14 research outputs found

    Random groups and Property (T): \.Zuk's theorem revisited

    Full text link
    We provide a full and rigorous proof of a theorem attributed to \.Zuk, stating that random groups in the Gromov density model for d > 1/3 have property (T) with high probability. The original paper had numerous gaps, in particular, crucial steps involving passing between different models of random groups were not described. We fix the gaps using combinatorial arguments and a recent result concerning perfect matchings in random hypergraphs. We also provide an alternative proof, avoiding combinatorial difficulties and relying solely on spectral properties of random graphs in G(n, p) model.Comment: v2: minor correction

    Monochromatic cycle covers in random graphs

    Full text link
    A classic result of Erd\H{o}s, Gy\'arf\'as and Pyber states that for every coloring of the edges of KnK_n with rr colors, there is a cover of its vertex set by at most f(r)=O(r2log⁥r)f(r) = O(r^2 \log r) vertex-disjoint monochromatic cycles. In particular, the minimum number of such covering cycles does not depend on the size of KnK_n but only on the number of colors. We initiate the study of this phenomena in the case where KnK_n is replaced by the random graph G(n,p)\mathcal G(n,p). Given a fixed integer rr and p=p(n)≄n−1/r+Δp =p(n) \ge n^{-1/r + \varepsilon}, we show that with high probability the random graph G∌G(n,p)G \sim \mathcal G(n,p) has the property that for every rr-coloring of the edges of GG, there is a collection of fâ€Č(r)=O(r8log⁥r)f'(r) = O(r^8 \log r) monochromatic cycles covering all the vertices of GG. Our bound on pp is close to optimal in the following sense: if pâ‰Ș(log⁥n/n)1/rp\ll (\log n/n)^{1/r}, then with high probability there are colorings of G∌G(n,p)G\sim\mathcal G(n,p) such that the number of monochromatic cycles needed to cover all vertices of GG grows with nn.Comment: 24 pages, 1 figure (minor changes, added figure

    Combinatorial Algorithm for Restricted Max-Min Fair Allocation

    Get PDF
    We study the basic allocation problem of assigning resources to players so as to maximize fairness. This is one of the few natural problems that enjoys the intriguing status of having a better estimation algorithm than approximation algorithm. Indeed, a certain configuration-LP can be used to estimate the value of the optimal allocation to within a factor of 4 + Δ. In contrast, however, the best known approximation algorithm for the problem has an unspecified large constant guarantee. In this paper we significantly narrow this gap by giving a 13-approximation algorithm for the problem. Our approach develops a local search technique introduced by Haxell [Hax95] for hypergraph matchings, and later used in this context by Asadpour, Feige, and Saberi [AFS12]. For our local search procedure to terminate in polynomial time, we introduce several new ideas such as lazy updates and greedy players. Besides the improved approximation guarantee, the highlight of our approach is that it is purely combinatorial and uses the configuration-LP only in the analysis

    Combinatorial Optimization

    Get PDF
    Combinatorial Optimization is an active research area that developed from the rich interaction among many mathematical areas, including combinatorics, graph theory, geometry, optimization, probability, theoretical computer science, and many others. It combines algorithmic and complexity analysis with a mature mathematical foundation and it yields both basic research and applications in manifold areas such as, for example, communications, economics, traffic, network design, VLSI, scheduling, production, computational biology, to name just a few. Through strong inner ties to other mathematical fields it has been contributing to and benefiting from areas such as, for example, discrete and convex geometry, convex and nonlinear optimization, algebraic and topological methods, geometry of numbers, matroids and combinatorics, and mathematical programming. Moreover, with respect to applications and algorithmic complexity, Combinatorial Optimization is an essential link between mathematics, computer science and modern applications in data science, economics, and industry

