·) is coercive for k 6= 0 (see

Section 1.2).

3. ”grad”.
The operator Sh,k : Qh,k → Xh,k is defined as follows, for any qh ∈ Qh,k

compute Sh,kqh = ΠXh,k
(∇k qh) ∈ Xh,k, the operator is given by nodal

evaluation

Sh,kqh =
∑

e=(xe,ye)∈Eh

(
`ye,k(qh)e

ik·(ye−me) − `xe,k(qh)e
ik·(xe−me)

)
ψe,k.

(3.8)

Proof. For any uh ∈ Xh,k, from the discrete Helmholtz decomposition (Lemma
2.6) we have

uh = ∇k qh + vh,

where vh ∈ Vh,k, qh ∈ Qh,k. It follows that for all fh ∈ Qh,k

(uh,∇k fh)L2 = (∇k qh,∇k fh)L2 + 0. (3.9)

Since (3.9) is true for any fh ∈ Qh,k, it is also true for all basis functions
{φv,k}, so (3.9) may be rewritten as following. For all v ∈ Vh

(∇k qh,∇k φv,k)L2 = (uh,∇k φv,k)L2 , (3.10)

ck(qh, φv,k) = bk(uh, φv,k), (3.11)

〈Ch,kqh, φv,k〉 = 〈Bh,kuh, φv,k〉. (3.12)

Equation (3.12) in operator form gives

Ch,kqh = Bh,kuh,

qh = C−1
h,kBh,kuh.
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The operator Ch,k can be inverted because it is positive definite for k 6= 0.
Then, having the potential qh, we can subtract the gradient field ∇k qh from
the original uh, that gives us the orthogonal projection onto Vh,k

Ph,kuh = (id− Sh,k ◦ C−1
h,k ◦Bh,k)uh = (∇k qh + vh)−∇k qh = vh.

To prove formula (3.8) we just need to evaluate degrees of freedom using
definition (2.3) and applying properties (2.6),

Sh,kqh = ΠXh,k
(∇k qh) =

∑
e∈Eh

`e,k(∇k qh)ψe,k,

`e,k(∇k qh) = `e,k

(
∇k

∑
v∈Vh

`v,k(qh)φv,k

)
= `e,k

(∑
v∈Vh

`v,k(qh)∇k φv,k

)

= `e,k

(∑
v∈Vh

`v,k(qh)e
−ik·(x−zv)∇φv,0

)

=

∫ ye

xe

eik·(x−me)

(∑
v∈Vh

`v,k(qh)e
−ik·(x−zv)∇φv,0

)
· teds

=
∑
v∈Vh

`v,k(qh)e
ik·(zv−me)

∫ ye

xe

∇φv,0 · teds

=
∑
v∈Vh

`v,k(qh)e
ik·(zv−me) (φv,0(ye)− φv,0(xe))

= `ye,k(qh)e
ik·(ye−me) − `xe,k(qh)e

ik·(xe−me).

Remark 3.1. Inexact projection.
If C−1

h,k is the exact inversion of the operator Ch,k, then the projection is also
exact. It follows by construction of the projector.
In practice it may be enough to do an inexact projection. In this case C−1

h,k

usually is implemented as an iterative linear solver. For the problem Ch,kq =
f the residual rn = f − Ch,kqn characterizes accuracy of the approximated
solution qn. The stopping criterion is

‖rn‖ < εP‖r0‖,

where εP ∈ (0, 1).
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3.2.1 The gradient operator for high order elements

For the high order elements the projection can be done similarly. The only
change is that the operator Sh,k is more complex. Here we exploit the local
exact sequence property and the fact that by construction Xh,k explicitly
contains gradients of Qh,k.

Let we represent Qh,k and Xh,k according to the V-E-F-C (N-E-F-C) basis
structure as

Qh,k = QV ⊕QE ⊕QF ⊕QC ,

Xh,k = XN ⊕XE ⊕XFg ⊕XFn ⊕XCg ⊕XCn,

where Fg and Cg are the parts formed by the gradient basis functions (see
Subsection 2.2.4), Fn and Cn are the remaining ones. Assume that the
coefficients have the same notations, then the operator ∇k can be written in
the block form

uN
uE
uFg
uFn
uCg
uCn

 =


SN,k 0 0 0

0 Id 0 0
0 0 Id 0
0 0 0 0
0 0 0 Id
0 0 0 0




qV
qE
qF
qC

 ,

where (qV , qE, qF , qC) are the coefficients of a vector from Qh,k, (uN , uE, uFg,
uFn, uCg, uCn) are the coefficients of the resulting vector in Xh,k, SN,k is the
operator Sh,k for the lowest order elements.

One may see that the operator Sh,k has a very simple sparse structure
and so it allows the efficient computation.

3.3 Preconditioned gradient eigenvalue solver

Having a given basis of the finite element space Xh,k on hand, e.g. {ψe,k}
from Section 2.3, the Problem 3.1 turns into

Problem 3.2. Hermitian generalized matrix eigenvalue problem.
Find a pair of (u, λ) ∈ CN × R+ s.t.

Au = λMu,

where A and M be N×N sparse complex matrices corresponding to sesquilin-
ear forms ak(·, ·) and m(·, ·), A = AH ≥ 0, M = MH > 0.
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We are interested in a method approximating the n (n � N) smallest
eigenvalues and corresponding eigenvectors. For real world 3D Maxwell prob-
lemsN is quite large, so our eigenvalue problem cannot be solved with a direct
method due to huge memory and computational power requirements. This
is why we should look for an iterative method for solving such a problem.

Although the matrix A is only positive semidefinite with a huge kernel,
for a moment let us assume that A is positive definite. It simplifies the
introduction, we will consider the case of a semidefinite matrix later. Assume
that there exists a preconditioner T for the operator A for which ‖Id −
TA‖A < 1 holds. Usually T is applied as an iterative linear solver, and the
accuracy of an approximated solution uk for the problem Au = f is measured
by a norm of the residual rk = f − Auk. The stopping criterion is

‖rk‖ < εT‖r0‖,

where εT ∈ (0, 1).
It is well known that the Problem 3.2 has exactly N eigenvalues 0 <

λ1 ≤ . . . ≤ λN and eigenvectors u1, . . . ,uN , which are M -orthogonal, i.e.
uHk Mul = δkl. A good overview of various algebraic eigenvalue problems and
methods for solving them can be found in [3].

All stationary points uj of the Rayleigh quotient

λ(u) =
uHAu

uHMu
for u 6= 0

are the eigenvectors uj with eigenvalues λj = λ(uj), so one may find the
eigenvector with the smallest eigenvalue by minimizing the Rayleigh quotient,
in particular, a gradient method can be applied.

Since the gradient of the Rayleigh quotient is given by the formula

∇λ(u) =
2

uHMu
(Au− λ(u)Mu),

we naturally obtain an iterative minimization algorithm in form of a precon-
ditioned gradient method

uk+1 = uk − τ kT (Auk − λ(uk)Muk), (3.13)

where uk is a current approximation of the eigenvector, uk+1 is the improved
one and a parameter τ k > 0 is selected to improve convergence.

The iterations (3.13) with the choice τ k = 1 is called Preconditioned
INVerse ITeration (PINVIT). A version of (3.13) with τ k minimizing the
Rayleigh quotient λ(uk+1) is called preconditioned steepest descent method.
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Such preconditioned gradient methods have an important advantage in the
implementation, they only require matrix-vector multiplication, a precondi-
tioner routine and almost no extra memory.

[24] proposes the Locally Optimal Block Preconditioned Conjugate Gra-
dient Method based on the three main ideas

• three-term recurrence for the next approximation
Instead of two terms in (3.13) one may use three terms

uk+1 = γk1 wk + γk2 uk + γk3 uk−1,

wk = T (Auk − λ(uk)Muk),

where γk1 , γ
k
2 , γ

k
3 are some real numbers selected to improve convergence.

This scheme is better because it provides more “extrapolation points”.

• use the Rayleigh-Ritz procedure to choose the optimal parameters
The goal is to choose γk1 , γ

k
2 , γ

k
3 s.t. they minimize the Rayleigh quo-

tient for uk+1. The problem Au = λMu is restricted to the space
span{wk,uk,uk−1}. Let us define 3 by 3 matrices

Â = [wk,uk,uk−1]HA[wk,uk,uk−1],

M̂ = [wk,uk,uk−1]HM [wk,uk,uk−1],

then we solve a small dense eigenvalue problem Âû = λ̂ M̂ û with a
direct eigenvalue solver. The eigenvector û1 = [γk1 , γ

k
2 , γ

k
3 ]T correspond-

ing to the smallest eigenvalue λ̂1 implicitly provides the optimal choice
of the parameters. Setting uk+1 = [wk,uk,uk−1]û1, what is actually
a sum of wk,uk,uk−1 with the weights from û1, we provide the mini-
mal Rayleigh quotient available for given wk,uk,uk−1. The Rayleigh-
Ritz method is also used in the preconditioned steepest descent method
(3.13), the difference is that only the two-dimensional subspace [wk,uk]
is used and the resulting parameter τ k can be expressed explicitly by
a formula.

• simultaneous iterations over a block of orthogonal vectors
The method we have considered allows to find only the smallest eigen-
vector. One may keep about the same algorithm, but iterate a block of
n M -orthogonal vectors. It requires to change the Rayleigh-Ritz pro-
cedure in order to minimize the Rayleigh quotients of all vectors over
an extended 3n-dimensional subspace [wk

1 ,u
k
1,u

k−1
1 , . . . ,wk

n,u
k
n, uk−1

n ].
This block algorithm let us find a few first eigenvectors at once. The
details will be explained in Section 3.4.
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The described three-term recurrence is unstable in machine arithmetic.
Step by step uk becomes closer and closer to uk−1 that is why the Rayleigh-
Ritz method may fail due to the very ill-conditioned matrices Â and M̂ . It is
better to use the set of vectors [w,uk,pk] instead of [w,uk,uk−1], where
pk = uk − γk−1

2 uk−1. The new set is “more orthogonal” and results in
the much better conditioned matrices Â and M̂ , while span{w,uk,uk−1} =
span{w,uk,pk} and so it provides the same three-term recurrence.

An important point is the convergence rate of preconditioned gradient
methods, we refer to [24], [31], [32], [25] for an elaborate research and provide
just the main result.

Theorem 3.2. (see [25, Theorem 9])
Assume that we use the preconditioner T = TH > 0 and let κ(TA) be the
spectral condition number of the preconditioned operator TA. For a fixed
index j ∈ {1, . . . , n}, let λkj be an approximation to the eigenvalue λj on
step k computed by the block version of the preconditioned steepest descent
method. If λkj ∈ [λlj , λlj+1) then it holds for λk+1

j that either λk+1
j < λlj

(unless lj = j), or λk+1
j ∈ [λlj , λ

k
j ). In the latter case,

λk+1
j − λlj

λlj+1 − λk+1
j

≤
(
q(λlj , λlj+1)

)2 λkj − λlj
λlj+1 − λkj

,

where

q(λlj , λlj+1) = 1− 2

1 + κ(TA)

(
1−

λlj
λlj+1

)
is the convergence factor.

The theorem above gives some upper bound for convergence rate of the
block preconditioned steepest descent method. At the moment there is no
special estimates for the LOBPCG method. Since the LOBPCG method uses
the three-term recurrence versus the two-term one for the preconditioned
steepest descent method, the Rayleigh-Ritz procedure gives better (smaller)
λkj for the LOBPCG. It means that Theorem 3.2 holds true, but the estimate
is not sharp enough.

In [24] and [23] there are good numerical experiments concerning prac-
tical convergence rate of the LOBPCG. As it was expected, the practical
convergence rate is far better and the LOBPCG method may be considered
as one of the best among iterative eigenvalue solvers.
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3.4 The Projected LOBPCG

To simplify our explanation we have supposed that the matrix A is positive
definite, but in fact it is positive definite only on Vh,k for k 6= 0 and in
Xh,k it has a large kernel. In practice it may be difficult to apply standard
preconditioners or direct solvers for such a matrix. We can make the problem
a bit easier by using a shift.

Let Aδ = A + δM , where δ > 0 is some small regularization parameter.
As a result, Aδ is Hermitian and positive definite matrix on the entire Xh,k.
Now a lot of preconditioners and direct solvers will work with Aδ. Let T
be a preconditioner for the matrix Aδ, in general it may not be Hermitian.
All eigenvectors of the problem Aδu = λδMu are eigenvectors of the original
problem Au = λMu with the shifted eigenvalues λ = λδ − δ. So, this shift
let us solve the eigenvalue problem with positive definite matrices, while we
still can obtain the solution of the original problem.

We modify the LOBPCG algorithm by including the projection P : Xh,k →
Vh,k described in Section 3.2. The projection is required to overcome the dif-
ficulties described in Section 3.1, when an iterative eigenvalue solver tends
to converge to eigenvectors for λ = 0 first. See the Projected LOBPCG algo-
rithm at Figure 3.1, remember that n is the number of eigenvalues we need
(a small number).

In practice, we use a more sophisticated algorithm to avoid unnecessary
computations and improve stability, the details will be explained later in
Section 3.7. Now we comment the main algorithm. The steps 4-6 and 11-13
represent the Rayleigh-Ritz method, in the latter case a wider 3n-dimensional
subspace is used, but only the n smallest eigenvalues and eigenvectors are
taken. Moreover, on the very first iteration the matrix Z, which represents
[p1, . . . ,pn] (the method’s “memory”) is unavailable, so in fact one solves the
2n× 2n subproblem.

Although T is the preconditioner for the matrix Aδ, in the eigensolver
we do not use the matrix Aδ itself, but use the matrix A instead. Since the
residual can be computed as follows

rj = (Aδ − λδjM)uj = (A+ δM − (λj + δ)M)uj = (A− λM)uj,

it is more convenient to use A on all steps and not substract δ from resulted
eigenvalues. Mathematically it is the same as using Aδ.

In the algorithm we apply the projector only for the starting vectors
and the preconditioned residuals W , once per eigensolver iteration. Using
mathematical induction we prove that not only W , but all vectors of V belong
to Vh,k. Let current U and Z belong to Vh,k, by the definition the new U
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1. Fill starting vectors u1, . . . ,un with random numbers or put some good
eigenvector approximations, store them as a matrix U := [u1, . . . ,un].

2. Project {uj} onto Vh,k, U := PU .

3. Orthonormalize {uj} with respect to M -based scalar product using the
Gram-Schmidt procedure, s.t. UHMU = I.

4. Construct the restricted matrix, Â := UHAU (Â ∈ Cn,n).

5. Solve dense eigenvalue problem,
ÂÛ = Û diag{λ̂1, . . . , λ̂n} (Û ∈ Cn,n, ÛHÛ = I).

6. Construct the first approximations, U := UÛ , λj := λ̂j.

7. Calculate residual, R := AU −MU diag{λ1, . . . , λn} (R = [r1, . . . , rn]).

8. If all converged, ‖rj‖M−1 < εE for all j, then stop, else continue.

9. Apply preconditioner, W := TR, T ≈ (A + δM)−1 (W =
[w1, . . . ,wn]).

10. Project {wj} onto Vh,k. W := PW .

11. Construct the restricted matrices,
Â := V HAV and M̂ := V HMV (Â, M̂ ∈ C3n,3n, V = [U,W,Z]).

12. Solve dense eigenvalue problem, ÂV̂ = M̂V̂ diag{λ̂1, . . . , λ̂3n}
(V̂ = [Û , Ŵ , Ẑ] ∈ C3n,3n consists of Û , Ŵ , Ẑ ∈ C3n,n, V̂ HM̂V̂ = I).

