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Abstract

Can you imagine doing hundreds of millions of operations on non-integers and not
obtaining a single round-off error? For n < 12, the algorithm used in this thesis
does exactly that. We took advantage of a floating point property that we have not
seen used before. If only we had quad precision we could have gone even further and
extended the algorithm without round-off error for higher values of ‘n’.

The problem in question concerns whether the eigenvalues are real or complex.
The eigenvalues of an n-by-n real random matrix whose elements are independent ran-
dom variables with standard normal are examined. An exact expression to determine
the probability pn,k that exactly k eigenvalues are real are derived in [1]. This expres-
sion was used to compute the probabilities pn,k, but the computation was achieved
only up to n = 9. For higher values of n, the symbolic expressions generated during
the course of an algorithm to compute an exact probability as expressed in Mathe-
matica code requires large amounts of memory. In this thesis, we target development
of a more efficient algorithm. The symbolic algorithm implemented in Mathematica
is converted into an equivalent numerical version and is implemented using MAT-
LAB. After implementing the serial code in MATLAB, the code is parallelized using
a client-server parallel computing platform named Star-p. This modified code im-
plementation along with superior hardware in terms of better processor speeds and
larger memory, has enabled the probability evaluation for all values of k up to n=11,
and for certain k values for n = 12 and 13. An expression for the expected number
of real eigenvalues

∑n
k=0 kpn,k is obtained in paper [2]. Results relating the rational

and irrational parts of the summations
∑n

k=0 kpn,k,
∑n

k=0

(
k
2

)
pn,k and

∑n
k=0

(
k
3

)
pn,k

are conjectured.
Three eigenvalue algorithms, the block Davidson, the block KrylovSchur and the

Locally optimal Block Pre-conditioned Conjugate Gradient Method (LOBPCG) are
analyzed and their performance on different types of matrices are studied. The perfor-
mance of the algorithms as a function of the parameters , block size, number of blocks
and the type of preconditioner is also examined in this thesis. The block Krylov Schur
Algorithm for the matrices which are used for the experiments have proved to much



superior to the others in terms of computation time. Also its been more efficient in
finding eigenvalues for matrices representing grids with Neumann boundary condi-
tions which have at least one zero eigenvalue. There exists one optimal combination
of block size and number of blocks at which the time for eigenvalue computation
is minimum. These parameters have different effects for different cases. The block
Davidson algorithm has also been incorporated with the locking mechanism and this
implementation is found to be much superior to its counterpart without the locking
mechanism for matrices which have at least one zero eigenvalue.

Thesis Supervisor: Alan Edelman
Title: Professor of Applied Mathematics
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Chapter 1

Introduction and motivation

Let A be an n-by-n real random matrix whose elements are independent random vari-

ables with standard normal distributions. The eigenvalues of the matrix for finite ‘n’

was examined and an exact expression to determine the probability pn,k that exactly

k eigenvalues are real was derived in [1]. This expression was used to compute the

probabilities pn,k, but however the computation was achieved only for up to n = 9.

The probability distribution of the real eigenvalues is derived by first factoring the

matrix into some form of the Real Schur Decomposition, then interpreting this decom-

position as a change of variables and finally performing a wedge product derivation of

the Jacobian of this change of variables. This derivation is explained in detail in [1].

The algorithm to implement the formula in [1] to calculate probabilities involves the

generation of a large number of symbolic expressions. The size of these expressions

are a function of ‘n’(matrix size) and they get very large during the course of the

algorithm. Hence for the evaluation of probabilities for larger ‘n’ greater memory

is required. A code devoid of symbolic variables is expected to be superior, both

memory and computation wise over one with large number of symbolic expressions.

Hence in an attempt to improve the performance, the code was converted to a purely

numerical one without the use of symbols.

With improved processors and the ability to parallelize codes, greater computa-

tional power is available. A symbolic algorithm previously implemented in Mathemat-

ica is implemented numerically in MATLAB with no round-off error up to n=11. The
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calculation for the n = 11 and k = 1 case which was evaluated using the MATLAB

code, involves about fifty million floating point operations. Since all the fractions are

dyadic rationals ( rational numbers with power of 2 in the denominator), this com-

putation was possible. We are not aware of any other computations that have taken

advantage of this special property. In the presence of quad precision, the computation

which at this stage has been achieved only for up to n < 12 without round-off error

can be extended to higher values of ‘n’.

Further, the MATLAB code is parallelized using a client-server parallel computing

platform, Star-p which is designed to work with very high level languages such as

MATLAB and Python. The first chapter is organized as follows. The main results

of the thesis are presented in the very first section of the thesis. The next section

discusses how the algorithm has been implemented numerically using MATLAB. The

scaling of the algorithm as a function of the matrix size ‘n’ is also explained. All the

probability values for up to n=11 and certain values of k for n = 12 and 13 is presented

in a table. The next section deals with the comparison of the different codes used

to obtain the probabilities. We then present conjectures involving the summations∑n
k=0

(
k
2

)
pn,k and

∑n
k=0

(
k
3

)
pn,k and an expression for the asymptotic variance of the

real number of eigenvalues.

The chapter titled “Eigenvalue Algorithms for sparse symmetric matrices” per-

tains to eigensolver algorithms for non-random matrices. In linear algebra, one of

the most important problems is designing efficient and stable algorithms for find-

ing the eigenvalues of a matrix. These eigenvalue algorithms may also find eigen-

vectors. In this thesis, three important eigensolver algorithms the block Davidson,

block KrylovSchur and the Locally optimal Block Pre-conditioned Conjugate Gra-

dient Method (LOBPCG)are studied and their performance on different matrices

is analyzed. All of these algorithms are implemented with the help of the Trilinos

project. These algorithms are explained in detail in [10].

The Trilinos Project is an effort to develop and implement robust algorithms and

enabling technologies using modern object-oriented software design, while still lever-

aging the value of established libraries such as SuperLU, the BLAS and LAPACK.
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Different parameters associated with these algorithms can be changed and their effect

on the algorithm performance is analyzed. All are used with preconditioners in order

to improve their performance. The preconditioner ‘P’ of a matrix ‘A’ is a matrix such

that P−1A has a smaller condition number than A. Preconditioners are useful espe-

cially when we are using iterative methods to solve a large sparse linear system. The

most efficient preconditioner is indeed the matrix itself since it reduces the condition

number to one and it enables speedy computation of the eigenvalues. All the matrices

used in this thesis are extremely sparse and the use of preconditioners improve the

performance of the algorithm significantly. The preconditioners used in this thesis

are of two types- either an accurate or an approximate representation of the matrix

inverse, both of which have their own advantages. While it takes more time to build

the accurate matrix inverse using the Amesos-Klu method rather than the approxi-

mate inverse using the Multi-Level Method, solving for the eigenvalues takes lesser

time using the accurate matrix inverse.

For certain combinations of iterative methods and linear systems, the error at

each iteration projected onto the eigenfunctions has components that decay at a

rate proportional to the corresponding eigenvalue. Multilevel methods exploit this

property by projecting the linear system onto a hierarchy of increasingly coarsened

“meshes” so that each error component decreases on at least one coarse “mesh”. The

multi-grid methods used for all our results is the Multi-grid V cycle. Though other

type of cycles do exist, we found that this method was the most efficient for our set of

matrices. The approximate matrix inverse is calculated using this method. The exact

matrix inverse is calculated through the Amesos-Klu method. Detailed explanation

about this method can be found on [13]. Calculation of the exact inverse is of order

N3 complexity where N is the size of the dense matrix. In this thesis, all the matrices

which we are using for the numerical simulation are sparse in nature.

The block size and the number of blocks are other parameters which can also be

varied and their effects on the performance are studied. The Algorithms are imple-

mented for the solution of the generalized eigenvalue problem Ax = λBx where A and

B are large sparse symmetric matrices. All the Algorithms are implemented in C++.
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Table 1.1: Types of Preconditioners

Multi-grid Method ML Preconditioner
Amesos Klu Method INV Preconditioner

Also the algorithms can be implemented with or without locking mechanisms. Since

we are dealing with the computation of multiple eigenvalues, a locking mechanism

will indeed serve to be useful. Let us consider a problem of computing a number of

eigenvectors of a symmetric matrix by simultaneous iterations. When computing sev-

eral eigenvectors simultaneously it is often observed that some eigenvectors converge

faster than the others. To avoid unnecessary computational work, it is common to

“lock” the eigenvectors that have already converged within a required tolerance while

continue iterating other eigenvectors. The chapter begins by introducing the various

matrices used for the experiments. After which the different algorithms and their

corresponding results are explained. We finish the chapter comparing the various

algorithms and under what conditions each of them are superior to the other.

