220 research outputs found

    Decoding and constructions of codes in rank and Hamming metric

    Get PDF
    As coding theory plays an important role in data transmission, decoding algorithms for new families of error correction codes are of great interest. This dissertation is dedicated to the decoding algorithms for new families of maximum rank distance (MRD) codes including additive generalized twisted Gabidulin (AGTG) codes and Trombetti-Zhou (TZ) codes, decoding algorithm for Gabidulin codes beyond half the minimum distance and also encoding and decoding algorithms for some new optimal rank metric codes with restrictions. We propose an interpolation-based decoding algorithm to decode AGTG codes where the decoding problem is reduced to the problem of solving a projective polynomial equation of the form q(x) = xqu+1 +bx+a = 0 for a,b ∈ Fqm. We investigate the zeros of q(x) when gcd(u,m)=1 and proposed a deterministic algorithm to solve a linearized polynomial equation which has a close connection to the zeros of q(x). An efficient polynomial-time decoding algorithm is proposed for TZ codes. The interpolation-based decoding approach transforms the decoding problem of TZ codes to the problem of solving a quadratic polynomial equation. Two new communication models are defined and using our models we manage to decode Gabidulin codes beyond half the minimum distance by one unit. Our models also allow us to improve the complexity for decoding GTG and AGTG codes. Besides working on MRD codes, we also work on restricted optimal rank metric codes including symmetric, alternating and Hermitian rank metric codes. Both encoding and decoding algorithms for these optimal families are proposed. In all the decoding algorithms presented in this thesis, the properties of Dickson matrix and the BM algorithm play crucial roles. We also touch two problems in Hamming metric. For the first problem, some cryptographic properties of Welch permutation polynomial are investigated and we use these properties to determine the weight distribution of a binary linear codes with few weights. For the second one, we introduce two new subfamilies for maximum weight spectrum codes with respect to their weight distribution and then we investigate their properties.Doktorgradsavhandlin

    Towards a deeper understanding of APN functions and related longstanding problems

    Get PDF
    This dissertation is dedicated to the properties, construction and analysis of APN and AB functions. Being cryptographically optimal, these functions lack any general structure or patterns, which makes their study very challenging. Despite intense work since at least the early 90's, many important questions and conjectures in the area remain open. We present several new results, many of which are directly related to important longstanding open problems; we resolve some of these problems, and make significant progress towards the resolution of others. More concretely, our research concerns the following open problems: i) the maximum algebraic degree of an APN function, and the Hamming distance between APN functions (open since 1998); ii) the classification of APN and AB functions up to CCZ-equivalence (an ongoing problem since the introduction of APN functions, and one of the main directions of research in the area); iii) the extension of the APN binomial x3+βx36x^3 + \beta x^{36} over F210F_{2^{10}} into an infinite family (open since 2006); iv) the Walsh spectrum of the Dobbertin function (open since 2001); v) the existence of monomial APN functions CCZ-inequivalent to ones from the known families (open since 2001); vi) the problem of efficiently and reliably testing EA- and CCZ-equivalence (ongoing, and open since the introduction of APN functions). In the course of investigating these problems, we obtain i.a. the following results: 1) a new infinite family of APN quadrinomials (which includes the binomial x3+βx36x^3 + \beta x^{36} over F210F_{2^{10}}); 2) two new invariants, one under EA-equivalence, and one under CCZ-equivalence; 3) an efficient and easily parallelizable algorithm for computationally testing EA-equivalence; 4) an efficiently computable lower bound on the Hamming distance between a given APN function and any other APN function; 5) a classification of all quadratic APN polynomials with binary coefficients over F2nF_{2^n} for n≤9n \le 9; 6) a construction allowing the CCZ-equivalence class of one monomial APN function to be obtained from that of another; 7) a conjecture giving the exact form of the Walsh spectrum of the Dobbertin power functions; 8) a generalization of an infinite family of APN functions to a family of functions with a two-valued differential spectrum, and an example showing that this Gold-like behavior does not occur for infinite families of quadratic APN functions in general; 9) a new class of functions (the so-called partially APN functions) defined by relaxing the definition of the APN property, and several constructions and non-existence results related to them.Doktorgradsavhandlin

    Mathematical aspects of the design and security of block ciphers

    Get PDF
    Block ciphers constitute a major part of modern symmetric cryptography. A mathematical analysis is necessary to ensure the security of the cipher. In this thesis, I develop several new contributions for the analysis of block ciphers. I determine cryptographic properties of several special cryptographically interesting mappings like almost perfect nonlinear functions. I also give some new results both on the resistance of functions against differential-linear attacks as well as on the efficiency of implementation of certain block ciphers
    • …
    corecore