13. Assume λ̂1 ≤ . . . ≤ λ̂3n and vectors from Û correspond to {λ̂1, . . . , λ̂n}.
Let ÛU ∈ Cn,n be the upper part and ÛWZ ∈ C2n,n be the lower part
of Û , then construct the next approximations,
Z := [W,Z]ÛWZ , U := UÛU + Z, λj := λ̂j, j = 1, . . . , n.

14. Go to 7.

Figure 3.1: Basic algorithm of the LOBPCG eigenvalue solver with the pro-
jection.
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and Z are just a linear combination of W and the old U and Z, so they also
belong to Vh,k.

An important point is when to stop the iteration. How can we control
eigenvalue precision? Fortunately it is relatively easy, since ‖ukj‖M = 1 (due
to the step 5 and 12), then the M−1-norm of the residual rkj = Aukj −λkjMukj
and the eigenvalue approximation λkj obtained in the Rayleigh-Ritz procedure
give a simple bound for the exact eigenvalue λj. According to [34] it is
guaranteed that

λj ∈ [λkj − ‖rkj‖M−1 , λkj + ‖rkj‖M−1 ].

Moreover, one can use just one Gauss-Seidel step to approximate M−1, be-
cause the matrix M is well-conditioned. This yields a quantity which is
equivalent to the M−1-norm independent of mesh. Altogether we obtain a
simple and efficient termination criterion.

3.5 Discussion of the algorithm

The original LOBPCG algorithm described in [24] and [23] is designed for
a positive definite operator. In [41, Section 7.3] it is given a modification
of the LOBPCG with the inexact projection, which allows the method to
be applied to the Maxwell problem. In Sections 3.4, 3.7 we presented our
implementation of the eigensolver. In our opinion, this implementation has
some advantages over the one from [41]. We will discuss them in details.

First, we apply the projection only to the vectors W , while [41] applies it
to the vectors U and P . It results in doubling of the projection computations.

Second, [41] does not project W , instead it relies on the assumption
that the preconditioner T ≈ (Aδ)−1 provides Tr ∈ Vh,k. We know that
(Aδ)−1r ∈ Vh,k, but for an inexact inversion this cannot be guaranteed. In
[41] the assumption is based on the following points:

• T is a two-level multigrid method resulting from the V-E-F-C splitting
of the high order finite elements (the same as we use),

• the coarse level is the lowest order elements and the coarse level cor-
rection is solved exactly,

• the fine level is the higher order elements, the smoother is based on
the E-F-C splitting with a “reduced” basis (gradient basis functions
are ignored).

From these assumptions it does not follow that Tr ∈ Vh,k, although it could
be close and the eigensolver may work. Another weak point is that it re-
quires an exact solving at the coarse p-multigrid level (the lowest order finite
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elements). It means that a very fine mesh cannot be treated, because the
coarse space is too large. Without the exact solution the method from [41]
is unreliable.

3.6 Inexact projection

In Section 3.2 we mentioned that the projection P : Xh,k → Vh,k is exact, if
the corresponding Poisson problem is solved exactly. Although it is possible,
it is not our goal. We are interested in a projection precision as far as it
helps to make the eigenvalue solver working. In practice the LOBPCG does
not require the exact projection, that we can allow an approximated solution
and improve speed.

How precise must the projection be? It is an important question, in order
to understand it we shall consider the following example. Assume that we
apply an inexact projector P̃ : Xh,k → Xh,k s.t. P̃ ≈ P . It means that for
any w ∈ Xh,k

P̃w = u = v +∇k q,

where v ∈ Vh,k, q ∈ Qh,k and ‖∇k q‖ � 1. It is the Helmholtz decomposition
with a very small gradient field. Now let us try to compute the Rayleigh
quotient

λ̃(u) =
uHAu

uHMu
=

(ε−1∇k×u,∇k×u)L2

(u,u)L2

=
(ε−1∇k×v,∇k×v)L2

(v,v)L2 + (∇kq,∇kq)L2

.

If v is the exact eigenvector with eigenvalue λ, ‖v‖L2 = 1, then

λ̃(u) =
λ

1 + ‖u− v‖2
L2

=
λ

1 + ‖∇kq‖2
L2

< λ.

As we see, in the case of inexact projection the Rayleigh quotient and the
Rayleigh-Ritz method always give a bit smaller eigenvalues. It is acceptable
since we only look for an approximated solution of the eigenvalue problem
and already have some tolerance. But a problem can occur, if the projection
error is much greater than this tolerance. The LOBPCG works as follows, it
starts with large eigenvalue approximations and then converges down towards
the exact eigenvalues until the residual achieves the tolerance. It may happen
that due to inexact projection λ̃ jumps over λ and continue to go down to
zero, to the kernel. To prevent this the projection error must be small enough.

As far as we know, for the LOBPCG with the projection there is no theory
to predict safe projection error. In [18] the authors developed such theory,
but for the Projected Preconditioned INverse ITeration (PPINVIT). Since
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the Projected LOBPCG may be considered as an extension of the PPINVIT,
one can apply the same strategy, but with no guarantee.

The key point of the strategy is to guarantee the following condition on
every iteration for some fixed ε > 0

β

1− β
‖y − P̃y‖M
‖y‖A

≤ ε, (3.14)

where y is a vector before the projection and β > 0 is the upper bound of the
multigrid convergence rate for the Poisson problem, see [18] for more details.
Note that in the algorithm at Figure 3.1 y = Tr. We recommend at least to
trace the projection precision according to (3.14), because it is simple and
does not require too many computations.

For the LOBPCG algorithm the safe iteration condition is that the Rayleigh-
Ritz procedure gives the Rayleigh quotients µj(uj) which are not less than
the exact eigenvalues λj. While this condition is satisfied the iteration con-
tinues safely, otherwise some eigenvalues may drop to zero or the algorithm
fails due to linear dependency of the iterated vectors. Since the LOBPCG is
quite complex, it is hard to prove the safe iteration condition for the full al-
gorithm. But if we assume a non-block version of the algorithm, i.e. just one
vector in the iteration, then the safe iteration condition can be formulated
as a theorem connecting the eigenvalue solver accuracy and the projection
accuracy.

Lemma 3.3 and Theorem 3.4 prove the condition. Although we consider
only the first eigenvector, the result can be generalized to other eigenvectors
due to the deflation we apply to converged eigenvectors. For the block algo-
rithm one may expect that the theorem gives only the necessary condition
and the projection accuracy must be higher.

Lemma 3.3. Let u = v+ug be the Helmholtz decomposition, where v ∈ Vk,
ug ∈ ∇kH

1
per(Ω). Assume that ‖u‖ = 1, ‖ug‖ ≤ ε, for a small ε > 0,

also assume that the Rayleigh quotient µ(u) = 〈Aku,u〉 is s.t. 0 < µ ≤ λ1,
where λ1 is the minimal positive eigenvalue of Ak. Then the residual can be
estimated by ‖Aku− µMu‖X′ ≤ C0ε with C0 = λ1+δ√

δ
.

Proof. We have that

‖r‖2
X′ = ‖(Aδk)−1r‖X = ‖(Aδk)−1r‖2

X = 〈Aδk(Aδk)−1r, (Aδk)−1r〉 = 〈r, (Aδk)−1r〉.
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Inserting the formula r = Aku− µMu = Aδku− (µ+ δ)Mu we obtain

‖r‖2
X′ = 〈Aδku− (µ+ δ)Mu,u− (µ+ δ)(Aδk)−1Mu〉

= 〈Aδku,u〉 − 2(µ+ δ)〈Mu,u〉+ (µ+ δ)2〈u, (Aδk)−1Mu〉
= (µ+ δ)− 2(µ+ δ) + (µ+ δ)2〈u, (Aδk)−1Mu〉
= (µ+ δ)

[
(µ+ δ)〈u, (Aδk)−1Mu〉 − 1

]
.

Now we use the Helmholtz decomposition and let v =
∑

j ajvj be the repre-
sentation in eigenfunctions of the operator Ak, then

‖r‖2
X′ = (µ+ δ)

[
(µ+ δ)

(
1

δ
‖ug‖2 +

∑
j

1

λj + δ
a2
j

)
− 1
]

≤ (λ1 + δ)
[
(λ1 + δ)

(
1

δ
ε2 +

1

λ1 + δ
‖u‖2

)
− 1
]
≤ (λ1 + δ)2

δ
ε2 = C2

0ε
2.

Theorem 3.4. Safe iteration condition.
Let u = v + ug be the Helmholtz decomposition, where v ∈ Vk, ug ∈
∇kH

1
per(Ω). Assume that ‖u‖ = 1, ‖ug‖ ≤ ε for a small ε > 0, also as-

sume that ‖Aku− µMu‖X′ > C0ε with C0 = λ1+δ√
δ

. Then we have µ > λ1.

Proof. If we assume that µ ≤ λ1, then Lemma 3.3 gives ‖Aku− µMu‖X′ ≤
C0ε. But this is a contradiction with the assumption ‖Aku−µMu‖X′ > C0ε,
and hence µ > λ1.

3.7 Implementation

The basic algorithm of the Projected LOBPCG is presented in Figure 3.1.
In practice we have many optimizations, some of them improve speed by
precomputing and reusing data, others take care of numerical stability. The
detailed algorithm is presented in Figure 3.2.

When eigenvectors are converging, the matrices Â and M̂ become more
and more ill-conditioned. It happens because pkj , rkj and so wk

j go to zero,

while ‖uk+1
j − ukj‖ → 0. Another problem occurs due to the inexact pro-

jection, following Section 3.6, if we iterate an already converged eigenvector
further, it may “jump over” the exact one and converge to zero. To address
these issues one needs to remove wj and pj corresponding to a converged
uj from further processing. It should be done without changing the general
LOBPCG algorithm.
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1. Set the blocksize n and the number of searching vectors g, put c := 0, it := 0.

2. Fill U := [u1, . . . ,un] with random vectors or approximations.

3. Project {uj} onto Vh,k, U := PU .

4. Orthonormalize {uj} by the Gram-Schmidt, s.t. UHMU = I.

5. Construct the restricted matrix, Â := UHAU (Â ∈ Cn,n).

6. Solve dense eigenproblem, ÂÛ = Û diag{λ̂1, . . . , λ̂n} (Û ∈ Cn,n, ÛHÛ = I).

7. Construct the first approximations, U := UÛ , λj := λ̂j , D := ∅.

8. Calculate residual, R := AU −MU diag{λc+1, . . . , λn}.

9. If {uj} (j = c + 1) converged, ‖rj‖M−1 < εE , then D := [u1, . . . ,uj ], c :=
c+ 1, U := [uc+1, . . . ,un], Z := [zc+1, . . . , zn], R = [rc+1, . . . , rn], deflate Z,
Z := Z −D(DHMZ). If c = g exit, else repeat 9 for j = c+ 1.

10. (optional) If c = 1 select δ s.t. δ > −λ1. If c > 1 select δ ∈ (−λc,−λc−1).

11. Apply preconditioner, W := TR, T ≈ (A+ δM)−1 (W = [wc+1, . . . ,wn]).

12. Project {wj} onto Vh,k, W := PW , deflate W , W := W −D(DHMW ).

13. If it = 0 construct the dense matrices, Â := V HAV , M̂ := V HMV
(V = [U,W ]), else
construct the dense matrices, Â := V HAV , M̂ := V HMV (V = [U,W,Z]).

14. If it = 0 solve dense eigenvalue problem, ÂV̂ = M̂V̂ diag{λ̂1, . . . , λ̂2n}
(V̂ = [Û , Ŵ ] ∈ C2n,2n consists of Û , Ŵ ∈ C2n,n, V̂ HM̂V̂ = I), else
solve dense eigenvalue problem (l = n− c), ÂV̂ = M̂V̂ diag{λ̂1+3c, . . . , λ̂3n}
(V̂ = [Û , Ŵ , Ẑ] ∈ C3l,3l consists of Û , Ŵ , Ẑ ∈ C3l,l, V̂ HM̂V̂ = I).

15. If it = 0 set the next approximations, Z := WÛW , U := UÛU +Z, λj := λ̂j ,
j = c+ 1, . . . , n. ÛU , ÛW ∈ Cn,n are the upper and lower part of Û , else
set the next approximations, Z := [W,Z]ÛWZ , U := UÛU + Z, λj := λ̂j ,
j = c+ 1, . . . , n. ÛU ∈ Cl,l, ÛWZ ∈ C2l,l are the upper and lower part of Û .

16. it := it+ 1. Go to 8.

Figure 3.2: Detailed algorithm of the LOBPCG eigenvalue solver with the
projection, deflation and (optional) adaptive δ-shift.
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As a solution we employ the deflation workaround to improve both sta-
bility and speed. After an eigenvector uj has converged (‖r(uj)‖M−1 < εE),
it and the corresponding pj, wj are excluded from the iterations and uj is
moved to a “deflation set” D = [d1, . . . ,dc], which builds a matrix. So we add
one more projection step, every vector from V = [U,W,Z] is replaced with its
M -orthogonal projection to span{d1, . . . ,dc}⊥, so it removes all components
related to the already converged vectors u1, . . . ,uc (d1, . . . ,dc), but does not
affect the algorithm since all eigenvectors are naturally M -orthogonal. Be-
cause of this step the remaining vectors cannot converge to the old ones and
the iteration continues safely.

The new projection step is performed by the simple formula W := W −
D(DHMW ). It must be applied to the preconditioned residuals {wj} on
every iteration and once to Z, when a new vector has converged. There is
no need to deflate U since the vectors are M -orthonormal after the solution
of the dense eigenvalue problem, so one can simply remove uj from U . Since
we iterate progressively less and less vectors the deflation also makes the
algorithm faster.

Due to the deflation one should be careful with clustered eigenvalues and
the order in which the eigenvectors converge. In the algorithm we require
that they converge in increasing order, i.e. even if the residual for λj+1 is
below the threshold it is “converged” only after λ1, . . . , λj have converged,
otherwise the algorithm may fail. Usually this modification gives enough
protection.

According to [24], the blocksize n should be more than g, the number of
eigenvectors we actually need. In general, the blocksize should be as large as
it is needed to contain a possible eigenvalue cluster. One may set n ≈ 2g, as
a start point.