Block methods are more efficient for multiple or clustered eigenvalues. Moreover,

a block method is the natural choice when more than one good initial vector is

available. This situation is very common for the self-consistent-loop in electronic

structure calculations where one obtains several good initial guesses from former

loops. One other advantage of a block method over a non-block method is better

utilization of cache and better memory performance.

The eigensolver package in Trilinos is called Anasazi. Anasazi is a framework for

developing large-scale iterative eigensolvers. When developing such a framework, or

even a collection of different solvers, one will notice a large amount of overlap among

different implementations. For example, two separate eigensolvers may utilize the

same orthogonalization methods, whereas two different implementations of a particu-

lar eigensolver may utilize different orthogonalization routines. Dividing the different

tasks associated with an iterative eigensolver into multiple routines enables increased

code reuse and eases code maintenance. Consider the block Davidson iteration. The

essence of the algorithm can be distilled as follows: a preconditioner is applied to

4



the current residual vectors, and the resulting vectors are used to expand a subspace

from which the next eigenvector approximations (and their residuals) are computed.

However, a multitude of choices abound in implementing this simple iteration: the

size of the computed basis, whether and how the method is restarted, the convergence

criterion for the algorithm, and the use of deflation (locking) mechanisms, etc. [12].

5
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Chapter 2

On the computation of

probabilities associated with real

eigenvalues of random matrices

2.1 Main Results

For an n-by-n real random matrix, pn,k represents the the probability that exactly k of

the eigenvalues are real. In [1], pn,k is evaluated only for up to n = 9. The additional

probability values for n = 10,11 and certain values for n = 12 and n = 13 are

presented in this section. Two conjectures one relating the summations in equations

2.1 and other pertaining to the variance of the number of real eigenvalues of the

random matrix are in 2.2, 2.3, 2.4 and 2.5.

Also the memory requirements of the mathematica code in [1]have been analyzed

and an estimate of how much memory is required for further calculations is known.

A new floating point MATLAB code to compute pn,k that can perform hundreds of

millions of operations without round-off error is presented in Section 2.2.2.
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2.1.1 Conjectures

On observing the summation values in Table 2.9, the result is true for n=1 to 10.

However for n=11, the first conjecture relating the rational part is only approximately

true. At this stage we aren’t certain if n=11 is an aberration or if the result is untrue

for higher values of ‘n’. Let the set of variables involved the conjecture be defined by

the set of the equations in 2.1. For n even, k is the set of all even numbers lesser than

‘n’ and similarly for n odd. rnj and snj are dyadic rationals for all ‘n’.

r
(n)
j + s

(n)
j

√
2 =

n∑
k=0

(
k

j

)
pn,k (2.1)

We conjecture that for n even,

r
(2n)
2 = r

(2n)
3 and s1(2n) = 2 ∗ s(2n)

2 (2.2)

While for n odd

s
(2n−1)
1 =

2

3
s
(2n−1)
2 (2.3)

and for certain n odd

r
(2n−1)
2 =

1

2
r
(2n−1)
3 (2.4)

2.1.2 Variance of the number of real eigenvalues

If σ2
n denotes the variance of the number of real eigenvalues of an n-by-n random

matrix, then

lim
n→∞

σ2
n√
n

=

√
1

2
(2.5)
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Table 2.1: Results for n=10, 11 and 12

n k pn,k
10 10 1

228

√
2 0.00000

8 236539
229 − 5

223

√
2 0.00044

6 −236539
227 + 35098479

230

√
2 0.04447

4 149206217
228 − 105292877

230

√
2 0.41712

2 −148733139
227 + 1216831949

230

√
2 0.49453

0 834100651
229 − 1146637039

230

√
2 0.04341

11 11 1
228

√
2 0.00000

9 333213
233 + −160

233

√
2 0.00004

7 −20823
227 + 60262315

233

√
2 0.00977

5 510394091
231 + −180786305

233

√
2 0.20791

3 −1020121891
231 + 6423679969

233

√
2 0.58254

1 10629845251
233 + −6303155851

233

√
2 0.19975

12 12 1
233 0.00000

10 −3
232 + 3781485

241

√
2 0.00000

0 8 27511372605
244 − 18907425

241

√
2 0.00155

0 6 −27511352125
242 + 126455775487

241

√
2 0.07507

0 4 6237846960567
243 − 379291696761

241

√
2 0.46523

2 −6182824264509
242 + 356179603371

238

√
2 0.42669

0 29930323227453
244 + −1298292889877

240

√
2 0.03145

2.2 Codes used for Probability Evaluation

2.2.1 Mathematica Code

An original Mathematica code to implement the above algorithm is shown in [1].

The probability pn,k is always of the form r+s
√

2 where r and s are rational numbers.

Depending on the values of n and k , different polynomials are generated during the

course of the algorithm and after taking certain moments we obtain the probabil-

ity. These results and the derivation of the expression to evaluate the probability is

presented in [1].

Table 2.2 examines the the memory requirement of the mathematica code as a

0Results for k=4,6 and 8 may not be exact because they have been obtained using conjecture 2.2
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function of ‘n’ and ‘k’. For large values of ’n’ the code was run on a machine with

128GB of memory. However even this large RAM size was insufficient to compute

certain probabilities for n=11 and 12. The scaling of memory requirements gives

an indication of how much memory is required by the mathematica code for larger

values of ‘n’. The case n=10 and k=6 requires over 10GB of memory and considering

the scaling across consecutive even numbers, 128 GB of RAM is not sufficient for

the n=12 and k=6 case. The next pn,k which can be computed with a memory

enhancement of about 100GB is for n = 12 and k = 4 case. For a fixed n, when

k = n, pn,k = 2−n(n−1)/4. This result is presented in [1]. Hence the calculation of

pn,n is not required. When k = n− 2, the computation takes up much lesser memory

rather than when k is close to n
2
.

10



2.2.2 Matlab Code-Algorithm

We implemented an algorithm that begins with the generation of a polynomial result-

ing from the expansion of a determinant. It is this polynomial that will be referred

to as the starting polynomial in all further discussions. The determinant is both a

function of the integers n (size of the Matrix) and k (number of real eigenvalues), and

hence so is the starting polynomial. The starting polynomial equals ”1” for the k=0

case. Numerical computation is computationally more efficient and achieves memory

savings in comparison to symbolic computation. This was the primary motivation

to convert the mathematica code to an equivalent MATLAB code without the use

of symbols. As explained before, limited memory was the primary deterrent in the

computation of probabilities for larger sized matrices. During the course of the algo-

rithm, the starting polynomial is multiplied with many other polynomials resulting

in the generation of larger sized polynomials.

In order to keep the MATLAB code symbol free, the starting polynomial and all

other polynomials to be multiplied during the course of the algorithm are transformed

to an equivalent numerical form. This transformation is explained below through a

simple example. For a given polynomial, let the number of monomials be represented

by the integer p and let the number of distinct variables the polynomial is a function

of, be indicated by the integer q. Then the resulting matrix which will be represen-

tative of the above polynomial will be of size p-by-q. The entries of the matrix are

the exponents of the variables in the polynomial. For the k=0 and n=even case the

variables which occur in the polynomial are x1, y1, ..., xn/2, yn/2. There are many

more variables involved when k is non-zero and when n is an odd integer.

A simple example is as follows. p(x1, x2, y1, y2) = x2
1y

2
1 + x3

2 + 2x3
1y2 . The matrix

representation for the above polynomial is shown in Table 2.3

Since the total number of distinct variables involved is four, the width of the

matrix is 4 and number of monomials equals the length of the matrix. The coefficient

vector is [1 1 2], where the first element of the vector corresponds to the coefficient

11



Table 2.2: Memory Usage for n=6 to 12

n k Memory(MB)
6 4 0.0371

2 0.0520

0 0.2904

7 5 0.6556

3 1.327

1 0.9531

8 6 3.999

4 40.11

2 6.426

0 13.21

9 7 21.61

5 695.4

3 107.42

1 54.22

10 8 113.0

6 11316.24

4 5378.71

2 278.6

0 551.85

11 9 571.32

7 Not Sufficient Memory

5 Not Sufficient Memory

3 3764.01

1 3157.97

12 10 2944.47

8 Not Sufficient Memory

6 Not Sufficient Memory

4 Not Sufficient Memory

2 13973.22

0 24399.43

12



Table 2.3: Symbolic expression to numerical matrix

x1 x2 y1 y2
2 0 2 0
0 3 0 0
3 0 0 1

of row 1 of the matrix and the second element of the vector corresponds to row 2 of

the matrix and so on. This transformation can be automated for any n and k, and

this would be essential especially when the starting polynomials are of large length.

