
Combinatorial Algorithm for Restricted Max-Min Fair
Allocation

Chidambaram Annamalai∗, Christos Kalaitzis†, Ola Svensson‡

September 3, 2014

Abstract

We study the basic allocation problem of assigning resources to players so as to maximize
fairness. This is one of the few natural problems that enjoys the intriguing status of having a
better estimation algorithm than approximation algorithm. Indeed, a certain configuration-LP
can be used to estimate the value of the optimal allocation to within a factor of 4 + ε. In contrast,
however, the best known approximation algorithm for the problem has an unspecified large
constant guarantee.

In this paper we significantly narrow this gap by giving a 13-approximation algorithm for
the problem. Our approach develops a local search technique introduced by Haxell [Hax95] for
hypergraph matchings, and later used in this context by Asadpour, Feige, and Saberi [AFS12].
For our local search procedure to terminate in polynomial time, we introduce several new ideas
such as lazy updates and greedy players. Besides the improved approximation guarantee, the
highlight of our approach is that it is purely combinatorial and uses the configuration-LP only
in the analysis.

Keywords: approximation algorithms, fair allocation, efficient local search

∗School of Basic Sciences, EPFL. Email: chidambaram.annamalai@epfl.ch.
†School of Computer and Communication Sciences, EPFL. Email: christos.kalaitzis@epfl.ch. Supported by ERC

Starting Grant 335288-OptApprox.
‡School of Computer and Communication Sciences, EPFL. Email: ola.svensson@epfl.ch. Supported by ERC Starting

Grant 335288-OptApprox.

ar
X

iv
:1

40
9.

06
07

v1
 [

cs
.D

S]
 2

 S
ep

 2
01

4
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148007063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:chidambaram.annamalai@epfl.ch
mailto:christos.kalaitzis@epfl.ch
mailto:ola.svensson@epfl.ch

1 Introduction

We consider the Max-Min Fair Allocation problem, a basic combinatorial optimization problem,
that captures the frequent dilemma of how to allocate resources to players in a fair manner. A
problem instance is defined by a set R of indivisible resources, a set P of players, and a set of
nonnegative values {vi j}i∈P, j∈R where each player i has a value vi j for a resource j. An allocation is
simply a partition {Ri}i∈P of the resource set and the valuation function vi for any player i is additive,
i.e., vi(Ri) =

∑
j∈Ri

vi j. Perhaps the most natural fairness criterion in this setting is the max-min
objective which, for a given allocation, is the largest τ > 0 such that every player receives resources
of value at least τ. Thus, the goal in this problem is to find an allocation {Ri}i∈P that maximizes

min
i∈P

∑
j∈Ri

vi j.

This problem has also been given the name Santa Claus problem as interpreting the players as
kids and the resources as presents leads to Santa’s annual allocation problem of making the least
happy kid as happy as possible.

A closely related problem is the classic scheduling problem of Scheduling Jobs on Unrelated
Machines to Minimize Makespan. That problem has the same input as above and the only
difference is the objective function: instead of maximizing the minimum we wish to minimize
the maximum. In the scheduling context, this corresponds to minimizing the time at which all
jobs (resources) have been completed by the machines (players) they were scheduled on. In a
seminal paper, Lenstra, Shmoys, and Tardos [LST90] showed that the scheduling problem admits a
2-approximation algorithm by rounding a certain linear programming relaxation often referred to
as the Assignment-LP. Their approximation algorithm has in fact the often stronger guarantee that
the returned solution has value at most OPT +vmax, where vmax := maxi∈P, j∈R vi j is the maximum
value of a job (resource).

From the similarity between the two problems, it is natural to expect that the techniques
developed for the scheduling problem are also applicable in this context. It is perhaps surprising,
however, that the guarantees have not carried over so far. While a rounding of the Assignment-
LP has been shown [BD05] to provide an allocation of value at least OPT−vmax, this guarantee
deteriorates with increasing vmax. Since in hard instances of the problem (when vmax ≈ OPT) there
can be players who are assigned only one resource in an optimal allocation, this result provides no
guarantee in general. The lack of guarantee is in fact intrinsic to the Assignment-LP for Max-Min
Fair Allocation as the relaxation is quite weak and has an unbounded integrality gap: the optimal
value to the linear program can be a polynomial factor more than the optimal value of an integral
solution.

To overcome the limitations of the Assignment-LP, Bansal and Sviridenko [BS06] proposed to
use a stronger relaxation, called configuration-LP, for Max-Min Fair Allocation. Their paper
contains several results on the strength of the configuration-LP, one negative and many positive.
The negative result says that even the stronger configuration-LP has an integrality gap that grows
as Ω(

√
|P|). Their positive results apply for the interesting case when vi j ∈ {0, v j}, called Restricted

Max-Min Fair Allocation. For this case they give an O(log log |P|/ log log log |P|)-approximation
algorithm, a substantial improvement over the integrality gap of the Assignment-LP. Notice that
the restricted version has the following natural interpretation: each resource j has a fixed value v j
but it is interesting only for some subset of the players.

Bansal and Sviridenko further showed that the solution to a certain combinatorial problem on set
systems would imply a constant integrality gap. This was later settled positively by Feige [Fei08a]

1

by using a proof technique that repeatedly used the Lovasz Local Lemma. At the time of Feige’s
result, however, it was not known if his arguments were constructive, i.e., if it led to a polynomial
time algorithm for finding a solution with the same guarantee. This was later shown to be the
case by Haeupler et al. [HSS11], who constructivized the various applications of the Lovasz Local
Lemma in the paper by Feige [Fei08a]. This led to the first constant factor approximation algorithm
for Restricted Max-Min Fair Allocation, albeit with a large and unspecified constant. This
approach also requires the solution of the exponentially large configuration-LP by using the ellipsoid
algorithm.

A different viewpoint and rounding approach for the problem was initiated by Asadpour, Feige,
and Saberi [AFS12]. Their approach uses the perspective of hypergraphs matchings as one can
naturally interpret the problem as a bipartite hypergraph matching problem with bipartitions P
and R. Indeed, in a solution of value τ each player i is matched to a subset Ri of resources of total
value at least τ which corresponds to a hyperedge (i,Ri). Previously, Haxell [Hax95] provided
sufficient conditions for bipartite hypergraphs to admit a perfect matching, generalizing the well
known graph analog–Hall’s theorem. Her proof is algorithmic in the sense that when the sufficient
conditions hold, then a perfect matching can be found using a local search procedure that will
terminate after at most exponentially many iterations. Haxell’s techniques were successfully
adapted by Asadpour et al. [AFS12] to the RestrictedMax-Min FairAllocation problem to obtain
a beautiful proof showing that the configuration-LP has an integrality gap of at most 4. As the
configuration-LP can be solved to any desired accuracy in polynomial time, this gives a polynomial
time algorithm to estimate the value of an optimal allocation up to a factor of 4 + ε, for any ε > 0.
However, it does not provide a solution with the same guarantee.

The above results lend the RestrictedMax-Min Fair Allocation problem an intriguing status
that few other natural problems enjoy (see [Fei08b] for a comprehensive discussion on the difference
between estimation and approximation algorithms). Another problem with a similar status is the
restricted version of the aforementioned scheduling problem. The techniques in [AFS12] inspired
the last author to show [Sve12] that the configuration-LP estimates the optimal value within a factor
33/17 + ε improving on the factor of 2 by Lenstra et al. [LST90]. Again, the rounding algorithm
in [Sve12] is not known to terminate in polynomial time. We believe that this situation illustrates
the need for new tools that improve our understanding of the configuration-LP especially in the
context of basic allocation problems in combinatorial optimization.

Our results. Our main result improves the approximation guarantee for the RestrictedMax-Min
Fair Allocation problem. Note that 6 + 2

√
10 ≈ 12.3.

Theorem 1.1. For every ε > 0, there exists a combinatorial (6 + 2
√

10 + ε)-approximation algorithm for the
RestrictedMax-Min Fair Allocation problem that runs in time nO(1/ε2 log(1/ε)) where n is the size of the
instance.

Our algorithm has the advantage of being completely combinatorial. It does not solve the
exponentially large configuration-LP. Instead, we use it only in the analysis. As our hidden constants
are small, we believe that our algorithm is more attractive than solving the configuration-LP for a
moderate ε. Our approach is based on the local search procedure introduced in this context by
Asadpour et al. [AFS12], who in turn were inspired by the work of Haxell [Hax95]. Asadpour et al.
raised the natural question if local search procedures based on alternating trees can be made to run
in polynomial time. Prior to this work, the best running time guarantee was a quasi-polynomial
time alternating tree algorithm by Polacek and the last author [PS12]. The main idea in that paper
was to show that the local search can be restricted to alternating paths of length O(log n) (according

2

to a carefully chosen length function), where n is the number of players and resources. This restricts
the search space of the local search giving the running time of nO(log n). To further reduce the
search space seems highly non-trivial and it is not where our improvement comes from. Rather, in
contrast to the previous local search algorithms, we do not update the partial matching as soon
as an alternating path is found. Instead, we wait until we are guaranteed a significant number
of alternating paths, which then intuitively guarantees large progress. We refer to this concept
as lazy updates. At the same time, we ensure that our alternating paths are short by introducing
greedy players into our alternating tree: a player may claim more resources than she needs in an
approximate solution.