We have stated that the regularization parameter δ must be positive, it
guarantees that Aδ > 0 and allows us to use any available preconditioner.
But some preconditioners can work with an indefinite operator as well. In this
case convergence of the eigenvalue solver can be improved. Assume that the
lowest positive eigenvalue is λ1, then the preconditioner T ≈ (A − λ̃1M)−1,
where 0 < λ̃1 < λ1, may provide faster convergence, i.e. the eigenvalue solver
requires less iterations. This can be explained as follows, if v =

∑N
j=1 ajuj is

a representation in the eigenvector basis of the problem Auj = λjMuj, then

(A− λ̃M)−1v =
N∑
j=1

1

λj − λ̃
ajuj.

When λ̃ is close to some λj, then the corresponding eigenvector component is
amplified, while the others are diminished. So the preconditioner T ≈ (A−
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λ̃M)−1 can be used to improve convergence assuming that all not converged
λj are greater than λ̃ and the preconditioner works well for the indefinite
operator. Our multigrid preconditioner (described in Chapter 4) can be
applied to the indefinite operator provided that the coarse grid problem has
a relatively fine mesh (see [9]).

This observation leads to an “adaptive preconditioner” strategy. We start
the computations with T ≈ (A + δM)−1 with some positive δ, after the
eigenvalue λ1 has converged, T is changed to T ≈ (A − λ̃1M)−1, where λ̃1

may be e.g. 0.9λ1. This step can be used many times and when λ1, . . . , λc
are converged the preconditioner T may be set to (A− λ̃cM)−1, where λ̃c =
λc−1+0.9(λc−λc−1). It is hard to predict the exact advantage provided by this
step since the effect depends on many factors: quality of the preconditioner,
structure of the spectrum, number of the searched eigenvalues and etc. One
has to be aware that the effect can be even negative. Optimal parameters
should be chosen experimentally and validated in practice.

In case of very ill-conditioned matrices or to get the eigenvectors in high
precision it is recommended to apply the Gram-Schmidt orthogonalization to
the vectors from V on every iteration. It makes the method more robust, but
slower. Since M̂ = I the problem ÂV̂ = M̂V̂ diag{λ̂1, . . . , λ̂3n} is simplified
to ÂV̂ = V̂ diag{λ̂1, . . . , λ̂3n}.

For solving the dense eigenvalue problems in steps 6 and 14 we use the
ZHEGV routine from the LAPACK software package [1].
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Chapter 4

Multigrid as preconditioner

For an efficient solution of the Maxwell eigenvalue problem with the LOBPCG
method one first needs an efficient preconditioner for the linear problem.

Problem 4.1. Linear problem.
For some δ > 0 the operator Aδh,k : Xh,k → X′h,k is defined by

〈Aδh,ku,v〉 = ak(u,v) + δ m(u,v), u,v ∈ Xh,k.

The problem is,
for a given f ∈ X′h,k, find ũ ∈ Xh,k s.t.

〈Aδh,kũ,v〉 = f(v), for any v ∈ Xh,k.

A finite element discretization of the linear problem results in a large
system with a sparse matrix. Such system usually cannot be solved with a
direct linear solver due to huge memory and computational power require-
ments. Moreover, the LOBPCG method does not require the exact solution
of the linear problem, so an iterative method would be the optimal choice. A
good overview of various iterative methods for a system of linear equations
one can find in [4].

According to [15], [14], [40] multigrid methods provide better convergence
rate than other iterative solvers. So, it is desirable to use a multigrid for large
scale problems, like our 3D Maxwell problem.

In this chapter we first consider a h-multigrid method for the lowest order
finite elements. The last section is devoted to a two-level multigrid method
for the higher order elements. Until it is not indicated explicitly we assume
Xh,k and Qh,k to be the lowest order finite element spaces.

Here we should give a short introduction to multigrid methods, for more
detailed information one may refer to [14] and [15]. Let τ0 ⊂ . . . ⊂ τm
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be a sequence of embedded meshes with the corresponding sets of vertices
Vl and edges El, where l ∈ {0, . . . ,m}. In practice, one usually gets them
as a result of successive regular refinement of the original mesh τ0, then
l is the level of refinement and hl = O(h0

2l
). On the sequence of meshes

τ0 ⊂ . . . ⊂ τm we can define our finite element spaces Xh,k and Qh,k, then, by
construction, we get a sequence of the embedded spaces X0,k < . . . < Xm,k

and Q0,k < . . . < Qm,k. On every finite element space Xl,k the operator Aδh,k
is denoted as Aδl,k : Xl,k → X′l,k. Having an right hand side fl ∈ X′l,k we may

consider Problem 4.1 on the level l, i.e. find ũl s.t. Aδl,kũl = fl.
In few words, a multigrid is based on the idea that the solution ũl−1 on

a coarse grid is a pretty good approximation for the solution ũl on a fine
grid, and so information from the level l − 1 should be used to improve the
solution on the level l. Applying the idea recursively one gets a multilevel
algorithm, which is very efficient. Any multigrid method consists of the four
main parts: interpolation, restriction, smoother and base solver.

To transfer information between coarse and fine meshes we need inter-
polation and restriction operators. Since we have the embedded sequence
of spaces, any u ∈ Xl−1,k is also in Xl,k, to find a copy of u in Xl,k

we only need to recalculate the degrees of freedom. Recalling the nota-
tions for finite elements from Section 2.3, ψ1, . . . , ψN is a basis of Xl,k with
the corresponding degrees of freedom `1, . . . , `N . The interpolation operator
Il−1,l : Xl−1,k → Xl,k is defined by formula

Il−1,lu =
N∑
j=1

`j(u)ψj.

The restriction operator Rl,l−1 : X′l,k → X′l−1,k is defined by Rl,l−1 = IHl−1,l.
Some details concerning the interpolation and restriction operators for the
k-modified finite elements are given in Section 4.4.

The next important part of the multigrid method is a smoother, it is
an iterative solver with the computational cost O(N) per iteration. A good
smoother should efficiently remove the high-frequency part of the error in few
iterations. Typical smoothers are stationary iterative methods, e.g. Gauss-
Seidel. In Section 4.1 we focus on the problem, which one may have with
a smoother for Problem 4.1. In Section 4.3 we address the problem and
describe what kind of smoother we use.

The last part of the multigrid is a base solver, it is a solver, which is
applied on the coarsest mesh. As the number of unknowns on the coarsest
mesh is neglible with respect to the number of unknowns on the finest mesh,
one can apply a direct solver to get the exact solution.
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4.1 The problem with smoothing

The application of the multigrid method to the Maxwell problem to the
H(curl)-conforming finite element discretization is not straightforward. A
problem arises because the operator Aδh,k of the linear problem scales differ-
ently on different components of the Helmholtz decomposition. In that case,
standard smoothers like Jacobi or Gauss-Seidel do not provide an appropriate
smoothing.

To illustrate this more clearly, let us assume more regularity for a moment
and consider the simplified case of Problem 4.1.

Problem 4.2. Associated differential form of Problem 4.1.
Operator Aδk : C3

per(Ω)→ C1
per(Ω) is defined by

Aδku = ∇k×(ε−1∇k×u) + δu.

We assume that ε ∈ C2
per(Ω). The problem is,

for a given f ∈ C1
per(Ω) to find ũ ∈ C3

per(Ω) s.t.

Aδkũ = f .

Here we mention the differential problem only to better illustrate some
simple ideas behind theory and reveal a problem with smoothing.

Let us assume ε(x) = 1. For u ∈ C1
per(Ω) we have the Helmholtz decom-

position in form

u = v + w, v = ∇k q, w = ∇k×g,

where q ∈ C2
per(Ω) and g ∈ C2

per(Ω).
Since ∇k ·w = 0, the differential operator for w = ∇k×g gives

Aδkw = ∇k×(∇k×w) + δw = −∆kw + δw.

One may see that on a solenoidal field the operator Aδk behaves as a second
order elliptic differential operator. The spectrum of Aδk is just the spectrum
of the Laplace operator shifted by a small regularization parameter δ.

Since ∇k×v = 0, for the another part of the decomposition v = ∇k q we
obtain

Aδkv = δv,

it is clear that in this case the operator has the absolutely different spectrum.
The different behavior of the operator on the parts of the Helmholtz decom-
position causes a problem for the multigrid, namely, standard smoothers do
not work properly.
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As we have seen, the operator Aδk acts as a second order elliptic differential
operator on fields of the form w = ∇k×g. If we manage to restrict to that
case, we can reveal multigrid’s efficiency. This requires a smoother, which
also drops the potential component v = −∇k q, i.e. does projection. Below
we first describe an idea how it may be done. For simplicity we work in terms
of Problem 4.2.

Let us consider the problem

Aδku = ∇k×ε−1∇k×u + δu = f , ∇k ·f = 0.

If u is the exact solution, then one may check that ∇k ·u = 0 by taking
divergence of both sides

∇k ·(Aδku) = δ∇k ·u = ∇k ·f = 0.

Now we apply a smoother (e.g. Gauss-Seidel) to Problem 4.2. Since any
smoother is just an inexact solver, it only gives the approximated solution
u, which may contain both sides of the decomposition

u = v + w, v = ∇k q, w = ∇k×g.

Now we would like to remove the potential component v, to do that it is
enough to calculate q. Taking into account that ∇k×v = 0 and ∇k ·w = 0
we obtain

r = f − Aδku = f −∇k×ε−1∇k×w − δ(v + w), (4.1)

−∇k ·r = δ∇k ·v = δ∇k · ∇k q = δ∆k q, (4.2)

−q = (−δ∆k)−1(−∇k ·r), (4.3)

w = u− v = u−∇k q = u +∇k(−δ∆k)−1(−∇k ·r). (4.4)

As we see, to remove the potential component completely it requires the
exact solution of the Poisson problem. Although, in general it is possible,
the computational cost is too high in context of smoothing.

A compromise could be applying one step of a stationary iterative solver
(e.g. Gauss-Seidel) to find an approximated solution of the Poisson problem.
This approach gives us a composite smoother.

4.2 Multilevel nodal decomposition

Now we go back to Problem 4.1. To construct a correct smoother we follow
an approach presented in [16], an alternative approach is described in [2].
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Here we need the Helmholtz decomposition, a property that we do have for
Xl,k.

The idea is the following: we represent Xm,k, our finite element space on
the finest level as a multilevel nodal decomposition

Xm,k = X0,k +
m∑
l=1

∑
e∈El

span{ψe,k}+
m∑
l=1

∑
v∈Vl

span{∇k φv,k}. (4.5)

The part with span{∇k φv,k} represents the potential part of the Helmholtz
decomposition, while the part with span{ψe,k} represents the solenoidal part.
It is a hint that the multiplicative Schwarz framework of (4.5) gives us a
multigrid V-cycle with a sort of Gauss-Seidel smoother. Some fundamentals
of a multilevel nodal decomposition and its connection with multigrid and
Gauss-Seidel is well explained in [40].

First we have to prove that this decomposition guarantees a sufficient
decoupling of subspaces in terms of energy, independent of m. To show this
we need to prove two properties.

Let us formally denote the subspaces from (4.5) as Yl
j, then we can rewrite

(4.5) in form

Xm,k = Y0 +
m∑
l=1

∑
e∈El

Yl
e +

m∑
l=1

∑
v∈Vl

Yl
v,

where {Yn} denotes the set of all Yl
e and Yl

v, so that any Yn corresponds
to some Yl

e, Yl
v or Y0.

The first property to be proven is a stability estimate

inf

{∑
n

‖vn‖2
Aδm,k
|
∑
n

vn = v,vn ∈ Yn

}
≤ Cstab‖v‖2

Aδm,k
for all v ∈ Xm,k.

(4.6)
We need to define subspaces {Un}. First we distribute all basis functions

{ψe,k} of X0,k, . . . ,Xm,k and {∇k φv,k} of ∇kQ0,k, . . . ,∇kQm,k among small
number of classes, s.t. the supports of the functions inside every particular
class are mutually nonoverlapping. Then, building the span of all functions
for each class we get the subspaces {Un}. On each level of refinement l a
fixed small number of such Un is enough to cover the whole space Xl,k.

The second property to be proven is a strengthened Cauchy-Schwarz in-
equality

|〈Aδm,kvj,vn〉| ≤ Corthγ
|j−n|‖vj‖Aδm,k‖vn‖Aδm,k , (4.7)

for all vj ∈ Uj,vn ∈ Un and some γ s.t. 0 ≤ γ < 1.
It is important that Cstab and Corth have to be independent of h and m.
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Theorem 4.1. (see [16, Theorem 3.1])
Provided that properties (4.6) and (4.7) hold, the convergence rate ρ of the
multigrid V-cycle in norm ‖ · ‖Aδm,k is bounded by

ρ ≤ 1− 1

Cstab(1 + σ)2
with σ = Corth

1 + γ

1− γ
.

In [16] it was proven that the properties (4.6) and (4.7), and hence The-
orem 4.1 are valid for the standard Nédélec finite elements (k = 0) and
Dirichlet boundary condition. The arguments can also be transfered to the
modified finite elements.

4.3 The hybrid smoother

Let Sh,k : Qh,k → Xh,k and Ch,k : Qh,k → Q′h,k be the gradient and Laplacian

operators defined in Section 3.2, Aδh,k : Xh,k → X′h,k be the problem opera-
tor. Following [40] we derive a Gauss-Seidel type smoother as a successive
subspace correction algorithm for the space decomposition

Xh,k =
∑
e∈E

span{ψe,k}+
∑
v∈V

span{∇k φv,k} =

|E|∑
j=1

Yj +

|E|+|V|∑
j=|E|+1

Yj. (4.8)

Note that (4.8) is just one layer of the multilevel nodal decomposition (4.5)
corresponding to some level l. Therefore, the SSC algorithm for (4.8), which
builds a smoother, is a part of the SSC algorithm for (4.5), which builds
multigrid with the smoother. The SSC iterations are described in Figure 4.1.

Denote aij = 〈Aδh,kψei,k, ψej ,k〉 to be the matrix entries of the operator

Aδh,k in the basis {ψe,k} of Xh,k, fj = f(ψej ,k) and xj be the coordinate
vectors of f and x in the same basis. The step 3 of the SSC algorithm for
the subspace Yn = span{ψen,k} gives

xnann = 〈Aδh,k(xnψen,k), ψen,k〉 = 〈rn, ψen,k〉 = 〈f − Aδh,kxn−1, ψen,k〉

or

xn = a−1
nn(fn −

n−1∑
j=1

anjxj), n = 1, . . . , N,

so it is just Gauss-Seidel for the matrix aij.
Next we proceed with the SSC algorithm for the second part of (4.8).