    Matchings and Flows in Hypergraphs

    Get PDF
    In this dissertation, we study matchings and flows in hypergraphs using combinatorial methods. These two problems are among the best studied in the field of combinatorial optimization. As hypergraphs are a very general concept, not many results on graphs can be generalized to arbitrary hypergraphs. Therefore, we consider special classes of hypergraphs, which admit more structure, to transfer results from graph theory to hypergraph theory. In Chapter 2, we investigate the perfect matching problem on different classes of hypergraphs generalizing bipartite graphs. First, we give a polynomial time approximation algorithm for the maximum weight matching problem on so-called partitioned hypergraphs, whose approximation factor is best possible up to a constant. Afterwards, we look at the theorems of König and Hall and their relation. Our main result is a condition for the existence of perfect matchings in normal hypergraphs that generalizes Hall’s condition for bipartite graphs. In Chapter 3, we consider perfect f-matchings, f-factors, and (g,f)-matchings. We prove conditions for the existence of (g,f)-matchings in unimodular hypergraphs, perfect f-matchings in uniform Mengerian hypergraphs, and f-factors in uniform balanced hypergraphs. In addition, we give an overview about the complexity of the (g,f)-matching problem on different classes of hypergraphs generalizing bipartite graphs. In Chapter 4, we study the structure of hypergraphs that admit a perfect matching. We show that these hypergraphs can be decomposed along special cuts. For graphs it is known that the resulting decomposition is unique, which does not hold for hypergraphs in general. However, we prove the uniqueness of this decomposition (up to parallel hyperedges) for uniform hypergraphs. In Chapter 5, we investigate flows on directed hypergraphs, where we focus on graph-based directed hypergraphs, which means that every hyperarc is the union of a set of pairwise disjoint ordinary arcs. We define a residual network, which can be used to decide whether a given flow is optimal or not. Our main result in this chapter is an algorithm that computes a minimum cost flow on a graph-based directed hypergraph. This algorithm is a generalization of the network simplex algorithm.Diese Arbeit untersucht Matchings und FlĂŒsse in Hypergraphen mit Hilfe kombinatorischer Methoden. In Graphen gehören diese Probleme zu den grundlegendsten der kombinatorischen Optimierung. Viele Resultate lassen sich nicht von Graphen auf Hypergraphen verallgemeinern, da Hypergraphen ein sehr abstraktes Konzept bilden. Daher schauen wir uns bestimmte Klassen von Hypergraphen an, die mehr Struktur besitzen, und nutzen diese aus um Resultate aus der Graphentheorie zu ĂŒbertragen. In Kapitel 2 betrachten wir das perfekte Matchingproblem auf Klassen von „bipartiten“ Hypergraphen, wobei es verschiedene Möglichkeiten gibt den Begriff „bipartit“ auf Hypergraphen zu definieren. FĂŒr sogenannte partitionierte Hypergraphen geben wir einen polynomiellen Approximationsalgorithmus an, dessen GĂŒtegarantie bis auf eine Konstante bestmöglich ist. Danach betrachten wir die SĂ€tze von Konig und Hall und untersuchen deren Zusammenhang. Unser Hauptresultat ist eine Bedingung fĂŒr die Existenz von perfekten Matchings auf normalen Hypergraphen, die Halls Bedingung fĂŒr bipartite Graphen verallgemeinert. Als Verallgemeinerung von perfekten Matchings betrachten wir in Kapitel 3 perfekte f-Matchings, f-Faktoren und (g, f)-Matchings. Wir beweisen Bedingungen fĂŒr die Existenz von (g, f)-Matchings auf unimodularen Hypergraphen, perfekten f-Matchings auf uniformen Mengerschen Hypergraphen und f-Faktoren auf uniformen balancierten Hypergraphen. Außerdem geben wir eine Übersicht ĂŒber die KomplexitĂ€t des (g, f)-Matchingproblems auf verschiedenen Klassen von Hypergraphen an, die bipartite Graphen verallgemeinern. In Kapitel 4 untersuchen wir die Struktur von Hypergraphen, die ein perfektes Matching besitzen. Wir zeigen, dass diese Hypergraphen entlang spezieller Schnitte zerlegt werden können. FĂŒr Graphen weiß man, dass die so erhaltene Zerlegung eindeutig ist, was im Allgemeinen fĂŒr Hypergraphen nicht zutrifft. Wenn man jedoch uniforme Hypergraphen betrachtet, dann liefert jede Zerlegung die gleichen unzerlegbaren Hypergraphen bis auf parallele Hyperkanten. Kapitel 5 beschĂ€ftigt sich mit FlĂŒssen in gerichteten Hypergraphen, wobei wir Hypergraphen betrachten, die auf gerichteten Graphen basieren. Das bedeutet, dass eine Hyperkante die Vereinigung einer Menge von disjunkten Kanten ist. Wir definieren ein Residualnetzwerk, mit dessen Hilfe man entscheiden kann, ob ein gegebener Fluss optimal ist. Unser Hauptresultat in diesem Kapitel ist ein Algorithmus, um einen Fluss minimaler Kosten zu finden, der den Netzwerksimplex verallgemeinert
    corecore