To best illustrate these ideas we have chosen to first present a simpler algorithm in Section 3.
The result of that section still gives an improved approximation guarantee and a polynomial time
local search algorithm. However, it is not combinatorial as it relies on a preprocessing step that uses
the solution of the configuration-LP. Our combinatorial algorithm is then presented in Section 4.
Although we believe that it is easier to understand Section 4 after reading Section 3, the paper is
written so that the interested reader can skip the details of the simpler algorithm and directly go
to Section 4. The virtue of explaining the simpler algorithm first is that it allows us to postpone
some of the complexities of the combinatorial algorithm until later, while still demonstrating the
key ideas mentioned above.

Further related work. As mentioned before, the configuration-LP has an integrality gap of
Ω

(√
|P|

)
for the general Max-Min Fair Allocation problem. Asadpour and Saberi [AS07] almost

matched this bound by giving a O(
√
|P| log3(|P|))-approximation algorithm; later improved by

Saha and Srinivisan [SS10] to O(
√
|P| log |P|/ log log |P|). The current best approximation is O(nε)

due to Bateni et al. [BCG09] and Chakraborty et al. [CCK09]; for any ε > 0 their algorithms run in
time O(n1/ε). This leaves a large gap in the approximation guarantee for the general version of the
problem as the only known hardness result says that it is NP-hard to approximate the problem to
within a factor less than 2 [BD05]. The same hardness also holds for the restricted version.

2 The Configuration LP

Recall that a solution to the Max-Min Fair Allocation problem of value τ is a partition {Ri}i∈P of
the set of resources so that each player receives a set of value at least τ, i.e., vi(Ri) > τ for i ∈ P. Let
C(i, τ) = {C ⊆ R : vi(C) > τ} be the set of configurations that player i can be allocated in a solution of
value τ. The configuration-LP has a decision variable xi,C for each player i ∈ P and each C ∈ C(i, τ).
The intuition is that the variable xi,C takes value 1 if and only if she is assigned the bundle C. The
configuration-LP is now a feasibility program with two sets of constraints: the first set says that
each player should receive (at least) one configuration and the second set says that each item should
be assigned to at most one player. The formal definition is given in the left box of Figure 1.

It is easy to see that if CLP(τ0) is feasible, then so is CLP(τ) for all τ 6 τ0. We say that the value
of the configuration LP is τOPT if it is the largest value such that the above program is feasible. Since
every feasible allocation is a feasible solution of configuration LP, τOPT is an upper bound on the
value of the optimal allocation and therefore CLP(τ) constitues a valid relaxation.

We note that the LP has exponentially many variables; however, it is known that one can
approximately solve it to any desired accuracy by designing a polynomial time (approximate)
separation algorithm for the dual [BS06]. For our combinatorial algorithm, the dual shall play
an important role in our analysis. By associating the sets of variables {yi}i∈P and {z j} j∈R to the

3

∑
C∈C(i,τ)

xi,C > 1, ∀ i ∈ P,∑
i,C: j∈C,C∈C(i,τ)

xi,C 6 1, ∀ j ∈ R,

x > 0.

max
∑
i∈P

yi −
∑
j∈R

z j

yi 6
∑
j∈C

z j, ∀i ∈ P,∀C ∈ C(i, τ),

y, z > 0.

Figure 1: The configuration LP for a guessed optimal value τ on the left and its dual on the right.

constraints in the primal corresponding to players and resources respectively, and letting the primal
have the objective function of minimizing the zero function, we obtain the dual of CLP(τ) shown in
the right box of Figure 1.

3 Polynomial time alternating tree algorithm

To illustrate our key ideas we first describe a simpler alternating tree algorithm that works on
clustered instances. This setting, while equivalent to the general problem up to constant factors,
allows for a simpler exposition of our key ideas. Specifically, we will prove the following.

Theorem 3.1. There is a polynomial time 36-approximation for restricted max-min fair allocation.

We note, however, that producing such clustered instances requires solving the configuration-LP.
We will show how to bypass the clustering step and avoid solving the configuration-LP in Section 4.
For now though, we start by giving an intuitive description of the local search technique underlying
the proof of Theorem 3.1. The italicized terms used in the intuitive description below will be
defined later in Sections 3.1 and 3.2.

Alternating trees. Suppose that we have a partial matching M that currently does not match a
player p0 ∈ P. We may select a set of resources R ⊆ R and form the edge (p0,R) (which we call
an addable edge) to match player p0. If R is disjoint from all items in M then we have augmented
our existing matching M. Otherwise, R intersects with some existing blocking edges in M which
prevent us from including (p0,R) into M. Suppose p1, . . . , pk are the players blocking the addition
of (p0,R). Now we form a new layer with these players and continue to look for addable edges
for these players in the hope that eventually the value of resources in R blocked by the players
p1, . . . , pk decreases so that (p0,R) becomes immediately addable, i.e., there are resources in R and not
appearing in M of sufficiently large value.

Thus, alternating trees are the natural hypergraph analogs of alternating paths for graph
matchings. In this section we will formulate an alternating tree algorithm for the restricted
max-min fair allocation that terminates in polynomial time.

Key ideas. We achieve this by employing two new ideas: lazy updates and greedy players. Previous
alternating tree algorithms [AFS12, PS12] used immediately addable edges in a greedy way to
modify the partial matching. Instead we show that performing lazy updates by waiting until
immediately addable edges are available for a large number of players in the alternating tree allows

4

for making larger progress in every step where the partial matching is updated. Furthermore,
the players in our alternating tree are greedy in the sense that they take up more resources than
necessary. This allows us to argue that each layer in our alternating tree grows exponentially in size
(measured by the number of blockers) so that collapse operations must happen often. Coupled with
our lazy update strategy, this enables us to prove the polynomial running time guarantee we are
aiming for.

Preliminaries. We let τ > 0 be a guess on the value of the optimal solution. Throughout this
section β = 361 will be the constant referring to the approximation guarantee of the allocation
produced by the algorithm. We shall show that when CLP(τ) is feasible, our algorithm will terminate
with a solution of value at least τ/β for the given instance of restricted max-min fair allocation.
Combining this with a standard binary search then yields a β-approximation algorithm.

In the sequel we use the notation S6i to denote the union S0 ∪ · · · ∪ Si.

3.1 Thin and fat edges, and partial matchings

We partition the resource set R into R f := {i ∈ R : vi > τ/β} and Rt := {i ∈ R | vi < τ/β}, fat and thin
resources respectively. Note that in a β-approximate solution, a player is satisfied if she is assigned
a single fat resource whereas she needs several thin resources. Keeping that in mind, we define thin
and fat edges.

Definition 3.2 (Thin and fat edges). For any δ > 1, a δ-edge is a tuple (p,R) where p ∈ P and R ⊆ R
such that R is either a minimal collection (by inclusion) of thin resources of value τ/δ for p or, a
single fat resource that p is interested in. In the first case we call (p,R) a thin edge and in the second
case a fat edge. Note that a thin δ-edge has value at most τ/δ + τ/β due to the minimality of the
edge.

A collection of β-edges for distinct players is called a partial matching if the set of resources
used by the edges in the collection are disjoint. We denote a partial matching by M. We say that
M matches a player p ∈ P if there exists an edge in M that contains p. Using this terminology, an
allocation is simply a partial matching that matches all the players in P.

Our approach will be to show that as long as M does not match all players in P we can
increase the size of M. This ensures that starting with an empty partial matching and repeating this
procedure at most |P| times we will obtain an allocation of value at least τ/β. Thus, it suffices to
develop such an augmenting algorithm. This is precisely what our alternating tree algorithm will
do. As its description requires some concepts to be defined, we first formally define these concepts
in Section 3.2. We then state a preprocessing step in Section 3.3 before describing the alternating
tree algorithm in Section 3.4.

3.2 Addable edges, blocking edges, and layers

We now formally define the concepts referred to in the intuitive description of an alternating tree.
The constant α = 5/2 in the following definition regulates the “greediness” of the players.

Definition 3.3 (Addable, immediately addable, and blocking edges). A thin α-edge (p,R) is said to
be addable if there exists no subset R′ ⊆ R disjoint from edges in M of value at least τ/β. Otherwise,
when there exists such an R′, it is called an immediately addable edge.

1As our goal is to expose the main ideas, we have not optimized the constants in this section.