From the previous part we have the current approximation x ∈ Xh,k and the

68



1. Calculate the first residual, r1 = f − Aδh,kx0.

2. Do steps 3–5 for n = 1, . . . , N .

3. Solve the correction equation in the subspace Yn:
find cn ∈ Yn s.t. 〈Aδh,kcn,v〉 = rn(v) for all v ∈ Yn.

4. Update the approximation, xn = xn−1 + cn.

5. Update the residual, rn+1 = f − Aδh,kxn = rn − Aδh,kcn.

Figure 4.1: The SSC algorithm for the linear problem Aδh,kx = f and a space
decomposition Xh,k =

∑
n Yn.

residual r ∈ X′h,k, and so we continue to solve the correction equations. On
the second part of (4.8), in the space ∇kQh,k we may see that

〈Aδh,k∇k φvi,k,∇k φvj ,k〉 = 0 + δ m(∇k φvi,k,∇k φvj ,k) = δ〈Ch,kφvi,k, φvj ,k〉,
r(∇k φvj ,k) = 〈r,∇k φvj ,k〉 = 〈SHh,kr, φvj ,k〉,

therefore, the linear problem Aδh,ku = r transforms into δCh,kq = SHh,kr,
where u = ∇k q.

Denote cij = δ〈Ch,kφvi,k, φvj ,k〉 to be the matrix entries of the operator
δCh,k in the basis {φv,k} of Qh,k, dj = 〈SHh,kr, φvj ,k〉 and qj be the coordinate
vectors of SHh,kr and q in the same basis. Then the SSC algorithm in the
subspace ∇kQh,k gives

qn = c−1
nn(dn −

n−1∑
j=1

cnjqj), n = 1, . . . , N,

and we again obtain Gauss-Seidel, but for the matrix (cij). Taking into
account the last correction, the complete result of the SSC algorithm for the
whole decomposition (4.8) is given by x̃ = x + Sh,kq.

Let c = GS(A)r denotes the Gauss-Seidel preconditioner for a linear
system Ac = r, namely, let UA be the upper triangular part of the matrix A,
then GS(A)r = U−1

A r. Now we define a hybrid smoother c = HSνh(r), where
ν is a number of iterations. See the algorithm in Figure 4.2. The steps 3–5
of the algorithm correspond to (4.2)–(4.4).

The smoother works in the following way. As an input it takes the current
residual r ∈ X′h,k, r = f − Aδh,ku0, where u0 is the current approximated
solution. As a result it returns a correction c ∈ Xh,k, s.t. u0 + c is an
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1. Initialization, c = 0, f = r, it = 1.

2. Standard smoother, d = GS(Aδh,k)f .

3. Restrict to the potential space, q = SHh,k(f − Aδh,kd).

4. Potential smoother, p = GS(δ Ch,k)q.

5. Return from the potential space, d = d + Sh,k p.

6. Apply the correction, c = c + d.

7. Update the residual, f = f − Aδh,kd.

8. While it < ν do it = it+ 1 and go to 2.

Figure 4.2: Algorithm of the hybrid smoother c = HSν(r).

improved approximated solution. In an operator form the hybrid smoother
is

HS1
h =GS(Aδh,k) + Sh,k ◦GS(δ Ch,k) ◦ SHh,k ◦ (Id− Aδh,k ◦GS(Aδh,k))

=GS(Aδh,k) + Sh,k ◦GS(δ Ch,k) ◦ SHh,k
− Sh,k ◦GS(δ Ch,k) ◦ SHh,k ◦ Aδh,k ◦GS(Aδh,k).

(4.9)

It should be mentioned that the hybrid smoother is not symmetric, even
if one uses Symmetric Gauss-Seidel instead of GS. It is clear from (4.9), if
GS were symmetric, then the first two items are symmetric, but the last one
is definitely not. This fact brakes symmetry of whole multigrid framework.

There is a way to restore symmetry. We need to construct the adjoint
operator for HSνl , let us name it AHSνl . As we will see later in Section 4.5 we
need both HSνl and AHSνl to make symmetric multigrid. In few words, to
get AHSνl one has to apply the SSC algorithm in inverse order. In practice
it means to swap order of the standard and potential smoothers and use the
adjoint smoothers. See the algorithm in Figure 4.3. Here c = GSH(A)r
denotes the adjoint version of Gauss-Seidel, namely, GSH(A) = (UH

A )−1,
where UA is the upper triangular part of the matrix A.

4.4 Interpolation and restriction operators

Since we use nonstandard degrees of freedom, to be consistent we need to
modify intermesh operators as well. Let Xl,k and Ql,k be the finite element
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1. Initialization, c = 0, f = r, it = 1.

2. Restrict to the potential space, q = SHh,kf .

3. Potential smoother, p = GSH(δ Ch,k)q.

4. Return from the potential space, d = Sh,k p.

5. Standard smoother, d = d +GSH(Aδh,k)(f − Aδh,kd).

6. Apply the correction, c = c + d.

7. Update the residual, f = f − Aδh,kd.

8. While it < ν do it = it+ 1 and go to 2.

Figure 4.3: Algorithm of the adjoint hybrid smoother c = AHSν(r).

spaces Xh,k and Qh,k on a h-refinement level l. Usually one constructs the
interpolation operator Il−1,l : Xl−1,k → Xl,k, then the restriction operator
Rl,l−1 : X′l,k → X′l−1,k is obtained by Rl,l−1 = IHl−1,l.

For our k-modified finite elements, the operators Il−1,l and Rl,l−1 are also
k-dependent. Since Xl−1,k is a subspace of Xl,k, to set up the interpolation
operator it is enough to calculate fine degrees of freedom for coarse nodal
bases. Those values form interpolation weights, which are coefficients of the
operator Il−1,l.

Here one should recall the notations for finite elements from Section
2.3. For simplicity, let us consider an edge e ∈ El and its refined edges
e1, e2 ∈ El+1 of the equal length. They have the associated degrees of free-
dom `e,k, `e1,k, `e2,k, the nodal points me,me1 ,me2 (midpoints of the edges)
and the nodal bases ψe,k, ψe1,k, ψe2,k. Using the definition of degree of freedom
we obtain, for k = 0

`e1,0(ψe,0) = `e2,0(ψe,0) = 0.5`e,0(ψe,0) = 0.5,

for k 6= 0

`e1,k(ψe,k) = `e1,k(e−ik·(x−me)ψe,0) =

∫
e1

eik·(x−me1 )e−ik·(x−me)ψe,0 · te1ds

= eik·(me−me1 )

∫
e1

ψe,0 · te1ds = eik·(me−me1 )`e1,0(ψe,0)

= 0.5eik·(me−me1 ),
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by analogy
`e2,k(ψe,k) = 0.5eik·(me−me2 ).

Similar changes are required for the interpolation and restriction opera-
tors in Qh,k space. For simplicity we consider an edge e ∈ El with two vertices
v1, v2 ∈ Vl. After refinement we get vertices v11, v22, v33 ∈ Vl+1 on the fine
mesh, their coordinates are

zv11 = zv1 , zv22 = zv2 , zv12 = 0.5(zv1 + zv2) = me.

All vertices have the corresponding degrees of freedom

`v1,k, `v2,k, `v11,k, `v22,k, `v12,k

and the nodal bases

φv1,k, φv2,k, φv11,k, φv22,k, φv12,k.

Simple calculations give, for k = 0

`v12,0(φv1,0) = `v12,0(φv2,0) = 0.5`v1,0(φv1,0) = 0.5`v2,0(φv2,0) = 0.5,

for k 6= 0

`v12,k(φv1,k) = `v12,k(e−ik·(x−zv1 )φv1,0) = e−ik·(zv12−zv1 )φv1,0(zv12)

= e−ik·(zv12−zv1 )`v12,0(φv1,0) = 0.5eik·(zv1−zv12 ),

`v11,k(φv1,k) = φv1,k(zv11) = φv1,k(zv1) = 1,

by analogy

`v12,k(φv2,k) = 0.5eik·(zv2−zv12 ),

`v22,k(φv2,k) = 1.

Similar formulas can be derived for other cases of interpolation. One
may notice that the interpolation weights include a phase shift factor related
to shift (if any) between the nodal points of coarse and fine finite element
spaces.

4.5 The h-multigrid implementation

We have described all parts needed for construction a multigrid framework.
Multigrid may be implemented as a linear solver, but we prefer to use it as a
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preconditioner together with Krylov-subspace iterative solvers, e.g. GMRes,
BiCGStab or CG.

By cl = HSνl (rl) we denote ν iterations of the hybrid smoother on the
refinement level l, the smoother is defined in Section 4.3. The interpolation
and restriction operators Il−1,l and Rl,l−1 were also defined there. From these
parts we construct a recursive coarse grid correction V(ν1, ν2)-cycle beginning
on a level l with the right hand side rl. We denote it as cl = MGν1,ν2

l (rl), it
takes the current residual rl ∈ X′l,k, rl = fl −Aδl,ku0

l , where u0
l is the current

approximated solution. As a result it returns a correction cl ∈ Xl,k s.t. u0
l +cl

is an improved approximated solution. See the algorithm in Figure 4.4.
Since the operators Aδl,k and Cl,k are Hermitian we may exploit this fact

to construct a symmetric multigrid preconditioner. Such preconditioner can
be combined with iterative solvers designed for symmetric operators, e.g.
CG method. If a pre-smoother on the step 1 of the multigrid algorithm is
the adjoint operator of the post-smoother on the step 7, then the multigrid
V(ν, ν)-cycle is symmetric. For instance, one may use HSνl as a pre-smoother
and AHSνl as a post-smoother.

We also apply the multigrid algorithm for solving the Poison problem in
the projector from Section 3.2. Again, the multigrid is used as a precondi-
tioner for Krylov-subspace iterative solvers. The difference is that everything
happens in spaces Ql,k, where there is no problem with smoothing, and so no
need to use non-standard smoother, like the hybrid one. In that case a few
iterations of the standard Gauss-Seidel c = GS(r) smoother or its symmetric
version are used, moreover, the operator (δ Cl,k) is used instead of Aδl,k.

4.6 Two-level multigrid for high order finite

elements

Let us consider Problem 4.1 on higher order finite elements. Since we use the
hierarchical finite elements there is a sequence of embedded spaces, higher
order spaces include lower order spaces. So the successive subspace correction
method can be applied to this sequence also. By construction the high order
finite element space Xh,k has the natural N-E-F-C decomposition

Xh,k = XN ⊕XE ⊕XF ⊕XC ,

which can be used as a basis for a multilevel method.
In practice such a multilevel method is often realized as a two-level

method, where Xh,k is the fine space and XN is the coarse space. Although
it is possible to use more than two levels it is not efficient. The lowest order
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1. Pre-smoothing, c1
l = HSν1l (rl).

2. Update the residual, fl = rl − Aδl,kc1
l .

3. Restrict the residual, fl−1 = Rl,l−1fl.

4. Coarse grid correction,
If l > 1 then cl−1 = MGν1,ν2

l−1 (fl−1),
else solve Aδ0,kc0 = f0 with a direct solver.

5. Interpolate the correction, c2
l = Il−1,lcl−1.

6. Update the residual, fl = fl − Aδl,kc2
l .

7. Post-smoothing, c3
l = HSν2l (fl).

8. Sum the corrections, ul = c1
l + c2

l + c3
l .

Figure 4.4: Algorithm of multigrid preconditioner cl = MGν1,ν2
l (rl).

space XN plays a special role, it carries the global information. To solve
the problem on the coarse level we can either use the h-multigrid described
above, or apply a direct solver when the problem size is not so large. Since
the basis of Xh,k explicitly includes the basis of XN the interlevel interpola-
tion I : XN → Xh,k just means to ignore the higher order degrees of freedom
and identify the rest ones. The restriction R : X′h,k → X′N is the adjoint of I.
The smoother can be implemented in different ways depending on the exact
form of the decomposition.

There are some important results available in the theory of additive
Schwarz methods (ASM) which prove properties of such a smoother. We
mention them without going into details, we refer to [38] and [35] for a sys-
tematic explanation.

Lemma 4.2. Parameter-robust ASM preconditioner for H(curl).
(we refer to [41, Corollary 6.5]).
Let Xh,p ⊂ H(curl,Ω) denote a Nédélec finite element space of order p and
Qh,p+1 ⊂ H1(Ω) an appropriate scalar finite element space of order p+1 with
ker(curl,Xh,p) = ∇Qh,p+1 and ∇Qh,p+1 ⊂ Xh,p.
We consider the following subspace splitting of the finite element spaces, as-
suming finite overlap (N0 denotes maximal number of the overlapping spaces):

Qh,p+1 =
∑MQ

i Qi and Xh,p =
∑MX

j Xj.
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If for any Qi there exists Xj s.t. ∇Qi ⊂ Xj and if the local splitting provides
the estimates

inf
{u : u=

P
uj ,uj∈Xj}

{
MX∑
j

‖uj‖2
H(curl)

}
≤ c1(h, p)‖u‖2

H(curl),

inf
{q : q=

P
qi,qi∈Qi}


MQ∑
i

‖∇qi‖2
0

 ≤ c2(h, p)‖∇q‖2
0,

then the additive Schwarz preconditioner C built on the space splitting {Xj},
applied to the parameter-dependent Problem 4.1, is robust with respect to the
parameter δ. For any u ∈ Xh,p

(c1(h, p) + c2(h, p)(1 + cF )2)−1〈Cu,u〉 ≤ 〈Aδh,ku,u〉 ≤ N0〈Cu,u〉.

Note that here the preconditioner C is s.t. C−1 approximates (Aδh,k)−1.

This lemma applied to our particular construction of the finite element
spaces gives the corollary.

Corollary 4.1. (see [41, Corollary 6.6])

1. Let the finite element spaces Xh,p ⊂ H(curl,Ω) and Qh,p+1 ⊂ H1(Ω)
satisfy the local exact sequence property (Lemma 2.4). Then any space
splitting {Xj} of the space Xh,p built on the (possibly finer) N-E-F-C
splitting

Xh,p = Xh,N ⊕
∑
e∈Eh

XEe ⊕
∑
f∈Fh

XFf ⊕
∑
c∈Ch

XCc

specifies a parameter-robust ASM preconditioner.

2. Let Xh,p ⊂ H(curl,Ω) and Qh,p+1 ⊂ H1(Ω) be defined as it was done
in Subsection 2.2.3 and 2.2.4, i.e. the basis of Xh,p explicitly contains
the gradients of the higher order basis functions of Qh,p. Then any
space splitting Xh,p =

∑
j Xj which is built on a two-level concept,

where the correction on the lowest order space Xh,N is either solved
exactly or is done by h-multigrid based on the Arnold-Falk-Winther
splitting or on the one of Hiptmair (4.8) implies a parameter-robust
ASM preconditioner.

Let us consider an overlapping decomposition of Xh,k

Xh,k = XN ⊕XE ⊕XF ⊕XC . (4.10)
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For the given decomposition the SSC algorithm results in a series of Gauss-
Seidel smoothers applied respectively to the edge-, face- and cell-based basis
functions. Finally on the high level we have a smoother consisting of 3 Gauss-
Seidel subsmoothers related to the E-F-C parts, which are applied consec-
utively in 3 subspace correction iterations. On the lowest level (space XN)
we either use a direct solver or apply already described h-multigrid with the
hybrid smoother. Since the hybrid smoother respects the Hiptmair splitting,
the two-level framework gives us a parameter-robust ASM preconditioner.