This however has been carried out manually in this thesis.

The starting polynomial which is now in the form of a matrix, is multiplied se-

quentially to polynomials which are functions of xi, yi and xj, yj, and the number of

such polynomials will be the number of distinct combinations of i and j. All these

polynomials are also converted to their matrix form before hand. Since all these poly-

nomials are of the exact same type, except for a change in the variable indices, their

matrix representations will be permutations of each other. The multiplication results

in larger matrices as both the number of distinct variables and number of monomial

terms increases. It is essential to understand the complexity of this algorithm. For

n=12,and k=0 case the length of the matrix representing the polynomial at every

stage is shown in Table 2.5. As can be seen in the algorithm, when all the polyno-

mials which contain a certain pair of variables, usually of the form (xi, yi), have been

multiplied, then that variable pair is removed from the matrix. Hence the columns

containing the exponents of those variables in the matrix are transformed to a dif-

ferent numerical value and the coefficient of the monomials are updated. Due to the

reduction in the number of variables the polynomial is a function of, the number of

columns and rows of the matrix reduces. This is explained using the following simple

example. Let the current polynomial be 3x2
1y1y2x

2
2 + 4x3

1y
2
1y2x

2
2. Let the transforma-

tion be x2
1 → 2!, y1 → 1, x2

2 → 2!, y2
2 → 2 and x3

1 → 3!. The variables are transformed

to the factorial of the exponent. After the transformation the polynomial simplifies

to 54y2x2. At this stage those variables are removed from the matrix representation

of the polynomial. The resultant polynomial has lesser number of terms.

13



Table 2.4: Matrix length for n=10 and k=0

Polynomial Multiplied Size of Matrix
p2 169-by-10
p3 1902-by-10
p4 20561-by-10

Variable Reduction 3321-by-8
p5 16875-by-8
p6 76398-by-8
p7 321118-by-8

Variable Reduction 7875-by-6
p8 24644-by-6
p9 72832-by-6

Variable Reduction 1225-by-4
p10 2987-by-4

Table 2.5: Matrix length for n=12 and k=0

Polynomial Multiplied Size of Matrix
p2 169-by-12
p3 1902-by-12
p4 20561-by-12
p5 216474-by-12

Variable Reduction 29646-by-10
p6 150498-by-10
p7 683163-by-10
p8 2825779-by-10
p9 10975176-by-10

Variable Reduction 195625-by-8
p10 611147-by-8
p11 1788818-by-8
p12 4985644-by-8

Variable Reduction 58996-by-6
p13 143261-by-6
p14 330607-by-6

Variable Reduction 3321-by-4
p15 6913-by-4

Table 2.6: Largest Matrix Size for different n for k=0

n Size of largest matrix
6 231-by-4
8 8899-by-6
10 321118-by-8
12 10975176-by-10

14



Tables 2.4 and 2.5 show the length of the matrix corresponding to the polyno-

mial at that instance. pj’s refer to the polynomial which is multiplied at stage ‘j’.

While Table 2.4 correspond to the matrix sizes during the evaluation of p12,0, table

2.5 correspond to p10,0. The starting polynomial in both cases consists of fourteen

monomials and is a function of twelve variables. Hence it is converted to a matrix of

size 14-by-12. After the multiplication of the polynomial p5, a transformation rule

is applied to a couple of variables and the number of variables the polynomials is

now a function of is reduced by two. Similar reductions in number of variables is

evident from the width of the matrix. It is essential to understand the scaling of the

algorithm for higher values of n. In the Table 2.6, the size of the largest matrix which

occurs in the Algorithm is shown as a function of n for k = 0. The Factor of scaling of

the matrix sizes across two consecutive even numbers is over forty times. Probability

evaluation for most k values for n = 11 and n = 12 was not possible on a single

4GB ram processor due to memory restrictions and hence the computation had to

be carried out in parallel with Star-p. Twelve 4GB ram processors were used for the

computation. This large scaling has indeed been the limiting factor in computation

of the probabilities for larger values of n.

2.2.3 Results

The pn,k values for n = 1 to 11 and certain values for n = 12 and 13 are presented

Table 2.7. In [1], results for pn,k were obtained only for up to n=9. A single processor

with 4GB ram was sufficient to compute some more values for the n=10 and 11 case

with the mathematica code. After obtaining the values for k=1,3,9 and 11 the other

two values for n=11 were obtained by using the result for the expected number of

real eigenvalues in [2] and using the fact that the sum of the probabilities equals one.

For the n=12 and k=4 case, the size of the matrix after the multiplication of the

fourth polynomial is of the order of 5∗109-by-15. The existing set of twelve processors

of 4GB ram each was not sufficient to run this code. Hence probability values for

k = 4, 6 and 8 for n=12 could not be obtained using the code. They were however

calculated using the results 2.7, 2.8 and 2.2. While 2.7 and 2.8 are exact, 2.2 is only

15



a conjecture and hence there is some uncertainty with respect to these three values.

Round-off erro is always an issue once the numbers get very large. The zeros at

the end of pn,k values for the n=12 case cause us to suspect that these values maybe

associated with some round-off error. The IEEE standard provides flags to trap when

the ”INEXACT EXCEPTION” occurs. We are not aware if this is reachable through

MATLAB, but in principle we could know from that flag alone whether any rounding

errors have occurred and what higher precision computations could still be performed

in floating point and reach an exact answer. The values obtained from the MATLAB

code were corroborated with results from the Mathematica code run on a processor

with 128GB RAM.
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Table 2.7: pn,k for n=1 to 12

n k pn,k n k pn,k
1 1 1 1 9 9 1

262144

√
2 0.00000

2 2 1
2

√
2 0.70711 7 −1

65536
+ 5297

2097152

√
2 0.00256

0 1-1
2

√
2 0.29289 5 82347

524288
− 15891

2097152

√
2 0.14635

3 3 1
4

√
2 0.35355 3 −82339

262144
− 1345555

2097152

√
2 0.59328

1 1-1
4

√
2 0.64645 1 606625

524288
− 1334961

2097152

√
2 0.25681

4 4 1
8

0.125 10 10 1
228

√
2 0.00000

2 −1
4

+ 11
16

√
2 0.72227 8 236539

229 − 5
223

√
2 0.00044

0 9
8
− 11

16

√
2 0.15273 6 −236539

227 + 35098479
230

√
2 0.04447

5 5 1
32

0.03125 4 149206217
228 − 105292877

230

√
2 0.41712

3 −1
16

+ 13
32

√
2 0.51202 2 −148733139

227 + 1216831949
230

√
2 0.49453

1 33
32
− 13

32

√
2 0.45673 0 834100651

229 − 1146637039
230

√
2 0.04341

6 6 1
256

√
2 0.00552 11 11 1

228

√
2 0.00000

4 271
1024
− 3

256

√
2 0.24808 9 333213

233 + −160
233

√
2 0.00004

2 −271
512

+ 107
128

√
2 0.65290 7 −20823

227 + 60262315
233

√
2 0.00977

0 1295
1024
− 53

64

√
2 0.09350 5 510394091

231 + −180786305
233

√
2 0.20791

7 7 1
2048

√
2 0.00069 3 −1020121891

231 + 6423679969
233

√
2 0.58254

5 355
4096
− 3

2048

√
2 0.24808 1 10629845251

233 + −6303155851
233

√
2 0.19975

3 −355
2048

+ 1087
2048

√
2 0.65290 12 12 1

233 0.00000

1 4451
4096
− 1085

2048

√
2 0.09350 10 −3

232 + 3781485
241

√
2 0.00000

8 8 1
16384

0.00006 2 8 27511372605
244 − 18907425

241

√
2 0.00155

6 −1
4096

+ 3851
262144

√
2 0.02053 2 6 −27511352125

242 + 126455775487
241

√
2 0.07507

4 53519
131072

− 11553
262144

√
2 0.34599 2 4 6237846960567

243 − 379291696761
241

√
2 0.46523

2 −53487
65536

+ 257185
262144

√
2 0.57131 2 −6182824264509

242 + 356179603371
238

√
2 0.42669

0 184551
131072

− 249483
262144

√
2 0.0621 3 0 1915540686556992

250 + −664725959617024
249

√
2 0.03145

13 13 1
239 0.00000

11 −3
238 + 5396403

246

√
2 0.00000

2Results for k=4,6 and 8 may not be exact because they have been obtained using conjecture 2.2
3The MATLAB code for n=12 and k=0 yielded 1915540686556995

250 + −664725959617025
249

√
2. The dif-

ference in result is due to the round-off error.
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Table 2.8: Times for the n=8 and k=0 case

n Code Type Time(s)
8 Mathematica code 3.41

MATLAB serial code 1 17.76
MATLAB serial code 2 0.1158

10 Mathematica code 258.14
MATLAB serial code 2 3.88

2.2.4 Performance comparison

We use the times for the n=8 and k=0 case as a mode for comparison. Times for the

3 different codes enumerated below are presented in Table 2.8. These codes were run

on an Intel Core 2 Duo 2.66GHz processor with 4GB ram. The mathematica code as

already mentioned before is available in [1]. There are 2 implementations of the serial

MATLAB code, a non-optimized and an optimized version of the same algorithm.