5

A thin β-edge (p,R) ∈ M is said to be a blocking edge for another edge (p′,R′) if R ∩ R′ , ∅. We
also say that the player p blocks (p′,R′) in this case since the corresponding blocking edge (p,R) can
be inferred from M.

Notice how addable edges hold resources of value totalling at least τ/α = 2τ/5 (significantly
more than the τ/36 that is required in a 36-approximate solution).

We will construct our alternating tree in layers, where each layer maintains a set of blocking
edges Bi that prevent us from using the addable edges Ai.

Definition 3.4 (Layers). For i > 1, layer Li is a tuple (Ai,Bi) where Ai is a set of addable and
immediately addable edges, Bi is a collection of blocking edges. The first layer L0 is defined as the
tuple (∅, {p0, ∅}) where p0 is some player not matched by M. We refer to the players in the edges Bi
as Pi.

We will consistently use ` to track the index of the last layer in our alternating tree. Thus,
our alternating tree will be composed of layers L0, . . . ,L` and will maintain a partial matching M
throughout its execution. M will be updated via collapse operations. If there are many immediately
addable edges in Ai then we can use this to update our partial matching M by collapsing layer Li−1,
i.e., using the immediately addable edges in Ai to remove blockers in Bi−1. The precise criterion for
collapsing a layer controls the “laziness” of our update step.

Definition 3.5 (Collapsibility). We call a layer Li collapsible if there are at least µ|Pi|many immedi-
ately addable edges in Ai+1, where µ = 1/500.

The definition is made so that every collapse operation performed on a layer Li will remove at
least µ fraction of the players in Pi that are blocking addable edges in Ai.

We now have the concepts necessary to state our algorithm.

3.3 Clustering step

First we describe the preprocessing phase that produces the clustered instances referred to earlier.
The clustering step that we use is the following reduction due to Bansal and Sviridenko.

Theorem 3.6 (Clustering Step [BS06]). Assuming that CLP(τ) is feasible, we can partition the set of
players P into m clusters N1, . . . ,Nm in polynomial time such that

1. Each cluster Nk is associated with a distinct subset of |Nk| − 1 fat items from R f such that they can be
assigned to any subset of |Nk| − 1 players in Nk, and

2. there is a feasible solution x to CLP(τ) such that
∑

i∈Nk

∑
C∈Ct(i,τ) xiC > 1/2 for each cluster Nk, where

Ct(i, τ) denotes the set of configurations for player i comprising only thin items.

Note that the player that is not assigned a fat item can be chosen arbitrarily and independently
for each cluster in the above theorem. Therefore, after this reduction, it suffices to allocate a thin
β-edge for one player in each cluster to obtain a β-approximate solution for the original instance.
Indeed, Theorem 3.6 guarantees that we can assign fat edges for the remaining players. For the
rest of the section we assume that our instance has been grouped into clusters N1, . . . ,Nm by an
application of Theorem 3.6. The second property of these clusters is that each cluster is fractionally
assigned at least 1/2 LP-value of thin configurations. We will use this to prove the key lemma in
this section, Lemma 3.8.

We now focus only on allocating one thin β-edge per cluster and forget about fat items completely.
This makes the algorithm in Section 3.4 simpler than our final combinatorial algorithm, where we
will also need to handle the assignment of fat items to players.

6

3.4 Description of the algorithm

Recall that it suffices to match exactly one player from each cluster with a thin β-edge. With this in
mind, we say that a cluster Nk is matched by M if there exists some player p ∈ Nk such that p is
matched by M. The input is a partial matching M that matches at most one player from each cluster
N1, . . . ,Nm, and a cluster N0 that is not matched by M.

We are now ready to describe our alternating tree algorithm.

Initialization. Select some player p0 ∈ N0. The goal is to extend M so as to also match N0 in
addition to the clusters already matched by M. Set A0 ← ∅, B0 ← (p0, ∅). The first layer L0 is now
defined by the tuple (A0,B0). Set `← 0.

Iterative step. The iterative step, comprising two phases, is repeated until N0 is matched by M.

Build phase. Set A`+1 ← ∅.We now define the thin α-edges called candidate edges that are added
to A`+1. Let p, q ∈ Nk be players (not necessarily distinct) such that q ∈ P` and no player in Nk
already appears in some edge in A`+1. Then, the thin α-edge (p,R) is a candidate edge if the set R is
disjoint from the resources appearing in A6`+1 ∪ B6`.

While there exists a candidate edge we add it to A`+1, and pair player q with the addable edge
(p,R). Note that the pairing is unique, i.e., a player is paired with at most one addable edge and
vice-versa. When there are no more candidate edges, let B`+1 be the set of blockers of A`+1. Set
L`+1 ← (A`+1,B`+1) and increment `.

Collapse phase. If there exists a collapsible layer, then let Lt be the earliest collapsible layer. For
each player in q ∈ Pt that is paired with an immediately addable edge (p,R) from At+1 swap q’s
blocking edge in M with (p,R′), where R′ is a τ/β-minimal subset of R disjoint from the resources in
Bt+1. This step modifies Bt (by removing some edges from it) and M (by swapping pairs of edges).
Note that it still preserves the property that at most one player from each cluster is matched by M.
Now discard all the layers with index greater than t and set ` to be t. As the collapse operation
could have created immediately addable edges in Lt we repeat the collapse phase until there are no
collapsible layers.

See Figure 2 for an illustration of a collapse operation.

Remark 3.7. We note that it is possible to find candidate edges in polynomial time. Suppose that we
are building layer L`+1. Let q ∈ P` such that no player in Nk already appears in some edge in A`+1.
For each p ∈ Nk, we can check in polynomial time if player p has a set R of resources of value at
least τ/α disjoint from the resources already appearing in the sets A6`+1 ∪ B6`.

3.5 Analysis of the algorithm

We will show that the algorithm in Section 3.4 terminates in polynomial time, which then implies
Theorem 3.1. Recall that α is the parameter that regulates the “greediness” of the players in the
alternating tree while β is the approximation guarantee, and µ dictates when we collapse a layer.

The key lemma that we prove in this section is that in each layer Li we have sufficiently many
addable edges i.e., at least a constant fraction of the players in Pi−1 are paired with some addable
edges in Ai.

Lemma 3.8 (Many addable and immediately edges). Assuming that CLP(τ) is feasible, at the beginning
of each iterative step, |Ai+1| > |P6i|/5 for each i = 0, . . . , ` − 1.

7

N0

N1 N2 N3

L0

L1

L2

N0

N1

L0

L1

(a) (b)

Figure 2: Example of an alternating tree (a) before and (b) after a collapse operation on layer
L1. Shaded edges are blocking edges; addable and immediately addable edges are striped and
unshaded respectively; and clusters are indicated as dotted blobs around players.

We defer the proof of this statement for now and explain its consequences. As thin items are of
value less than τ/36, and each edge in A6` is a thin α-edge of value at least 2τ/5, this implies that if
layer Li−1 is not collapsible then the number of blocking edges in Li must be quite large. This means
that the number of blocking edges will grow quickly when the layers of the alternating tree are not
collapsible. We now prove this in the next lemma.

Lemma 3.9 (Exponential growth). Assuming that CLP(τ) is feasible, at the beginning of the iterative step
|Pi+1| > 13|P6i|/10 for i = 0, . . . , ` − 1.

Proof. Fix an i such that 0 6 i < `. By the definition of the algorithm, Li is not collapsible at the
beginning of the iterative step. This means that there are at least |Ai+1| − µ|Pi|many edges in Ai+1
which are not immediately addable. As each addable edge of Ai+1 (except at most µ|Pi|many) has
resources of value at least τ/α− τ/β that are blocked, we can lower bound the total value of blocked
resources appearing in Ai+1 by (

τ
α
−
τ
β

) (
|Ai+1| − µ|Pi|

)
.

Further, since each edge in Bi+1 is of value at most 2τ/β by minimality, the total value of such
resources is upper bounded by |Pi+1| · 2τ/β. In total,(

τ
α
−
τ
β

) (
|Ai+1| − µ|Pi|

)
6 |Pi+1|

2τ
β

=⇒ |Pi+1| >
(β − α)(1/5 − µ)

2α
|P6i| > 13|P6i|/10,

where we have used Lemma 3.8 to bound |Ai+1| by |P6i|/5 from below. �

Since the number of blocking edges grows exponentially from layer to layer, an immediate
consequence of Lemma 3.9 is that the total number of layers in the alternating tree at any step in the
algorithm is at most O(log |P|). This means that we have to encounter a collapse operation after
at most logarithmatically many iterative steps. Since our collapse operation updates a constant
fraction (µ = 1/500) of the players in Pi when layer Li is collapsed, intuitively we make large
progress whenever we update M during a collapse step. We prove this by maintaining a signature
vector s := (s0, . . . , s`,∞) during the execution of the algorithm, where

si := blog1/(1−µ) |Pi|c.