The two-level multigrid concept above does not require any special changes
in case of the modified elements. The interpolation and restriction operators
between the lowest and higher order spaces stay as they are due to their
simplicity. For the high order smoother we just need to assemble k-modified
matrices, that was already explained. The implementation of h-multigrid
was also described above.
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Chapter 5

Scalable parallelization model

Multigrid methods provide the most efficient way to solve large linear sys-
tems arising from the finite element discretization of the Maxwell equations.
But our final goal, the band structure computation for a given 3D mate-
rial distribution, is much more challenging since we have to solve multiple
eigenvalue problems, each of them requires the preconditioning and the pro-
jection on every step. Total computational requirements are too high for a
personal computer, but could be meet by modern parallel supercomputers.
A software implementation must employ parallel algorithms and appropriate
data structures in order to run on a parallel computer. Moreover, in our
case the software implementation also has to provide a realization of the pe-
riodic boundary condition. Here we present an approach for constructing an
efficient parallel multigrid implementation.

Our parallelization model follows the concept presented in [39]. The
model is realized in a free open source parallel finite element software package
M++ written in programming language C++ with an extensive use of the
generic programming paradigm. The key point of the concept is geometric-
centered data structures, which allow to avoid any global numbering issues
by identifying parallel distributed objects by their geometric position. The
parallelization is done for the distributed memory model assuming an im-
plementation via the Message Passing Interface (MPI) software library. The
geometric-centered data structures in M++ provide a very good parallel scal-
ability up to 1000 processors and more.

In this chapter we briefly describe main points essential for the paral-
lelization and a realization of the periodic finite elements.

77



5.1 Parallel mesh model

For the construction we employ the concept of Distributed Point Objects,
which states that any element of a mesh, like a vertex, edge, face and cell, is
associated with a geometric point in R3 which acts as a global identification
key. All objects of the mesh are stored in hash map containers with posi-
tion as a key. Although a global geometric ordering may be introduced and
tree-based map containers could also be used, a hash map provides faster
access requiring only O(1) operations. Since floating point computations on
a computer assume some rounding error one has to introduce some geometric
tolerance εg and take it into account in comparing the positions.

Let Cl,Vl, El,Fl define correspondingly sets of cells, vertices, edges and
faces on a level l = 0, . . . ,m. On the coarsest level l = 0 one defines a
problem statement with a geometry, material distribution and the boundary
conditions. Successive regular refinements give us level l = m, where the
problem to be solved, as well as a number of intermediate levels used for the
multigrid method. The computational domain Ωl is decomposed as follows
Ωl =

⋃
c∈Cl Ωc, where Ωc is the interior of the cell.

Let c ∈ Cl be a cell on level l, then define Vc ⊂ R3, Ec,Fc to be the sets
of vertices, edges and faces, which belong to the cell. Every edge e ∈ Ec
is defined by a pair of vertices (xe,ye) and is associated with the midpoint
ze = 0.5(xe+ye). By analogy all faces and cells are defined by an ordered set
of vertices and are associated with the corresponding midpoints. An interior
face f ∈ Fl is also associated with the pair of cell midpoints (zc1 , zc2) s.t.
f ∈ Fc1 ∩Fc2 , boundary faces are associated with the pair (zc,∞), where ∞
is a special point. The vertices and midpoints build the set of cell hash keys
Zc = Vc ∪ {ze : e ∈ Ec} ∪ {zf : f ∈ Fc} ∪ {zc}.

For the parallelization it is needed to distribute the mesh among processes.
A load balancing procedure should do it in such a way to provide about equal
amount of work for all processes. We will not focus on this point, but assume
that the parallel distribution is done on the coarsest level and is inherited on
finer levels. This may be described as follows, let P = {1, . . . , P} define the
process set, then the distribution is given by a function dest : C0 → P . The
function specifies a base non-overlapping decomposition of cells

C0 =
⋃
p∈P

Cp0 , where Cp0 = {c ∈ C0 : dest(c) = p}.

It induces an overlapping decomposition of the domains Ω
p

=
⋃
c∈Cp0

Ωc, the

vertices Vp0 =
⋃
c∈Cp0
Vc, edges Ep0 =

⋃
c∈Cp0
Ec, faces Fp0 =

⋃
c∈Cp0
Fc and so the

hash keys Zp0 =
⋃
c∈Cp0
Zc. The overlapping decomposition of the hash keys
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Z0 defines a set-valued partition map

π0 : Z0 → 2P s.t. π0(z) = {p ∈ P : z ∈ Zp0}.

The parallel decomposition of all data is done by the main process and then
the results Cp0 ,V

p
0 , E

p
0 ,F

p
0 ,Z

p
0 and πp0 = π0|Zp0 are distributed among other

processes.
The next step, successive regular refinements can be performed in parallel

by all processes and does not require intercommunication. During the refine-
ment from level l to level l + 1 on a process p, a cell c ∈ Cpl is divided into
few cells Cc, forming a new set of cells Cpl+1 =

⋃
c∈Cpl

Cc. It also induces the

new sets Vpl+1, E
p
l+1,F

p
l+1,Z

p
l+1. New vertices, edges, faces and cells on level

l + 1 inherit the partition map from the elements of level l they located on,
e.g. a new vertex x ∈ Vpl+1 located on the edge e ∈ Epl has πpl+1(x) = πpl (ze).
An important point is that the local refinement must be consistent across
the parallel boundaries

πpl (z) = πql (z), for any z ∈ Zpl ∩ Z
q
l and l = 0, . . . ,m,

the regular refinement holds this property.

5.2 Parallel finite elements

The finite elements are build over the mesh objects, so they inherit the par-
allel domain decomposition. Let Xl = span{φl,j : j ∈ Il} be a global finite
element space on level l, where {φl,j} is a basis and Il is the index of basis
functions. Note that the global basis is not available directly, but it could be
assembled of shape functions. For every basis function φl,j ∈ Xl there exists
the dual function φ′l,j ∈ X′l s.t. 〈φ′l,i, φl,j〉 = δi,j, the dual functions also are
not available directly.

Each index j ∈ Il is associated with a unique nodal point nj ∈ Ωl,
which is located on the mesh element corresponding to the basis function
φl,j, e.g. a nodal point is located on an edge, if its function is edge-based.
Let Nl = {nj : j ∈ Il} be the set of nodal points. In practice every process
stores only a hash set of local nodal points N p

l = {nj ∈ Nl : nj ∈ Ω
p}, the

set is constructed in parallel by all processes, going along all cells Cpl and
mapping the nodal points from the reference element. Since every element
of the mesh already has the partition map πl(z) we can define the partition
map for a nodal point πl(nj) = πl(j) = πl(z), where z is the midpoint of the
mesh element. It induces an overlapping decomposition of the indices

Il =
⋃
p∈P

Ipl , where Ipl = {j ∈ Il : p ∈ πl(j)}.
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Set Np
l to be the number of indices in Ipl . There is no need for a fixed global

or local numbering inside the indices, any numbering may be used, because
the unique identification is provided by the geometric position nj.

A finite element function vl =
∑

j∈Il vl,jφl,j ∈ Xl is represented uniquely
by its coefficient vector ṽl = (vl,j)j∈Il , with vl,j = 〈φ′l,j,vl〉. By analogy a
discrete functional fl =

∑
j∈Il fl,jφ

′
l,j ∈ X′l is represented uniquely by the

coefficient vector f̃l = (fl,j)j∈Il , with fl,j = 〈fl, φl,j〉. The spaces Xl and X′l
should be treated separately, so we need different representations for them.

Let us define an auxiliary space of distributed vectors

XPl = {(u1
l , . . . ,u

P
l ) | upl ∈ CNp

l , p ∈ P}.

The coefficient vector ṽl is represented in parallel by its local restrictions
vpl = (vl,j)j∈Ipl ∈ CNp

l stored on the process p. It defines a mapping from a
vector (identified with the coefficient vector) to the distributed vector

El : Xl → XPl s.t. vl → vl = (v1
l , . . . ,v

P
l ).

By definition this mapping is unique and consistent, i.e. the coefficients co-
incide on the parallel interfaces. We define a space of consistent distributed
vectors

Xl = {vl ∈ XPl | v
p
l,j = vql,j for any p, q, j s.t. p, q ∈ πl(j)}.

So, any vector vl ∈ Xl has the unique and consistent parallel representation
vl = El(vl) ∈ Xl.

Right-hand side vectors and matrices are also distributed, in parallel each
process assembles only its local contribution corresponding to a parallel do-
main Ω

p
. For fl ∈ X′l every process computes only the local contribution

fpl = (fl,j)j∈Ipl ∈ CNp
l . The full coefficient vector f̃l can be obtained after a

parallel collection and has the additive decomposition

fl,j =
∑
p∈πl(j)

fpl,j. (5.1)

It means that for functionals in X′l we use a non-unique representation in the
quotient space X′l = XPl /X

0
l , where the collection kernel X0

l of the operation
(5.1) is given by

X0
l =

{
f l ∈ XPl |

∑
p∈πl(j)

fpl,j = 0, j ∈ Il
}
.
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The parallel inner product is defined on XPl ×XPl

(f l,vl) =
∑
p∈P

(fpl ,v
p
l ) =

∑
j∈Il

vl,jfl,j, ul,vl ∈ XPl .

The inner product can also be considered as a dual pairing on X′l×Xl, then
the kernel space X0

l may be represented as a polar space

X0
l = {vl ∈ XPl | (vl,wl) = 0, wl ∈ Xl}.

With respect to the dual pairing we obtain the adjoint operator for El,
E ′l : X′l → X′l

E ′l(f l) = fl =
∑
p∈P

∑
j∈Ipl

fpl,jφ
′
l,j.

Note that this mapping is not one-to-one. An unique parallel representation
of functionals is provided by a non-overlapping decomposition of the index
set Il =

⋃
p∈P Î

p
l , where

Îpl = {j ∈ Ipl | p = minπl(j)}.

If an index j belongs to few processes, then the process with the minimal
number is the master process, only it stores data for the index. As a result
we get a subspace of X′l

X̂
′
l = {f l ∈ X′l | f

p
l,j = 0 for all j /∈ Îpl , j ∈ Il},

Now E ′l restricted to X̂
′
l is one-to-one.

For different numerical aspects we need to define norms. Since the co-
efficient vectors are distributed definition of norms is not a simple task and
may require special efforts.

A simple norm in the space XPl may be defined as follows

‖vl‖XPl =

√∑
p∈P

∑
j∈Ipl

|vpl,j|2 =

√∑
p∈P

‖vpl ‖2, vl ∈ XPl .

The norm has no physical meaning, it is mesh-dependent and not invariant
with respect to the parallel distribution. But evaluation of the norm is very
straightforward, just compute the standard norm of the local parts in parallel
and take a sum. That is why this norm can be used in cases when the exact
value is not important, e.g. for contolling the convergence of an iterative
method.
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For a consistent vector in Xl we define the norm

‖vl‖Xl
=
√∑

p∈P

∑
j∈Îpl

|vpl,j|2, vl ∈ Xl,

which is invariant of the load balancing. For a functional in X′l we define the
dual norm

‖f l‖X′l = sup
‖vl‖Xl=1

(f l,vl), f l ∈ X′l.

The norm requires a parallel communication in order to compute the unique

representation f̂ l ∈ X̂
′
l of f l and then

‖f l‖X′l = ‖f̂ l‖X′l = ‖f̂ l‖XPl =

√∑
p∈P

‖f̂
p

l ‖2.

5.3 Operator representation

Let a(·, ·) : Xl × Xl → C be an sesquilinear form, which induces a discrete
operator Al : Xl → X′l. We assume that the sesquilinear form a(·, ·) allows
for a cell-based additive decomposition

a(u,v) =
∑
c∈Cl

ac(u,v), u,v ∈ Xl,

and assume that the global basis functions {φl,j} of the finite elements have
local support s.t. ac(φl,j, φl,m) 6= 0 only if their nodal points nj,nm ∈ Ωc.
Note that our sesquilinear forms defined in Section 1.2 and the finite element
construction in Chapter 2 satisfy these requirements. This allows for the
parallel assembling of the local operator matrices

Apl = (Apl,j,m)j,m∈Ipl , where Apl,j,m =
∑
c∈Cpl

ac(φl,j, φl,m),

alltogether they give an additive matrix representation Al = (A1
l , . . . , A

P
l ) of

the discrete operator Al

Alφl,j =
∑
p∈P

∑
m∈Ipl

Apl,j,mφ
′
l,m.

For a consistent vector vl ∈ Xl the operation

f l = Alvl = (Apl v
p
l )p∈P ∈ X′l
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gives the additive result without parallel communication. For each process
the corresponding local part is obtained by multiplication of the local matrix
by the local vector, so the operation is done completely in parallel. Matrix
by vector multiplication is the main operation of most numerical algorithms,
that is why its efficient realization is the key point for a fast and scalable
software implementation.

5.4 Periodic identification

The periodic boundary condition is an essential boundary condition, and
so it must be satisfied explicitly by finite elements. The periodic boundary
condition for a rectangular domain is a simple case, one just needs to identify
degrees of freedom on the opposite faces. For a more complex geometry the
task is a bit harder, but the approach is the same. We will consider the
realization for the domain Ω = [0, 1]3.

A finite element vector vl =
∑

j∈Il vl,jφl,j ∈ Xl is represented uniquely by
its coefficient vector ṽl = (vl,j)j∈Il , with vl,j = 〈φ′l,j,vl〉. Every index j ∈ Il
is associated with just one degree of freedom and the nodal point nj. The
nodal point is located at the mesh element the degree of freedom is based
on (vertex, edge, face, cell). If the nodal point n = (x, y, z) is located at
the boundary, then there are one or few identified nodal points calculated by
their coordinates:

Iper(x, y, l) = (x, y, r),

Iper(x, l, z) = (x, r, z),

Iper(l, y, z) = (r, y, z),

where (l, r) = (0, 1) or (l, r) = (1, 0), few identifications can be applied one
after another. The identified nodal points correspond to a set of indices,
what defines a set-valued periodic map

θl : Il → 2Il s.t. θl(j) = {m ∈ Il | Iper(nj) = nm, },

for convenience assume that Iper(nj) = nj, i.e. j ∈ θl(j) for all j ∈ Il.
Since a degree of freedom φ′l,j at the boundary is identified with the

degrees of freedom φ′l,m, m ∈ θl(j), and by the definition vl,j = 〈φ′l,j,vl〉, it
follows that vl,j = vl,m for all m ∈ θl(j). The periodic finite element subspace
Xper
l is defined as follows

Xper
l = {vl ∈ Xl | vl,j = vl,m for all j ∈ Il, m ∈ θl(j)}.
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A periodic vector vl ∈ Xper
l has the unique representation in CNl provided

by the coefficient vector ṽl, the identification is Eper
l : Xper

l → CNl .
Since a basis function φl,j corresponding to a boundary mesh element

is identified with some other basis functions, we have φper
l,j =

∑
m∈θl(j) φl,m,

where the sum consists of the original non-periodic basis functions. For a
finite element functional fl ∈ (Xper

l )′ we have a non-unique additive repre-
sentation in CNl provided by the coefficient vector f̃l with

〈fl, φper
l,j 〉 =

∑
m∈θl(j)

〈fl, φl,m〉 =
∑

m∈θl(j)

fl,m = fper
l,j .

