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Abstract

As coding theory plays an important role in data transmission, decoding algorithms for new
families of error correction codes are of great interest. This dissertation is dedicated to the
decoding algorithms for new families of maximum rank distance (MRD) codes including ad-
ditive generalized twisted Gabidulin (AGTG) codes and Trombetti-Zhou (TZ) codes, decoding
algorithm for Gabidulin codes beyond half the minimum distance and also encoding and de-
coding algorithms for some new optimal rank metric codes with restrictions.

We propose an interpolation-based decoding algorithm to decode AGTG codes where the de-
coding problem is reduced to the problem of solving a projective polynomial equation of
the form q(x) = xqu+1 + bx+ a = 0 for a,b ∈ Fqm . We investigate the zeros of q(x) when
gcd(u,m) = 1 and proposed a deterministic algorithm to solve a linearized polynomial equa-
tion which has a close connection to the zeros of q(x).

An efficient polynomial-time decoding algorithm is proposed for TZ codes. The interpolation-
based decoding approach transforms the decoding problem of TZ codes to the problem of
solving a quadratic polynomial equation. Two new communication models are defined and
using our models we manage to decode Gabidulin codes beyond half the minimum distance
by one unit. Our models also allow us to improve the complexity for decoding GTG and
AGTG codes.

Besides working on MRD codes, we also work on restricted optimal rank metric codes in-
cluding symmetric, alternating and Hermitian rank metric codes. Both encoding and decoding
algorithms for these optimal families are proposed. In all the decoding algorithms presented
in this thesis, the properties of Dickson matrix and the BM algorithm play crucial roles.

We also touch two problems in Hamming metric. For the first problem, some cryptographic
properties of Welch permutation polynomial are investigated and we use these properties to
determine the weight distribution of a binary linear codes with few weights. For the second
one, we introduce two new subfamilies for maximum weight spectrum codes with respect to
their weight distribution and then we investigate their properties.
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Chapter 1

Preliminaries

This chapter is a brief introduction about the tools needed in this thesis. First, we will give
brief results in the theory of finite fields and then we will bring the concept of block codes
in both Hamming and rank metrics. We also recall new families of rank metric codes, their
properties and known decoding algorithms.

1.1 Notation

Let p be a prime integer. We denote a prime field of order p by Fp = {0,1, . . . , p− 1}. Let
q be a power of p (q = pr), then the finite field of order q is denoted by Fq which contains q
elements. Here, p is called the characteristic of the finite field Fq. All the non-zero elements
{a1, . . . ,aq−1} of finite field Fq can be generated by a primitive element a ∈ Fq. An element
a ∈ Fq has order t, if t is the smallest positive integer such that at = 1 and α is a primitive
element in Fq if it has order q− 1, i.e., αq−1 = 1. The number of primitive elements in Fq
coincides with the number of integers co-prime to q− 1. An extension field of Fq of degree
m is denoted by Fqm , which can be constructed by an irreducible polynomial q(x) of degree
m over Fq. Irreducible polynomials of degree m exist for any m [30]. We call Fq a sub-
field of Fqm . It is well-known that an extension field Fqm can be seen as an Fq-vector space
of dimension m. So every element a ∈ Fqm can be represented as a linear combination of
linearly independent elements αi ∈ Fqm where i = 0, . . . ,m−1. Linearly independent elements
α0, . . . ,αm−1 form a basis for the extension field Fqm over Fq. We use the following notations
and properties for finite fields in this thesis:

i. we denote qi = [i] and q2i = 〚i〛 where i ∈ Z,

ii. for a ∈ Fqm and i ∈ Z, a[m] = a and a[i] = a[i mod m],

iii. for a ∈ Fq and i ∈ Z, a[i] = a,

iv. (a+b)pi
= api

+bpi
, where a,b ∈ Fqm , p is the characteristic of Fqm and i ∈ Z,
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1.1.1 Trace, Norm and Bases

Definition 1 (Conjugates). Let Fqm be an extension field of Fq of degree m. The conjugates of
a ∈ Fqm are the set a,aq, . . . ,aqm−1

.

Definition 2 (Trace). Let Fqm be an extension field of Fq. The trace of a ∈ Fqm is the linear
map

Trqm/q(a) = a+aq +aq2
+ · · ·+aqm−1

,

in other words, the trace of a field element is the sum of its conjugates.

Definition 3 (Norm). The norm of a ∈ Fqm is the product of its conjugates

Normqm/q(a) = a ·aq ·aq2 · · ·aqm−1
.

The trace and norm are defined with respect to the sub-field on which the extension field is
built.

Definition 4 (Basis). An extension field Fqm of degree m can be seen as an m-dimensional
vector space over Fq and there are linearly independent basis elements {α0, . . . ,αm−1} such
that each element a ∈ Fqm can be written as

a =
m−1

∑
i=0

aiαi,

where ai ∈ Fq.

If the order of a basis is important, we call it an ordered basis. We use different ordered bases
for different purposes throughout this thesis.

Definition 5 (Polynomial Basis). Let α be a primitive element of Fqm, then the set {1,α,α2, . . . ,αm−1}
forms a basis for Fqm over Fq and it is called a polynomial basis.

Definition 6 (Normal Basis). Consider some α ∈ Fqm. If the set of conjugates of α , i.e.,
N = {α,αq,αq2

, . . . ,αqm−1}, forms a basis of Fqm over Fq then α is called a normal element
and N is called a normal basis.

Definition 7 (Dual Bases). Consider two bases A = {αi}m−1
i=0 and B = {βi}m−1

i=0 of Fqm over

Fq. Then A is called the dual of B if Trqm/q(αi ·βi) = δi j, where δi j =

{
1 for i = j,
0 for i �= j

and it is

known as the Kronecker delta function. A basis is called self-dual if it is the dual of itself.

Definition 8 (Vector and Matrix Representation). Let α = (α0, . . . ,αm−1) be an ordered basis
of Fqm over Fq. Any vector v = (v0, . . . ,vn−1) ∈ F

n
qm can be represented with respect to a basis

α over sub-field Fq using the bijective map B : F
n
qm → F

m×n
q which is defined as

v = (v0, . . . ,vn−1) �−→V = B(v) =

⎛⎜⎜⎜⎝
V11 V12 · · · V1n
V21 V22 · · · V2n

...
... . . . ...

Vm1 Vm2 · · · Vmn

⎞⎟⎟⎟⎠
m×n

, (1.1)
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where v j =
m−1
∑

i=0
Vi jαi for j = 0, . . . ,n−1.

Definition 9 (Moore Matrix). The matrix M of the form

M=
(

αq j

i

)
m×m

=

⎛⎜⎜⎜⎜⎝
α0 αq

0 · · · αqm−1

0

α1 αq
1 · · · αqm−1

1
...

... . . . ...

αm−1 αq
m−1 . . . αqm−1

m−1

⎞⎟⎟⎟⎟⎠ , (1.2)

is called the Moore matrix associated to the set α = {α0, . . . ,αm−1} where αi ∈ Fqm.

The Moore matrix associated to the set α is non-singular if α0, . . . ,αm−1 are Fq-linearly inde-
pendent [30]. So the Moore matrix associated to an Fq-basis of Fqm is always non-singular.

Example 1. Let F22 = F4 be the finite field of 4 elements. Let θ be a primitive element of F4
namely F4 = {0,θ ,θ 2,θ 3 = 1}. So the polynomial basis of F4 over F2 is {θ ,θ 3 = 1}. We

can write the field elements in vector form with respect to the basis elements as v0 =

(
0
0

)
,

vθ =

(
0
1

)
, vθ 2 =

(
1
1

)
, vθ 3 =

(
1
0

)
and see the field F4 as a 2-dimensional vector space over

F2. Moreover, it is easy to verify that {θ ,θ 2} forms a self-dual normal basis for F4 over F2.

1.1.2 Metric Spaces

Let S be a non-empty set. A metric on S, or a distance function d, associates each pair of the
elements in S to a real number and for x,y,z ∈ S satisfies the following:

i. d(x,y)≥ 0 and d(x,y) = 0 ⇐⇒ x = y,

ii. d(x,y) = d(y,x),

iii. d(x,y)≤ d(x,z)+d(z,y).

The ordered pair (S,d) is called a metric space. In this thesis we consider codes in two different
metrics Hamming metric and Rank metric.

Definition 10 (Hamming Metric). Let x = (x1, . . . ,xn) and y = (y1, . . . ,yn) be two strings in a
set Sn. The Hamming distance dH between x and y is defined as

dH(x,y) = |{i ∈ [1,n] |xi �= yi}|.

The Hamming weight wH(x) of a string x ∈ Sn is the number of its non-zero components.

Definition 11 (Rank Metric). Let x ∈ F
n
qm. The rank (weight) of x is the number of linearly

independent components of x over Fq which is equivalent to the rank of its corresponding
matrix X in Definition 8. The rank distance between x,y ∈ F

n
qm is defined as the rank of their

differences, i.e., dR(x,y) = Rank(x− y).
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1.2 Linearized Polynomials

Ore in [42] introduced the notion of q-polynomials as a special class of skew polynomials [43].
When the value of q is known or the context is clear, we use linearized polynomials instead of
q-polynomials. They have been used to define rank metric codes that will be introduced later.

Definition 12. [42] The polynomial

L(x) =
n−1

∑
i=0

lix[i],

where li ∈ Fqm and n ≤ m, is called a linearized polynomial over Fqm. The set of all linearized
polynomials of the form L(x) is denoted by Ln(Fqm). The q-degree of a linearized polynomial
is defined as degq( f ) = max{0 ≤ i < n | li �= 0}.

The set of linearized polynomials Ln(Fqm) forms a non-commutative ring while the operations
are addition and symbolic multiplication. Addition operation + coincides with addition of
ordinary polynomials but symbolic multiplication ∗ differs from the multiplication of ordinary

polynomials. For f (x) =
r
∑

i=0
fix[i] and h(x) =

s
∑

i=0
hix[i] in Ln(Fqm), the symbolic multiplication

is defined as

l(x) =
r+s

∑
i=0

lix[i] = f (x)∗h(x) = f (h(x))

=
r

∑
i=0

fi(h(x))[i] =
r+s

∑
i=0

( ∑
j+k=i

fih
[i]
k )x

[ j+k],

where l(x) is still a linearized polynomial and the powers are taken on modulo qm. A lin-
earized polynomial f (x) ∈ Ln(Fqm) satisfies the linearity: f (a1x + a2y) = a1 f (x) + a2 f (y)
where a1,a2 ∈ Fq and x,y ∈ Fqm . This shows the origin of naming linearized polynomials and
it means any Fq-linear combination of roots of a linearized polynomial f (x) is also a root of
f (x). Moreover, an f (x) ∈ Ln(Fqm) forms an Fq-linear map f from Fqm to itself. The kernel
of this map is the root space of f (x).

Theorem 1. [30, Theorem 3.31] A polynomial f (x) over Fqm is a linearized polynomial if and
only if, its root space forms a linear space over Fq and each root has the same multiplicity
which is a power of q.

The roots of f (x) do not need to be elements of Fqm , they can be elements of a larger extension
field.

Theorem 2. [1] Let l(x) ∈ Ln(Fqm) \ {0}. Then dim(ker(l)) ≤ degq(l), where ker(l) is the
kernel of l(x) as an Fq-linear map.

Based on rank nullity Theorem and Theorem 2, the rank of a non-zero linearized polynomial
l(x) ∈ Ln(Fqm) is Rank(l)≥ m−degq(l).
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Theorem 3. [30] Let W be a linear subspace of Fqm considered as a v-dimensional vector
space over Fq. Let a0, . . . ,av−1 be an Fq-basis of W. Then the minimal subspace polynomial

Ma0,...,av−1(x) = ∏
w∈W

(
x−

v−1

∑
i=0

aiwi

)
, (1.3)

is a linearized polynomial in Ln(Fqm) with q-degree v. The unique minimal subspace polyno-
mial has all the possible Fq-linear combinations of a0, . . . ,av−1 as its roots.

Theorem 4. [31] Let α0, . . . ,αn−1 be an Fq-basis of Fqn and let l(x) =
n−1
∑

i=0
lix[i] ∈ Ln(Fqn).

Then there exists a unique vector (β0, . . . ,βn−1) ∈ F
n
qn such that

l(x) = Tr(β0x)α0 + · · ·+Tr(βn−1x)αn−1 =
n−1

∑
i=0

(
n−1

∑
j=0

α jβ qi

j

)
x[i]. (1.4)

Moreover, the rank of l(x) is k if and only if the rank of (β0, . . . ,βn−1) is k, where 0 ≤ k ≤ n.

Proof. Let f (x) ∈ Ln(Fqn) such that f (x) ∈ Fq for every x ∈ Fqn . Then there exists an ele-
ment β such that f (x) = Tr(βx). This is because the set {Tr(βx),β ∈ Fqn} contains all qn

distinct linear maps from Fqn to Fq such that Tr(βx) ∈ Fq for all x ∈ Fqn . Now the linearized
polynomial l(x) can be written as an Fq-linear combination of α0, . . . ,αn−1 in the form

l(x) = f0(x)α0 + · · ·+ fn−1(x)αn−1 = Tr(β0x)α0 + · · ·+Tr(βn−1x)αn−1,

where fi(x) ∈ Ln(Fqn) are linearized polynomials such that fi(x) ∈ Fq for every x ∈ Fqn . One
can expand the trace function and get

l(x) =
n−1

∑
i=0

(
n−1

∑
j=0

α jβ qi

j

)
x[i]. (1.5)

To prove the second part let B = span(β0, . . . ,βn−1) be the Fq-subspace generated by
β0, . . . ,βn−1 and let B⊥ = {x ∈ Fqn : Tr(xβ ) = 0, for every β ∈ B}. Then

Ker(l) = {x ∈ Fqn : Tr(βix) = 0, for all 0 ≤ i ≤ n−1}= B⊥.