8

Lemma 3.10. The signature vector always reduces in lexicographic value across each iterative step, and the
coordinates of the signature vector are always non-decreasing, i.e., s0 6 s1 . . . 6 s`.

Proof. Let s and s′ be the signature vectors at the beginning and at the end of some iterative step.
We now consider two cases depending on whether a collapse operation occurs in this iterative step.

Case 1. No layer was collapsed. Clearly, s′ = (s0, . . . , s`, s′`+1,∞) has smaller lexicographic value
compared to s.

Case 2. At least one layer was collapsed. Let 0 6 t 6 ` be the index of the last layer that was
collapsed during this iterative step. As a result of the collapse operation suppose the
layer Pt changed to P′t. Then we know that |P′t | < (1 − µ)|Pt|. Since none of the layers
with indices less than t were affected during this procedure, s′ = (s0, . . . , st−1, s′t,∞) where
s′t = blog1/(1−µ) |P

′

t |c 6 blog1/(1−µ) |Pt|c − 1 = st − 1. This shows that the lexicographic value of
the signature vector decreases.

In both cases, the fact that the coordinates of s′ are non-decreasing follows from Lemma 3.9 and the
definition of the coordinates of the signature vector. �

Choosing the “∞” coordinate of the signature vector to be some value larger than log1/(1−µ) |P|

(so that Lemma 3.10 still holds), we see that each coordinate of the signature vector is at most U and
the number of coordinates is also at most U where U = O(log |P|). Thus, the sum of the coordinates
of the signature vector is always upper bounded by U2. We now prove that the number of such
signature vectors is polynomial in |P|.

A partition of an integer N is a way of writing N as the sum of positive integers (ignoring the
order of the summands). The number of partitions of an integer N can be upper bounded by eO(

√
N)

by a result of Hardy and Ramanujan [HR18]2. Since each signature vector corresponds to some
partition of an integer at most U2, we can upper bound the total number of signature vectors by∑

i6U2 eO(
√

i) = |P|O(1). Since each iteration of the algorithm takes only polynomial time along with
Lemma 3.10 this proves Theorem 3.1.

Before we return to the proof of the key lemma in this section, Lemma 3.8, let us note an
important property of the algorithm.

Fact 3.11. Let q be a player from some cluster Nk. Notice that if a player q is part of some blocking edge in
layer Li, i.e., q ∈ Pi, and further q has not been paired with an addable or immediately addable edge then it
means that none of the players in Nk have a set of resources of value at least τ/α disjoint from the resources
already appearing in the tree.

Proof of Lemma 3.8. Notice that since the set Ai is initialized when Li is created and not modified
until Li−1 is collapsed, it is sufficient to verify the inequality when we construct the new layer L`+1
in the build phase. The proof is now by contradiction. Suppose |A`+1| < |P6`|/5 after the build
phase. LetN ⊆ {N1, . . . ,Nm} be the clusters whose players appear in the alternating tree and are
not paired with any addable or immediately addable edges. We have that, |N| = |P6`| − |A6`+1|.

Recall that Ct(i, τ) denotes the set of configurations for player i comprising only thin items. By
Theorem 3.6 there exists an x that is feasible for CLP(τ) such that

∑
i∈Nk

∑
C∈Ct(i,τ) xiC = 1/2 for each

cluster Nk. Now form the bipartite hypergraphH = (N ∪Rt,E) where we have vertices for clusters
and thin items in R, and edges (Nk,C) for every cluster Nk and thin configuration C pair such that

2The asymptotic formula for the number of partitions of N is 1
4N
√

3
exp

(
π

√
2N
3

)
as N→∞ [HR18].

9

xpC > 0 and p ∈ Nk. To each edge (Nk,C) inH assign the weight
(∑

i∈Nk
xiC

)∑
j∈C v j. The total weight

of edges inH is at least |N|τ/2. Let Z denote the thin items appearing in the alternating tree and let
v(Z) =

∑
j∈Z v j denote their value. Now remove all items appearing in the alternating tree from

this hypergraph to formH ′ which has edges (Nk,C \ Z) for each edge (Nk,C) inH . The weight of
(Nk,C \ Z) is similarly defined to be

(∑
i∈Nk

xiC

)∑
j∈C\Z v j.

Let us upper bound the total value of thin items appearing in the alternating tree, Z. Consider
some layer L j. The total value of resources in thin α-edges in A j is at most (τ/α + τ/β)|A j| by the
minimality of the edges. The value of resources in B j not already present in some edge in A j is at
most (τ/β)|B j| also by minimality of the thin β-edges in B j. Therefore, v(Z) is at most

∑̀
j=1

(
(
τ
α

+
τ
β

)|A j| + (
τ
β

)|B j|

)
+ |A`+1|

(
τ
α

+
τ
β

)
< |A6`+1|

(
τ
α

+
τ
β

)
+ |P6`|

τ
β
.

As the sum of the edge weights inH is at least (|N|/2)(τ), the sum of edge weights inH ′ is at
least |N|τ/2 − v(Z). And by Fact 3.11, the sum of edge weights inH ′ must be strictly smaller than
(N/2)(τ/α). Thus,

(|P6`| − |A6`+1|)
2

τ − |A6`+1|

(
τ
α

+
τ
β

)
− |P6`|

τ
β
<

(|P6`| − |A6`+1|)
2

τ
α
. (*)

Note that |A6`+1| appears with a larger negative coefficient (in absolute terms) on the left-hand-side
than on the right-hand-side. Therefore, if (*) holds then it also holds for an upper bound of |A6`+1|.
We shall compute such a bound and reach a contradiction.

We start by computing an upper bound on |A j+1|, the number of addable edges in layer L j+1 for
j = 0, . . . , ` − 1. Since layer L j is not collapsible, it means that except for at most µ|P j| edges in A j+1,
the remainder have at least τ/α − τ/β value of resources blocked by the edges in B j+1. Using this,(

τ
α
−
τ
β

) (
|A j+1| − µ|P j|

)
6 |P j+1|

2τ
β

summing over j
=⇒

(
τ
α
−
τ
β

) (
|A6`| − µ|P6`−1|

)
6 |P6`|

2τ
β
.

Rearranging terms we have,

|A6`| 6 |P6`|
2α
β − α

+ µ|P6`−1| 6 |P6`|
(

2α
β − α

+ µ

)
.

Substituting this upper bound in (*) along with our assumption |A`+1| < |P6`|/5 we get (after
some algebraic manipulations)

|P6`|
(
1 −

1
α
−

2
β

)
− |P6`|

(
2α
β − α

+ µ + 1/5
) (

1 +
1
α

+
2
β

)
< 0.

This is a contradiction because if we substitute in the values of α, β, and µ the left-hand-side is
positive. Recall that α = 5/2, β = 36, and µ = 1/500. �

4 Combinatorial Algorithm

In this section we describe the combinatorial algorithm underlying our main result, Theorem 1.1.
For a fixed 0 < ε 6 1, let β := 2(3 +

√
10) + ε, α := 2, and µ := ε/100. As in the description of the

simple algorithm, β will be our approximation guarantee, α regulates how greedy the players are,

10

and µ regulates the lazy updates. Let also τ > 0 be a guess on the value of the optimal solution. As
before we shall show that if CLP(τ) is feasible, then our algorithm will terminate in polynomial
time with a solution of value at least τ/β. Combining this with a standard binary search then yields
a combinatorial β-approximation algorithm.

Before describing the algorithm in Section 4.2, we introduce in Section 4.1 several concepts,
most of which are similar to the ones used in the simpler algorithm. The main novelty comes from
the fact that we need to deal with alternating paths between players and fat resources. Towards
this end, we introduce the new concepts (not present in the simpler algorithm) of disjoint path
networks and alternating paths.

4.1 Addable and blocking edges, layers, disjoint path network and alternating paths

We partition R into R f = {i ∈ R : vi > τ/β} and Rt = {i ∈ R | vi < τ/β}, fat and thin resources
respectively. Note that in a β-approximate solution, a player is satisfied if she is assigned a single
fat resource whereas she needs several thin resources.

Addable and blocking edges and layers.

Definition 4.1 (δ-edge). A δ-edge is a pair (p,R) where p ∈ P and R ⊆ R such that R is either a
minimal collection of thin resources of value τ/δ for p or a single fat resource that p is interested in.
In the first case we call (p,R) a thin edge and in the second case a fat edge.

Note that a thin δ-edge has value at most τ/δ + τ/β due to the minimality of the edge. A
collection of β-edges for distinct players is called a partial matching if the set of resources used by
the edges in the collection are disjoint. We denote a partial matching by M. Our goal will be to
show that as long as M does not assign all the players in Pwe can increase the size of the partial
matching M.

As in the simpler algorithm, we shall use the notion of addable edges, blocking edges and layers
in our combinatorial algorithm. Blocking edges will always be thin β-edges while addable edges
and immediately addable edges will always be thin α-edges.