With respect to the standard inner product in CNl we obtain the adjoint
operator for Eper

l , (Eper
l )′ : CNl → (Xper

l )′ s.t. (Eper
l )′(f̃l) = fl, this mapping is

defined by

fl =
∑
j∈Il

∑
m∈θl(j)

fl,mφ
′
l,m,

the mapping is not one-to-one. As a norm in Xper
l and (Xper

l )′ we define the
standard norm in CNl .

Having a linear ordering < for nodal points nj,nm, we define a subspace
of CNl

F̂l = {f̃l ∈ CNl | fl,j = 0 if nj 6= min
m∈θl(j)

nm},

which gives the unique representation of functionals fl ∈ (Xper
l )′, (Eper

l )′

restricted to F̂l is one-to-one. The smallest nodal point among the identified
ones is the master point, only the corresponding index holds data.

As we see the realization of the periodic boundary condition has a lot of
common with the realization of the parallel finite elements, both are based
on an identification of degrees of freedom. The vectors are represented as
the consistent (periodic) vectors with a few equal coordinates, while the
functionals have the additive representation. The only significant difference
is that in the parallel case the vectors and the functionals are distributed.
The periodic identification can be realized on top of the parallel distribution.

5.5 Parallel linear algebra

In numerics most of algorithms are formulated in terms of linear algebra:
matrix-vector product, scalar product, linear combination of vectors, etc.
If we manage to define these elementary operations for the parallel finite
elements correctly, then we can be sure that complex algorithms are also
correct. In fact, a reliable and efficient implementation of the parallel linear
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algebra is based on a very simple concept, we just use consistent vectors in
Xl as a representation of Xl and additive vectors in X′l as a representation
of X′l. This automatically yields correct parallel algorithms, if the following
operations are included:

a) A unique additive parallel representation is obtained by collect : X′l → X̂
′
l,

defined by modification of vector elements, for all p ∈ P , j ∈ Ipl

collect(fpl,j) =

{ ∑
q∈πl(j) f

q
l,j, p = minπl(j),

0, else.

b) A unique additive periodic representation is obtained by collectper : X̂
′
l →

X̂
′
l∩F̂l, defined by modification of vector elements, for all p ∈ P , j ∈ Îpl

collectper(fpl,j) =

{ ∑
m∈θl(j) f

minπl(m)
l,m , nj = minm∈θl(j) nm,

0, else.

c) A consistent result of local corrections is obtained by accumulate : XPl →
Xl, defined by modification of vector elements, for all p ∈ P , j ∈ Ipl

accumulate(vpl,j) =
∑
q∈πl(j)

vql,j.

d) A periodic result of local corrections is obtained by accumulateper : Xl →
Xl ∩ Xper

l , defined by modification of vector elements, for all p ∈ P ,

j ∈ Îpl
accumulateper(vpl,j) =

∑
m∈θl(j)

v
minπl(m)
l,m .

For each process the operations a - d require communication only with
limited number of other processes, the neighboring processes exchange data
(for the parallel collect/accumulate) and processes having a boundary re-
gion exchange data (for the periodic collect/accumulate). The size of the
transmitted data is small, just a fraction of the local vector. Global commu-
nication is required only for the inner products and the norms. This results
in a fast and scalable parallel implementation.

The data exchange in the collect/accumulate routines is done by identi-
fying the indices via the position of the nodal points, no global numbering
is required. A process p sends to a process q the following message: size of
the message s, nodal points (nj1 , . . . ,njs) s.t. q ∈ πl(jm), m = 1, . . . , s, the
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corresponding elements of a local vector (vpl,j1 , . . . , v
p
l,js

). At the same time
the process p receives the similar message from the process q. After receiving
the local indices are determined using the efficient hash map container N p

l .
Although such a messaging is very flexible, it requires to pass extra data

(the nodal points). In practice one can implement a cache s.t. for com-
mon messages processes send only a special identificator instead of the nodal
points array. It is possible because for the same finite elements and the
parallel distribution every time processes send the same nodal points.

We distinguish six types of parallel operators. Most of numerical algo-
rithms and all which we described consist of these few elements.

Discrete operators Al : Xl → X′l are represented additively by parallel

distributed matrices Al : Xl → X̂
′
l ∩ F̂l, the operation is defined by

Alvl = collectper
(
collect(Apl v

p
l )
)
,

where Apl is represented locally as a sparse matrix, the matrix-vector products
Apl v

p
l are computed in parallel.

Preconditioners Tl : X′l → Xl are represented by parallel distributed ma-
trices T l : X′l → Xl ∩Xper

l , the operation is defined by

T lf l = accumulateper
(
accumulate(T pl f

p
l )
)
,

where T pl is a sparse matrix or even an operation defined as a routine, appli-
cation of the local preconditioners happens in parallel.

The prolongation Il−1,l : Xl−1 → Xl is represented by parallel distributed
matrices I l−1,l : Xl−1 → Xl, the operation is defined by

I l−1,lvl−1 = (Ipl−1,lv
p
l−1),

where Ipl−1,l is a sparse matrix. The operation is pure local, no communication
is required.

The restriction Rl,l−1 = I ′l−1,l : X′l → X′l−1 is represented additively by

parallel distributed matrices Rl,l−1 : X′l → X̂
′
l ∩ F̂l, the operation is defined

by
Rl,l−1f l = collectper

(
collect(Rp

l,l−1f
p
l )
)
,

where Rp
l,l−1 is a sparse matrix.

As described in Section 5.2, the parallel dual pairing (·, ·) : X′l ×Xl → C
is defined by the local inner products

(f l,vl) =
∑
p∈P

(fpl ,v
p
l ).
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It requires to take a sum of the local contributions, so global communication
is needed. The norm ‖ · ‖X′l : X′l → R is defined by

‖f l‖X′l = (f̂ l, f̂ l), where f̂ l = collectper
(
collect(f l)

)
.

A linear combination of vectors in Xl or X′l is realized by the correspond-
ing linear combination of their local parts. It is a pure local operation and
so no communication is required.

5.6 Scalable interprocess communication

The most challenging aspect of parallel computing is scalability. Without a
good scalable design it is not possible to leverage full power of modern parallel
clusters consisting of thousands processors. The parallel model described
in this chapter provides a high-level scalable design based on few types of
parallel operations. But the final performance also depends on a low-level
MPI realization. Here we want to share some thoughts.

The current MPI standard 2.2 introduce two types of interprocess com-
munications: point-to-point communication and collective communication.
Both can be used in an implementation of our parallel model, but they re-
sult in different scalability. To analyze this we need to consider parallel
communication patterns arising in our parallel model.

For a cubic domain imagine a parallel distribution based on the regular
grid, so the cube consists of many equal subcubes, each one belongs to a
different process. In our model each cube shares boundary degrees of freedom
with neighbors, so an inner cube has to communicate with 26 other cubes, 6
of them share a face (much data), 12 share an edge (less data) and 8 share
a vertex (few or no data if there are no vertex-based degrees of freedom).
There are two typical realizations of parallel communication:

1. Few simultaneous nonblocking point-to-point communications.
Every process initiates nonblocking MPI_Isend and MPI_Irecv (or
MPI_Get and MPI_Put) to all neighbors, the communications run si-
multaneously. If P is the number of processes, then the total number
of simultaneous communications is 2 · 26P = 52P . So many commu-
nications put a high load on memory bandwidth and the interconnect,
that results in not optimal performance. The only advantage of this
implementation is the possibility to use computations/communications
overlapping for a slow interconnect.

2. One collective blocking communication. All processes call
MPI_Alltoallv which executes the parallel exchange. Not neighboring
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processes just specify zero datasize to send/receive, so the communi-
cation occurs only for neighboring processes. The exact behavior of
MPI_Alltoallv depends on a given MPI implementation, modern im-
plementations provide that the operation is non-synchronizing, i.e. a
process goes on once it gets/sends all data, while other processes still
keep exchanging.

Although the variant 2 is already sufficiently good it has a lack, no mecha-
nism is provided against improper load balancing and lost of synchronization.
The following algorithm is intended to correct the limitation.

Let us introduce a graph of the parallel distribution, which is represented
by the matrix G = (Gi,j), i, j = 1, . . . , P . If a processes i and j have a
common interface, then Gi,j = 1, else Gi,j = 0. By the definition, the matrix
G is symmetric and, in our case, it is sparse. The matrix can be constructed
during the parallel distribution. Next we convert the graph G into a weighted
graph, just enumerate anyway all links of each vertex. Then the graph should
be copied to all processes. Our goal is to define an optimal order of point-
to-point communications between the processes, that is done in three steps.

1. Initialization. The weights of the original graph denote the order
of communications, a process i first initiates MPI_Isend (nonblocking)
and MPI_Recv (blocking) to the process j s.t. Gi,j = 1, waits until the
sending is complete, then do the same with the process l s.t. Gi,l = 2,
and so on. The communications happen one after another, so the total
number of simultaneous communications is 2P , while the interconnect
is fully loaded. The first few parallel communications occur in this
order.

2. Measure computational time. Some processes might get more
work, than the others or some nodes compute a bit slower, that re-
sults in different computational time for processes. The computational
time for local work is measured and then is sent to all processes by
MPI_Allgather. This information is a basis for scheduling the commu-
nications.

3. Scheduling. The idea is very simple, processes should first commu-
nicate with fast processes. Let ik be a process numbering in the time
increasing order, now change the communication order by renumbering
links of the graph G. We start with the vertex i1 and enumerate its
links also in the time increasing order, then do the same with the vertex
i2 and so on.
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This algorithm ensures that a fast process does not spend time waiting
for a slow one. The steps 2-3 need not be done everytime, just as often as it is
appropriate. Most MPI implementations (see, e.g. [37]) use blocking consec-
utive point-to-point operations in the MPI_Alltoallv algorithm (except for
very small messages), so our method is at least as good, but it provides higher
performance for large-scale clusters suffering the synchronization problem.
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Chapter 6

Numerical results

Here we present and discuss results obtained in numerical experiments with
our Maxwell code. In order to simplify further explanation we first intro-
duce material configurations and other parameters which will be used in this
chapter very often.

In practice a material distribution of the photonic crystal usually consists
of only two materials, air (or vacuum) and a dielectric material, so the electric
permittivity ε may have only two values. We will consider the distributions
made of air ε = 1 and silicon ε = 13. In terms of the refractive index it
equals to 1 and 3.6 correspondingly. Our fundamental domain is the unit
cube Ω = [0, 1]3, a configuration is defined there, multiple copies of the
domain build the crystal structure.

We consider three material distributions.

Configuration 0. ε = 1, there is no material, only air (vacuum). It is a
test configuration. We use it to check the code and provide some exact
errors.

Configuration 1. The distribution is called “scaffold” structure, it is pre-
sented in Figure 6.1. The structure is very simple and highly symmet-
ric, it consists of a silicon frame and air, the frame thickness is 0.125
in the unit cube and 0.25 in the periodic structure.

Configuration 2. The distribution is a layered structure, it is shown in
Figure 6.2. The structure is highly symmetric in xy plane, but is not
symmetric in z direction. The configuration consists of silicon blocks
and air, the block thickness in the periodic structure is 0.25.

The configurations 1 and 2 are described in [12], it is known that they
exhibit some band gaps. We take these distributions for the sake of conve-
nience, it allows to compare our results with published data.
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Figure 6.1: Configuration 1, the scaffold structure in the domain [0, 1]3 (left)
and [0, 2]3 (right).

Figure 6.2: Configuration 2, the layered structure in the domain [0, 1]3 (left)
and [0, 2]3 (right).
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Lowest order (LOhex) Higher order (HOhex)
Level Cells DoFs in Xh DoFs in Qh DoFs in Xh DoFs in Qh

2 64 1,944 729
3 512 1,944 729 13,872 4,913
4 4,096 13,872 4,913 104,544 35,937
5 32,768 104,544 35,937 811,200 274,625
6 262,144 811,200 274,625 6,390,144 2,146,689
7 2,097,152 6,390,144 2,146,689
8 16,777,216 50,725,632 16,974,593

Table 6.1: Refinement levels of Elements LOhex and HOhex, number of cells
and degrees of freedom.

In numerical computations we use two pairs of finite elements, every pair
consists of Xh,k and Qh,k elements.

Elements LOhex. Xh,k is the lowest order Nédélec elements and Qh,k is
the linear elements (trilinear Q1,1,1) on hexahedra, recall Section 2.1.

Elements HOhex. Xh,k is the H(curl)-conforming hierarchical higher or-
der (p = pe = pf = pc = 1) elements and Qh,k is the H1-conforming
hierarchical higher order (p = pe = pf = pc = 2) elements on hexahe-
dra, recall Section 2.2.

Remember that we use H(curl)-conforming elements Xh,k in the main eigen-
value Problem 3.1 and its preconditioning Problem 4.1, H1-conforming el-
ements Qh,k are used in the projection Ph,k (Section 3.2) and the hybrid
smoother (Section 4.3).

Tables with numerical results provided in this chapter usually depend on
the refinement level. For simplicity we describe all details of the refinement
levels only once and later just mention their numbers. The level 0 is one
hexahedron, then the regular refinement produces 8 times more cells on every
next level. Table 6.1 contains statistics for Elements LOhex and HOhex.

The level 3 is the minimal level where Configurations 1-2 can be repre-
sented exactly, i.e. the material distributions are aligned with cells.
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6.1 Analytical solutions

Let us consider the original problem resulted from the Maxwell equations
and the Bloch ansatz, also assume ε = 1.

(∇+ ik)× (∇+ ik)× u = λu in Ω, (6.1)

(∇+ ik) · u = 0 in Ω, (6.2)

u is periodic on ∂Ω. (6.3)

For a fixed vector k there exist constant vectors k⊥1 and k⊥2 s.t.

|k⊥1 | = |k⊥2 | = 1,

k× k⊥1 = |k|k⊥2 ,
k× k⊥2 = −|k|k⊥1 ,

so vectors k,k⊥1 ,k
⊥
2 build an orthogonal basis. First, one may see that k⊥1

and k⊥2 satisfy (6.2) and (6.3) since they are constants and k·k⊥j = 0. Second,
if one put e.g. u = k⊥1 in (6.1) it gives

(∇+ ik)× (∇+ ik)× k⊥1 = (∇+ ik)× (i|k|k⊥2 ) = −i2|k|2k⊥1 .

So we conclude that k⊥1 and k⊥2 are the eigenfunctions with eigenvalues |k|2.
These solutions will be used to check numerical results.

6.2 Performance of the eigenvalue solver

The performance of the LOBPCG eigenvalue solver depends on many vari-
ables. First, it depends on the spectrum itself, the more clustered (closer to
each other) eigenvalues are, the more iterations it takes to compute them.