Due to the fact that < x,y >= Tr(xy) is a non-degenerate bilinear form Fqn ×Fqn → Fq. It
follows that the dimension of B⊥ over Fq is equal to n−dim(B) over Fq. So

dim(Ker(l)) = dim(B⊥) = n−dim(B) = n−dim{β0, . . . ,βn−1}.
Thus the rank of the linearized polynomial l(x)∈Ln(Fqn) is k if and only if Rank{β0, . . . ,βn−1}=
k.

Theorem 5. Let l(x) =
n−1
∑

i=0
lix[i] be a linearized polynomial of rank k. Then there exist two sets
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{α1, . . . ,αk} and {β1, . . . ,βk} in Fqn such that they are Fq-linearly independent and

l(x) = Tr(β1x)α1 + · · ·+Tr(βkx)αk =
n−1

∑
i=0

(
k

∑
j=1

α jβ
[i]
j

)
x[i].

Proof. Let αiFq be the Fq-subspace of Fqn generated by αi. Then any linear map from Fqn →
αiFq can be represented by αi Tr(βix) for some βi ∈ Fqn . We assume {α1, . . . ,αk} to be the
basis for the image space l(x). So we can write l(x) as

l(x) = Tr(β1x)α1 + · · ·+Tr(βkx)αk =
n−1

∑
i=0

(
k

∑
j=1

α jβ
[i]
j

)
x[i],

where the final equality is obtained by expanding the trace function. Now we must show that
β1, . . . ,βk are Fq-linearly independent. Without loss of generality let assume βk = b1β1+ · · ·+
bk−1βk−1 where bi ∈ Fq. Then we have

l(x) =α1 Tr(β1x)+ · · ·+αk−1 Tr(βk−1x)+αk Tr((b1β1 + · · ·+bk−1βk−1)x)
=α1 Tr(β1x)+ · · ·+αk−1 Tr(βk−1x)+αk Tr(b1β1x)+ · · ·+αk Tr(bk−1βk−1x)
=(α1 +b1αk)Tr(β1x)+ · · ·+(αk−1 +bk−1αk)Tr(βk−1x),

which means l(x) can be generated by k− 1 linearly independent points and this is a contra-
diction.

Later in this thesis we will propose several decoding algorithms for rank metric codes. We
will see that Dickson matrix associated with linearized polynomials and its properties play
crucial roles in the decoding process. Moreover, they will be used to find zeros of linearized
polynomials over their defined field.

Definition 13 (Dickson Matrix). [10] Let l(x) =
n−1
∑

i=0
lix[i] be a linearized polynomial. The

matrix

D =
(

lq j

i− j(modn)

)
n×n

=

⎛⎜⎜⎜⎜⎝
l0 lq

n−1 . . . lqn−1

1

l1 lq
0 . . . lqn−1

2
...

... . . . ...

ln−1 lq
n−2 . . . lqn−1

0

⎞⎟⎟⎟⎟⎠ , (1.6)

is called the Dickson matrix associated with l(x).

Proposition 1. Let l(x) =
n−1
∑

i=0
lix[i] ∈Ln(Fqm) and D be its associated Dickson matrix. We have

the following two properties:

i. The Dickson matrix D has rank k, if the linearized polynomial l(x) has rank k [10, 40].

ii. If D has rank k, then any k×k submatrix of D formed by k consecutive rows and columns
is non-singular [53].
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Proof. Let l(x) be a linearized polynomial with rank k. Using Theorem 5, we can write the
coefficients li as

li =
k

∑
j=1

α jβ
[i]
j ,

where α1, . . . ,αk and β1, . . . ,βk are two Fq-linearly independent sets in Fqn . So we can write
D = M ∗W where

M =

⎛⎜⎜⎜⎝
α1 α2 · · · αk

α [1]
1 α [1]

2 · · · α [1]
k

...
... . . . ...

α [n−1]
1 α [n−1]

2 . . . α [n−1]
k

⎞⎟⎟⎟⎠ ,W =

⎛⎜⎜⎜⎜⎝
β1 β [1]

1 · · · β [n−1]
1

β2 β [1]
2 · · · β [n−1]

2
...

... . . . ...
βk β [1]

k . . . β [n−1]
k

⎞⎟⎟⎟⎟⎠ , (1.7)

since α j’s and also β j’s are linearly independent, any k successive rows of M and any k succes-
sive columns in W give non-singular matrices. The rest of the proof follows from these facts
and Theorems 4 and 5.

Let l̃ = (l0, l1, . . . , ln−1) be the coefficient vector of a linearized polynomial l(x) =
n−1
∑

i=0
lixqi

over

Fqm . Evaluation of l(x) on a point a ∈ Fqm can be done as l(a) = l0a+ l1aq + · · ·+ ln−1aqn−1
.

We can similarly evaluate l(x) on multiple points in β = {β0,β1, . . . ,βn−1} over Fqm and get
their values as a vector of the form l(β ) = (l(β0), l(β1) . . . , l(βn−1)). Equivalently, evaluation
of l(x) on points in β can be represented as

l(β ) = (l(β0), l(β1) . . . , l(βn−1)) = l̃ ·MT , (1.8)

where M is the Moore matrix associated to the points in β .

Definition 14. [43] Let Fqm be a field extension of Fq and let σ ∈ Gal(Fqm/Fq) be a generator
of its Galois group. A skew polynomial ring Fqm [x;σ ] is the set of all polynomials of the

form f (x) =
s
∑

i=0
fixi, where s ∈ N, equipped with the usual addition and with multiplication

determined by ax = xaσ for any scalar a ∈ Fqm.

The skew polynomial ring Fqm [x; ·q], with the Frobenius automorphism ·ρ is isomorphic to
the non-commutative ring L(Fqm), i.e., Fqm [x; ·q] ∼= L(Fqm). So skew polynomials are natural
generalizations of linearized polynomials.

1.3 Block Codes

A (block) code C = (n,M,d) over a finite field K with length (block length) n, size M = |C| ≥
2 and minimum distance d, with respect to the metric d(·, ·), is a subset C ⊆ K

n such that
d = min{d(x,y)|x,y ∈C \{0} and x �= y}. An element of C is called a codeword.

A code C is linear if it forms a vector space over K. The dimension k of a linear code C is
the dimension of C as a vector space over K and a linear code is denoted as C = [n,k,d]. A
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linear code C = [n,k,d] takes a message of length k over K, add some redundancy symbols to
the message and outputs a longer block (codeword) of length n. This is called the encoding
process. Since there is a one-to-one correspondence between the message space and the set of
codewords, the size of the linear code [n,k,d] is M = |K|k.

Since a linear code forms a subspace in K
n, one can generate a linear code using its generator

matrix.

Definition 15 (Generator Matrix). A k × n matrix G is a generator matrix of a linear code
C = [n,k,d] over K if Row(G) =C, where Row(G) is the row space of G. In other words, the
rows of a generator matrix G of C form a basis for a k-dimensional vector space C over K.

Generator matrices are used to encode information words (messages) in K
k by transforming

them into codewords of length n. This is done as m ·Gk×n = c, where m ∈ K
k and c ∈ C =

[n,k,d]⊆K
n. Linear code C = [n,k,d] has multiple generator matrices.

Definition 16 (Dual Code). Let C be any code of length n (not necessarily linear) over K. The
dual of C is defined as

C⊥ = {x ∈K
n| x · c = 0, for all c ∈C},

where x · c is the usual inner product. For a linear code C = [n,k,d] over K with a generator
matrix G we can also define its dual as C⊥ = {x ∈K

n| G · xT = 0}, where 0 is the zero vector
of length k. So the vectors in C⊥ are the transpose of the vectors in the null space of G and
hence C⊥ = [n,n− k].

Definition 17 (Parity Check Matrix). Let C⊥ be the dual of a linear code C = [n,k,d] with
a generator matrix G over K. An (n− k)× n generator matrix H of C⊥ where G ·HT = 0 is
called the parity check matrix of C. So c ·HT = 0 for all c ∈ C. A parity check matrix of a
linear code C can be found if its generator matrix is given.

Definition 18 (Syndrome). Let C be a linear code over K with parity check matrix H. The
syndrome of a word x ∈ K

n is s = x ·HT ∈ K
n−k. A word y ∈ K

n is a codeword if and only if
its syndrome is 0.

Definition 19 (Weight Distribution and Weight Enumerator). The weight distribution of a code
C with length n is A(C) = {A0,A1, . . . ,An} where Ai denotes the number of codewords in C with
weight i. The weight enumerator of C is defined as 1+A1x+A2x2 + · · ·+Anxn. The code C is
called a t-weight codes if the number of non-zero Ai’s for 1 ≤ i ≤ n is equal to t.

Investigation of linear codes with few non-zero weights has been one of the main trends in
coding theory [11, 12, 13, 24, 28, 29]. In Chapter 7, we will discuss a related problem.

Definition 20 (Code Rate). Let C be a linear code with length n and size M over a finite field
K with size q. The rate of C is defined as RC = logq M/n.

A linear code C is called a low rate code if RC < 1
2 and it is called high rate otherwise.

In Chapters 3-6, we consider the following simple problem:
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Problem 1. Suppose Alice wants to communicate with Bob. She first encodes her message m
and submits the codeword c into a channel. The channel could be a phone line, the air in a
room, a fibre-optic cable, a compact disc, and so on. But every time she sends a codeword,
there is a chance that some of its symbols will be corrupted. The errors (noises) can come from
human error, imperfections in the equipment, scratches on the disc, and so on. So the word r
that Bob receives may not be the word that Alice sent. How Alice and Bob can communicate
reliably?

Our setup is shown in Figure 1.1. Bob can decode r by checking all the possible |C| codewords
in code C and find the closest codeword (codewords) c′ to c. This brute force approach is not
practical for long codes. One of the main concerns in coding theory is to find codes with
efficient decoding algorithms. In the following, we discuss two different decoding principles
for linear codes. Let r = c+ e be the received word, c be the sent codeword, e be the error
added by a channel and t = �d−1

2 � be the decoding radius.

Figure 1.1: Communication Model

Definition 21 (Unique Decoding). A unique decoder approach returns a codeword of minimal
distance to the received word among those codewords c with d(c,r)≤ t.

Definition 22 (List Decoding). A list decoding approach returns a list of codewords which
contains all the codewords c′ such that d(r,c′)≤ t.

If the decoding radius is less than �d−1
2 � then there is at most one codeword c with d(r,c)≤ t.

So in this case the above decoding approaches coincides and both return the same unique
solution. In this thesis we only consider unique decoding algorithms.

1.4 Codes in Hamming Metric

The Hamming metric was defined in Definition 10 and in the current section we only consider
linear codes with respect to the Hamming metric. The minimum distance of a linear code
in the Hamming metric is the minimum weight between its nonzero codewords and it can be
upper bounded as follows.

Theorem 6. [73] Let C = [n,k,d] be a linear code over Fq with minimum Hamming distance
d. Then

d ≤ n− k+1,

which is equivalent to |C| ≤ qn−d+1.
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If a linear code C attains this bound, it is called a maximum separable distance (MDS) code.
Linear MDS codes have largest possible minimum distance d for fixed integers n and k which
means they have the best error detection and correction capabilities which will be discussed
later. One of the most well-known families of MDS codes is the Reed-Solomon codes which
was introduced by Reed and Solomon in 1960 [54]. Since that time they have been applied in
secret sharing schemes [39], CD-ROMs [25], wireless communications [65], space commu-
nications [80] and QR codes [41]. These codes are evaluation codes and they are defined as
follows.

Definition 23 (Reed-Solomon Codes). [54] Let n < q and α0,α1, . . . ,αn−1 be distinct points
in Fq. Then a Reed-Solomon (RS) code C = [n,k,d] ∈ F

n
q is defined as

C = {c = ( f (α0), f (α1), . . . , f (αn−1))| f (x) ∈ Fq[x] and deg f < k},

where Fq[x] is the set of all ordinary polynomials with coefficients in Fq.

1.5 Codes in Rank Metric

Block codes with respect to rank metric were introduced by Delsarte [8], Gabidulin [17] and
Roth [59], independently.

Definition 24 (Rank Metric Codes). A subset C ∈ F
n
qm is called a rank metric code where the

distance between the elements in C is defined with respect to the rank metric.

Definition 25. A rank metric code C, defined over Fqm is called

i. an additive rank metric code if for all a,b ∈ C we have a+b ∈ C,

ii. an Fq0-linear if for all a,b ∈ C and α,β ∈ Fq0 we have αa+ βb ∈ C, where Fq0 is a
subfield of Fqm.

iii. a linear (Fqm-linear) if for all a,b ∈ C and α,β ∈ Fqm we have αa+βb ∈ C.

The codes in ii. and iii. form vector spaces over Fq0 and Fqm, respectively.

Similar to the Hamming metric we have a Singleton-like bound for rank metric codes as fol-
lows:

Theorem 7 (Singleton-like Bound). [8, Theorem 5.4] Let C be a rank metric code with length
n, dimension k and minimum distance d over Fqm. Then

|C| ≤ qmin{n(m−d+1),m(n−d+1)}.

If a rank metric code C attains the above bound, it is called a maximum rank distance (MRD)
code. We consider k < n ≤ m for the rest of this chapter unless stated otherwise. Gabidulin
codes are the most well-known family of MRD codes and they have applications in cryptogra-
phy [19], space-time coding [37], distributed storage [4, 59], random network coding [71] and
digital watermarking [27].
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Definition 26 (Gabidulin Codes). Let α0,α1, . . . ,αn−1 be Fq-linearly independent points in
Fqm. A Gabidulin code Gn,k with length n and dimension k is defined by evaluation of

{
k−1

∑
i=0

lixqi | li ∈ Fqm

}
,

on linearly independent points α0,α1, . . . ,αn−1 and it is equivalent to

Gn,k = {(l(α0), l(α1), . . . , l(αn−1))| l(x) ∈ Ln(Fqm) and degq( f )< k}.

Gabidulin code Gn,k is an Fqm-linear MRD code. Its minimum rank distance and size for n ≤ m
are d = n− k+1 and M = qmk, respectively.