The parts of the code which have been implemented differently alone are shown in

Appendix A.

1. Serial Mathematica Code [1]

2. Serial MATLAB Code before optimization.

3. Serial MATLAB Code after optimization

The starting polynomial for the k=0 case is 1. The polynomial which is to be

multiplied to the starting polynomial to the starting algorithm is represented by the

variable Mat1 in Appendix A. There are three operations which occur repeatedly in

the algorithm. Their implementation has been optimized in the second serial code.

These operations have been numbered segments 1 to 3 in Appendix A. This optimized

implementation has improved the performance significantly.

The first segment shows how the process of polynomial multiplication has been

optimized. Matrix Mat2 represents a polynomial which is multiplied to the polyno-

mial Mat1. Polynomial multiplication is equivalent to the Matrix addition operation

shown in segment 1. The many vector vector additions in the loop are replaced

with one Matrix addition reducing it to a one dimensional loop rather than a two
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dimensional loop which was used in the first serial code. There are a total of 5 such

polynomial multiplications in this code and the same optimization procedure has

been incorporated to all of them. As the length of the matrix gets larger, the one

dimensional reduction of the loop amounts to a very significant reduction in time.

After two polynomials are multiplied which amounts to repetitive addition of

matrices, there are going to be many rows which are equal which represent the same

monomial. Hence these rows are replaced by a single row, and the corresponding

coefficient is obtained by taking the sum of the coefficients of the equal rows. In

the non-optimized code, the rows are initially sorted column-wise and equal rows

are identified one by one. This procedure is shown in Segment 2. This is not an

effective algorithm because row equality is verified only for the next 12 rows and it

involves the use of many for loops. The choice of the number 12 though may appear

random isn’t quite the case. The number has been chosen after some kind of an

optimization procedure. A larger number will increase the number of computations

in the loops but will aid the identification of a greater number of similar rows and

hence reduce the size of the resultant matrix. The opposite will be true for a number

smaller than 12. Taking these 2 contradicting factors into consideration, the number

12 has been chosen. In the optimized serial code, this inefficient algorithm has been

avoided by the use of the sparse command. The row of exponents is split into two

sequence of numbers. Each sequence is considered to be representative of a single

integer in the base of the largest number occurring in the matrix plus one. After

obtaining two integers which are representative of each row in the matrix, the sparse

command is used to combine all rows which have this same set of numbers. This

allows the combination of the coefficients of rows which are equal. This procedure

doesn’t involve the use of “for loops” and the reduction procedure is accurate.

All matrix elements which represent the exponents of the variables in the polyno-

mial are replaced by their specific transformation rule corresponding to the variable

they represent and the value of the exponent. This transformation is shown in seg-

ment 3. The “for loop” which runs along the length of the matrix, has been replaced

by using a logical variable and the transformation can be carried out in a single step.
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It is due to these reasons , that we have been able to obtain a speed-up of almost 100

times. The key differences are enumerated in the following tables. The key difference

has been the removal of multiple “for loops” all through the code.

Significant reduction in time has primarily been obtained through the removal of

the for loops. Hence the usage of “for loops” especially in MATLAB needs to be

avoided. The optimized serial code is about 10 times faster than the mathematica.

A numerical approach is computationally cheaper than a symbolic algorithm. After

we have obtained the optimized serial code, the code is parallelized using the star-p

software. The Star-p software was connected to a cluster with twelve processors. The

parallelized code hasn’t been optimized yet and its results aren’t presented.

2.2.5 Expected number of real eigenvalues

If En denotes the expected number of real eigenvalues of a n-by-n random matrix,

then the Asymptotic number of real eigenvalues is given by equation 2.6.

lim
n→∞

En√
n

=

√
2

π
(2.6)

The expected number of real eigenvalues can be obtained accurately through the

evaluation of the following expression in equation 2.7.

For n even,
n∑
k=0

kpn,k =
√

2

n/2−1∑
k=0

(4k − 1)!!

(4k)!!
(2.7a)

For n odd,
n∑
k=1

kpn,k = 1 +
√

2

(n−1)/2∑
k=1

(4k − 3)!!

(4k − 2)!!
(2.7b)

These results are presented in [2]. In an attempt to obtain the probabilities

for all values of k for a fixed n , its not necessary to evaluate each of them. The

probability is of the form r+s
√

2 and hence has two unknowns, the rational part and
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the irrational part. For the n=11 case, a total of six probabilities need to be evaluated

and this amounts to obtaining twelve unknowns. The sum of all the probabilities for

a fixed ‘n’ equals 1. (equation 2.8 amounts to two equations, as we can equate the

rational part to 1 and the irrational part to 0 ). Similarly the equations governing

the expected number of real eigenvalues also amounts to two equations. Hence at this

stage the task was reduced to the calculation of just four probabilities rather than

six. If more summation formulaes could be obtained, probability evaluation could be

further simplified since the evaluation of actual probabilities is computationally more

expensive.

n∑
k=1

pn,k = 1 (2.8)

Conjectures

In the very first section of this chapter conjectures relating the rational and irrational

parts in equations 2.1 were presented in 2.2,2.3 and 2.4. These results were obtained

by observing the data in the table 2.9. Though a formula to compute the summations

r2,s2,r3 and s3 haven’t been obtained these conjectures relate these summations.

These relations haven’t been proved as yet, and at this stage are backed only by

the data in Table 2.9. As already mentioned before, the first conjecture is only

approximately true for the n=11 case.

2.2.6 Variance of the number of real eigenvalues

Experiments were conducted to predict the asymptotic variance of the number of real

eigenvalues of a random matrix. The variance of the number of real eigenvalues of

a large number of matrices of different sizes are examined in tables 2.10, 2.11, 2.12

and 2.13. The number of random matrices used for the experiment is represented as

“Number of trials” in tables 2.10, 2.11, 2.12 and 2.13.

We can see that the variance normalized with the factor
√
n approximates 0.5.

Based on these results we claim that if σ2
n denotes the variance of the number of real
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Table 2.9: Summation

n r1 + s1

√
2 r2 + s2

√
2 r3 + s3

√
2

1 [1, 0] [0, 0] [0, 0]

2 [0, 1] [0, 1
2
] [0, 0]

3 [1, 1
2
] [0, 3

4
] [0,1

4
]

4 [0, 11
8

] [1
2
, 11

16
] [1

2
, 0]

5 [1, 13
16

] [1
8
, 39

32
] [1

4
, 13

32
]

6 [0, 211
128

] [271
256
, 211

256
] [271

256
, 1

32
]

7 [1, 271
256

] [ 355
1024

, 813
512

] [355
512
, 273

512
]

8 [0, 1919
1024

] [53471
215 ,

1919
2048

] [53471
215 ,

3851
32768

]

9 [1, 2597
2048

] [82335
217 ,

7791
4096

] [82335
216 ,

171505
218 ]

10 [0, 67843
32768

] [18562075
223 , 67843

65536
] [18562075

223 , 35097199
134217728

]

11 [8589934592
233 , 12485787648

233 ] [8158310504
233 , 18728681472

233
] [16316622448

233 ,6724989784
233

]

Table 2.10: Matrix Size 50-by-50

Number of trials Variance (σ2) σ2
√
n

105 3.5876 0.5074
106 3.5823 0.5066
107 3.5866 0.5073

Table 2.11: Matrix Size 100-by-100

Number of trials Variance (σ2) σ2
√
n

105 4.864 0.4864
106 4.981 0.4981
107 4.967 0.4967

Table 2.12: Matrix Size 200-by-200

Number of trials Variance (σ2) σ2
√
n

105 6.9982 0.4949
106 6.9074 0.4884

Table 2.13: Real Eigenvalue distribution of Large sized Matrices

Matrix Size Number of trials Variance (σ2) σ2
√
n

800*800 105 6.9074 0.4824
1000*1000 104 14.9415 0.4725
1000*1000 105 14.9415 0.4756
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eigenvalues of a n-by-n random matrix, then

lim
n→∞

σ2
n√
n

=

√
1

2
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Chapter 3

Eigenvalue Algorithms for sparse

symmetric matrices

3.1 Matrices and Processor used for the algorithms

In this thesis a total of 10 matrices are used for the numerical simulations. Since we

are solving the generalized eigenvalue problem of the form Ax = λBx, two matrices

are required per simulation. The 5 sets of matrices used are shown in Table 3.1

The extension “-n” and “-d” refer to Neumann and Dirichlet boundary conditions.