Second, the performance is affected by quality of the preconditioning, i.e.
the accuracy up to which we solve the auxiliary linear Maxwell problem by
an iterative solver. Of course, a higher preconditioner accuracy improves the
eigenvalue solver, but there is a certain threshold after that increasing the
accuracy does not reduce the number of eigenvalue iterations considerably.
Since extra preconditioning takes more time there is some optimal point for
the precision. In our experiments the Maxwell residual reduction εT is set to
0.01.

Third, stability and performance of the eigenvalue solver depends on ac-
curacy of the projection to the divergence-free fields. On the projection step
we solve the internal linear Laplace problem inexactly by an iterative solver.
This accuracy is a very important and the most tricky parameter. If the
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accuracy is not good enough then the eigensolver may take more iterations
or even converge to zero. Unfortunately in our case there is no theoretical
estimation for the optimal precision, so one should try and figure it out for
every single case. Usually it is a good idea to start with some high precision
and then decrease it up to a point when the convergence is still stable and the
number of iterations does not grow. It is affected by many other parameters,
e.g. required eigenvalue precision and mesh size. In our computations the
Laplace residual reduction εP is set to 10−8.

Fourth, the convergence rate of the eigenvalue solver depends on the
regularization parameter δ (see Section 3.4 and Problem 4.1). We do not
have a theory for that. The parameter affects convergence rate of the linear
Maxwell solver, the larger δ the more well-conditioned matrix Aδ is the better
convergence rate of the iterative solver. But as we see from the computations,
a large δ is bad for the eigenvalue solver convergence. Table 6.2 shows the
influence of δ on the eigenvalue solver performance. Here we compute the first
5 eigenvalues in a block of 10 for k = (3, 1,−2) using Elements LOhex on level
5, the eigensolver accuracy is εE = 10−4, 4 iterations of the preconditioner
(the linear Maxwell solver) are performed. In the notations from Section 3.4
the parameters are: n = 5, the eigensolver stopping criterion is ‖rj‖M−1 ≤ εE.
As we see in the table, while the preconditioner improves convergence, the
eigensolver convergence could degrade. There is some optimal point (interval)
for δ, but what is more important is that δ should not be larger than a
threshold, otherwise the iteration count grows significantly. We noticed that
in general δ should not be larger than the first eigenvalue λ1 and not be too
small, the choice λ1

10
is suboptimal.

We observe that number of the eigenvalue iterations is almost indepen-
dent of mesh size. A typical behavior is shown in Table 6.3. The table shows
the iteration count when there are m converged eigenvectors (m = 1, . . . , 10),
they converge one by one during one run. We iterate a block of 15 vectors for
Configuration 2, k = (3, 1,−2) using Elements LOhex, εE = 10−4, εT = 0.001
(extra accuracy is given in order to minimize influence of the precondition-
ing). Every next refinement level gives 8 times more degrees of freedom, but
as we see the difference in the iteration numbers is insignificant. Although
the table is given for only one k, Configuration and Elements this behavior
is common for all other parameters.

6.3 Parallel performance

In order to compute a complex material distribution or/and with high accu-
racy and speed one needs an efficient parallel implementation. A MPI-based
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Configuration 0 Configuration 2
δ LOBPCGit Prec.conv. LOBPCGit Prec.conv.

10−5 11 0.316 12 0.356
10−4 11 0.317 12 0.338
10−3 10 0.277 12 0.356
0.01 10 0.278 12 0.357
0.1 10 0.277 12 0.360
1 11 0.267 12 0.349
10 11 0.264 16 0.353
100 21 0.184 39 0.346

Table 6.2: Influence of the parameter δ on iteration number of the eigenvalue
solver. It is also shown the convergence rate of the Maxwell multigrid (the
eigensolver preconditioner).

Eigenvalue # Level 3 Level 4 Level 5 Level 6
1 6 6 6 7
2 6 7 7 7
3 7 7 7 8
4 7 8 8 8
5 9 10 10 11
6 9 10 11 11
7 11 12 12 12
8 11 12 12 12
9 12 13 13 13
10 12 13 14 14

Table 6.3: Number of iteration the eigensolver takes to converge for the first
m eigenvalues depending on refinement level.
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distributed memory parallel implementation can run on a huge computing
cluster which provides computing power and memory resources unavailable
on a single workstation.

All computations have been performed on the parallel cluster IC1 in the
Scientific Supercomputing Center of University Karlsruhe. The cluster con-
sists of 200 8-way Intel Xeon X5355 nodes. Each of these nodes contains 16
GB of main memory and two Quad-core Intel Xeon processors which run at
a clock speed of 2.667 GHz and have 2x4 MB L2 cache. An important com-
ponent of the cluster is the InfiniBand 4X DDR interconnect. All nodes are
attached to this interconnect which is characterized by its very low latency of
below 2 microseconds and a point to point bandwidth between two nodes of
more than 1300 MB/s. At the moment, this architecture is typical for HPC
clusters.

One of the most important aspects of a parallel code is the parallel scala-
bility, it may be defined as t(P0)

t(P1)
, where t(Pj) is the computational time on Pj

processors. In an ideal case the scalability should be close to P1

P0
, but due to

some practical limitations it is usually in between 1 and P1

P0
, where 1 means

no performance profit.
In Table 6.4 we demonstrate parallel performance of our implementation.

Here we compute the first 10 eigenvalues in a block of 15 for Configuration
2 and k = (3, 1,−2) using Elements LOhex, εE = 10−4, refinement level 7.

We observe a good scalability up to 256 processors, a slow execution on
512 processors will be explained later. As a multigrid convergence rate in the
table we denote the convergence rate of the Maxwell linear iterative solver
with the multigrid preconditioner, which by-turn is used as a preconditioner
for the eigenvalue solver. One may see that the convergence rate does not
deteriorate considerably when the processor number increases. It is a good
result since our multigrid smoother is a block-Jacobi smoother resulting from
the parallel domain decomposition, so it becomes worse when processor num-
ber increases. With a good convergence rate it is enough just few iterations
(we do 2-8) of the linear solver for the eigenvalue solver preconditioning.

In Table 6.5 we indicate influence of dataset size on performance. We keep
the same settings as before, but fix the processor number to 256 and vary
mesh size (refinement level). Every refinement level increases number of DoFs
in 8 times, so in an ideal case the computational time should also change in
8 times. One may notice that it does not happen. The reason is that a MPI-
based parallelization is inefficient when the dataset is too small, it happens
because interprocessor communications take more time than computations.
That is why a smaller problem may take disproportionately less time than a
larger problem. This fact may explain the bad scalability on 512 processors
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Processors Multigrid conv. rate Total time, min Scalability
64 0.28 37:47

2.12
128 0.28 17:45

1.80
256 0.27 9:54

1.19
512 0.29 8:20

Table 6.4: Parallel scalability and Maxwell multigrid convergence on the
refinement level 7.

Refinement level DoFs Total time, min Speed factor
5 104,544 1:05

1.78
6 811,200 1:56

5.12
7 6,390,144 9:54

8.09
8 50,725,632 80:21

Table 6.5: Parallel performance on 256 processors.

observed in Table 6.4, increasing the number of processors we made the
dataset size per processor too small.

The same parallel performance trend can be shown for other k, Configu-
rations and Elements.

6.4 Eigenvalue precision

In this section we study the precision of the eigenvalue computations obtained
for different finite elements and Configurations. For a fixed k we compute
the eigenvalues on successive refinement levels, so one can observe the h-
convergence of the finite elements.

We compute the first 10 eigenvalues for k = (3, 1,−2) up to the precision
εE = 10−4. Let λj(lm) be an eigenvalue of number j on the refinement level
lm, define
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∆j(lm, lm+1) = |λj(lm)− λj(lm+1)|,

γj(lm) = log2

(
λj(lm−1, lm)

λj(lm, lm+1)

)
.

γj(lm) characterizes a practical h-convergence order, so it is the most in-
teresting parameter. For convenience we provide separate “h-convergence”
tables consisting of λj(lm, lm+1) and γj(lm).

Let us start with our benchmark problem for Configuration 0. In Tables
6.6-6.7 we observe eigenvalue convergence. From Section 6.1 we remember
that the first two analytical eigenvalues are |k|2 = 32 + 12 + 22 = 14, so
our numerical eigenvalues converge to the correct values. We checked that
the eigenvectors are correct too. Since ε = 1 we have high regularity of
the original problem, so the practical convergence order γj(lm) is 2, it is
the maximal order allowed by Theorem 1.6 for the lowest order Nédélec
elements. Now consider Tables 6.8-6.9. One may see convergence to the
same eigenvalues as in the former case, but the convergence order is much
better. Thanks to a better approximation order of the higher order elements
the practical convergence order γj(lm) is 4.

Although the first two analytical solutions are just constant vectors one
can notice that the numerical eigenvalues are not equal to 14, they just
converge to that. In classical finite elements it does not happen, because
constants can be represented exactly, and so both solutions coincide. In our
case of the k-modified finite elements a constant vector cannot be represented
exactly in the finite element spaces.

Now let us go to a more complicated case of Configurations 1 and 2. ε
is a piecewise constant function, so regularity of the problem is restricted.
Tables 6.6-6.7 contain the data for Configuration 1 and 2 solved by Elements
LOhex. We notice that the practical convergence order is below 2, it is the
result of the lower regularity. A visualization of an eigenfunction is shown at
Figure 6.3.

What happens with Elements HOhex in Configuration 2 is shown in Ta-
bles 6.10-6.11. First, a positive point is that they converge to the same
eigenvalues as Elements LOhex. A negative point is that the practical con-
vergence order is still below 2, much lower than 4 which the elements could
provide. Of course, this result is not new in numerics. The convergence order
is always limited by regularity of a solution. The only way to address the
problem is to use an adaptivity concept. However, even in our case the higher
order elements are not completely useless. Comparing Table 6.6 and Table
6.10 one may notice that Elements HOhex on level l give the same accuracy

98



Figure 6.3: Eigenfunction #5 of Configuration 2. Amplitude of the H field,
surface plot (left) and few color-coded isosurfaces (right).

as Elements LOhex on level l + 2. This results in 8 times less DoFs and the
sparse matrices contain 2.5 times less entries. For instance, Elements HOhex
on level 4 give 104, 544 DoFs and the matrix A has 10, 328, 256 entries, while
Elements LOhex on level 6 give 811, 200 DoFs and 26, 124, 480 entries. From
performance point of view it can be advantageous to use the higher order
elements even without adaptivity.

6.5 Band structures

Our Maxwell code is able to compute the eigenvalues for a given material
distribution and k point. Varying k along the boundary of the Brillouin zone
one gets the band structure. The computed band structures can be used to
proof existence of a spectral band gap and hence they may be of interest for
physics and electronic engineering. A band structure with a band gap can
also be used as a starting point for an optimization problem which e.g. try
to expand the gap further (see e.g. [10]).

For the band structure computations we use Elements LOhex, the prob-
lem is solved on the refinement level 5 (the mesh is 32× 32× 32). k changes
uniformly along the lines between the points of high symmetry in the Bril-
louin zone (see Figure 6.4), in every interval [X, Y ] there are 3 intermediate
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Configuration 0
Eigenvalue # level 3 level 4 level 5 level 6 level 7 level 8

1 14.12814 14.03193 14.00798 14.00199 14.00050 14.00012
2 14.12814 14.03193 14.00798 14.00199 14.00050 14.00012
3 15.95361 15.82272 15.79015 15.78202 15.77998 15.77948
4 15.95361 15.82272 15.79015 15.78202 15.77998 15.77948
5 28.89523 28.48222 28.37976 28.35419 28.34781 28.34621
6 28.89523 28.48222 28.37976 28.35419 28.34781 28.34621
7 30.72071 30.27300 30.16193 30.13422 30.12729 30.12556
8 30.72071 30.27300 30.16193 30.13422 30.12729 30.12556
9 42.06735 41.19817 40.98340 40.92987 40.91650 40.91316
10 42.06735 41.19817 40.98340 40.92987 40.91650 40.91316

Configuration 1
Eigenvalue # level 3 level 4 level 5 level 6 level 7 level 8

1 4.00678 3.97226 3.95812 3.95272 3.95070 3.94994
2 4.76732 4.73162 4.71647 4.71062 4.70841 4.70759
3 9.37758 8.81912 8.66063 8.61324 8.59845 8.59366
4 10.62938 9.88117 9.67155 9.60867 9.58886 9.58238
5 12.03825 11.32434 11.08231 11.00678 10.98276 10.97488
6 12.81253 11.84988 11.62060 11.55728 11.53851 11.53267
7 13.12710 12.23778 12.02210 11.96278 11.94539 11.94005
8 16.56371 15.32280 15.01242 14.92683 14.90184 14.89421
9 16.86278 15.83867 15.55781 15.48168 15.46060 15.45457
10 17.79952 16.66801 16.37232 16.29261 16.27043 16.26405

Configuration 2
Eigenvalue # level 3 level 4 level 5 level 6 level 7 level 8

1 3.86613 3.81920 3.80119 3.79449 3.79202 3.79111
2 4.13949 4.09004 4.07099 4.06392 4.06132 4.06036
3 5.01881 4.87990 4.82904 4.81021 4.80322 4.80063
4 5.38737 5.24131 5.18723 5.16714 5.15967 5.15690
5 10.19397 9.68279 9.54135 9.50006 9.48747 9.48348
6 10.46622 9.95338 9.80933 9.76693 9.75392 9.74977
7 12.22023 11.26907 11.02740 10.95948 10.93931 10.93307
8 12.35505 11.40819 11.16670 11.09883 11.07870 11.07247
9 13.78493 12.78181 12.51608 12.43920 12.41575 12.40829
10 13.95290 12.93797 12.66950 12.59189 12.56823 12.56071

Table 6.6: The eigenvalues computed with Elements LOhex.
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Configuration 0
j ∆j(3, 4) γj(4) ∆j(4, 5) γj(5) ∆j(5, 6) γj(6) ∆j(6, 7) γj(7) ∆j(7, 8)
1 0.09620 2.01 0.02396 2.00 0.00598 2.00 0.00150 2.00 0.00037
2 0.09620 2.01 0.02396 2.00 0.00598 2.00 0.00150 2.00 0.00037
3 0.13089 2.01 0.03257 2.00 0.00813 2.00 0.00203 2.00 0.00051
4 0.13089 2.01 0.03257 2.00 0.00813 2.00 0.00203 2.00 0.00051
5 0.41301 2.01 0.10246 2.00 0.02556 2.00 0.00639 2.00 0.00160
6 0.41301 2.01 0.10246 2.00 0.02556 2.00 0.00639 2.00 0.00160
7 0.44770 2.01 0.11107 2.00 0.02771 2.00 0.00692 2.00 0.00173
8 0.44770 2.01 0.11107 2.00 0.02771 2.00 0.00692 2.00 0.00173
9 0.86917 2.02 0.21477 2.00 0.05353 2.00 0.01337 2.00 0.00334
10 0.86917 2.02 0.21477 2.00 0.05353 2.00 0.01337 2.00 0.00334