Codes that are Fqm-linear such as Gabidulin codes form subspaces in F
n
qm , hence we can rep-

resent each of them by a k×n generator matrix.

Definition 27 (Generator Matrix of Gabidulin Codes). Let C be an Fqm-linear code with length
n and dimension k. Suppose α0,α1, . . . ,αn−1 ∈Fqm are linearly independent evaluation points.
Then the matrix

G =
(

αqi

j

)
k×n

=

⎛⎜⎜⎜⎝
α0 α1 . . . αn−1
αq

0 αq
1 . . . αq

n−1
...

... . . . ...

αqk−1

0 αqk−1

1 . . . αqk−1

n−1

⎞⎟⎟⎟⎠ , (1.9)

is a generator matrix of Gn,k.

The matrix G is formed by the first k columns of the Moore matrix associated with linearly
independent evaluation points α0,α1, . . . ,αn−1 and its rows form a basis for Gn,k. The set of all
the coefficient vectors of linearized polynomials with q-degree less than k forms the message
space F

k
qm . So the encoding of a message l̃ = (l0, l1, . . . , lk−1) ∈ F

k
qm (coefficient vector of

l(x) =
k−1
∑

i=0
lixqi

) is conducted as

l̃ = (l0, l1, . . . , lk−1) �→ c = (l(α0), l(α1), . . . , l(αn−1)) = l̃ ·G,

where G is a generator matrix and c ∈ Gn,k. Given a generator matrix G of Gn,k, one can find
an (n− k)×n parity check matrix H for Gn,k of the form

H =
(

hqi

j

)
(n−k)×n

=

⎛⎜⎜⎜⎝
h0 h1 . . . hn−1
hq

0 hq
1 . . . hq

n−1
...

... . . . ...

hqn−k+1

0 hqn−k+1

1 . . . hqn−k+1

n−1

⎞⎟⎟⎟⎠ , (1.10)

where h0,h1, . . . ,hn−1 ∈ Fqm are Fq-linearly independent and G ·HT = 0. Parity check matrix
of Gabidulin codes plays an important role in syndrome-based decoding approach which will
be explained in Subsection 1.6.1. If a rank metric code is not Fqm-linear, we can not define
a k× n generator matrix and consequently its (n− k)× n parity check matrix. For example
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a generator matrix for an Fq-linear code C over Fqm is an k ·m× n matrix with entries in Fq.
Forms of the generator and parity check matrices of non Fqm-linear rank metric codes have not
been studied in the literature.

Using the function B : Fn
qm → F

m×n
q defined in (1.1), one can represent the vector codeword

c ∈ F
n
qm of a rank metric code in matrix form c′ ∈ F

m×n
q as follows

c = (c0,c1, . . . ,cn−1) ∈ F
n
qm �→ c′ = B(c) =

⎛⎜⎜⎜⎝
c11 c12 · · · c1n
c21 c22 · · · c2n
...

... . . . ...
cm1 cm2 · · · cmn

⎞⎟⎟⎟⎠ .

The vector and matrix representations of codewords in rank metric are equivalent but we
mostly use their vector form in this thesis.

1.5.1 New MRD Codes

Gabidulin codes have been proven to be unsuitable for some applications in particular for
cryptography due to their algebraic structure [46, 47]. Therefore finding new constructions is
required. Gabidulin codes were generalized for the first time in [26] as follows:

Theorem 8. Let gcd(m,s) = 1. The generalized Gabidulin (GG) code GGn,k with length n and
dimension k over Fqm is defined by

GGn,k =

{
( f (α0), f (α1), . . . , f (αn−1))| f (x) =

k−1

∑
i=0

fixqsi
and fi ∈ Fqm

}
, (1.11)

where α0,α1, . . . ,αn−1 are linearly independent points in Fqm. This code is an Fqm-linear MRD
code.

The choice of evaluation points α0, . . . ,αn−1 does not affect the rank property so it is common
to omit the evaluation points in the definition of MRD codes and define for example the gener-

alized Gabidulin code GGn,k as the set of linearized polynomials GGn,k = { f (x) =
k−1
∑

i=0
fixqsi | fi ∈

Fqm}. For the rest of this chapter we consider n = m.

John Sheekey in [63] established a new way to generalize Gabidulin codes to Fq-linear
MRD codes. He twisted the evaluation polynomial of Gabidulin codes and proposed twisted
Gabidulin (TG) codes. After adding a twisted term, his evaluation polynomial f (x) has q-
degree at most k which leads to Rank( f )≥ n−k and d ≥ n−k and this contradicts with being
MRD. This issue is handled by recalling the following Lemma which characterizes a neces-
sary condition for f (x) to have rank n− k. This Lemma appeared for the first time in [23,
Theorem 10].

Lemma 1. [23, Theorem 10] Suppose a linearized polynomial f (x) =
k
∑

i=0
fixqi ∈Ln(Fqn) with

fk �= 0 has qk roots in Fqn. Then Normqn/q( fk) = (−1)nk Normqn/q( f0), where Norm is the
norm function in Definition 3.
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According to Lemma 1, if the condition is not met i.e. Normqn/q( fk) �= (−1)nk Normqn/q( f0),
a linearized polynomial f (x) with q-degree k has rank at least n− k+1. The idea of Sheekey
was generalized further in [36] as follows.

Definition 28. [36, 63] Let n,k,s,h ∈ Z
+ with gcd(n,s) = 1 and k < n. Let η ∈ Fqn such that

Normqn/q(η) �= (−1)nk. Then the set

GTGn,k(η ,h) =

{
k−1

∑
i=0

fixqsi
+η f qh

0 xqsk | fi ∈ Fqn

}
, (1.12)

is an Fq-linear MRD code of size qnk. If s = 1 then the code gives a twisted Gabidulin code in
[63].

In [50], the TG codes were further generalized by Puchinger, Rosenkilde and Sheekey as
follows.

Definition 29. [50] Let n,k, t ∈ Z
+ such that k < n and t < n− k. Let η ∈ Fqn \{0}. Then the

set

TGn,k(t,η) =

{
k−1

∑
i=0

fixqi
+η f0xqk−1+t | fi ∈ Fqn

}
, (1.13)

is an MRD code of size qnk. When t = 1 it gives the original TG codes in [63].

The first family of additive MRD codes were introduced by Otal and Özbudak in [44] which
contains all the aforementioned MRD families, except the one in Definition 29, as sub-families.
They considered the case when q is not prime and q = qu

0 where u ∈ Z
+ and Fq0 is a subfield

of Fq. The new family are Fq0-linear and they are known as additive generalized twisted
Gabidulin (AGTG) codes.

Definition 30. [44] Let n,k,s,u,h ∈ Z
+ where gcd(n,s) = 1 and q = qu

0. Let η ∈ Fqn where
Normqns/qs

0
(η) �= (−1)nku. The set

AGTGn,k(η ,h,u) =

{
k−1

∑
i=0

fixqsi
+η f

qh
0

0 xqsk | fi ∈ Fqn

}
, (1.14)

is an Fq0-linear MRD code with size qnk.

Trombetti and Zhou in [74] gave a new family of MRD codes and they showed that their
construction is not equivalent to the other known MRD codes. We refer to the family as
Trombetti Zhou (TZ) codes.

Definition 31. [74] Let n,k,s ∈ Z
+ satisfying (s,2n) = 1 and let γ ∈ Fq2n satisfy that

Normq2n/q(γ) is a non-square element in Fq. Then the set

Dk,s(γ) =

{
ax+

k−1

∑
i=1

fixqsi
+ γbxqsk | fi ∈ Fq2n ,a,b ∈ Fqn

}
, (1.15)

is an Fqn-linear MRD code of size q2nk and minimum rank distance 2n− k+1.
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Note that the code is defined over Fq2n but it is linear over the subfield Fqn . So we are not
able to define the code with a k× 2n generator matrix. The first and the last coefficients of
the polynomials in (1.15) are chosen independently from the base field Fqn . If q is even, all
the elements of Fq are square elements, so TZ codes exist only when the field characteristic is
odd.

Sheekey in [64] construct a new family of MRD codes which can be seen a generalized version
of T G codes and it contains MRD codes that are not equivalent to any previously known
constructions. He used a quotient ring of a skew polynomials (Definition 14) instead of ring
of linearized polynomials.

Definition 32. [64] Let Fqm [x;σ ] be a skew polynomial ring and g(t) be an irreducible poly-
nomial in Fq[t]. Let γ ∈ Fqm such that Norm(γ) �= (−1)mkr. Then the image of the set of
polynomials

{ f ∈ Fqm [x;σ ] : frk = γ f0 and deg( f )≤ rk},
in the quotient ring

Fqm [x;σ ]

g(xn)
� Mm×m(Fqr),

is an MRD code of size qmkr. Here, Mm×m(Fqr) is the set of all m×m matrices over Fqr .

Nonlinear MRD codes were proposed in [14, 45]. The codes in [14] exist only for some
specific parameters while the codes in [45] exist for all parameters. Moreover, the codes in
[45], which are known as partition codes, are not included in AGTG codes and also they do
not cover all the GTG codes. So partition codes are the first nonlinear (non-additive) MRD
families exist for all parameters.

There are also new MRD codes with length n and minimum distance n−1 and n−2 [5, 6, 7]
which we do not consider in this thesis.

1.5.2 New Rank Metric Codes With Restrictions

After the work of Kshevetskiy and Gabidulin [26] in 2005, most of the new rank metric codes
that meet the best known upper bounds for minimum distance (optimal codes) have been con-
structed based on Sheekey’s idea in Lemma 1. There are some exceptions that are known as
restricted codes. The first family of codes with restricted matrix form appeared in [9] where the
authors considered alternating bilinear forms. In 2010, Schmidt in [60] studied the rank metric
codes with symmetric matrix form and later in 2015 he investigated the association schemes,
bounds, properties and construction of rank metric codes with alternating matrix form [61].
Later in 2018 he developed the theory of rank metric codes with Hermitian matrix form [62].
In Chapter 6, we propose polynomial-time encoding and decoding algorithms for symmetric,
alternating and Hermitian rank metric codes and they are not linear over the main extension
field. The studied codes meet the best known upper bounds for their minimum distances and
this is the reason for naming them as optimal codes. In this section we give the definitions and
upper bounds for optimal codes.

A matrix A∈F
n×n
q is called symmetric if A=AT and it is an alternating matrix if A=−AT . We

denote the set of symmetric and alternating matrices of order n over Fq by Sn(q) and An(q),
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respectively. Let the function λ : Fq2 → Fq2 defined as x �→ xq be the conjugate function.
We denote by A∗ the conjugate transpose of A ∈ F

n×n
q2 , which is obtained by applying the

conjugate map to all entries AT . A matrix A ∈ F
n×n
q2 is called Hermitian if A = A∗. The set of

all Hermitian matrices over Fq2 is denoted by Hn(q2). The sets Sn(q), An(q) and Hn(q2) form
Fq-vector spaces with

dimFq(Sn(q)) =
n(n+1)

2
, dimFq(An(q)) =

n(n−1)
2

, dimFq(Hn(q2)) = n2.

In order to apply our decoding algorithm we need to describe the codes in terms of linearized
polynomials, We recall the following known facts from [60] and [35].

Proposition 2. [35] Let l ∈ Z.

i. For each u-dimensional Fq-vector space V , any bilinear form B : V ×Fqn → Fq can be
written as

B(x,y) = Trqn/q(
u−1

∑
i=0

ciyxqi−l
),

for some uniquely determined c0, . . . ,cu−1 ∈ Fqn.

ii. For each u-dimensional Fq2-vector space V , any Hermitian form H : V ×Fq2n → Fq2 can
be written as

H(x,y) = Trq2n/q2(
u−1

∑
j=0

b jyqxq2( j−l)
),

for some uniquely determined b0, . . . ,bu−1 ∈ Fqn.

Considering symmetric bilinear form S(x,y), alternating bilinear form A(x,y) and Hermitian
form H(x,y) as Fq-vector spaces, we can write them as⎧⎪⎨⎪⎩

S(x,y) = Trqn/q( f (x) · y),
A(x,y) = Trqn/q( f (x) · y),
H(x,y) = Trq2n/q2(yq · l(x)),

where f (x) ∈ Ln(Fqn) and l(x) ∈ Ln(Fq2n). Hence by choosing suitable basis of Fqn (Fq2n)
over Fq (Fq2) we can identify Sn(q) as

Sn(q) =

{
n−1

∑
i=0

aixqi
: an−i = aqn−i

i for i ∈ {0, . . . ,n−1}
}

⊆ Ln(Fqn),

the set An(q) can be identified as

An(q) =

{
n−1

∑
i=0

bixqi
: bn−i =−bqn−i

i for i ∈ {0, . . . ,n−1}
}

⊆ Ln(Fqn),
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and similarly, the set Hn(q2) can be distinguished by

Hn(q2) =

{
n−1

∑
i=0

cixq2i
: cn−i+1 = cq2n−2i+1

i for i ∈ {0, . . . ,n−1}
}

⊆ Ln(Fq2n),

if n is odd then c n+1
2

∈ Fqn . If we equip the set of matrices Sn(q), An(q) and Hn(q2) with
rank metric, they are called symmetric, alternating and hermitian rank metric codes, respec-
tively. We have the following bounds for these families which we use them as alternatives for
Singleton-like bound to define the optimal codes.

Theorem 9. [61, Theorem 3.3] Let C be an additive symmetric rank metric code in F
n×n
q and

d be an even integer. Then

|C| ≤
{

qn(n−d+2)/2 if n−d is even,
q(n+1)(n−d+2)/2 if n−d is odd.

Theorem 10. [9, Theorem 4] Let m = �n
2� and C be an alternating rank metric code in F

n×n
q

where d = 2e. Then
|C| ≤ q

n(n−1)
2m (m−e+1).

Theorem 11. [62, Theorem 1] An additive Hermitian rank metric code C in F
n×n
q2 satisfies

|C| ≤ qn(n−d+1).

Moreover, when d is odd, this upper bound holds also for non-additive Hermitian codes.