Definition 4.2 (Blocking edge). A thin β-edge (p,R) ∈M is said to be a blocking edge for another
edge (p′,R′) if R ∩ R′ , ∅. We also say that the player p blocks (p′,R′) in this case since the
corresponding blocking edge (p,R) can be inferred from M.

The definition of addable edge below reflects the “greedy” choice of a player, i.e., he selects a
thin edge with more resources (of total value at least τ/α) than he needs in a β-approximate solution.
Moreover, such an edge is said to be immediately addable if it contains enough resources disjoint
from the current matching in order to satisfy that player.

Definition 4.3 (Addable and immediately addable edges). A thin α-edge (p,R) is said to be
immediately addable if there exists a subset R′ ⊆ R disjoint from edges in M and has value at least
τ/β. Otherwise, it is called an addable edge.

In the following definition, notice that, unlike in the simpler algorithm, Ai does not contain
immediately addable edges. We store them separately in a dynamically updated set I.

Definition 4.4 (Layers). For i > 1, layer Li is a tuple (Ai,Bi, di) where Ai is a set of addable edges, Bi
is a collection of edges from M, and di is a positive integer. We refer to the players in the edges Bi as
Pi. The first layer L0 is defined as the tuple (∅, {p0, ∅}, 0).

11

The intuition behind the definition of a layer is that it maintains a set of blocking edges Bi that
prevent us from using the addable edges Ai. The number di associated with a layer captures the
number of players in P6i−1 that we could update at the time when layer Li was created if all edges in
A6i ∪ I were to become immediately addable. This a number that is not needed for the description
of the algorithm and it does not change after a layer is constructed. However, it will simplify the
analysis.

State of the algorithm.

We consistently use ` to denote the index of the last layer in our algorithm. The state of the algorithm
at any moment is completely captured by the set of layers {L0, . . . ,L`}, a set of immediately addable
edges I, and the partial matching M. We denote the state by the tuple (`, {L0, . . . ,L`}, I,M). We use
the notation A6i to denote the union A0 ∪ · · · ∪ Ai. We similarly define B6i,P6i, etc.

Disjoint path network.

We now introduce one of the new concepts compared to the simpler algorithm. In order to deal with
general alternating paths and argue about their structure we define a disjoint path flow network. In
the sequel, we use the term disjoint path to denote a vertex disjoint path. For a partial matching M,
let HM = (P ∪ R f ,EM) be the directed graph defined as follows: there is a vertex for each player
in P and each fat resource in R f . There is an arc from a player in p ∈ P to a fat resource f ∈ R f if
p is interested in f unless the edge (p, { f }) appears in M in which case the direction of the arc is
reversed. Note that the graph HM changes only when the assignment of fat resources to players in
M changes. Let S,T ⊆ V be a set of sources and sinks respectively that are not necessarily disjoint.
Let FM(S,T) denote this flow network and let DPM(S,T) denote the value of an optimal solution,
i.e., the maximum number of disjoint paths from the sources S to the sinks T in the graph HM.

In our algorithm, S and T will contain only vertices in HM corresponding to players in P. To
specify a sink we sometimes specify an addable edge since the corresponding sink vertex can be
deduced from it. For example, if we write DPM(P6`, I) then we mean the maximum number of
disjoint paths that start at a player in P6` and end in a player that has an immediately addable edge
in I.

Definition 4.5 (Canonical decomposition of I). Given a state (`, {L0, . . . ,L`}, I,M) of the algorithm,
we call a collection of disjoint subsets {I0, I1, . . . , I`} of I a canonical decomposition if

1. |I6i| = DPM(P6i, I6i) = DPM(P6i, I) for i = 0, 1, . . . , `;

2. there exists an optimal solution W to FM(P6`, I) such that, for i = 0, 1 . . . , `, |Ii| paths in W go
from players Qi ⊆ Pi to the sinks in Ii. We denote these paths by Wi. We also refer to W as the
canonical solution corresponding to the decomposition.

A canonical decomposition maximizes the number of alternating paths to immediately addable
edges from players in layers with small indices. The intuition is that updating a player in a layer
of small index constitutes a larger progress than updating a player in a layer of larger index. The
concept will be crucial in our analysis to show that we can always guarantee that the algorithm
makes sufficient progress. Let us first show that we can calculate a canonical decomposition in
polynomial time.

Lemma 4.6. Given a state (`, {L0, . . . ,L`}, I,M) of the algorithm, we can find a canonical decomposition of I
in polynomial time.

12

Proof. We shall construct an optimal solution W to the flow network with sources P6` and sinks
I iteratively. We begin by calculating an optimal solution when only considering the sources P0,
and then we augment it to obtain an optimal solution to the case with sources P61, and so on until
we have an optimal solution with sources P6`. In that optimal solution, define Ii to contain those
addable edges in I that were reached by players in Pi. The properties are now easy to prove. By
construction, W is an optimal solution of FM(P6l, I). By the definition of Ii, |I6i| = DPM(P6i, I6i) for
each i = 0, . . . , `. The fact that DPM(P6i, I6i) = DPM(P6i, I) for each i = 0, 1, . . . , ` follows because
DPM(P6i, I6i) < DPM(P6i, I) would contradict the fact that |I6i|was the value of the maximum flow
in the network FM(P6i, I). �

The following key lemma says that if we update a layer using alternating paths then it does not
interfere with future updates of the remaining layers of smaller index.

Lemma 4.7. Consider a state (`, {L0, . . . ,L`}, I,M) of the algorithm and a canonical decomposition
I0, I1, . . . , I` of I together with the canonical solution W. For i = 0, . . . , `, let Wi be the |Ii| paths that
go from the players in Qi ⊆ Pi to sinks in Ii. Then, for i = 0, 1, . . . , ` − 1, there exists an optimal solution X
to FM(P6i,A6i+1 ∪ I6i) that is also an optimal solution to FM(P6i,A6i+1 ∪ I) whose paths are disjoint from
the paths in Wi+1 and additionally uses all the sinks in I6i. Moreover, such a solution can be computed in
polynomial time.

Proof. Consider a fixed i. We shall form an optimal solution X to FM(P6i,A6i+1 ∪ I6i) that is also an
optimal solution to FM(P6i,A6i+1 ∪ I) and its paths are disjoint from the paths in Wi+1 and uses all
the sinks in I6i. The initial solution will be the set of paths W6i from the canonical solution W which
has cardinality |I6i|. We now augment this solution using augmenting paths to the set of sinks A6i+1.
Note that throughout this execution each vertex in I6i will be used as a sink by some path and
therefore X will use all these sinks. Further, the procedure to calculate X clearly runs in polynomial
time. We shall now verify the remaining properties of X. First, suppose towards contradiction
that some iteration used an augmenting path P intersecting a path in Wi+1. However, this would
imply that there exists an augmenting path that uses a sink in Ii+1. We could then increase the set of
disjoint paths from players in P6i to sinks in I to be greater than I6i which contradicts the property
DPM(P6i, I6i) = DPM(P6i, I) of the canonical decomposition. Similarly, suppose X is not an optimal
solution to FM(P6i,A6i+1 ∪ I). Then there exists an augmenting path to an edge in I \ I6i which again
contradicts the property DPM(P6i, I6i) = DPM(P6i, I) of the canonical decomposition. �

Alternating paths.

In the disjoint path network HM with sources S and sinks T we call a path P with start and end
vertices u and v respectively an alternating path if u, v ∈ P and u ∈ S is a source and v ∈ T is a sink.
Our algorithm shall update the partial matching by following such alternating paths. Suppose v
has an immediately addable edge, i.e., (v,R) ∈ I, then, by alternating along the path P in HM we refer
to the following procedure of modifying the partial matching M:

1. First remove all fat blocking edges on the path P from M and then add the remaining fat
edges on P to M. That is,

M←M \ {(p, { f }) | (f , p) ∈ P} ∪ {(p, { f }) | (p, f) ∈ P}.

2. Then remove from M the blocking edge corresponding to the source u

3. Finally, add to M some T/β-minimal subset R′ ⊆ R of resources that are disjoint from the
edges in M from the immediately addable edge (v,R) corresponding to the sink v.

13

This procedure is well defined since HM is a bipartite graph and vertices of p alternate between the
sets P and R f of the bipartition. Moreover, as (v,R) is an immediately addable edge, the set R′ is
guaranteed to exist. Finally, it is easy to see that modifying M in this way using an alternating path
does not change the number of fat edges in M.

4.2 Description of Algorithm

As before we present an algorithm that takes a partial matching M and augments it to one of larger
size. We start with a partial matching M that assigns the maximum possible number of fat edges.
Note that this can be done in polynomial time by simply solving the maximum matching problem
in the graph H∅. The input to our algorithm is then such a partial matching M. As our algorithm
only updates M by using alternating paths as described above, we will maintain the invariant that
M assigns a maximum number of fat resources. Assuming that we can extend M to match one more
player in polynomial time, our final algorithm therefore runs in polynomial time.