While the Dirchlet matrices are positive definite, the Neumann matrices are positive

semi-definite with at least one zero eigenvalue. Matrices with the cube keyword refer

to a three dimensional cube of side length 20 voxels and in the case of the ball it

refers to a ball with radius of twenty. From the density(nnz
s2

where ‘nnz’ refers to the

number of non-zeros in the matrix and s is the size of the matrix) column in table

Table 3.1: Size and density of the Square Matrices used for the experiments

Matrix Names Matrix Pair Size(s) Density (%)
cube20-n-A cube20-n-B cube20-n 62181 0.0687
cube20-d-A cube20-d-B cube20-d 50179 0.084
ball20-n-A ball20-n-B ball20-n 738593 0.1056
ball20-d-A ball20-d-B ball20-d 28631 0.1464

qa8fm qa8fk qa8f 66127 0.038
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3.1 its quite clear that all the matrices we are dealing with are very sparse. The mass

and stiffness matrix qa8fm and qa8fk were downloaded from the Tim Davis matrix

collection and more details about these matrices can be found at [14]. These matrices

are of the largest size but much sparser than the rest. The two matrices which are

used for a single problem are presented in each line of the table 3.1. They constitute

a matrix pair and will be referred that way for the rest of the thesis. Figure 5-2,

5-3 and 5-1 shows the sparsity pattern of the matrices ball20-d-A, cube20-n-A and

qa8fm. The sparsity pattern of the all the Dirichlet matrices used in this thesis are

identical. Hence the figure 5-2 will serve to be representative of all Dirichlet matrices.

The same is true for the the Neumann matrices as well.

All the codes used in this thesis, can be easily parallelized using the message

passing interface which is already incorporated in the codes. These codes were run

on a single Intel Core 2 Duo 2.66 GHz processor with 4GB ram.

3.2 BlockDavidson

The Davidson method is an eigenvalue technique aimed at computing a few of the

extreme (i.e., leftmost or rightmost) eigenpairs of large sparse symmetric matrices.

This method has gained quite an interest in quantum chemistry where it emanated.

However, for the classical Davidson method to be suitable, the matrix dealt with

must be strongly diagonally dominant (in the sense that its eigenvectors are close

to the canonical vectors). The algorithm then uses the diagonal as preconditioner.

Other single and block versions of the Davidson method have already been inves-

tigated, with numerical results and comparisons of different variants. For instance,

Liu [3] and Kosugi [4] have suggested block versions of the Davidson method and a

resulting implementation was proposed in Stathopoulos and Fisher [5]. A number of

other implementations of the classical Davidson method have been published, see, for

example, Weber et al. [6] and Cisneros and Bunge [7]. However, these cited works,

unlike the study done here, are confined to a diagonal-type preconditioning. They

do not consider general user-supplied preconditioners, nor do they incorporate de-
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flation and locking. A block version of the Davidson method has been implemented

in Trilinos. In [11] various multilevel preconditioners are employed to improve the

convergence and memory consumption of the JacobiDavidson algorithm and of the

locally optimal block preconditioned conjugate gradient (LOBPCG) method. This

algorithm has been implemented with both the ML based preconditioner and INV

preconditioner as mentioned in the introductions section.

Block Davidson Algorithm

1. apply Preconditioner N to the current residual: H = NR

2. use H to expand the current basis V

3. use new V to compute a projected eigenproblem

4. solve the projected eigen problem and form the Ritz vectors X and the Ritz

values φ

5. compute the new Residuals R

In implementing the block Davidson method, this iteration repeats until the basis

V is full (in which case it is time to restart) or some stopping criterion has been

satisfied.

3.2.1 Eigenvalue computation times for varying block size

and number of blocks

Its essential to understand how greatly the preconditioners affect the performance

of the algorithm in the computation of eigenvalues. We present in Figure 5-4 the

computation times of eigenvalues for the following 2 methods.

1. Block Davidson algorithm with Multi-Level Preconditioner.

2. Block Davidson algorithm without any Preconditioner.

Its apparent from the figure 5-4 that in the presence of a preconditioner, the

algorithm takes an order of magnitude less to compute the eigenvalues. The results
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have been presented only for the cube20-d matrix pair. Similar results were observed

for the other matrix pairs and has confirmed the significant improvement of the

performance of the algorithm in the presence of a preconditioner. In the figure 5-4,

associated with every eigenvalue is only one time for computing those many number

of eigenvalues (Nv). For every Nv, associated with the different Block Sizes (Bs) and

the Number of Blocks (Nb), there are many corresponding computation times. The

data presented in the figure is the least of these computation times in a sense the

point of optimality.

Block Davidson Algorithm with the ML Preconditioner

Understanding the performance of the algorithm as a function of the parameters

Bs and Nb is key to this thesis and is presented in every section for all the three

algorithms. The eigenvalue computation times for varying Bs and Nb is shown in

figures 5-5 and 5-6. Figure 5-5 and 5-6 shows the times for computing 10 and 25

eigenvalues respectively. From these figures, it is clear that there exists an optimal

set of values for Bs and Nb at which the computation time is minimum. However

since the times have been plotted only for discontinuous values of Bs and Nb, where

adjacent values plotted differ by a magnitude of 5, it isn’t possible to obtain the exact

point of minima. However based on the trends from the figures 5-5, 5-6, 5-11 and 5-12

it is reasonable to claim that the optimal point occurs in the range of the Bs and Nb

used in these figures. The extreme values for Bs is the number of requested eigenvalues

on the lower side and extreme values of Nb are 10 and 40. For values of Bs, lower

than Nv, the algorithm did not converge. The basis for the claim is the fact that the

optimal point is enclosed between the extreme bounds of the parameter. For higher

values of Nb, immediately outside the bound the computation time increases in most

cases and for further outside the bound, computation isn’t possible due to additional

memory requirements. The same is true for values greater than the maximum Bs

value used in the figures corresponding to each Nv. For the purpose of this thesis,

the least computation time in each of the graphs will be referred to as the optimal

computation time. This exercise was carried out for different values of number of
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eigenvalues (NV) and the optimal point from all those graphs were used in the figure

5-4. So in actuality we are comparing the best times for computing a certain number

of eigenvalues by both the methods.

Similar results are presented for the Cunningham matrix. Though the matrix is

larger in size, its more sparse than cube20-d matrix pair. Just as with the cube20-d

matrix pair, the eigenvalue computation times for varying block sizes and number of

blocks is shown in figures 5-7 and 5-8.

Block Davidson Algorithm with the INV Preconditioner

Just like the results for the blockdavidson algorithm with the ML Preconditioner was

presented in figures 5-6 and figure 5-5 in the earlier section, the corresponding values

for the INV Preconditioner for the ball20-d matrix pair is presented in figures 5-11

and 5-12. The preconditioner of the generalized eigenvalue problem will take the

form A−1B. Hence after computing the exact inverse using the Amesos-Klu method,

matrix B is applied to the inverse. The existence of an optimal set of values in this

case also is clearly visible from these figures. The extreme values for Bs and Nb are

the same as that in the previous subsection. The algorithm was found to converge

for Bs < Nv. However this din’t occur for all values of Nb in the range. Hence they

haven’t been presented. For the ball20d matrix pair, the optimal time occurs for

Bs < Nv. These results haven’t been presented in this section. However the optimal

time will come into consideration in the last section of this chapter. The results for

the same Cunningham matrix as in the previous section with the INV-Preconditioner

is presented in Figures 5-9 and 5-10.

Neumann Matrices

There are three matrix pairs with at least one zero eigenvalue. Both the Neumann

matrix pairs and the qa8f matrix pair. Eigenvalue computation results for the qa8f

matrix pair has been shown in the previous sections. For the cube20-n matrix pair, the

block Davidson algorithm with the ML Preconditioner is unable to compute more than

20 eigenvalues. We have arrived at this conclusion after waiting for almost ten times
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Table 3.2: Computation time for 30 eigenvalues for varying block size and block
number for the “INV case”

Nb 10 12 15
Bs

30 Doesn’t Converge in > 600 s 143.67s Doesn’t Converge in >600 s
35 Doesn’t Converge in > 600 s 156.62 Doesn’t Converge in > 600 s

the amount of time which the other algorithms took to compute the same number

of eigenvalues. Though it may be possible that a larger waiting time may eventually

calculate the eigenvalues, from an application point of view that verification isn’t

important since other algorithms have been able to obtain the eigenvalues in much

less time. The results for this matrix pair with the INV Preconditioner is presented

in Table 3.2.