If the size of symmetric, alternating and Hermitian rank metric codes attain their associated
bound they are called optimal symmetric, optimal alternating and optimal Hermitian rank
metric codes, respectively. Schmidt in [61] and Delsarte in [9] presented the following con-
structions for optimal Fq-linear symmetric and alternating rank metric codes.

Theorem 12. [61, Theorem 4.4] Let n and d be two positive integers such that 1 ≤ d ≤ n and
n−d is even. The symmetric forms S : Fqn ×Fqn → Fq are given by S(x,y) = TrFqn/Fq (yL(x))
with

L(x) = b0x+

n−d
2

∑
j=1

(
b jxq j

+(b jx)qn− j
)
, (1.16)

as b0, . . . ,b n−d
2

range over Fqn, form an Fq-linear optimal rank metric code in Sn(q).

Theorem 13. [9, Theorem 7] Let n and e be two positive integers such that n is odd and
1 ≤ 2e ≤ n−1, and let d = 2e. The alternating form A : Fqn ×Fqn → Fq is given by A(x,y) =
TrFqn/Fq (yL(x)) with

L(x) =

n−1
2

∑
j=e

(
b jxq j − (b jx)qn− j

)
, (1.17)

as be, . . . ,b n−1
2

range over Fqn, form an Fq-linear optimal rank metric code in An(q).

The following two theorems are stated by Schmidt in [62] provide constructions for optimal
Fq-linear Hermitian rank metric codes for all possible value of n and d, except if n and d are
both even and 3 < d < n.
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Theorem 14. [62, Theorem 4] Let n and d be two integers of opposite parities satisfying
1 ≤ d ≤ n. The Hermitian forms H : Fq2n ×Fq2n → Fq2 given by H(x,y) = Trq2n/q2 (yqL(x))
with

L(x) =

n−d+1
2

∑
j=1

(
(b jx)q(2n−2 j+2)

+bq
jx

q(2 j)
)
, (1.18)

as b1, . . . ,b n−d+1
2

range over Fq2n , form an Fq-linear optimal rank metric code in Hn(q2).

Theorem 15. [62, Theorem 5] Let n and d be odd integers satisfying 1≤ d ≤ n. The Hermitian
forms H : Fq2n ×Fq2n → Fq2 given by H(x,y) = Trq2n/q2 (yqL(x)) with

L(x) = (b0x)q(n+1)
+

n−d
2

∑
j=1

(
(b jx)q(n+2 j+1)

+bq
jx

q(n−2 j+1)
)
, (1.19)

as b0 ranges over Fqn and b1, . . . ,b n−d
2

range over Fq2n , form an Fq-linear optimal rank metric

code in Hn(q2).

1.6 Decoding Algorithms for Rank Metric Codes

The Gabidulin codes are known as q-analogue of Reed-Solomon codes. The decoding algo-
rithms of Gabidulin codes are equivalent to the decoding algorithms for RS codes in Hamming
metric. Known decoding algorithms for Gabidulin codes can be generally classified in two
different approaches: syndrome-based decoding as in [16, 17, 58, 59] and interpolation-based
decoding as in [34, 53]. Gabidulin in [17] solves the key equation in the decoding process by
employing the linearized version of extended Euclidean (LEE) algorithm, while in [58], the
key equation is solved by a linearized version of Berlekamp-Massey (BM) algorithm. The er-
ror values in both decoding algorithms in [17] and [58] are computed by an algorithm called
Gabidulin algorithm. Loidreau in [34] proposed the first interpolation-based decoding ap-
proach for Gabidulin codes and considered the analogue of Welch-Berlekamp (WB) algorithm,
which was originally used to decode Reed-Solomon codes [79]. The algorithm directly pro-
vides the code’s interpolation polynomial and computing the error vector is not required in the
decoding process. This section is dedicated to the known decoding algorithms for Gabidulin
codes presented in [17, 34, 58] that undertake the following problem.

Problem 2 (D(r,Gn,k(α), t)). Suppose the linearly independent evaluation points α =(α0, . . . ,αn−1)∈
F

n
qm, the received vector r = c+ e and t = �n−k

2 � are given. Find, if it exists, c ∈ Gn,k and e
such that Rank(e)≤ t.

1.6.1 Syndrome-Based Decoding

First we explain the syndrome-based decoding algorithms proposed in [17, 58]. Lets r =
c+ e ∈ F

n
qm be a received word, where c ∈ Gn,k is the sent codeword and e is the error vector

of rank t added by a noisy channel. The syndrome of r is defined as

s = (s0, . . . ,sn−k−1) = r ·HT = (c+ e) ·HT = e ·HT ∈ F
n−k
qm , (1.20)
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where H(n−k)×n is the parity check matrix for Gn,k in (1.10). Hence the component si can be
written in terms of the error vector components as

si =
n−1

∑
j=0

e jh
[i]
j . (1.21)

Let S(x) =
n−k−1

∑
i=0

six[i] be the syndrome associated polynomial. In this approach the syndrome

s is given and finding the error vector e is required. Since the rank of the error vector e ∈ F
n
qm

is t, it can be written as
e = a ·B = (a0, . . . ,at−1) ·Bt×n, (1.22)

where both a and B have rank t. In other words, a is the basis for the column space of e
and B fixes the row space. Vector a and matrix B are not unique but any pair of them works

for decoding. Let Λ(x) =
t
∑

i=0
Λix[i] be the error span polynomial which is the minimal sub-

space polynomial of vector a with q-degree t and Λt = 1. The key equation for the decoding
algorithm is defined as

Δ(x) = Λ(x)◦S(x) = Λ(S(x)) mod x[n−k], (1.23)

where Δ(x) =
t−1
∑
j=0

Δ jx[i] and Δ j =
j

∑
u=0

Λus[u]i−u for j = 0, . . . , t − 1. We know degq(Δ) < t (the

proof can be found in [75]), so the key equation is zero for t ≤ i ≤ n− k− 1 and this gives a
linear system of equations

Δi =
i

∑
j=0

λ js
[ j]
i− j =

t

∑
j=0

Λ js
[ j]
i− j = 0 for t ≤ i ≤ n− k−1. (1.24)

Equivalently, it can be represented as the following homogeneous linear system of equations

⎛⎜⎜⎜⎝
Δt

Δt+1
...

Δn−k−1

⎞⎟⎟⎟⎠= S̃ · Λ̃ =

⎛⎜⎜⎜⎜⎝
s[0]t s[1]t−1 . . . s[t]0

s[0]t+1 s[1]t . . . s[t]1
...

... . . . ...
s[0]n−k−1 s[1]n−k−2 . . . s[t]n−k−1−t

⎞⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎝
Λ0
Λ1
...

Λt−1

⎞⎟⎟⎟⎠= 0. (1.25)

Remember we already know that Λt = 1. It was proven in [75, Lemma 3.9] that matrix S̃ has
rank t if t ≤ �(n−k)/2�. So the solution space of (1.25) has dimension one. This can be solved
by applying Gaussian elimination and requires O(t3) operations over Fqm . Moreover, it can be
seen that the matrix S̃ in (1.25) is a submatrix of the Dickson matrix associated to S(x). This
observation helped Gabidulin in [17] to apply LEE algorithm and Richter and Plass in [58] to
apply BM algorithm and solve (1.25) with O(t2) operations over Fqm . Here we will explain
the linearized version of BM algorithm to solve (1.25). We can take out the first column of the
matrix S̃ and re-arrange (1.25) as
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Figure 1.2: linear feedback shift register

⎛⎜⎜⎜⎜⎝
s[1]t−1 s[2]t−2 . . . s[t]0

s[1]t s[2]t−1 . . . s[t]1
...

... . . . ...
s[1]2t−2 s[2]2t−3 . . . s[t]t−1

⎞⎟⎟⎟⎟⎠
t×t

·

⎛⎜⎜⎜⎝
Λ0
Λ1
...

Λt−1

⎞⎟⎟⎟⎠=

⎛⎜⎜⎜⎝
−st
−st+1

...
−s2t−1

⎞⎟⎟⎟⎠ . (1.26)

Since the t × t matrix in (1.26) is formed by t consecutive rows and t consecutive columns of
the Dickson matrix associated with S(x), so it has rank t and the above system of equations
has a unique solution. It has been shown in [58, 66] that (1.26) can be seen as a feedback shift
register with Λ0, . . . ,Λt−1 to be the connection vector. Considering the 2t known syndrome
coefficients s = (s0, . . . ,s2t−1) as the output of a shift register, BM algorithm is able to find the
t coefficients Λ̃T = (Λ0, . . . ,Λt−1) which is the shortest feedback shift register and it is able to
generate s. This step is the most dominant step in the decoding process and according to [21],
BM algorithm is more efficient for high rate codes and it needs 2t(2t −1) operations over Fqm .
The shift register is shown in Figure 1.2.

After finding the coefficients of Λ(x), we can find the t linearly independent solutions
a0, . . . ,at−1 of Λ(x), where t ≤ �(n− k)/2�. Now it is time to recover the error vector. Em-
ploying the t ×n full rank matrix B in (1.22) one can write

Y = B ·HT =

⎛⎜⎜⎜⎜⎝
y0 y[1]0 . . . y[n−k−1]

0

y1 y[1]1 . . . y[n−k−1]
1

...
... . . . ...

yt−1 y[1]t−1 . . . y[n−k−1]
t−1

⎞⎟⎟⎟⎟⎠ . (1.27)
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Since the rank of B is t, it is easy to verify that y0, . . . ,yt−1 are linearly independent and we
can express (1.20) in terms of Y as

(s0, . . . ,sn−k−1) = (a0, . . . ,at−1) ·Y, (1.28)

which is equivalent to

si =
t−1

∑
j=0

a jy
[i]
j , for i = 0, . . . ,n− k−1,

and raising both sides to the power [−i] gives

s[−i]
i =

t−1

∑
j=0

a[−i]
j y j, for i = 0, . . . ,n− k−1. (1.29)

Hence we have a system of linear equations with n− k = 2t equations and the same number
of variables which can be solved directly. Then we can compute matrix B from (1.27) and
consequently the error vector e from (1.22). Finally, we can recover the sent codeword c =
r− e ∈ Gn,k. Silva and Kschischang in [72] also showed that using self-dual normal bases of
Fqm of Fq can reduce the complexity of low-rate Gabidulin codes.

In [72], the authors used normal basis of Fqm over Fq and introduced the notion of multiplica-
tion table of normal basis. This allowed them to reduce the complexity of syndrome compu-
tation and also optimized the process of finding a basis for the root space of Λ(x). They also
showed that using Fq-self-dual normal bases of Fqm can reduce the complexity of decoding
low-rate Gabidulin codes.

Puchinger and Wachter-Zeh in [52] presented an algorithm for fast (symbolic) multiplication
of linearized polynomials which consequently reduced the complexity of symbolic division.
They also derived two divide and conquer approaches for multi-point polynomial evaluation
and minimal subspace computation. Moreover, they derived an efficient interpolation algo-
rithm for linearized polynomials. These observations enabled them to propose a fast decoding
algorithm for Gabidulin codes and improve the decoding approaches presented in [75]. There
is also a different approach proposed in [76] which can be seen as a Gao-like algorithm [22]
and uses an equivalent of the Euclidean Algorithm.

There are also several decoding algorithm for interleaved Gabidulin codes [33, 48, 49, 55, 67,
69, 70, 78]. Interleaved Gabidulin cods were defined in [33] as follows. Let C be a Gabidulin
code with length n, dimension k and minimum distance d over Fqm and let u be a positive
integer. Then the corresponding u-interleaved Gabidulin code is defined as

IGn,k =

{⎛⎜⎝c(1)
...

c(u)

⎞⎟⎠ | c(i) ∈ Gn,k

}
,

where u is called the interleaved order. The decoding algorithm proposed for u-interleaved
Gabidulin codes are able to decode errors with rank up to u(n−k)

u+1 . This high rank error decoding
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ability can be utilized in rank-based cryptography [15, 20, 56, 77], network coding [57, 68]
and space-time coding [3, 18, 38, 51]. The interleaved codes are not in the scope of this thesis
so we do not discuss them further.

The main properties of Gabidulin codes that make the syndrome-based decoding approach ap-
plicable are the Fqm-linearity property and the Vandermonde form of the parity check matrices.
We can define parity check matrix for codes that are not Fqm-linear but how to keep the Van-
dermonde structure is a challenge and it is not known how to apply syndrome-based decoding
approach on MRD families which are not Fqm-linear.

1.6.2 Interpolation-Based Decoding

The first interpolation-based decoding algorithm for Gabidulin codes was given in [34] by
Pierre Loidreau. He adapted the Welch-Berlekamp (WB) decoding algorithm, originally pro-
posed for Reed-Solomon codes in [79], for Gabidulin codes. The algorithm was improved
later in [2]. Here we recall the decoding algorithm explained in [34].

The author linked the problem of decoding Gabidulin codes D(r,Gn,k(α), t) (Problem 2) to the
reconstruction problem of linearized polynomial R(r,α,k, t).

Problem 3 (R(r,α,k, t)). [32] Suppose two vectors r = (r0, . . . ,rn−1),α = (α0, . . . ,αn−1) ∈
F

n
qm and two positive integers k, t are given. Find the set (g, f ) where f is a linearized polyno-

mial with q-degree less than k and g is a non-zero linearized polynomial with q-degree up to t,
such that

g(ri) = g( f (αi)), for i = 0, . . . ,n−1. (1.30)

This gives a quadratic system of n equations and k+ t +1 variables.

The following theorem gives the relation between the decoding problem and the reconstruction
problem.

Theorem 16. [34] From any solution of reconstruction R(r,α,k, t), where αi are linearly
independent over Fq, one gets a solution to decoding problem D(r,Gn,k(α), t) in polynomial
time.

So Loidreau designed an algorithm to solve the reconstruction problem instead of solving the
decoding problem. It is not clear how to solve the system given in (1.30), so he considered the
following equivalent system: Find the set (g,S), where g,S are linearized polynomial such that

⎧⎪⎨⎪⎩
g(ri) = S(αi), for i = 0, . . . ,n−1
degq(g)≤ t,
degq(S)≤ k+ t −1.