We are now ready to describe the algorithm for extending M to match an additional player.

Initialization. Select a player p0 not matched by M. The goal is to extend M so as to also match p0
in addition to the players already matched by M. Set A0 ← ∅, B0 ← (p0, ∅), and d0 ← 0. The first
layer L0 is now defined by the tuple (A0,B0, d0). Set `← 0.

Iterative step. The iterative step consists of two phases, the first of which is always executed.

Build phase. Set A`+1 ← ∅. We now define the thin edges called candidate edges that are added
either to the A`+1 or I. A thin α-edge c = (p,R) is a candidate edge if

1. the set R is disjoint from the resources appearing in A6`+1 ∪ B6` ∪ I, and

2. DPM(P6`,A6`+1 ∪ I + c) > DPM(P6`,A6`+1 ∪ I).

While there exists a candidate edge c, we add it to I if c is immediately addable or to A`+1
otherwise. When this is no longer possible, let B`+1 be the set of blockers of A`+1, and set
d`+1 ← DPM(P6l,A6l+1 ∪ I). Now construct a new layer by setting L`+1 ← (A`+1,B`+1, d`+1) and then
by incrementing `. We now proceed to the collapse phase.

Collapse phase. Compute the canonical decomposition I0 ∪ · · · ∪ I` of I. We call a layer
Li, 0 6 i 6 `, collapsible if |Ii| > µ|Pi|. If there exists a collapsible layer, then let Lt be the earliest
collapsible layer and do the following:

1. Compute the optimal solution W corresponding to the canonical decomposition of I and use
Lemma 4.7 to compute an optimal solution X to FM(P6t−1,A6t∪ I6t−1) whose paths are disjoint
from Wt. Alternate along the disjoint paths in Wt to modify the partial matching M. This step
changes the sets Bt and M.

2. Set I to be I0 ∪ · · · ∪ It−1. For each newly formed immediately addable edges a ∈ At do the
following: At ← At \ {a} and if X has a path that ends at a then I← I + a.

3. Discard all the layers with index greater than t and set ` to be t. Repeat the collapse phase
until there are no collapsible layers.

14

Repeat the iterative step until p0 is matched by M.

Remark 4.8. A candidate edge is a thin edge whose addition increases the number of players from
P6` who can simultaneously reach addable or immediately addable edges in the flow network
FM(P6`,A6`+1 ∪ I) through disjoint paths. Intuitively, this constitutes an improvement since if
some of the candidate edges become immediately addable then we can alternate along those
disjoint paths to update our solution. This will satisfy some players from P6` (those that reached
immediately addable edges) which would then remove some blockers turning more addable edges
into immediately addable edges, etc.

4.3 Analysis

From the description of the algorithm, it is clear that if it terminates, then it has increased the size of
the matching by also matching player p0. In this Section, we shall show that the algorithm terminates
in polynomial time (for a fixed ε > 0) whenever CLP(τ) is feasible. This proves Theorem 1.1 as
we can then repeat the above algorithm at most |P| times until all players are matched. Note also
that we do not need to solve the configuration-LP as we can combine the above algorithm with a
standard binary search. We first show that the algorithm satisfies some invariants. We then use
these invariants to bound the running time.

4.3.1 Invariants

We show the following invariants.

Lemma 4.9. At the beginning of each execution of the iterative step,

1. DPM(P6`, I) = |I|;

2. DPM(P6i−1,A6i ∪ I) > di for each i = 1, . . . , `.

Proof. Both invariants trivially hold before the first execution of the iterative step. Assume that
they are true before the r-th execution of the iterative step. We now verify them before the r + 1-th
iterative step. During the r-th iterative step there are two cases to consider:

No layer was collapsed. Let L`+1 denote the layer that was constructed during the build phase.
We start by verifying the first invariant. If no candidate edge is added to I during this phase then
|I| > DPM(P6`+1, I) > DPM(P6`, I) = |I|. Suppose that c1, . . . , ck were the candidate edges added to
the set I in that order. When candidate edge ci was added to the set I, we have that

DPM(P6`,A6` ∪ I ∪ {c1, . . . , ci−1} + ci) > DPM(P6`,A6` ∪ I ∪ {c1, . . . , ci−1}),

which implies that

DPM(P6`, I ∪ {c1, . . . , ci−1} + ci) > DPM(P6`, I ∪ {c1, . . . , ci−1})

since the first inequality implies that there exists an augmenting path with ci as the sink. Along
with the induction hypothesis, these inequalities imply that

DPM(P6`+1, I ∪ {c1, . . . , ck}) > DPM(P6`, I ∪ {c1, . . . , ck}) = |I| + k = |I ∪ {c1, . . . , ck}|.

The inequality for i = ` + 1 in the second invariant holds by the definition of d`+1 during this
phase. The remaining inequalities follow from the induction hypothesis since none of the previous
layers L0, . . . ,L` were altered during this phase and no elements from I were discarded.

15

At least one layer was collapsed. Let t denote the index of the last layer that was collapsed
during the r-th iterative step. Let (`, {L0, . . . ,Lt′}, I,M) denote the state of the algorithm at the
beginning of the last execution of the collapse phase during the r-th iterative step (t′ > t). Let
I′ denote I0 ∪ . . . It−1 ∪ {a1, . . . , ak} where a1, . . . , ak are the edges added in Step 2 of the collapse
phase and let M′ denote the partial matching after Step 1 of the collapse phase. The first invariant,
DPM′(P6t, I′) = |I′|, now follows from Lemma 4.7. Indeed, the solution X used all the sinks in
I0 ∪ . . . It−1 ∪ {a1, . . . , ak}which equals I′; and these paths form a solution to FM′(P6t, I′) as they are
disjoint from the paths in Wt. Notice that we do not use the induction hypothesis in this case.

For the second invariant, we need to verify inequalities for i = 1, . . . , t. When i < t, none of
the sets Ai were altered during this iterative step since t was the earliest layer that was collapsed.
Further, although M changes during the collapse phase, by Lemma 4.7 this change cannot reduce
the number of disjoint paths from P6i to A6i+1 ∪ I. For i = t, the number of disjoint paths from P6t−1
to A6t ∪ I cannot reduce because of Step 2 in the algorithm that maintains X as a feasible solution
by the same arguments as for the first invariant. �

4.3.2 Polynomial running time

In this section, we use the invariants to show that the algorithm terminates in polynomial time
assuming CLP(τ) is feasible. We start with two lemmas that show that di cannot be too small. The
first holds in general and the second holds if CLP(τ) is feasible.

Lemma 4.10. At the beginning of each iteration, we have that di > |A6i| for every i = 0, . . . , `.

Proof. We prove this by induction on the variable r > 0 that counts the number of times the iterative
step has been executed. For r = 0 the statement is trivial. Suppose that it is true for r > 0. We shall
show that it holds before the r + 1-th iterative step. If the iteration collapses a layer then no new
layer was added and as di’s remain unchanged and A6i may only decrease, the statement is true in
this case. Now suppose that no layer was collapsed in this iteration and let L`+1 = (A`+1,B`+1, d`+1)
be the newly constructed layer in this phase. Suppose that A`+1 = {a1, . . . , ak} denotes the set of
candidate edges added to A`+1 indexed by the order in which they were added. When candidate
edge ai was added to the set A`+1, we have that

DPM(P6`,A6` ∪ I ∪ {a1, . . . , ai−1} + ai) > DPM(P6`,A6` ∪ I ∪ {a1, . . . , ai−1}).

Using Lemma 4.9 and the induction hypothesis,

DPM(P6`−1,A6` ∪ I) > d` > |A6`|.

Using the previous inequalities,

d`+1 = DPM(P6`,A6`+1 ∪ I) > |A6`| + k > |A6`+1|.

The remaining inequalities continue to hold since, for any 0 6 i 6 `+ 1, di does not change after layer
Li is built and the set Ai may only reduce in size in the collapse phase. Therefore, the inequalities
continue to hold before the r + 1-th iterative step as well. �

Lemma 4.11. Assuming CLP(τ) is feasible, at the beginning of each execution of the iterative step

DPM(P6i−1,A6i ∪ I) > di > γ|P6i−1|, where γ =
1
3

(
√

10 − 2).

for every i = 1, . . . , `.

16

Remark 4.12. The above condition is the only one that needs to be satisfied for the algorithm to run
in polynomial time. Therefore, in a binary search, the algorithm can abort if the above condition is
violated at some time; otherwise it will terminate in polynomial time.

Proof. We will prove that di > γ|P6i−1| for i = 1, . . . , ` as the second invariant from Lemma 4.9 then
implies the claim. Notice that di is defined only at the time when layer Li is created and not altered
thereafter. So it suffices to verify that: Assuming di > γ|P6i−1| for i = 1, . . . , `, then for the newly
constructed layer L`+1, d`+1 > γ|P6`| also.