Results for the cube20-n matrix have been difficult to obtain. For Nv=30, for each

block size, the following Number of Blocks were considered 10,12 and 15. The algo-

rithm was found to converge only for Nb=12. A certain minimum value for Number

of Blocks is required for the Algorithm to converge. Usually when the Number of

Blocks is too large for the machine too handle, then it throws a memory error. In this

case for values larger than 12, we don’t find the algorithm producing any eigenvalues.

The time for computing the INV Preconditioner is 647 seconds. Even though the

algorithm was found to converge only for one value of Nb in the range considered, it

is quite reasonable to conclude that 790.67 seconds is close to the optimal value for

the total time.

For the ball20-n matrix pair, just like in the previous case, the algorithm was un-

able to compute large number of eigenvalues. when the algorithm was implemented

with the ML Preconditioner. However no such problems were faced when the algo-

rithm with the INV Preconditioner was used to calculate the eigenvalues. The results

for this matrix with the INV preconditioner are presented in figure 5-14. Though

the eigenvalues can be computed for Bs < Nv, the algorithm doesn’t converge for all

values of Nb. Hence these values haven’t been presented in the figure 5-14. However

the point of optimality does occur for values of Bs < Nv which are not in the figure.
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Bs has to be greater than a certain threshold value for each Nv to be able to compute

the required number of eigenvalues.

3.2.2 Locking

If a Ritz value θ has converged (meaning ‖Ax− xBθ‖ < εD) and is thought to be a

member of the wanted set of eigenvalues, we wish to declare it converged, decouple

the eigenpair (x, θ), and continue to compute remaining eigenvalues with no further

alteration of x or θ. This process is called locking. More about deflation and locking

mechanisms can be found at [15]. As mentioned in the introductory section, Trilinos

enables the use of locking mechanisms. The block davidson algorithm implemented

on the qa8f matrix pair, were of two types, one with locking and one without. Fig-

ure 5-13 show the effects of incorporating the locking mechanism into the algorithm.

The optimal time for computing a certain number of eigenvalues are presented in

the figures. The performance with locking is far superior to the one without. The

effect of locking is more prominent for this matrix pair than for the cube20-d matrix

pair. About locking, there is a significant improvement in performance only when

the matrix pair has a zero eigenvalue. The effect of locking is also significant in

the cube20n-A matrix pair. With so many parameters, its possible to improve com-

putation times for eigenvalues by large magnitudes. Combination of these varying

techniques which are otherwise individually present in Trilinos, is the focus of this

chapter of the thesis.

Locking mechanism has been incorporated to all algorithms. In order to solve the

neumann matrices, it was essential to incorporate this mechanism into the algorithm.

Also while adjusting the parameters, the Block Davidson and LOBPCG Algorithm

can compute eigenvalues for Bs < Nv only with the locking mechanism.

3.2.3 Comparing Preconditioners

In the beginning of this section, the performance of the blockdavidson algorithm with

and without a preconditioner were compared and the comparison highlighted the
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function of preconditioners in improving the performance significantly. Now we seek

to compare the conditions under which the different preconditioners discussed in the

earlier section are more effective. From the figure 5-15, it is clear that the ML-Prec

method is more effective when the number of eigenvalues requested isn’t very large

and the INV method is more effective in the other eigenvalue regime. The accurate

inverse preconditioner takes a lot of time to be built in comparison to the ML based

preconditioner. However time for solving for the eigenvalues is lesser in the INV Prec

case. For this matrix pair, from the slope of two graphs in figure 5-15, it is clear

that after a certain number of eigenvalues, the ML method will take more time to

compute the eigenvalues. The large preconditioner build time, is compensated by

the quick estimation of the eigenvalues. An important concern of this method, is

that it gets very difficult to compute the inverse when the matrix is not very sparse.

Since the matrix we are using has a very small density of “0.084” , this method

turns out to be superior for the estimation of a large number of eigenvalues. The

results for the qa8f matrix pair presented in 5-17 are quite different from those of

the other two matrices. The time for computing the INV Preconditioner takes about

177 seconds and the corresponding value for the ML Preconditioner is about 0.5

seconds . Also unlike in the figures 5-15 and 5-16, the slope of both the lines are

approximately equal. This implies that even when we seek to compute larger number

of eigenvalues, the performance with the ML Preconditioner is superior to that with

the INV Preconditioner. An explanation for why an accurate matrix inverse is less

efficient than an approximate one is difficult to explain. The extreme sparsity of the

matrix could be responsible for this odd behavior.

3.3 Block KrylovSchur

The KrylovSchur method belongs to the implicit restart category, i.e., the restart-

ing vector is obtained not by explicit polynomial filtering but by implicit filtering.

Sorensen [3] achieved the implicit polynomial filtering by utilizing the property of

the shifted QR algorithm. A general rule on block methods based on Krylov-type
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decompositions, e.g., block Lanczos or Arnoldi decomposition, is that a large block

size does not yield good efficiency. Besides hardware concerns (different cache size for

different architecture, etc), and the already mentioned less significant gain for a block

method on the matrix-vector products for large sparse matrices, we point out that in

a restarted Krylov subspace method, if the maximum degree of the Krylov polynomial

of a single vector method is kdeg, then the maximum degree of the Krylov polyno-

mial of a block size b method using the same dimension subspace is floor(kdeg/b. If

b is relatively large, it means the block method always applies a low degree Krylov

polynomial, which may be rather inefficient for the Krylov subspace method. Just

like in the block Davidson case, this algorithm is also implemented in Trilinos with

the provision to modify all the parameters discussed above.

3.3.1 Results

An important objective of this thesis is to compare the various algorithms and which

is more suited for the matrices in consideration. We begin with the results of the

block KrylovSchur Algorithm, for the dirichlet matrices. In order to reduce redun-

dancy, we present only one set of results for INV Preconditioner case. The eigenvalue

computation times for 10 and 25 eigenvalues vs Number of Blocks for different Block

Sizes with the INV Preconditioner is shown in 5-18 and 5-19respectively. While 5-18

corresponds to the ball20d matrix pair, figure 5-19 presents the results for the cube20d

matrix pair.

During the course of the Algorithm, the matrix equation in 3.1 needs to be solved

using an iteration technique. A refers to the first matrix in the matrix pair, and b is the

right hand side which is created during the course of Algorithm. This system can be

solved using a direct factorization by obtaining the accurate matrix inverse using the

“Amesos-Klu” method or by estimating an approximate matrix inverse using the the

“ML method”. The advantages in either case has already been explained in previous

sections. In this thesis, the results are presented only for the INV Preconditioner

case.

Ax = b; (3.1)
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After presenting the results for the dirichlet matrices, we proceed to present the

results for Neumann matrices ball20-n and cube20-n matrices. The Neumann matrices

has at least 1 zero eigenvalue. The eigenvalue computation times for the Neumann

matrices is plotted in figure 5-20 and 5-21. These results are similar to the results for

the ball20d-matrix pair. There exists optimal values at which the computation time

is minimal. Increase in the block size, does improve the performance. An increase in

number of blocks improves the performance until a certain value, following which the

computation time increases. The striking feature of these figures is that fact that,

the least computation time occurs for very small values of Bs.

For the ball20-n matrix pair, we can see that the values of Nb begin from 10

in both the graphs 5-20 and 5-21. The computation times for Nb=5 haven’t been

included in the graph, since the algorithm did not converge for the Bs=2 case. Those

results are presented in Table 3.3. Even for Bs = 5 and 10, it takes a lot of time to

compute the eigenvalues because the resulting basis size is quite small. However the

small basis size alone can’t explain the the reason for large computation time since

by using a different combination of Bs and Nb, even though the resulting basis was

only 15, the computation time was around 27 seconds. However the only thing which

can be concluded from these experiments is that, a certain minimum basis size is

required, to be able to compute the required number of eigenvalues.