(1.31)

The current system is a linear system of n equations and k+2t +1 unknowns. The following
theorem gives the necessary condition to direct the solution of (1.31) to the solution of the
system in (1.30).
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Theorem 17. [34] Suppose a non-zero solution exists for (1.30). If t ≤ �(n− k)/2�, then the
solution space for the system in (1.31) has dimension one and any non-zero solution to (1.31)
gives a solution to (1.30).

So based on Theorem 17, the decoding process consists of two steps:

1. Find a set (g,S) as a solution for (1.31);

2. Compute the symbolic division S/g, which gives the linearized polynomial f (x) in (1.30).
Then the error vector components ei’s can be found as

ei = ri − f (αi).

The second step conducts a symbolic division operation and as described in [42] it can be
computed in polynomial-time. The first step can be done as follows.

The goal of the first step is to find two linearized polynomials g and S which satisfy the sys-
tem of equations g(ri)−S(αi) = 0 where i = 0, . . . ,n−1. The system is an under-determined
system of linear equations of n equations and n+ 1 unknowns. This is equivalent to interpo-
lating two pairs of linearized polynomials (g0,S0) and (g1,S1). After an initialization step, the
polynomials are interpolated via a loop with indices ranging from k to n−1. If one manages
to bound the q-degree of the polynomials as degq(g j)≤ t and degq(S j)≤ k+ t −1 for j = 0 or
1, it is done. The complexity of this step is in the order of O(n2) over Fqm .
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Chapter 2

Introduction

In this chapter we give a high overview of the results presented in this document.

2.1 Interpolation-based Decoding Algorithms for New Rank

Metric Codes

Randrianarisoa in [36] proposed a new interpolation-based decoding approach to decode
Gabidulin codes and GTG codes. His algorithm later adapted to decode AGTG codes [22],
TZ codes [23], optimal symmetric, alternating and Hermitian rank metric codes [24]. This
algorithm uses Berlekamp-Massey algorithm described in 1.6.1 but in a different way. Here
we give a brief explanation of the decoding algorithm for MRD codes of length n and dimen-

sion k that can be represented by a set of all linearized polynomials f (x) =
k
∑

i=0
fix[i] ∈Ln(Fqm)

of q-degree at most k satisfying certain properties (TG, GTG, AGTG, TZ). For simplicity we
consider n = m in all the decoding algorithms described in Chapters 3-6. Let the code be
defined on field extension Fqm . First we use the message vector a = (a0, . . . ,ak−1) ∈ F

k
qm as

the k+ 1-coefficient vector of f (x) where the coefficients f0 and fk are derived from a0. We
evaluate the polynomial f (x) on linearly independent points α0, . . . ,αm−1 ∈ Fqm and get the
codeword c. The error vector e of rank t ≤ m−k

2 is also derived by a linearized polynomial

g(x) =
m−1
∑

i=0
gix[i] ∈ Lm(Fqm) on the same linearly independent points α0, . . . ,αm−1. Let r be

the received word and so as in (1.8) one can write r = c+ e = ( f̃ + g̃) ·MT where M is the
Moore matrix corresponding to the linearly independent evaluation points α0, . . . ,αm−1 and
f̃ = ( f0, . . . , fk,0, . . . ,0) and g̃ = (g0, . . . ,gm−1) are coefficient vectors of polynomials f (x)
and g(x). Since M is non-singular we can calculate

β = r · (MT )−1 = f +g.

Due to the form f (x) (it has degree k at most) we already know m− k−1 coefficients of g(x)
and in order to find the k unknown coefficients g0, . . . ,gk we use the properties of the Dickson
matrix G(x) (Proposition 1) associated with g(x). We know the error interpolation polynomial
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g(x) has rank t, any t × t submatrix of G(x) formed by t consecutive rows and columns is
nonsingular. If we write the first row of the Dickson matrix as a linear combination of the next
t rows, we will get a linear system of equation of the form

gi = γ1g[1]i−1 + γ2g[2]i−2 + · · ·+ γtg
[t]
i−t , 0 ≤ i < m, (2.1)

where the subscripts in gi’s are taken modulo m. We already know gk+1, . . . ,gm−1 and these
known coefficients leads us to the following linear recursive equation

gi = γ1g[1]i−1 + γ2g[2]i−2 + · · ·+ γtg
[t]
i−t , k+ t ≤ i < m, (2.2)

where γ0 . . . ,γt are unknowns. We divided the process in to two cases. In the first case when
the rank of the error vector is t < m−k

2 , the linear system in (2.2) has ≥ t equations with t
variables and the BM algorithm described in 1.6.1 can solve the problem. In the second case
when the rank of the error vector is t = m−k

2 , the system in (2.2) will be an under-determined
system with t − 1 equations and t variables. Again the system can be solved using the BM
algorithm described in [40] and one can get a one dimensional solution space with a free
variable ω ∈ Fqm .

2.1.1 Decoding of AGTG Codes

In the decoding algorithms for GTG in [36] and also for AGTG codes in Chapter 3, the re-
lations between f0 and fk in the polynomial f (x) and (2.1) will give the following projective
polynomial with variable ω

P(ω) = u0ωqv+1 +u1ωqv
+u2ω +u3 = 0. (2.3)

In other words, When the rank of the error vector e meets the unique decoding radius, the
decoding problems in [36] and Chapter 3 are reduced to the problem of solving a projective
polynomial equation over Fqm . The solutions of P(ω) = 0 when u0 = 0 will be discussed in
Chapter 3. When u0 �= 0, we can transform P(x) = 0 into a polynomial equation

q(x) = xqu+1 +bx+a = 0, for a,b ∈ Fqm . (2.4)

The polynomial q(x) has arisen in several different contexts [1, 5, 6, 7, 17, 18, 28, 42]. Bluher
in [4] showed that q(x) can have either 0,1,2 or qd +1 zeros in Fqm where d = gcd(u,m). In
Chapter 3, we first generalize the idea in [16] for any prime power q and write the roots of q(x)
in terms of three known roots of q(x) in Fqm . Then we divide the discussion into two cases
when q is even and when q is odd and d = 1. For the former case, we employe the result in
[20] and explicitly give the root of q(x) when it has a unique solution. For the latter case, we
recall the criteria given in [30] for q(x) to have 0,1,2 and qd +1 solutions in Fqm . In [30], the
authors noticed that q(x) associates with the linearized polynomial

L(x) = xq(xqu−1) = xq2u
+bxqu

+ax, a,b ∈ Fqm , (2.5)

and they used companion matrices to find the zeros of L(x). In Chapter 3, we converted the task
of finding zeros of L(x) to the task of finding the determinant of Dickson matrix associated with
L(x). This was done by adapting the idea of Csajbók in [11, Corollary 3.4] which provided a
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characterization for the rank of Dickson matrix. We provide a deterministic algorithm to solve
linearized polynomial equations over Fqm when gcd(m,u) = 1. A probabilistic algorithm to
solve L(x) = 0 was proposed in [41]. Roots of linearized polynomials were also investigated
in [12, 35].

Very recently, Kim, Choe and Mesnager in [26, 27] provided a complete solution for q(x) = 0
over Fqm without any restriction on q and gcd(m,u). Their result will also make the decoding
algorithms in [36] and [22] (Chapter 3) complete. Here we recall their result where, without
loss of generality, they considered b = 1 in q(x), i.e.,

q(x) = xqu+1 + x+a, a ∈ Fqm . (2.6)

Let d = gcd(m,u) and k = m/d. In [27], they defined the sequence of polynomials {Ar(x)} in
Fq[x] and polynomials F(x) and G(x) as follows:

A1(x) = 1, A2(x) =−1

Ar+2(x) =−Ar+1(x)qu − xqu
Ar(x)q2u

, for r ≥ 1
F(x) = Ak(x)

G(x) =−Ak+1(x)− xAqu

k−1(x).

They showed that if p = 2 then G(x) ∈ Fqu for any x ∈ Fqk and if F(a) �= 0 then q(x) has at
most two solutions in Fqm . One can find the zeros of q(x) from the following two theorems
when F(a) �= 0.

Theorem 18. [27, Theorem 9] Let p be an odd integer and E = G(a)2 −4aF(a)qu+1 then

1. q(x) has no solution if and only if E is not a non-zero quadratic residue in Fqd .

2. q(x) has a single solution of the form x =− G(a)
2F(a) if and only if F(a) �= 0 and E = 0.

3. q(x) has two solutions of the forms x1,2 = ±E1/2−G(a)
2F(a) if and only if E is a non-zero

quadratic residue in Fqd .

Theorem 19. [27, Theorem 11] Let p be an even integer, H = Trqd/q(
Normqm/qd (a)

G2(a) ) and E =

aF(a)qu+1

G2(a) , then q(x)

1. has no solution if and only if G(a) �= 0 and H �= 0.

2. has a single solution of the form x=(aF(a)qu−1)1/2 if and only if F(a) �= 0 and G(a)= 0.

3. has two solutions of the forms x1 = G(a)
F(a) ·Trqm/q(

E
λ+1) and x2 = x1 +

G(a)
F(a) , where λ ∈

{z ∈ Fq2m |zqm+1 = 1}\{1}, if and only if G(a) �= 0 and H = 0.

As we already mentioned, for q(x) to have qd + 1 solutions in Fqm , we must first assume
F(a) = 0. The following theorem covers the remaining case (qd +1 solutions) for an arbitrary
prime integer p.
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Theorem 20. [26, Theorem 18] Let Ak(a) = 0, N = k(qd − 1), s = (quk−1)·(qd−1)
(qm−1)·(qu−1) , G1(X) =

k−2
∑

i=0
Ak−1−i(a)qu(i+1) · Xqui

and G2(X) =
qd−2
∑

i=0
Bk(a)qd−2−i · Xquki

. It holds G1(G2(F
∗
qN )

s · F∗
qu ·

F
∗
qm)qu−1 �= 0. Choose an arbitrary y0 ∈ G1(G2(F

∗
qN )

s ·F∗
qu ·F∗

qm)qu−1 \ {0}, then y2
0/a would

be a (qu −1)-th power in Fqm. For β ∈ Fqm such that β qu−1 = y2
0/a, the equation

ωqu −ω +
1

βy0
= 0, (2.7)

had exactly qd solutions in Fqm. Let ω0 be a solution of (2.7) in Fqm. Then the qd solutions of
q(x) in Fqm are y0 and (ω0 +aα)qu−1 · y0 where α runs over Fqd .

The equation (2.7) was previously solved in [32] and now we can identify all the solutions of
the projective polynomial equation q(x) if one of the solutions (previously denoted by y0) is
known. Under such condition, we can say the decoding algorithms proposed for T G, GT G
and AGT G codes work for any parameter over finite fields of an arbitrary characteristic.

2.1.2 Decoding of TZ Codes

In Chapter 4, we show that TZ codes can be decoded much faster than GTG and AGTG codes.
In our proposed decoding algorithm we derive some relations between the coefficients f0 and
fk in the evaluation polynomial. Using the obtained relations with equation (2.1) we can write
the following quadratic equation in terms of ω

ω2 +aω +b = 0, (2.8)

instead of the projective polynomial equation (2.3) which is obtained for AGTG codes in
Chapter 3. Comparing the final equations in (2.3) and (2.8), one can see a significant difference
between the complexities of solving these two equations and this will consequently affect the
complexities of decoding AGTG codes and TZ codes. We also describe that (2.8) can be solved
in polynomial time.

2.1.3 Decoding of MRD codes beyond half the minimum distance

In Chapter 5, an improvement of decoding GTG and AGTG codes is proposed. Moreover, we
managed to decode rank errors beyond half the minimum distance by one unit. We suggested
two new communication models which use constrained error interpolation polynomials instead
of an arbitrary polynomial g(x) ∈ Lm(Fqm) of rank t. This work was inspired by a paper of
Pilipchuk and Gabidulin [34] which decoded symmetric error vectors and a paper by Jerkovits
et al.[21] that targeted space-symmetric error vectors. Let t ≤ d−1

2 and suppose αθ1 and αθ2

be two specific elements in Fq-basis of Fqm where and 0 ≤ θ1 < θ2 < m. Using a polynomial
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of the form

eθ1,θ2(x) =
m−1

∑
i=0

zix[i], zi ∈ Fqm ,

z[m/2]
0 − z0 = αθ1 ,

z[m/2]
k−1 − zk−1 = αθ2 ,

as the error interpolation polynomial enables us to decode rank errors, with Rank(e) ≤ t + 1,
added to Gabidulin codeword in polynomial-time. Moreover, decoding problems of GTG and
AGTG codes are reduced to the problem of solving a quadratic polynomial equation instead
of a projective polynomial equation. We also showed that using a more restricted error inter-
polation polynomial, we will be able to decode any rank errors up to t ≤ k added to GTG or
AGTG codewords.

2.1.4 Encoding and decoding of optimal rank metric codes with restric-

tions

Neither encoding nor decoding algorithms are given for the the optimal symmetric, alternat-
ing and Herimitian rank metric codes in the literature. In Chapter 6, we first prove that the
interpolation encoding is the right encoding approach for these new optimal rank metric codes
and then we provide interpolation-based polynomial-time encodings for each of them. We
introduce the notion of Hermitian dual bases and use them as the set of linearly indepen-
dent evaluation points in the encoding process for optimal hermitian rank metric codes. The
bounds in Theorems 9,10 and 11 are used as alternatives for Singleton bound. We also adapt
the interpolation-based decoding approach, described in the beginning of Section 2.1, for op-
timal symmetric, alternating and Hermitian rank metric codes.

2.2 Construction of binary linear codes from Boolean func-

tions

Vectorial Boolean functions are functions from F2m to itself. They are of central interest in
cryptography since they can be used to represent virtually all components of a block cipher;
in particular, its nonlinear components can be expressed as vectorial Boolean functions. They
have important applications in coding theory and they have been used to construct binary linear
codes [8, 9, 25, 33, 37]. Ding in [15] proposed the following generic constructions of binary
linear codes from Boolean functions and he also suggested several open problems based on
his construction.