Configuration 1
j ∆j(3, 4) γj(4) ∆j(4, 5) γj(5) ∆j(5, 6) γj(6) ∆j(6, 7) γj(7) ∆j(7, 8)
1 0.03452 1.29 0.01414 1.39 0.00540 1.42 0.00202 1.43 0.00075
2 0.03570 1.24 0.01515 1.37 0.00585 1.41 0.00221 1.42 0.00082
3 0.55846 1.82 0.15850 1.74 0.04738 1.68 0.01479 1.63 0.00479
4 0.74821 1.84 0.20962 1.74 0.06289 1.67 0.01981 1.61 0.00648
5 0.71391 1.56 0.24202 1.68 0.07553 1.65 0.02402 1.61 0.00787
6 0.96265 2.07 0.22928 1.86 0.06332 1.75 0.01877 1.69 0.00583
7 0.88932 2.04 0.21568 1.86 0.05932 1.77 0.01739 1.70 0.00534
8 1.24091 2.00 0.31039 1.86 0.08559 1.78 0.02499 1.71 0.00763
9 1.02410 1.87 0.28086 1.88 0.07613 1.85 0.02109 1.81 0.00602
10 1.13151 1.94 0.29568 1.89 0.07971 1.85 0.02218 1.80 0.00639

Configuration 2
j ∆j(3, 4) γj(4) ∆j(4, 5) γj(5) ∆j(5, 6) γj(6) ∆j(6, 7) γj(7) ∆j(7, 8)
1 0.04693 1.38 0.01801 1.43 0.00669 1.44 0.00247 1.44 0.00091
2 0.04945 1.38 0.01905 1.43 0.00707 1.44 0.00260 1.44 0.00096
3 0.13891 1.45 0.05087 1.43 0.01883 1.43 0.00698 1.43 0.00259
4 0.14607 1.43 0.05407 1.43 0.02009 1.43 0.00747 1.43 0.00277
5 0.51118 1.85 0.14144 1.78 0.04130 1.71 0.01259 1.66 0.00399
6 0.51284 1.83 0.14405 1.76 0.04240 1.70 0.01301 1.65 0.00415
7 0.95116 1.98 0.24167 1.83 0.06792 1.75 0.02017 1.69 0.00625
8 0.94685 1.97 0.24149 1.83 0.06787 1.75 0.02013 1.69 0.00623
9 1.00313 1.92 0.26573 1.79 0.07687 1.71 0.02346 1.65 0.00746
10 1.01493 1.92 0.26847 1.79 0.07761 1.71 0.02366 1.65 0.00752

Table 6.7: h-convergence of the eigenvalues computed with Elements LOhex.
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Eigenvalue # level 2 level 3 level 4 level 5 level 6
1 14.004191 14.000267 14.000017 14.000001 14.000000
2 14.004191 14.000267 14.000017 14.000001 14.000000
3 15.786221 15.779749 15.779334 15.779308 15.779306
4 15.786221 15.779749 15.779334 15.779308 15.779306
5 28.381166 28.347985 28.345822 28.345686 28.345677
6 28.381166 28.347985 28.345822 28.345686 28.345677
7 30.163195 30.127466 30.125139 30.124992 30.124983
8 30.163195 30.127466 30.125139 30.124992 30.124983
9 41.024619 40.919524 40.912522 40.912077 40.912049
10 41.024619 40.919524 40.912522 40.912077 40.912049

Table 6.8: The eigenvalues computed with Elements HOhex for Configuration
0.

j ∆j(2, 3) γj(3) ∆j(3, 4) γj(4) ∆j(4, 5) γj(5) ∆j(5, 6)
1 0.003924 3.97 0.000251 3.99 0.000016 4.00 0.000001
2 0.003924 3.97 0.000251 3.99 0.000016 4.00 0.000001
3 0.006472 3.96 0.000415 3.99 0.000026 4.00 0.000002
4 0.006472 3.96 0.000415 3.99 0.000026 4.00 0.000002
5 0.033181 3.94 0.002163 3.98 0.000137 4.00 0.000009
6 0.033181 3.94 0.002163 3.98 0.000137 4.00 0.000009
7 0.035729 3.94 0.002327 3.98 0.000147 4.00 0.000009
8 0.035729 3.94 0.002327 3.98 0.000147 4.00 0.000009
9 0.105095 3.91 0.007002 3.98 0.000445 3.99 0.000028
10 0.105095 3.91 0.007002 3.98 0.000445 3.99 0.000028

Table 6.9: h-convergence of the eigenvalues computed with Elements HOhex
for Configuration 0.
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Eigenvalue # level 3 level 4 level 5 level 6
1 3.80281 3.79506 3.79223 3.79119
2 4.07274 4.06450 4.06153 4.06044
3 4.83375 4.81193 4.80386 4.80087
4 5.19253 5.16903 5.16036 5.15716
5 9.52243 9.49485 9.48629 9.48325
6 9.79148 9.76188 9.75278 9.74956
7 10.98751 10.94893 10.93688 10.93256
8 11.12740 11.08827 11.07625 11.07196
9 12.48320 12.42976 12.41362 12.40789
10 12.63651 12.58233 12.56607 12.56030

Table 6.10: The eigenvalues computed with Elements HOhex for Configura-
tion 2.

j ∆j(3, 4) γj(4) ∆j(4, 5) γj(5) ∆j(5, 6)
1 0.00775 1.45 0.00283 1.44 0.00104
2 0.00824 1.47 0.00297 1.45 0.00109
3 0.02181 1.43 0.00808 1.43 0.00299
4 0.02350 1.44 0.00867 1.43 0.00321
5 0.02758 1.69 0.00856 1.50 0.00304
6 0.02960 1.70 0.00910 1.50 0.00322
7 0.03858 1.68 0.01206 1.48 0.00432
8 0.03913 1.70 0.01202 1.49 0.00429
9 0.05344 1.73 0.01614 1.49 0.00573
10 0.05418 1.74 0.01627 1.50 0.00577

Table 6.11: h-convergence of the eigenvalues computed with Elements HOhex
for Configuration 2.
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Figure 6.4: The Brillouin zone and the points of high symmetry.

points. The first 10 eigenvalues are computed up to the precision εE = 10−2.
We start with Configuration 0. Although this distribution cannot have a

band gap it may be interesting to see how the band structure for a uniform
medium looks like. The structure is presented in Figure 6.5. One may
distinguish only 2-3 independent lines, the bands touch each other and merge
into groups.

The band structure for Configuration 1 is shown in Figure 6.6. Due to
the high symmetry of the distribution we go along just 4 k points. The band
structure coincides with one presented in [12, Fig. 2], it has a moderate band
gap.

The band structure for Configuration 2 is shown in Figure 6.7. Less
symmetry in the distribution means that we need to go along more k points.
This band structure exhibits a larger gap than one for Configuration 1. The
structure is very similar with [12, Fig. 3]. They do not coincide perfectly
because there is some difference in the distributions. In [12] the fundamental
domain is 1× 1×

√
2 what means that the block z size is

√
2/4, not 1/4 as

ours.
For the band structure computations we are interested in the eigenvalues

only. The eigenfunctions are computed, but not used. Other applications in
photonic crystals may require the eigenfunctions as well, e.g. the band gap
optimization problem mentioned before need the eigenfunctions. A visual-
ization of an eigenfunction is presented in Figure 6.8.
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Figure 6.5: Band structure for Configuration 0, no band gap.

Figure 6.6: Band structure for Configuration 1, a band gap between the
bands 2 and 3.
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Figure 6.7: Band structure for Configuration 2, a band gap between the
bands 4 and 5.

6.6 Computer-assisted proof for band gap

The method was explained in Section 1.3. We proved Theorem 1.7, which
formulates a perturbation argument for the spectrum of Ak. The following
theorem express the same idea, but provides a better estimate.

Theorem 6.1. (see [5])
Let B(k, r) = {k′ ∈ R3 | |k′ − k| < r} and εmin = minx∈Ω ε(x). Suppose that
for the operator Ak and some l ∈ N there exists an interval [a, b] s.t.

1. [a, b] ⊂ (λk,l, λk,l+1) for all k ∈ K,

2. K ⊂
⋃

k∈KB(k, rk), where rk holds

max

{
1,

1

εmin

+ rk

}
max

{
λk,l + 1

a− λk,l

,
λk,l+1 + 1

λk,l+1 − b

}
rk ≤ 1,

then [a, b] is contained in a spectral gap, i.e. [a, b] ⊂ (λk,l, λk,l+1) for all
k ∈ K.

In few words, the radius rk of a safe perturbation of λk,j is larger for
λk,l+1, λk,l which are far from the band gap, and smaller for those that are
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Figure 6.8: Eigenfunction #6 of Configuration 2. Cutting planes (top row)
show amplitude of the H field, “stream”-lines and arrow-plot (bottom row)
represent vector field of H.
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close to. Another point is that the radius is larger if we allow some more
tolerance for the precise band gap boundaries [a, b], the tolerance in its turn
is limited by the band gap width. So the theorem gives a very natural
conclusion.

Below we provide computational results which illustrate a practical ap-
plication of the theorem. We consider Configuration 1. Since at the moment
there are no λk,l and λk,l+1 available for the 3D problem we replace them
with λk,h,l and λk,h,l+1 computed by our eigenvalue solver on level 4 with
the accuracy εE = 10−4. The band gap is located between the 2-nd and 3-d
bands. On this level maxk∈K{λk,h,2} = 6.1553 and mink∈K{λk,h,3} = 7.3043,
so the approximated band gap width is 1.149. According to Table 6.6 sum
of the differences between the level 4 and 8 for the 2-nd and 3-rd eigenvalues
is about 0.2495, so the approximated band gap width might become about
0.8995 on level 8, but it still can be used if we assume some higher tolerance.
Let us define the almost maximal tolerance and put a = 6.6432, b = 6.6913.
For practical purposes it would be a very narrow band gap, but it is sufficient
since we only want to show the technology. Putting all the parameters in
Theorem 6.1 one gets

r2
k + rk −

1

Mdist

≤ 0, rk > 0,

where Mdist = max
{

λk,h,l+1

6.6432−λk,h,l
,

λk,h,l+1+1

λk,h,l+1−6.6913

}
. It gives the solution

rk ≤
1

2

(√
1 +

4

Mdist

− 1

)
. (6.4)

Now we proceed with the computations. The irreducible Brillouin zone of
Configuration 1 is a tetrahedron with the vertices K = (Γ, X,M,R). From
(6.4) one may derive the worst case radius and then define a regular mesh
satisfying that radius. But this approach requires too many k points and
therefore leads to too much extra computations. A better idea is an adaptive
choice of k points. We suggest the following simple adaptive method.

In K we define a very fine regular mesh K̃ with dk = 0.01 (satisfying the
worst case radius), also set K = ∅. Step by step we go along all k ∈ K̃. If
|k − k′| > rk′ for all k′ ∈ K, then compute the eigenvalues λk,h,j and add k
to K, else go to the next k. In such a way we build a suboptimal covering set
K mentioned in Theorem 6.1. The coverage is shown at Figure 6.9. In our
example K consists of 1523 points. The total computational time is about
12 hours on 8 processors. The minimal perturbation radius is rk = 0.064,
the maximal one is rk = 0.271. In general, depending on [a, b] the number of
k points and computational time may vary significantly.
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Figure 6.9: The irreducible Brillouin zone covered by the system of balls for
the perturbation proof.

Remember that the computations described above is not the proof. For
the actual proof one needs correct estimates λk,l and λk,l+1.
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[36] G. Szegö. Orthogonal polynomials, volume 23 of Colloquium Publica-
tions. American Mathematical Society, third edition, 1974.

[37] Rajeev Thakur, Rolf Rabenseifnery, and William Gropp. Optimization
of collective communication operations in MPICH. Int. J. High Perform.
Comput. Appl., 19(1):49–66, 2005.

[38] A. Toselli and O. Widlund. Domain decomposition methods - algorithms
and theory, volume 34 of Computational Mathematics. Springer-Verlag,
2005.

[39] Christian Wieners. A geometric data structure for parallel finite ele-
ments and the application to multigrid methods with block smoothing.
To be published.

[40] Jinchao Xu. Iterative methods by space decomposition and subspace
correction. SIAM Review, 34(4):581–613, 1992.

[41] Sabine Zaglmayr. High order finite element methods for electromagnetic
field computation. PhD thesis, Johannes Kepler Universität Linz, 2006.

113



Appendix A

Curriculum Vitae

Personal data

Name: Alexander Bulovyatov
Date of birth: 16.11.1981
Place of birth: Aleysk, Russia
Citizenship: Russia
Family status: married
Contact: bulovyatov@gmail.com

Education

since 2006 PhD study GRK 1294, Department of Mathematics,
University Karlsruhe (TH) (later KIT)

2003-2004 Master of Science in Department of Mechanics and Mathe-
Applied Mathematics matics, Novosibirsk State University

1999-2003 Bachelor of Science in Department of Mechanics and Mathe-
Applied Mathematics matics, Novosibirsk State University

1989-1999 School School N.4, Aleysk

Jobs

since 2009 Research Assistant Institute of Scientific Computing and Ma-
thematical Modelling, University Karlsruhe

2004-2006 Software Developer Intel Corp., Russia
2002-2005 Research Assistant Institute of Geophysics (SB RAS), Russia

114


	Abstract
	Acknowledgements
	Introduction
	Problem statement
	Maxwell's equations
	Periodicity, Bloch-Floquet theory
	Spectrum of operator, band structure
	Maxwell equations in periodic media
	The main properties of the shifted gradient

	The eigenvalue problem
	Mixed formulation
	Discretization

	Computer-assisted proof for band gap

	Finite Elements
	Standard lowest order elements
	High order finite elements
	Orthogonal polynomials
	Element-based spatial variables
	H1-conforming elements
	H(curl)-conforming elements
	H1-conforming degrees of freedom
	H(curl)-conforming degrees of freedom
	Interpolation operators
	Static condensation
	Example of shape functions

	Modified elements
	Implementation of the modified elements

	Eigenvalue solver
	Eigenvalue solver with projector
	Projection framework
	The gradient operator for high order elements

	Preconditioned gradient eigenvalue solver
	The Projected LOBPCG
	Discussion of the algorithm
	Inexact projection
	Implementation

	Multigrid as preconditioner
	The problem with smoothing
	Multilevel nodal decomposition
	The hybrid smoother
	Interpolation and restriction operators
	The h-multigrid implementation
	Two-level multigrid for high order finite elements

	Scalable parallelization model
	Parallel mesh model
	Parallel finite elements
	Operator representation
	Periodic identification
	Parallel linear algebra
	Scalable interprocess communication

	Numerical results
	Analytical solutions
	Performance of the eigenvalue solver
	Parallel performance
	Eigenvalue precision
	Band structures
	Computer-assisted proof for band gap

	Bibliography
	Curriculum Vitae