For the cube20-n matrix pair, the results are shown in Table 3.4. The size of the

matrices are larger than the Dirichlet matrices and hence for Nb = 25 and greater, the

memory is insufficient for Bs >= 30. Similarly when Bs = 40, memory is insufficient

when Nb exceeds 20. Also for Nb <= 10, the algorithm takes a very long time to

converge (effectively indeterminant). This implies that a certain minimum number

of blocks are required to obtain the eigenvalues in less than three minutes. The least

time required to compute 30 eigenvalues is about 130.15 seconds. Computation of the

inverse takes 646 seconds and hence the total time required is 776.15 seconds which

closely compares to the total time taken by the block Davidson Algorithm.
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Table 3.3: Computation time for 10 eigenvalues for ball20-n with Nb = 5

Block Size Time Basis Size
2 Doesn’t Converge
5 262.59 25
10 535.09 5
15 279.68 15

Table 3.4: Computation time for 30 eigenvalues for cube20n with BK algorithm

Nb 10 15 20 25
Bs

30 Doesn’t Converge in > 600 s 130.15 180.73 MI
40 Doesn’t Converge in > 600 s 177.35 Memory Insufficient(MI) MI

3.4 LOBPCG-Locally optimal Block Pre-conditioned

Conjugate Gradient Method

The LOBPCG method has recently attracted attention as a potential competitor

to the Lanczos and Davidson methods due to its simplicity, robustness and good

convergence properties. In LOBPCG for computing a single eigenpair of the pencil A-

λB, the new iterate is determined by the Rayleigh Ritz method on a three-dimensional

subspace, which includes the previous iterate in addition to the current iterate and

the preconditioned residual T(Ax-λBx). Since the Algorithm doest depend on the

number of blocks the variation of eigenvalue computation time is plotted only with

different block sizes. We can see a significant improvement in computation time as we

increase the block size over the number of requested eigenvalues especially for large

number of eigenvalues.

3.4.1 Results

In this section the LOBPCG algorithm coupled with the ML and INV preconditioner

is used to compute the eigenvalues for the same set of matrices. Figure 5-22and 5-23

shows the effect of block size variation for different values of Nv for the cube20-d and

ball20-d matrix respectively with the ML Preconditioner. Figures 5-24and 5-25 shows
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Table 3.5: Computation time for 30 eigenvalues for varying block size for INV Case”

Block Size
Preconditioner Type 30 40

INV 640 + 718.39 = 1358.39 640+963.28 = 1603.28
ML 0.6+748.22=748.82 0.6+1015.41 = 1016.01

the effect of block size variation for different values of Nv for the cube20-d and ball20-

d matrix respectively with the INV Preconditioner. These plots are quite different

from the others. The values on the horizontal axis is a function of the variable Nv ,

the number of eigenvalues which are computed. For Nv=5, the computational times

are for Bs = 5,10 and 15. Similarly for Nv=20, the corresponding Bs values are

20,25 and 30. For all the figures, the reduction in computation times as the block

size is increased is quite significant for larger number of eigenvalues. There isn’t

significant reduction in computation time for the Nv = 5 eigenvalues case. In the

previous section for the Block KrylovSchur Algorithm, we observed that the optimal

time was obtained for very small values of Bs. This algorithm also converges to some

of the eigenvalues for these small value of Bs, however it is unable to compute all the

required eigenvalues. Hence the optimal computation time is obtained for values of

Bs > Nv.

LOBPCG algorithm takes over twelve minutes to compute 30 eigenvalues for the

cube-20-n matrix pair as shown in Table 3.5. The results don’t improve for increasing

values of Block Size. The two times refer to the time for computing the preconditioner

which in this case is the inverse of the matrix and the time, for actually computing

the eigenvalues. The cumulative time is larger for the “INV case”.

3.5 Comparison of the 3 Algorithms

The results for the 3 Algorithms with the Inverse preconditioner have been shown in

Figures 5-26, 5-27 and 5-28. In terms of time, the block KrylovSchur Algorithm is

superior to the other two algorithms for these set of matrices. In order to obtain the

optimal time for the computation of a certain number of eigenvalues, the eigenvalues
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are computed for a variety of Block Sizes(Bs) and Number of Blocks (Nb). Due to

time constraints, only discontinuous values of Bs and Nb were considered. While

comparing the computation times for a fixed Nv and the same Bs and Nb, all 3

algorithms perform on par with each other. For the Block Krylov Schur Algorithm,

the optimal computation time for Nv = 5 to 20 occurs at Bs = 2 and for Nv > 20

occurs at Bs = 3. The Block Davidson algorithm is unable to converge to the required

number of eigenvalues for this small value of Bs and the LOBPCG algorithm is unable

to compute all the eigenvalues for these small values of Bs. The Block Davidson

algorithm produces the eigenvalues for all values of Nb when the Bs is greater than

or equal to Nv. For values of Bs lesser than Nv, though for some values of Nb, it

produces the optimal computation times, for other values of Nb it doesn’t converge

to the eigenvalues at all. Another important aspect which needs to be taken into

consideration is that the fact, the eigenvalues are computed only for discontinuous

set of Bs’s and Nb’s. Hence the optimum time shown for each Nv, might not be the

exact optimum time as explained in the earlier section.
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Chapter 4

Conclusion and Future Work

In the chapter titled “On the computation of probabilities associated with real eigen-

values of random matrices” , the symbolic algorithm used to calculate the probability

pn,k that ‘k’ real eigenvalues of a random matrix are real was implemented as a purely

numerical one. The numerical algorithm helped make computation cheaper, improved

computation times and enabled the computation of pn,k for higher values of ‘n”.

Star-p, a parallel computation platform was used to calculate pn,k. It was con-

nected to a total of twelve 4GB processors. All probability values for n <= 11 have

been obtained exactly. However for n = 12, all the probability values have not been

obtained. Both the MATLAB code run on the parallel platform and the mathematica

code run on a processor with 128GB ram of memory were not able to compute the

probability values for n = 12 and k = 4, 6 and 8. These values have been obtained

however with the use of conjecture 2.2. Hence the exactness of the probability val-

ues aren’t known at this stage, even though the decimal equivalent of these results

match the answers obtained through a numerical simulation procedure. The algo-

rithm doesn’t scale linearly and hence even with the use of thirty dual processors,

almost a fivefold increase in memory availability, further evaluations were not possi-

ble with the MATLAB code. For the n=12 and k=4 case, the matrix which needs to

be stored is of size 5.4 ∗ 109-by-15. The largest matrix which can be stored with the

current available hardware consisting of 12 dual processors is of the order of 8∗107-by-

15. Based on this we require almost thirty times the number of processors which are
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currently available. However obtaining superior hardware and greater memory isn’t

the way to move forward. Though an expression to exactly compute the probabilities

is now available, simplifying this expression to enable cheaper computation of the

probabilities will be an important aspect of the future work. Just like we managed

to parallelize the MATLAB code, to be able to do the same with the Mathematica

Code would be very helpful for further calculation.

The largest odd number which can be stored in MATLAB without round-off error

is 252 − 1. However some of the numbers which occur during the course of the evalu-

ation for the n=12 case, are a product of a power of two and odd numbers exceeding

252. Hence there is round-off error associated with the storage of these values. The

result for the n=12 and the k=2 case, obtained through the MATLAB code is verified

by running the Mathematica code. Up to the n=11 case, there is no round-off error in

the probability values. Some of the calculations in the MATLAB code involves over

fifty million floating point operations. Since all the fractions are dyadic rationals(

rational numbers with power of 2 in the denominator), this computation was possi-

ble. In the presence of quad precision, the computation which at this stage has been

achieved only for up to n < 12 without round-off error can be extended to higher

values of ‘n’.The use of quad precision will be necessary to calculate the probability

values for larger n, since we will come across numbers of larger magnitude. Also

through the incorporation of the ”INEXACT EXCEPTION” flag, we will be able to

determine whether and where the round-off error occurs.

Theorems are always very useful and open new channels of research. In similarity

to the result for the expected number of real eigenvalues which was obtained in the

paper [2], the results pertaining to the variance of the real number of eigenvalues and

the summations in Equations 2.1 will prove to be useful. These equations have been

helpful in enabling the computation of probabilities through the solving of a simple

system of linear equations to find the unknowns rather than the actual estimation of

the probabilities for all values of k for a fixed n. The conjectures if proved will serve

the cause of providing 2 more equations to enable the computation of the eigenvalues.

More such summation results for higher powers of k will prove to be very useful for
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the same purpose as well. These conjectures haven’t been used as yet for probability

estimation as there would be uncertainty associated with the obtained probability

values. Future research will focus on proving these conjectures.

In the chapter titled “Eigenvalue Algorithms for sparse symmetric matrices”, the

eigensolver algorithms were analyzed with many different parameters. The experi-

ments have enabled us to make certain key observation. The computation times are

expected to decrease with increasing Bs and Nb. As the number of blocks are in-

creased for a fixed Block Size, the decrease in eigenvalue computation time occurs till

a certain value of Nb after which the time for computation increases The reverse trend

for larger number of blocks could be due to the fact that more memory is required,

due to the storage of a larger number of basis vectors. This could cause a considerable

decrease in performance especially because the matrices we are dealing with are quite

large in size.