Let D = {d1, . . . ,dn} ⊆ F2m be the defining set. He defined a binary linear code of length n
associated to D by

CD = {(Tr2m/2(ad1), . . . ,Tr2m/2(adn)) |a ∈ F2m}.
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The dimension of the code CD is at most m. Choosing the defining set properly will give most
of the known codes. Ding in [15] studied the images of some certain Boolean functions on
F2m and derived the properties of some binary linear codes with few weights. Here we recall
some necessary terms in order to understand the contribution of Chapter 6.

Let F be a Boolean function from F2m to F2. The support of F is defined as

DF = {x ∈ F2m : F(x) = 1} ⊆ F2m .

The Hamming weight of cx = (Tr(xd1), . . . ,Tr(xdn)) is n−Nx(0) where for each x ∈ F2m we
have Nx(0) = |{1 ≤ i ≤ n : Tr(xdi) = 0}|.

The derivative of F in direction of any a∈F2m is the function DaF :F2m →F2m and it is defined
as Da F(x) = F(x+a)+F(x). For any a,b ∈ F2m we define NF(a,b) = |{x ∈ F2m |F(x+a)+
F(x) = b}|; i.e., NF(a,b) is the number of solutions x of the equation DaF(x) = b for some
given a and b. Then the differential uniformity of F is defined as ΔF = max{NF(a,b)|a,b ∈
F2m and a �= 0}.

A function F is called deferentially δ -uniform if ΔF ≤ δ . If δ = 2 then F is almost perfect
nonlinear (APN). This is optimal for finite fields of even characteristic since if x solves F(x+
a)+F(x) = b, then so does (x+a), and it means NF(a,b) is always even. Let ωi = |{(a,b) ∈
F
∗
2m ×F2m |NF(a,b) = i}| and δ be the differential uniformity of F(x), then the differential

spectrum of F(x) is defined as the multi-set ΩF = {ω0, . . . ,ωδ}.

A number of useful characterizations of APN functions can be given in terms of the so-called
Walsh transform. The Walsh transform of F(x) at (a,b) is defined as

WF(a,b) = ∑
x∈F2m

(−1)Tr2m/2(aF(x)+bx),

and the Walsh Spectrum of F(x) is defined as the multi-set ΛF = {WF(a,b) : a,b ∈ F2m ,a �= 0}.
A powerful attack against block ciphers is linear cryptanalysis, introduced by Matsui in [29].
The property of a function which measures the resistance to this kind of attack is called non-
linearity which can be defined in terms of Walsh transform as

NL(F) = 2n−1 − 1
2

max{|WF(a,b)| : a,b ∈ F2m ,a �= 0}.

For cryptographic applications, a vectorial Boolean function is required to have high non-
linearity and low differential uniformity. The following theorem in [14] establishes a connec-
tion between Boolean functions F such that 2nF +WF(a,b) �= 0 ,for all a,b ∈ F

∗
2m , and binary

linear codes.

Theorem 21. [14] Let F be a function from F2m to F2 and let DF be the support of F. If
2nF +WF(a,b) �= 0 for all a,b ∈ F

∗
2m, then CDF is a binary linear code with length nF and

dimension m. The weight distribution of CDF is given by the multiset{
2nF +WF(a,b)

4
: a,b ∈ F

∗
2m

}
∪{0}.
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Based on the connection in Theorem 21, determining the Walsh spectrum of F satisfying
2nF +WF(a,b) �= 0 for all a,b ∈ F

∗
2m is equivalent to the that of the weight distribution of of

the binary linear code CDF . When the Boolean function F is chosen properly, it will give a
binary linear code CDF with few weights.

We studied the differential spectrum and Walsh spectrum of g(x) = x2n+1+1+x3+x over F22n+1

for an integer n ≥ 2 in Chapter 7. The polynomial g(x) is known as Welch permutation poly-
nomial. Employing the Walsh transform of g(x) and determining its Walsh spectrum enables
us to derive the weight distribution of the code CDg constructed in [15, Conjecture 33] and
partially solve the conjecture.

2.3 Linear codes with maximum non-zero distinct weights

Let S(C) be the set of non-zero weights of a block code C. The parameter S(C) has been
considered for different purposes in the literature. For instance, Delsarte in [13] employed S(C)
and derived some properties of linear block codes. Binary linear codes with distinct non-zero
weights was studied in [19] and later Shi et al.in [39], independently studied the problem of
determining the maximum possible number of distinct weights in a block code (not necessarily
linear) over a finite field with arbitrary characteristic. We denote the maximum number of
distinct nonzero weights for an [n,k,d]q linear code by Nq,k. Shi et al.in [39] proposed the
following upper bounds for [n,k,d]q linear codes.

Theorem 22. [39] For all nonegative integers k,m and all prime powers q we have

• Nq,k ≤ Nq,k+1;
• Nq,k ≤ Nqm,k,

and for all prime powers q and integers k ≥ 1 we have

Nq,k ≤ qk −1
q−1

. (2.9)

They also conjectured the existence of linear codes that attain the bound in (2.9). Later in [3]
and [31] two constructions for codes that attain this bound were given. Alderson and Neri
in [3] named the linear codes with Nq,k =

qk−1
q−1 as maximum weight spectrum (MWS) codes.

Codes with shorter length for a given dimension were later proposed in [2, 10].

Beside the upper bounds for Nq,k, we also saw the following lower bounds in [39].

Theorem 23. [39] For all prime powers q we have

• k ≤ Nq,k for all integers k ≥ 1,
• Nq,k+1 ≥ 2Nq,k +1 for all integers k ≥ 1,
• Nq,k ≥ 2k−1q+2k−2 +1 for all integers k ≥ 2.

An analogue of the function Nq,k was defined in [39] for nonlinear codes of size M over an
alphabet of size q and we denote it as Ñq,M. We can find that Ñq,M =

(M
2

)
in [39]. In [38]
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the maximum number of nonzero weights for cyclic codes is discussed. In Chapter 8, we
introduce two new subfamilies for MWS codes according to their weight distribution. The call
the new sub-families as compact and strictly compact MWS codes. We also define the concept
of spread for MWS codes and investigate their properties accordingly.

Definition 33. Let C be an [n,k,d] MWS code over Fq and let Nq,k =
qk−1
q−1 . Then C is called a

compact MWS code if S(C) = {d,d+1, . . . ,d+Nq,k −1}. Furthermore, a compact MWS C′ is
called strictly compact if n ∈ S(C′), i.e., S(C′) = {d,d +1, . . . ,n}.

Using the new defined parameter spread for MWS codes, we can examine how the weights of
the MWS code is distributed across the set {1, . . . ,n}.

Definition 34. Let C be an [n,k,d] MWS code over Fq. The spread of C with S(C) = {n−
s0,n− s1, . . . ,n− sNq,k−1} is defined as

Δ(C) = (s0 −0)+(s1 −1)+ · · ·+(sNq,k−1 −Nq,k +1)
Nq,k−1

∑
i=0

(si −1).

From Definition 33, one can verify that a strictly compact MWS code C has Δ(C) = 0 and it
is optimal. In Chapter 8, we investigate the properties and parameters of compact and strictly
compact MWS codes.
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Chapter 3

On decoding additive generalized twisted

Gabidulin codes

In this chapter, we consider an interpolation-based decoding algorithm for a large family of
maximum rank distance codes, known as the additive generalized twisted Gabidulin codes,
over the finite field Fqn for any prime power q, which extends the work of [24] on decoding
these codes over finite fields in characteristic two. This chapter is based on my work with
Chunlei Li [19].

3.1 Introduction

Error correction codes with the rank metric have found applications in space-time coding [28],
random network coding [45] and cryptography [12]. Many important properties of rank met-
ric codes including the Singleton like bound were independently studied by Delsarte [9] ,
Gabidulin [13] and Roth [39]. Codes that achieve this bound were called maximum rank dis-
tance (MRD) codes. The most famous sub-family of MRD codes are Gabidulin codes which
is the rank metric analog of Reed-Solomon codes. They have been extensively studied in the
literature [9, 12, 13, 26, 37, 39].

Finding new families of MRD codes has been an interesting research topic since the inven-
tion of Gabidulin codes. In [40], [21], the Frobenious automorphism in the Gabidulin codes
were generalized to arbitrary automorphism and generalized Gabidulin (GG) codes were pro-
posed. In the past few years, a considerable amount of work has been done on MRD codes.
In [41], Sheekey twisted the evaluation polynomial of a Gabidulin code and proposed a large
family of MRD codes termed twisted Gabidulin (TG) codes. Using the same idea for general-
izing Gabidulin codes, arbitrary automorphism was employed to construct generalized twisted
Gabidulin (GTG) codes. This family of MRD codes were first described in [41, Remark 9] and
later comprehensively studied in [27]. Otal and Özbudak [31] later introduced a large family
of MRD codes, known as additive generalized twisted Gabidulin (AGTG) codes, which con-
tains all the aforementioned linear MRD codes as sub-families and new additive MRD codes.
There are also some new families of MRD codes which are not equivalent to AGTG codes nor
its subfamilies [5, 8, 43, 48]. Recent constructions of linear and nonlinear MRD codes were
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lately summarized in [32, 42].

MRD codes with efficient decoding algorithm are of great interest in practice. In his pio-
neering work [13], Gabidulin gave a decoding algorithm based on extended Euclidean algo-
rithm. Subsequently, Richter and Plass in [37], and Loidreau [26] proposed modified version
of Berlekamp-Massey and Welch-Berlekamp algorithms to decode Gabidulin codes. Some of
the aforementioned algorithms were further optimized in [46], [49]. Nevertheless, the known
decoding algorithms for Gabidulin codes cannot be directly applied to those new MRD codes
with twisted evaluation polynomials, especially when the MRD codes are only linear over
the ground field Fq or its subfield. By modifying the decoding algorithm in [20] for sub-
space codes, Randrianarisoa and Rosenthal in [38] proposed a decoding method for the twisted
Gabidulin codes, which works only for a limited option of parameters. Randrianarisoa later
proposed an interpolation approach to decoding twisted Gabidulin codes in [36] , where he
gave a brief discussion on the case when the rank of the error vector reaches the unique error-
correcting radius of the twisted Gabidulin codes.

In this chapter, we apply the interpolation approach by Randrianarisoa [36] in decoding
additive generalized twisted Gabidulin (AGTG) codes, which contain (generalized) twisted
Gabidulin codes and (generalized) Gabidulin codes as special cases. For AGTG codes with
minimum rank distance d, if an error vector has rank strictly less than d−1

2 , the decoding
process can be directly converted to the decoding of generalized Gabidulin codes, for which
existing decoding algorithms in [26, 37, 49] can be applied. On the other hand, when the error
vector has rank exactly d−1

2 (with d being odd), a new problem arises and one needs an effi-
cient way to solve a quadratic polynomial. Solving a given quadratic polynomial over finite
fields in general is a challenging problem. The quadratic polynomial derived from the decod-
ing of the AGTG codes has a close connection to a projective polynomials P(x). Different
from the short discussion in [36], we study the projective polynomial P(x) in greater depth.
We start with the discussion on the number of roots of P(x) according to its coefficients and
the characteristic of the finite field Fqn , propose methods to find roots of P(x) for each case,
and finally adopt the result in the decoding algorithm for AGTG codes.

The remainder of this chapter is structured as follows. Section 2 introduces some prelim-
inaries, where we particularly recall some properties of linearized polynomial and recently
constructed twisted MRD codes. Section 3 summarizes the interpolation decoding approach
for the additive generalized twisted Gabidulin codes and identifies the crucial quadratic poly-
nomial when the rank of error reaches d−1

2 (with d being odd). Section 4 is dedicated to the
study of the quadratic polynomial and to finding roots of the corresponding projective polyno-
mial P(x). Section 5 integrates the interpolation decoding procedure and the result of Section
4 into an explicit algorithm and discusses the complexity of the proposed algorithm. Section
3.6 concludes the work of this chapter.

3.2 Preliminaries

Let q be a power of a prime p. Throughout this chapter we denote by Fqr the finite field with
qr elements for an arbitrary positive integer r.
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3.2.1 Linearized polynomial

A polynomial of the form L(x) = ∑k−1
i=0 lixqi

over Fqn is known as a q-polynomial [30]. Define
a set

Lk(Fqn) =

{
L(x) =

k−1

∑
i=0

lixqi |L(x) ∈ Fqn [x]/(xqn − x)

}
. (3.1)

It is easy to verify that
(
Lk(Fqn),+,◦) forms a non-commutative Fq-algebra, where + de-

notes the conventional polynomial addition and ◦ denotes the symbolic product given by
a(x) ◦ b(x) = a(b(x)). Note that symbolic product is associative and distributive, but non-
commutative in general. For a nonzero L(x) = ∑k−1

i=0 lixqi
over Fqn , its q-degree is given by

degq(L(x)) = max{0 ≤ i < k | li �= 0}.

When q is fixed or the context is clear, it is also customary to speak of a linearized polynomial
as it satisfies the linearity property: L(c1x+c2y) = c1L(x)+c2L(y) for any c1,c2 ∈ Fq and any
x,y in an arbitrary extension Fqn . Hence a linearized polynomial L(x) ∈ Ln(Fqn) indicates an
Fq-linear transformation L from Fqn to itself.

Known MRD codes in the literature are mostly given in the terms of linearized polynomials.
Some relevant definitions and auxiliary results are recalled below.

Definition 35. For a nonzero linearized polynomial L(x) =∑k−1
i=0 lixqi

over Fqn, its rank is given
by

Rank(L) := dimFq(Img(L)) = n−dimFq(Ker(L)),

where Img(L) =
{

L(x)|x ∈ Fqn
}

and Ker(L) = {x ∈ Fqn |L(x) = 0}.