Suppose towards contradiction that

d`+1 = DPM(P6`,A6`+1 ∪ I) < γ|P6`|.

Then, as no layer is collapsible, we have |Ii| < µ|Pi| for i = 0, . . . , `, which by the first invariant of
Lemma 4.9 implies

|I| = DPM(P6`, I) < µ|P6`|.

Moreover, by Lemma 4.10 and the second invariant of Lemma 4.9 we have

|A6`+1| 6 d`+1 = DPM(P6`,A6`+1 ∪ I) < γ|P6`|.

Hence, we have that |A6`+1 ∪ I| < (µ + γ)|P6`|. The rest of the proof is devoted to showing that this
causes the dual of the CLP(τ) to become unbounded which leads to the required contradiction by
weak duality. That is, we can then conclude that if CLP(τ) is feasible then d`+1 > γ|P6`|.

Consider the flow network FM(P6`,A6`+1 ∪ I ∪ Z) with P6` as the set of sources and A6` ∪ I ∪ Z
as the collection of sinks where,

Z := {p ∈ P | p has τ/α value resources disjoint from the sets A6`+1, I and B6`}.

Since there are no more candidate edges the maximum number of vertex disjoint paths from P6l
to the sinks equals DPM(P6`,A6`+1 ∪ I) which, by assumption, is less than γ|P6`|. Therefore, by
Menger’s theorem there exists a set K ⊆ V of vertices of cardinality less than γ|P6`| such that in
HM −K the sources P6` \K and the sinks are disconnected, i.e., no sink is reachable from any source
in P6` \ K. We now claim that we can always choose such a vertex cut so that it is a subset of the
players.
Claim 4.13. There exists a vertex cut K ⊆ P separating P` \ K from the sinks of cardinality less than
γ|P6`|

Proof. Take any minimum cardinality vertex cut K separating P` \K from the sinks. We already saw
that |K| < γ|P6`|. Observe that every fat resource that is reachable from P6` \K must have outdegree
exactly one in HM. It cannot be more than one since M is a collection of disjoint edges, and it cannot
be zero since we could then increase the number of fat edges in M which contradicts that we started
with a partial matching that maximized the number of fat edges. Therefore in the vertex cut K, if
there are vertices corresponding to fat resources, we can replace each fat resource with the unique
player to which it has an outgoing arc to, to obtain another vertex cut also of the same cardinality
that contains only vertices corresponding to players. �

Now call the induced subgraph of HM − K on the vertices that are reachable from P6` \ K as H′.
Using H′ we define the assignment of values to the dual variables in the dual of CLP(τ) as follows:

17

yi :=

(1 − 1/α) if player i is in H′,
0 otherwise,

z j :=

v j/τ if j is a thin resource that appears in A6`+1 ∪ I ∪ B6`,
(1 − 1/α) if j is a fat resource in H′,
0 otherwise.

We first verify that the above assignment is feasible. Since all the dual variables are non-negative
we only need to verify that yi 6

∑
j∈C z j for every i ∈ P and C ∈ C(i, τ). Consider a player i that is

given a positive yi value by the above assignment. Let C ∈ C(i, τ) be a configuration for player i of
value at least τ. There are two cases we need to consider.

Case 1. C is a thin configuration. Suppose that
∑

j∈C z j < (1 − 1/α). Then, by our assignment of z j
values, this implies that there exists a set R ⊆ C such that R is disjoint from the resources in
A6`+1 ∪ I ∪ B6` and

∑
j∈R p j > τ/α. Together this contradicts the fact that H′ has no sinks since

i is then a sink (it is in Z).

Case 2. C is a fat configuration. Let j be the fat resource in C. As i was reachable in H′ and K is a
subset of the players, j is also present in H′. Thus, by our assignment, z j = 1 − 1/α.

Having proved that our assignment of yi and z j values constitutes a feasible solution to the dual
of CLP(τ), we now compute the objective function value

∑
i yi −

∑
j z j of the above assignment. To

do so we adopt the following charging scheme: for each fat resource j in H′, charge its z j value
against the unique player i such that the outgoing edge (j, i) belongs to H′. The charging scheme
accounts for the z j values of all the fat resources except for the fat resources that are leaves in H′.
There are at most |K1| such fat resources, where K1 ⊆ K is the set of players to which the uncharged
fat items have an outgoing arc to. Moreover, note that K1 only consists of players that are matched
in M by fat edges. Since P6` does not have any players matched by fat edges in M, no player in
K2 := P6` ∩ K is present in K1, i.e., K1 ∩ K2 = ∅. Finally, note that no player in P6` \ K = P6` − K2 has
been charged. Thus, considering all players in P but only fat configurations, we have∑

i∈P

yi −
∑
j∈R f

z j > (1 − 1/α)(|P6`| − |K2|) − (1 − 1/α)|K1|

= (1 − 1/α)(|P6`| − (|K1| + |K2|))
> (1 − 1/α)(1 − γ)|P6`|.

We now compute the total contribution of thin resources, i.e.,
∑

j∈Rt
z j. The total value

of thin resources from the addable edges A6`+1 and immediately addable edges I is at most
(1/α + 1/β)|A6`+1 ∪ I|. Besides the resources appearing in A6`+1 ∪ I, the total value of resources
appearing only in the blockers B6` is at most (1/β)(|B6`|) < (1/β)(|P6`|), by the minimality of the
blocking edges. Indeed, if a blocking edge has more than 1/β resources not appearing in an edge in
A6`+1 ∪ I then those resources would form a thin β-edge which contradicts its minimality.

Thus, in total,∑
i∈P

yi −
∑
j∈R

z j > (1 − γ)
(
1 −

1
α

)
|P6`| − (µ + γ)

(
1
α

+
1
β

)
|P6`| −

1
β
|P6`|.

18

So, the dual of CLP(τ) is unbounded when

(1 − γ)
(
1 −

1
α

)
− (µ + γ)

(
1
α

+
1
β

)
−

1
β
> 0⇔ γ 6

αβ − (1 + µ)(α + β)
αβ + α

.

Recall that β = 2(3 +
√

10) + ε, α = 2, and µ = ε/100. For ε > 0 the last inequality is equivalent to
206
√

10 + 3ε 6 676, which is valid for ε 6 1.
�

We now use the previous lemma to show that if we create a new layer then the number of
blocking edges (or players) in that layer will increase rapidly. This will allow us to bound the
number of layers to be logarithmic and also to bound the running time.

Lemma 4.14 (Exponential growth). At each execution of the iterative step of the algorithm, we have

|Pi| > δ|P6i−1|, where δ := ε/100,

for each i = 1, . . . , `.

Proof. Suppose towards contradiction that the statement is false and let t be the smallest index that
violates it, i.e., |Pt| < δ|P6t−1|. Since no layer L0, . . . ,Lt is collapsible at the beginning of the iterative
step, |Ii| < µ|Pi| for 0 6 i 6 t. Hence,

|I6t| < µ|P6t| < µ(1 + δ)|P6t−1|.

Further,
|A6t| + |I6t| > DPM(P6t−1,A6t ∪ I) > γ|P6t−1|,

where the first inequality is trivial while the second one follows from Lemma 4.11. This gives us

|A6t| >
(
γ − µ(1 + δ)

)
|P6t−1|.

We now obtain an upper bound on the total number of addable edges in the sets A0, . . . ,A` by
counting the value of blocked resources in each layer Li yielding

|Ai|
(
τ/α − τ/β

)
6 |Bi|

(
2τ/β

) summing over i and rearranging
=⇒ |A6t| 6 |B6t|

2α
β − α

.

Since |B6t| < |P6t| and |P6t| < (1 + δ)|P6t−1|we have the bound

|A6t| <
2α
β − α

(1 + δ)|P6t−1|.

Therefore we will have a contradiction when

2α
β − α

(1 + δ) 6 γ − (1 + δ)µ.

It can be verified that for any ε > 0 the above inequality is equivalent to

22400 + 6
(
52 +

√

10
)
ε + 3ε2 6 9400

√

10,

which is true for ε ∈ [0, 1] leading to the required contradiction. �

19

We are now ready to prove that our algorithm terminates in polynomial time.

Theorem 4.15 (Running time). The combinatorial algorithm runs in time polynomial in |R| and
|P|

O(1/ε2 log(1/ε)).

Proof. To show the claim we define the signature vector s := (s0, . . . , s`,∞), where

si := blog1/(1−µ)
|Pi|

δi+1
c

corresponding to the state (`, {L0, . . . ,L`}, I,M) of the algorithm. The signature vector changes as the
algorithm executes.
Claim 4.16. Across each iterative step, the lexicographic value of the signature vector decreases.
Further, the coordinates of the signature vector are always non-decreasing.