The computation times for the Block Krylov Schur method in most cases is lesser

than that of the Block Davidson and LOBPCG algorithms. This is because this

method has been able to converge to the eigenvalues for very small Block Sizes as

well. The advantage of a preconditioner has been well understood. When the target is

to compute a large number of eigenvalues in our case, a large Nb improves performance

significantly. The LOBPCG Algorithm is independent of the Nb parameter and we

see that there is improvement in computation time as the Bs exceeds Nv.

The advantages of locking are very significant. The Block Davidson and LOBPCG

algorithm have been able to compute the eigenvalues for the Neumann matrices only

after they have been incorporated with the locking mechanism. Also in the subsection

locking, the benefits of locking to solve the qa8f matrix pair which has one zero

eigenvalue has been demonstrated. For the cube20-n matrix pair, computation of the

eigenvalues was possible for very selected combinations of Bs and Nv.

The code for the Block Krylov Schur method with the ML Preconditioner hasn’t

been completed. At this stage the LOBPCG Algorithm with the ML Preconditioner

seems to be most optimal for computing 30 eigenvalues. However for larger number

of eigenvalues, its possible that the methods based on the INV Preconditioners will
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perform better. Completion of the above mentioned code will also enable further

comparisons.

All the analysis in this thesis has been done for computing the smallest eigenval-

ues of the matrix. Computation of the other extreme eigenvalues is also important

and will constitute a significant part of future work . As already mentioned in the

introduction section, there are a decisions abound in implementing this algorithm, the

size of the computed basis, if and how the method is restarted and the convergence

criterion for the algorithm. Another avenue for future research is studying the effect

of the above parameters on the performance of the algorithms.
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APPENDIX A

% Matrix Representation of the polynomial

Mat1=[ 1 1 0 0 2 0 0 0;

1 1 0 0 0 2 0 0;

3 1 0 0 0 0 0 0;

1 3 0 0 0 0 0 0;

2 2 0 0 0 0 0 0;

2 0 0 0 2 0 0 0;

2 0 0 0 0 2 0 0;

0 2 0 0 0 2 0 0;

0 2 0 0 2 0 0 0;

0 0 0 0 2 2 0 0;

4 0 0 0 0 0 0 0;

0 4 0 0 0 0 0 0;

0 0 0 0 4 0 0 0;

0 0 0 0 0 4 0 0];

% Coefficient Vector

a=[ -4 -4 -4 -4 6 2 2 2 2 -2 1 1 1 1];

%--Multiplication of polynomial Mat1 to polynomial Mat2-Segment 1----------

for i=1:14

for j=1:14

fin_exp2(14*(i-1)+j,:)=Mat1(i,:)+Mat2(j,:);

fin_coeff(14*(i-1)+j)=a(i)*a(j);

end

end

% Optimized Code
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for j=1:14

fin_exp2(i*(j-1)+1:i*j,:)=Mat1+ones(i,1)*Mat2(j,:);

fin_coeff2(i*(j-1)+1:i*j)=a*a(j);

end

%--------------------------------------------------------------------------

%-------------Compression of the matrix-Segment 2--------------------------

[e,I]=sortrows(e,[1 2 3 4 5 6 7 8]); coeff=coeff(I);

[exp,c,len]=compresss1(coeff,e);

for i=1:len

for j=i+1:i+12

if j<len+1

if (e(i,:)==e(j,:) )

coeff(i)=coeff(i)+coeff(j);

coeff(j)=0;

end

end

end

end

t=1;

for i=1:len

if abs(coeff(i))~=0

exp(t,:)=e(i,:);

c(t,1)=coeff(i);

t=t+1;

end

end

len=length(exp);

%--------------------------------------------------------------------------
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%-----------------------Optimized Code-------------------------------------

q=size(fin_exp,2)/2;

hash1=fin_exp(:,1:q)*(13.^(q-1:-1:0)’)+1;

hash2=fin_exp(:,q+1:2*q)*(14.^(q-1:-1:0)’)+1;

x=zeros(90,1);

x(48:57)=0:9;

x(65:90)=10:35;

sparsec1=sparse(hash1,hash2,fin_coeff);

[i1,j1,c1]=find(sparsec1);

i1=dec2base(i1-1,13);j1=dec2base(j1-1,14);

c=c1;

expo=zeros(length(c1),2*q);

expo(:,1:q)=x(i1+0);

expo(:,q+1:2*q)=x(j1+0);

len=size(expo,1)

%--------------------------------------------------------------------------

%------------Replacing Matrix exponents-Segment 3--------------------------

for i = 1:len

j=1;

if mod(exp(i,j),2)~=0

exp1(j,1:2,1:2)=0;

else

exp1(j,1:2,1:2)=eye(2)*dfact(exp(i,j)-1)/2^(exp(i,j)/2);
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end

j=b;

if exp(i,j)==1

exp1(j,1:2,1:2)=(0.5*(-eye(2)+a2));

else

switch exp(i,j)

case 3

exp1(j,1:2,1:2)=(0.5*(eye(2)-ia));

case 5

exp1(j,1:2,1:2)=-eye(2)+ 1.75*ia;

case 7

exp1(j,1:2,1:2)=-3*(-eye(2)+ 1.125*ia);

case 9

exp1(j,1:2,1:2)= 12*(-eye(2)+1.671875*ia);

end

end

c1(i,:,:)=squeeze(exp1(1,:,:))*squeeze(exp1(b,:,:))*squeeze(c(i,:,:));

end

%--------------------------------------------------------------------------

%--------------Optimized Code----------------------------------------------

j=1;

for l=0:12

M1 = (exp(:,j)==l);

if mod(l,2)~=0

expa(M1)=0;

else

expa(M1)=dfact(l-1)/2^(l/2);
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end

end

j=5;

M1 = (exp(:,j)==1);

expb1(M1)=-0.5;

expb2(M1)=0.5;

M1 = (exp(:,j)==3);

expb1(M1)=0.5;

expb2(M1)=-0.25;

M1 = (exp(:,j)==5);

expb1(M1)=-1;

expb2(M1)=0.875;

M1 = (exp(:,j)==7);

expb1(M1)=3;

expb2(M1)=-1.6875;

M1 = (exp(:,j)==9);

expb1(M1)=-12;

expb2(M1)=10.03125;

%--------------------------------------------------------------------------
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Chapter 5

Figures

Figure 5-1: Element Distribution in Matrix qa8fm
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Figure 5-2: Element Distribution in Matrix ball20-d-A

Figure 5-3: Element Distribution in Matrix cube20-n-A
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Figure 5-4: ML and No Preconditioner comparison for cube20-d
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Figure 5-5: ML for NV=10 cube20-d
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Figure 5-6: ML for NV=25 cube20-d
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Figure 5-7: ML for NV=10 qa8f
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Figure 5-8: ML for NV=25 qa8f
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Figure 5-9: INV for NV=10 qa8f
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Figure 5-10: INV for NV=25 qa8f
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Figure 5-11: INV for NV=10 ball20-d
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Figure 5-12: INV for NV=25 ball20-d
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Figure 5-13: With/without Locking with ML Preconditioner for the Cunningham
Matrix
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Figure 5-14: INV for NV=25 ball20-n
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Figure 5-15: ML and INV comparison for cube20-d
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Figure 5-16: ML and INV comparison for ball20-d
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Figure 5-17: ML and INV comparison for ball20-d
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Figure 5-18: INV for NV=10 ball20-d
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Figure 5-19: INV for NV=25 cube20-d
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Figure 5-20: INV for NV=10 ball20-n
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Figure 5-21: INV for NV=25 ball20-n
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Figure 5-22: LOBPCG Times for different NV varying with Block Size for cube20-d
with ML
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Figure 5-23: LOBPCG Times for different NV varying with Block Size for ball20-
with ML
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Figure 5-24: LOBPCG Times for different NV varying with Block Size for cube20-d
with INV

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

Block Size= NV+value on the x axis

T
im

e(
s)

LOBPCG Times for different NV varying with Block Size for ball20−d

 

 
NV 5
NV 20
NV 30
NV 40

Figure 5-25: LOBPCG Times for different NV varying with Block Size for ball20-d
with INV
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Figure 5-26: Comparison of the 3 Algorithms for the ball20-d matrix pair with INV
Preconditioner
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Figure 5-27: Comparison of the 3 Algorithms for the cube20-d matrix pair with INV
Preconditioner
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Figure 5-28: Comparison of the 3 Algorithms for the ball20-n matrix pair with INV
Preconditioner
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