For a linearized polynomial L(x) = ∑k
i=0 lixqi

with q-degree k, i.e., lk �= 0, it is clear that Ker(L)
has at most qk elements. From the definition, the linearized polynomial L(x) has

Rank(L) = n−dimFq(Ker(L))≥ n− k.

Sheekey in [41] characterizes a necessary condition for L(x) to have rank n− k as below.

Lemma 2. [41] Suppose a linearized polynomial L(x) = l0x+ l1xq + · · ·+ lkxqk
, lk �= 0, in

Ln(Fqn) has qk roots in Fqn. Then

Normqn/q(lk) = (−1)nk Normqn/q(l0), (3.2)

where Normqn/q(x) = x1+q+···+qn−1
is the norm function from Fqn to Fq.

Furthermore, the necessary and sufficient condition for L(x) with q-degree k to have qk roots in
Fqn was independently characterized recently in [29, Theorem 7] and [7, Theorem 1.2], where
all coefficients of L(x) are involved.

Below we recall two interesting matrices, of which properties and connection are critical for
the decoding algorithm in this chapter.
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Definition 36. [25, 50] Given a vector a = (a0, . . . ,an−1) over Fqn, the Dickson matrix asso-
ciated with a is given by

Da =
(

aq j

i− j(modn)

)
n×n

=

⎛⎜⎜⎜⎜⎝
a0 aq

n−1 . . . aqn−1

1

a1 aq
0 . . . aqn−1

2
...

... . . . ...

an−1 aq
n−2 . . . aqn−1

0

⎞⎟⎟⎟⎟⎠ , (3.3)

and the Moore matrix associated with a is given by

Ma =
(

aq j

i

)
n×n

=

⎛⎜⎜⎜⎜⎝
a0 aq

0 . . . aqn−1

0

a1 aq
1 . . . aqn−1

1
...

... . . . ...

an−1 aq
n−1 . . . aqn−1

n−1

⎞⎟⎟⎟⎟⎠ . (3.4)

The Dickson matrix and Moore matrix have the following properties:

Lemma 3. For two vectors a = (a0, . . . ,an−1) and b = (b0, . . . ,bn−1) over Fqn,

i) DT
a = Da′ with a′ = (a0,a

q
n−1, . . . ,a

qn−1

1 );

ii) Da ·Db = Du, where u = (u0, . . . ,un−1) with ui = ∑n−1
j=0 aq j

i− j(mod n)b j;

iii) MT
a ·Mb = Dv, where v = (v0, . . . ,vn−1) with vi = ∑n−1

j=0 aqi

j b j;

iv) Ma ·Db = Mw, where w = (w0, . . . ,wn−1) with wi = ∑n−1
j=0 aq j

i b j.

The proof follows from direct calculations and is thus omitted here.

Let Dn(Fqn) be the set of all n×n Dickson matrices over Fqn . It is shown in [50] that Dn(Fqn)
forms an Fq-algebra and there is an isomorphism ϕ between Ln(Fqn) and Dn(Fqn) given by

ϕ

(
n−1

∑
i=0

lixqi

)
= D(l0,...,ln−1) =

(
lq j

i− j(modn)

)
n×n

. (3.5)

A Dickson matrix D will be said to be associated with a linearized polynomial L(x) if
ϕ(L(x)) = D.

Proposition 3. [50]. Let L be the linear transformation induced by a linearized polynomial
L(x) ∈ Ln(Fqn) and D the Dickson matrix associated with L(x). Then

Rank(L) = Rank(D) and det(L) = det(D).

It is well known [25] that given a linearized polynomial L(x) = ∑n−1
i=0 lixqi

over Fqn , it is a
permutation of Fqn , i.e., Rank(L) = n, if and only if its associated Dickson matrix is non-
singular; or equivalently its associated Moore matrix is non-singular. It follows from the fact
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that the determinant of a Moore matrix vanishes if and only if the entries of its first column
are linearly dependent. In fact, more interesting connections between a linearized polynomial
L(x) in Ln(Fqn) and its associated Dickson matrix can be established.

Proposition 4. [36, Theorem 3] Assume a linearized polynomial L(x) = ∑n−1
i=0 lixqi

over Fqn

has rank k. Then its associated Dickson matrix D in (3.5) has rank k over Fqn. Moreover, any
k× k submatrix formed by k consecutive rows and k consecutive columns in D is invertible.

Remark 1. Let σ = qs with gcd(s,n) = 1. The σ -polynomial

Lσ (x) = l0x+ l1xσ + · · ·+ ln−1xσn−1
, li ∈ Fqn ,

which reduces to a q-polynomial over Fqn for s = 1, is a generalization of q-polynomial. The
aforementioned properties of q-polynomials can be similarly obtained as for σ -polynomials.
For instance, the σ -polynomial Lσ (x) = ∑k

i=0 lixσ i
with lk �= 0 also has Rank(L) = n −

dimFq(Ker(L)) ≥ n− k [15]. When q is replaced by σ in the definition of the Dickson and
Moore matrices, they are called the σ -version Dickson matrix and the σ -version Moore ma-
trix, respectively. The σ -version Dickson and Moore matrices have the same properties as
characterized in Lemma 3 and Proposition 4.

3.2.2 Maximum rank distance (MRD) codes

Let n and m be two positive integers. The rank of a vector a = (a1,a2, . . . ,an) over Fqm is
defined as the dimension of spanFq

〈a1,a2, . . . ,an〉 which is the vector space spanned by ai’s
over Fq. The rank distance between two vectors a,b ∈ Fqm is defined as dR(a,b) = Rank(a−
b).

Definition 37. A rank metric (n,M,d)-code over Fqm is a subset of Fn
qm with size M and min-

imum rank distance d. Furthermore, it is called a maximum rank distance (MRD) code if it
attains the Singleton-like bound M ≤ qmin{m(n−d+1),n(m−d+1)}.

The Gabidulin codes are the most well-known MRD codes [13]. This family of MRD codes
were further generalized in [21, 40], where the Frobenius automorphism of Fqn was replaced
by a generic automorphism x �→ xσ with σ = qs and gcd(s,n) = 1. The generalized Gabidulin
(GG) code GGn,k over Fqm with length n and dimension k is defined by

GGn,k =

{
( f (α0), f (α1), . . . , f (αn−1)) | f (x) =

k−1

∑
i=0

fixσ i
and fi ∈ Fqm

}
, (3.6)

where α0,α1, . . . ,αn−1 in Fqm are linearly independent over Fq. When σ = q, i.e., s = 1,
the code GGn,k reduces to the original Gabidulin code [13]. The choice of independent points
α0,α1, . . . ,αn−1 does not affect the rank property. Hence it is customary to express generalized
Gabidulin codes without the evaluation points as GGn,k =

{
f (x) = ∑k−1

i=0 fixσ i | fi ∈ Fqm

}
. We

will also omit the evaluation points α0,α1, . . . ,αn−1 in the following introduction of recent
twisted MRD codes [27, 31, 41]. For consistency with the parameters of MRD codes in [27,
31, 41], throughout what follows we always assume n = m.
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Recent constructions of MRD codes largely depend on the number of roots of certain linearized
polynomials. From Lemma 2 it is readily seen that a linearized polynomial L(x) of q-degree
k has rank at least n− k+1 if the condition (3.2) is not met. In [41] Sheekey adopted Lemma
2 to construct twisted Gabidulin (TG) codes and described the generalized twisted Gabidulin
(GTG) codes, which was intensively studied by Lunardon et al. [27].

Proposition 5. [27, 41] Let n,k,s be positive integers such that k < n and gcd(s,n) = 1. Let
η be a nonzero element in Fqn satisfying Normqsn/qs(η) �= (−1)nk. Then the set

Hk,s(η ,h) =

{
k−1

∑
i=0

fixqsi
+η f qh

0 xqsk | fi ∈ Fqn

}
(3.7)

is an MRD code with minimum rank distance d = n− k+1.

The idea of manipulating some terms of linearized polynomials to construct new MRD codes
was further extended in [31, 32, 34]. Below we recall from [31] the additive generalized
twisted Gabidulin (AGTG) codes , for which we will propose an interpolation-based decoding
algorithm in the next section.

Proposition 6. [31] Let n,k,s,h ∈ Z
+ satisfying gcd(s,n) = 1 and k < n. Let q = qu

0 and
η ∈ Fqn such that Normqsn/qs

0
(η) �= (−1)nku. Then the set

Hk,s,q0(η ,h) =

{
k−1

∑
i=0

fixqsi
+η f

qh
0

0 xqsk | fi ∈ Fqn

}
(3.8)

is an Fq0-linear (but not necessarily Fq-linear) MRD code of size qnk and minimum rank dis-
tance n− k+1.

The above AGTG codes reduce to GTG codes when q0 = q and to GG codes when η = 0 or
q0 = 2. Very recently, Sheekey in [43] showed the existence of a new family of MRD codes
which is not equivalent to AGTG codes and Trombetti-Zhou codes in [48]. Recent MRD codes
that are constructed based on Lemma 2 were formulated in a united manner in[42] and [23].

3.3 Encoding and decoding for AGTG codes

Throughout this section we will denote [i] := σ i = qsi for i = 0, . . . ,n− 1 , where (s,n) = 1,
for simplicity.

Below we briefly describe the encoding process of the AGTG codes, which provides the nota-
tional conventions and a reference for the interpolation decoding process.

3.3.1 Encoding AGTG codes

For an AGTG code with evaluation points α0,α1, . . . ,αn−1 that are linearly independent over
Fq, the encoding of a message f = ( f0, . . . , fk−1) is the evaluation of the following linearized
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polynomial at points α0,α1, . . . ,αn−1:

f (x) =
k−1

∑
i=0

fix[i] +η f
qh

0
0 x[k].

Let f̃ = ( f0, . . . , fk−1,η f
qh

0
0 ,0, . . . ,0) be a vector of length n over Fqn and M be the σ -version

Moore matrix generated by αi’s, where 1 ≤ i, j ≤ n−1, i.e.,

M =
(

α [ j]
i

)
n×n

=

⎛⎜⎜⎜⎜⎝
α0 α [1]

0 . . . α [n−1]
0

α1 α [1]
1 . . . α [n−1]

1
...

... . . . ...
αn−1 α [1]

1 . . . α [n−1]
n−1

⎞⎟⎟⎟⎟⎠ . (3.9)

Then the encoding of AGTG codes can be expressed as

( f0, . . . , fk−1) �→ c = ( f (α0), . . . , f (αn−1)) = f̃ MT . (3.10)

Here it is worth noting that in encoding process, one actually only needs to calculate the

multiplication of the (k+ 1)-tuple ( f0, . . . , fk−1,η f
qh

0
0 ) and the first k+ 1 row of M. Here we

express it as in (3.10) for being consistent with the decoding procedure.

3.3.2 Decoding AGTG codes with an error-interpolation polynomial g(x)

For a received word r = c+ e with an error e added to the codeword c during transmission,
when the error e has rank t ≤ �n−k

2 �, the unique decoding task is to recover the unique code-
word c such that dR(c,r)≤ �n−k

2 �.

When the rank t of the error is strictly smaller than n−k
2 , the decoding of AGTG codes

Hk,s,q0(η ,h) can be converted to the decoding of GG codes GGn,k+1. More concretely, one
can use the existing decoding algorithms, e.g., [26, 37, 49], for (generalized) Gabidulin codes
to establish a system of n− (k+ 1)− t independent affine equations and t unknowns, which
is uniquely solvable since 2t ≤ n− (k + 1). However, when the rank t achieves the unique
error-correcting radius, i.e., (n−k) is even and t = n−k

2 , one needs more equation(s) on the un-
knowns and new techniques are required. In the interpolation decoding for the TG codes by
Randrianarisoa [36], the problem was converted to certain quadratic equations. However, how
to efficiently solve the corresponding quadratic equations was little considered in [36].

Below we shall extend Randrianarisoa’s idea to the larger family of AGTG codes and inves-
tigate the quadratic equations in greater depth. For self-completeness, we briefly describe the
process of interpolation decoding and how it is transformed to solving certain quadratic equa-
tion for the case that 2t = n− k.

Suppose g(x) = ∑n−1
i=0 gix[i] is an error interpolation polynomial such that

g(αi) = ei = ri − ci, i = 0, . . . ,n−1. (3.11)
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It is clear that the error vector e is uniquely determined by the polynomial g(x). Denote a
vector g = (g0, . . . ,gn−1). From (3.10) and (3.11) it follows that

r = c+ e = ( f̃ +g)MT .

This is equivalent to

r · (MT )−1 = ( f0 +g0, . . . , fk−1 +gk−1,η f
qh

0
0 +gk,gk+1, . . . ,gn−1). (3.12)

Letting γ = (γ0, . . . ,γn−1) = r · (MT )−1, we obtain

(gk+1, . . . ,gn−1) = (γk+1, . . . ,γn−1) and −ηg
qh

0
0 +gk = γk −ηγqh

0
0 (3.13)

since η f
qh

0
0 +gk = γk, and f0 +g0 = γ0.

Therefore, the task of correcting error e is equivalent to reconstructing g(x) from the available
information characterized in (3.13). This reconstruction process heavily depends on the prop-
erty of the associated σ -version Dickson matrix of g(x) and will be discussed in Subsection
3.3.3.

3.3.3 Reconstructing the interpolation polynomial g(x)

Similarly to the definition in (3.3), the σ -version Dickson matrix associated with g(x) can be
given by

G =
(

g[ j]i− j (mod n)

)
n×n

=
(
G0 G1 . . . Gn−1

)
(3.14)

where the indices i, j run through {0,1, . . . ,n−1} and G j is the j-th column of G.