Proof. We show this by induction as usual on the variable r that counts the number of times the
iterative step has been executed. The statement for r = 0 is immediate. Suppose it is true for r > 0.
Let s = (s0, . . . , s`,∞) and s′ = (s′0, . . . , s

′

`′ ,∞) denote the signature vector at the beginning and at the
end of the (r + 1)-th iterative step. We consider two cases:

No layer was collapsed. Let L`+1 be the newly constructed layer. In this case, `′ = ` + 1. By
Lemma 4.14, |P`+1| > δ|P6`| > δ|P`|. Clearly, s′ = (s0, . . . , s`, s′`+1,∞) where∞ > s′`+1 > s′` = s`. Thus,
the signature vector s′ also has increasing coordinates and smaller lexicographic value compared to
s.

At least one layer was collapsed. Let 0 6 t 6 ` be the index of the last layer that was collapsed
during the r-th iterative step. As a result of the collapse operation suppose the layer Pt changed to
P′t. Then we know that |P′t | < (1−µ)|Pt|. Since none of the layers with indices less than t were affected

during this procedure, s′ = (s0, . . . , st−1, s′t,∞) where s′t = blog1/(1−µ)
|P′t |
δt+1 c 6 blog1/(1−µ)

(1−µ)|Pt|

δt+1 c 6

blog1/(1−µ)
|Pt|

δt+1 c− 1 = st − 1. This shows that the lexicographic value of the signature vector decreases.
That the coordinates of s′ are non-decreasing follows from Lemma 4.14. �

The proof of the theorem now follows from two facts: a) a single execution of the iterative step
takes only time that is polynomial in |P| and |R|; and b) the number of signature vectors is bounded
by a polynomial in |P| for any fixed ε > 0. We prove the second of these claims now.
Claim 4.17. The number of signature vectors is at most |P|O(1/µ·1/δ·log(1/δ)).

Proof. By Lemma 4.14, |P| > P6` > (1 + δ)P6`−1 > . . . > (1 + δ)`|P0|. This implies that ` 6 log1+δ |P| 6
1
δ log |P|, where the last inequality is obtained by using Taylor series and that δ ∈ [0, 1/100].

Now consider the i-th coordinate of the signature vector si. It can be no larger than log1/(1−µ)
|P|

δi+1 .
Using the bound on the index i and after some manipulations, we get

si 6
(
log |P| + (i + 1) log

1
δ

) 1
log 1

1−µ

6
(
log |P| + (

1
δ

log |P| + 1) log
1
δ

) 1
log 1

1−µ

= log |P| ·O
(

1
µδ

log
1
δ

)
,

20

where the final bound is obtained by again expanding using Taylor series around 0. Thus, if we
let U = log |P| · O

(
1
µδ log 1

δ

)
be an upper bound on the number of layers and the value of each

coordinate of the signature vector, then the sum of coordinates of the signature vector is always
upper bounded by U2.

Now, as in the simpler algorithm, we apply the bound on the number of partitions of an integer.
Recall that the number of partitions of an integer N can be upper bounded by eO(

√
N) [HR18]. Since

each signature vector corresponds to some partition of an integer at most U2, we can upper bound
the total number of signature vectors by

∑
i6U2 eO(

√
i).

Now using the bound of U, we have that the number of signatures is at most |P|O(1/µ·1/δ·log(1/δ)). �

The theorem now follows from the claims by substituting in the values of µ := ε/100 and
δ := ε/100

�

5 Conclusion

In this paper we have presented new ideas for local search algorithms based on alternating trees.
This led to an improved approximation algorithm for the restricted max-min fair allocation
problem. The obtained algorithm is also combinatorial and therefore bypasses the need of solving
the exponentially large configuration-LP.

Apart from further improving the approximation guarantee, we believe that an interesting future
direction is to consider our techniques in the more abstract setting of matchings in hypergraphs.
For example, Haxell [Hax95] proved, using an alternating tree algorithm, a sufficient condition for
a bipartite hypergraph to admit a perfect matching.

Theorem 5.1 (Haxell’s condition). Consider an (r + 1)-uniform bipartite hypergraph H = (P ∪ R,E)
such that for every edge e ∈ E, |e ∩ P| = 1 and |e ∩ R| = r. For C ⊆ P let H(EC) denote the size of the
smallest set R ⊆ R that hits all the edges in H that are incident to some vertex in C. If for every C ⊆ P,
H(EC) > (2r − 1)(|C| − 1) then there exists a perfect matching inH .

Note that Theorem 5.1 generalizes Hall’s theorem for graphs. However, the proof of the
statement does not lead to a polynomial time algorithm. It is an open question if a constructive
analog of Theorem 5.1 can be proved. For instance, if we strengthen the sufficient condition to
H(EC) > 100r(|C| − 1) ∀C ⊆ P can we also find a perfect matching in polynomial time?

We note that, with the techniques presented in this paper, we can prove the following weaker
statement: given some 0 < ε 6 1 and assuming that H(EC) > Ω(1/ε)r(|C| − 1), then there is a
polynomial time algorithm that assigns one edge ep ∈ E for every player p ∈ P such that it is possible
to choose disjoint subsets {Sp ⊆ ep ∩ R}p∈P of size at least (1 − ε)r.

References

[AFS12] Arash Asadpour, Uriel Feige, and Amin Saberi. Santa claus meets hypergraph matchings.
ACM Transactions on Algorithms (TALG), 8(3):24, 2012. 1, 2, 4

[AS07] Arash Asadpour and Amin Saberi. An approximation algorithm for max-min fair
allocation of indivisible goods. In Proceedings of the thirty-ninth annual ACM symposium on
Theory of computing, STOC ’07, pages 114–121, New York, NY, USA, 2007. ACM. 3

21

[BCG09] MohammadHossein Bateni, Moses Charikar, and Venkatesan Guruswami. Maxmin
allocation via degree lower-bounded arborescences. In Proceedings of the 41st annual ACM
symposium on Theory of computing, STOC ’09, pages 543–552, 2009. 3

[BD05] Ivona Bezáková and Varsha Dani. Allocating indivisible goods. ACM SIGecom Exchanges,
5(3):11–18, 2005. 1, 3

[BS06] Nikhil Bansal and Maxim Sviridenko. The santa claus problem. In Proceedings of the
thirty-eighth annual ACM symposium on Theory of computing, pages 31–40. ACM, 2006. 1, 3,
6

[CCK09] Deeparnab Chakrabarty, Julia Chuzhoy, and Sanjeev Khanna. On allocating goods to
maximize fairness. In Proceedings of the 2009 50th Annual IEEE Symposium on Foundations
of Computer Science, FOCS ’09, pages 107–116, 2009. 3

[Fei08a] Uriel Feige. On allocations that maximize fairness. In Proceedings of the nineteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 287–293. Society for Industrial and
Applied Mathematics, 2008. 1, 2

[Fei08b] Uriel Feige. On estimation algorithms vs approximation algorithms. In LIPIcs-Leibniz
International Proceedings in Informatics, volume 2. Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2008. 2

[Hax95] Penny E Haxell. A condition for matchability in hypergraphs. Graphs and Combinatorics,
11(3):245–248, 1995. 1, 2, 21

[HR18] G. H. Hardy and S. Ramanujan. Asymptotic formulaæ in combinatory analysis. Proceedings
of the London Mathematical Society, s2-17(1):75–115, 1918. 9, 21

[HSS11] Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. New constructive aspects of
the lovasz local lemma. Journal of the ACM (JACM), 58(6):28, 2011. 2

[LST90] Jan Karel Lenstra, David B Shmoys, and Éva Tardos. Approximation algorithms for
scheduling unrelated parallel machines. Mathematical programming, 46(1-3):259–271, 1990.
1, 2

[PS12] Lukas Polacek and Ola Svensson. Quasi-polynomial local search for restricted max-min
fair allocation. In Automata, Languages, and Programming, pages 726–737. Springer, 2012. 2,
4

[SS10] Barna Saha and Aravind Srinivasan. A new approximation technique for resource-
allocation problems. In ICS, pages 342–357, 2010. 3

[Sve12] Ola Svensson. Santa claus schedules jobs on unrelated machines. SIAM Journal on
Computing, 41(5):1318–1341, 2012. 2

22

	1 Introduction
	2 The Configuration LP
	3 Polynomial time alternating tree algorithm
	3.1 Thin and fat edges, and partial matchings
	3.2 Addable edges, blocking edges, and layers
	3.3 Clustering step
	3.4 Description of the algorithm
	3.5 Analysis of the algorithm

	4 Combinatorial Algorithm
	4.1 Addable and blocking edges, layers, disjoint path network and alternating paths
	4.2 Description of Algorithm
	4.3 Analysis
	4.3.1 Invariants
	4.3.2 Polynomial running time

	5 Conclusion