According to Proposition 4, the matrix G has rank t and any t×t matrix formed by t successive
rows and columns in G is nonsingular. Then G0 can be expressed as a linear combination of
G1, . . . ,Gt , namely, G0 = λ1G1+λ2G2+ · · ·+λtGt , where λ1, . . . ,λt are elements in Fqn . This
yields the following recursive equations

gi = λ1g[1]i−1 +λ2g[2]i−2 + · · ·+λtg
[t]
i−t , 0 ≤ i < n, (3.15)

where the subscripts in gi’s are taken modulo n. Recall that the elements gk+1, . . . ,gn−1 are
known from (3.13). Hence we obtain the following linear equations with known coefficients
and variables λ1, . . . ,λt :

gi = λ1g[1]i−1 +λ2g[2]i−2 + · · ·+λtg
[t]
i−t , k+ t +1 ≤ i < n. (3.16)

The above recurrence gives a generalized version of q-linearized shift register as described in
[44], where (λ1, . . . ,λt) is the connection vector of the shift register. It is the key equation for
the decoding algorithm in this chapter, by which we shall reconstruct g(x) in two major steps:

Step 1. derive the coefficients λ1, . . . ,λt from (3.13) and (3.16);



3.3 Encoding and decoding for AGTG codes 49

Algorithm 1: A modified BM algorithm solving (3.16)
Input: elements gk+1, · · · ,gn−1
Output: A shortest FSR with coefficients λ1, · · · ,λt satisfying (3.16)

1 Set L = 0, Λ(0)(x) = x, B(0)(x) = x, Δ′
0 = 1;

2 for each r from 0 to n− k−2 do

3 Calculate Δr =−gk+1+r +∑L
i=1 Λ(r)

i gqsi

k+1+r−i;
4 if Δr = 0 then

5 Λ(r+1)(x) = Λ(r)(x);
6 B(r+1)(x) = xqs ◦B(r)(x);
7 else

8 Λ(r+1)(x) = Λ(r)(x)−Δrxqs ◦B(r)(x);
9 if 2L > r then

10 B(r+1)(x) = xqs ◦B(r)(x);
11 else

12 B(r+1)(x) = Δ−1
r Λ(r)(x);

13 L = r+1−L;
14 end

15 end

16 r = r+1;
17 end

18 Set t = L;
19 Return t, the connection vector λ1, · · · ,λt in Λ(n−k−1)(x) and B(n−k−1)(x)

Step 2. use λ1, . . . ,λt to compute gk−1, . . . ,g0 recursively from (3.15).

Note that Step 1 is the critical and challenging step in the decoding process, and Step 2 is
simply a recursive that can be done fast. The following discussion shows how the procedure
of Step 1 works.

As discussed in the beginning of this section, for an error vector with Rank(e) = t ≤ �n−k
2 �,

i.e., 2t + k ≤ n, we can divide the discussion into two cases.

Case 1: 2t + k < n. In this case, (3.16) contains n− k− t −1 ≥ t affine equations in variables
λ1, . . . ,λt , which has rank t. Hence the variables λ1, . . . ,λt can be uniquely determined. Here
we assume the code has high code rate, for which the Berlekamp-Massey (BM) algorithm
is more efficient [14]. Another reason for choosing the BM algorithm is that it outputs the
intermediate polynomial B(n−k−1)(x) which will be used in Case 2. Although the recurrence
equation (3.16) is a generalized version of the ones in [37, 44], the modified BM algorithm
[37, 44] can be applied here to recover the coefficients λ1, . . . ,λt . For self-completeness we
recall the modified BM algorithm in Algorithm 1. The coefficients of Λ(n−k−1)(x) are the
desired λi’s.

Case 2: 2t + k = n. In this case (3.16) gives n− k− t −1 = t −1 independent affine equations
in variables λ1, . . . ,λt . For such an under-determined system of linear equations, we will have
a set of solutions (λ1, . . . ,λt) that has dimension 1 over Fqn . Namely, the solutions will be of
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the form
λ +ωλ ′ = (λ1 +ωλ ′

1, . . . ,λt +ωλ ′
t ),

where λ ,λ ′ are fixed elements in F
t
qn and ω runs through Fqn . As shown in [44, Th. 10], the

solution can be derived from the modified BM algorithm with a free variable ω . Next we will
show how the element ω is determined by other information in (3.13).

Observe that in (3.15), by taking i = 0 and i = k+ t and substituting the solution λ +ωλ ′, one
gets the following two equations

g0 = (λ1 +ωλ ′
1, . . . ,λt +ωλ ′

t ) · (g[1]n−1, . . . ,g
[t]
n−t)

T

gk+t = (λ1 +ωλ ′
1, . . . ,λt +ωλ ′

t ) · (g[1]k+t−1, . . . ,g
[t]
k )T

Re-arranging the equations gives

g0 = c0 + c1ω
gk+t = c2 + c3ω +(λt +λ ′

t ω)g[t]k ,
(3.17)

where c0,c1,c2,c3 are derived from λ , λ ′ and the known gi’s. Furthermore, from (3.13) we

have −ηg
qh

0
0 + gk = γk −ηγqh

0
0 . Denoting c4 = γk −ηγqh

0
0 and substituting gk = c4 −ηg

qh
0

0 into
(3.17) gives

(λt +λ ′
t ω)(c4 −η(c0 + c1ω)qh

0)[t]−gk+t +(c2 + c3ω) = 0.

This equation can be re-arranged as

u0ωqv
0+1 +u1ωqv

0 +u2ω +u3 = 0. (3.18)

where q = qu
0, v = h+ust, u0, . . . ,u3 are derived from c0, . . . ,c5 and η .

Since the error e with rank t = n−k
2 = d−1

2 can be uniquely decoded, the polynomial

P(x) = u0xqv
0+1 +u1xqv

0 +u2x+u3

should have roots w in Fqn that lead to solutions λ +ωλ ′ in (3.16) and (g0,gk) in (3.17).

With the coefficients λ1, . . . ,λt in Step 1 and the initial state gn−1, . . . ,gn−t , one can recursively
compute g0, . . . ,gk−1 according to (3.15) in Step 2. Note that not all solutions of P(x) lead
to correct coefficients of the error interpolation polynomial. In fact, by the expression of
Dickson matrix of g(x), correct g(x) should have the sequence (gn−1, . . . ,gn−t , . . .) generated
from (3.15) has period n. In other words, if the output sequence has period n, we know that
the corresponding polynomial g(x) = ∑n−1

i=0 gix[i] is the desired error interpolation polynomial.
From the above discussion, the remaining task of decoding is to efficiently find roots of P(x)
in Fqn , which will be discussed in the next section.
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3.4 Finding roots of the polynomial P(x)

This subsection is dedicated to finding solutions to the following equation in Fqn = Fqnu
0

:

P(x) = u0xqv
0+1 +u1xqv

0 +u2x+u3 = 0. (3.19)

When q = qu
0 = q0, the polynomial P can be reduced to P(x) in [36, Page 10]. In [36], the

author converted solving P(x) = 0 to the factorization of the linearized polynomial xq2l
+

axql
+bx. Nevertheless, factoring xq2l

+axql
+bx is not necessarily easy and there’s no efficient

algorithm, as far as we know, for factoring this linearized polynomial. Therefore, it’s important
to further investigate how to efficiently solve P(x).

Assume d = (v,un). We start with the simplest case that u0 = 0. In this case, (3.19) is reduced
to an affine equation u1xqv

0 +u2x+u3 = 0. Furthermore,

i) if (u1,u2) = (0,0), then P(x) has no zero if u3 �= 0 and every element in Fqn as a zero
otherwise;

ii) if u1 = 0, u2 �= 0, then P(x) has a unique zero x =−u3/u2;

iii) if u1 �= 0, u2 = 0, then P(x) has a unique zero x = (−u3/u1)
qnu−v

0 .

iv) if u1u2 �= 0, u3 = 0, then P(x) = 0 has qd
0 zeros in Fqn , if −u2/u1 is a (qd

0 −1) power of
an element in Fqn; otherwise, P(x) = 0 has a single zero x = 0.

When u0 �= 0, we transform the equation P(x) = 0 into

P(x) =
1
u0

P(x−u1u−1
0 ) = xqv

0+1 +ax+b = 0, (3.20)

where
a =

u2

u0
+(−u1

u0
)qv

0 and b =
u3

u0
− u1u2

u2
0

+
u1

u0
(−u1

u0
)qv

0 +(−u1

u0
)qv

0+1.

The polynomial P(x) can be seen as a reduced version of the original polynomial P(x). It is
clear that if a = 0, then P(x) = 0 has either no solution or

m = gcd(qv
0 +1,qnu

0 −1) =

⎧⎪⎪⎨⎪⎪⎩
qd

0 +1, if nu
gcd(un,v) is even,

2, if nu
gcd(un,v) and q0 are odd,

1, if nu
gcd(un,v) is odd, and q0 is even

solutions, depending on whether −b is an m-th power; and that if b = 0, P(x) = 0 has either
zero as its unique solution or qd

0 solutions.

When ab �= 0, the polynomial P(x) = xqv
0+1 + ax+ b over Fqun

0
has a variety of applications

in the construction of different sets with Singer parameters [10], construction error correcting
codes [3], APN functions [4] and computing cross-correlation between m-sequences [11, 16].
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The polynomial P(x) is a type of project polynomials [1], which in general has the form

a0 +a1x+a2x(2) + · · ·+alx(l) ∈ Fqn [x],

where x(i) = x
qi−1
q−1 . Bluher in [2] showed that the projective polynomial

P(x) = xqr+1 +ax+b, a,b ∈ F
∗
qn , (3.21)

where q is any prime power and r,n are arbitrary two positive integers, has exactly 0,1,2,qr0 +
1 possible number of zeros in Fqn with r0 = gcd(r,n). Before the discussion on finding roots
of P(x), it is important to know the possible number of roots and the corresponding conditions
on the coefficients of P(x). In the following we will discuss different ways to find and express
the zeros of P(x).

First, we present a relations among roots of P(x), which is inspired by [11, Lemma 22] and
generalized it for any prime power q.

Proposition 7. For positive integers r,n and a prime power q, the projective polynomial

P(x) = xqr+1 +ax+b, a,b ∈ F
∗
qn

has 0,1,2 or qr0 +1 roots x ∈ Fqn, where r0 = gcd(r,n). Moreover, if P has three different roots
x0,x1 and x2 ∈ Fqn, then all the roots can be characterized as

xA0,A1,A2 =−x0x1x2

A0
x0
+ A1

x1
+ A2

x2

A0x0 +A1x1 +A2x2
(3.22)

where (A0,A1,A2) �= (0,0,0) and A0 +A1 +A2 = 0.

Proof. Suppose P(x0) = 0 for an element x0 in Fqn . For a nonzero λ ∈ F
∗
qn , one has

P(λ + x0) =(λ + x0)
qr+1 +a(λ + x0)+b

=(λ qr+1 + x0λ qr
+λxqr

0 + xqr+1
0 )+λa+ax0 +b

=(λ qr+1 + x0λ qr
+(xqr

0 +a)λ )+P(x0)

=λ qr+1(1+ x0/λ +(xqr

0 +a)/λ qr
).

Thus P(λ + x0) = 0 if and only if 1
λ is a solution of the affine equation L′

0(z) = L0(z)+1 = 0,
where

L0(z) = (xqr

0 +a)zqr
+ x0z.

Depending on x0, L0(z) may have a single solution if xqr

0 +a= 0 or qr0 solutions if x0(x
qr

0 +a)−1

is a (qr0 −1)-th power in Fqn . Hence the affine equation L′
0(z) = 0 has either 0, 1 or qr0 nonzero

solutions in Fqn . For each nonzero solution z of L′
0(z) = 0, we get a root x0+

1
z of the projective

polynomial P(x).

On the other hand, when P(x) has three distinct roots x0,x1 and x2, we obtain two different
roots 1

x1−x0
and 1

x2−x0
of the affine equation L′

0(z) = 0 and their difference 1
x1−x0

− 1
x2−x0

is a
root of the linearized polynomial L0(z) = 0, i.e.,
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L′
0

(
1

x1 − x0

)
=L0

(
1

x1 − x0

)
+1 = 0,

L′
0

(
1

x2 − x0

)
=L0

(
1

x2 − x0

)
+1 = 0,

L′
0

(
1

x1 − x0

)
−L′

0

(
1

x2 − x0

)
=L0

(
1

x1 + x0
− 1

x2 + x0

)
= 0.

So y = 1
x1−x0

− 1
x2−x0

is a root of L0(z). Hence, z = 1
x1−x0

+Ay runs through all roots of L′
0(z).

Consequently, assuming (A0,A1,A2) = (1,A,−(A+1)),

x(A) = x0 +
1
z
= x0 +

1
1

x1−x0
+Ay

= x0 +
1

1
x1−x0

+ A
x1−x0

− A
x2−x0

= x0 +
(x1 − x0)(x2 − x0)

(x2 − x0)+A(x2 − x0)−A(x1 − x0)

=−x0x1x2.

1
x0
+ A

x1
− (A+1)

x2

x0 +Ax1 − (A+1)x2

=−x0x1x2.

A0
x0
+ A1

x1
+ A2

x2

A0x0 +A1x1A2x2
= x(A0,A1,A2)

runs through all roots of P(x) different from x0, while A runs through Fqr0 .

The above result gives a method to express all the roots of the projective polynomials P(x) =
xqr+1 +ax+b,a, b ∈ F

∗
qm in terms of the three known roots in Fqm . Moreover, from its proof,

a method to describe the roots of the projective polynomial P(x) in terms of the roots of the
affine polynomial L′

0(z). Nevertheless, the condition that characterizes the exact number of
solutions to the affine equation L′

0(z) = (xqr

0 +a)zqr
+ x0z+1 is not clear.

In order to investigate the number of roots of P(x) = xqr+1+ax+b in Fqn according to its coef-
ficients, we need to divide the discussion into two cases: q is even; or q is odd and gcd(r,n)= 1.

3.4.1 Solving the equation P(x) = 0 over finite fields of characteristic 2

When the finite field Fqn has characteristic 2, the polynomial P(x) can be further converted
to Fc(x) = xqr+1 + x+ c = 0, which was intensively studied in [17, 18, 22]. Helleseth and
Kholosha in [17, 18] explicitly gave the root of Fc(x) = 0 in terms of the coefficient c when
it has a single zero in Fqn and when it has two zeros in Fqn if gcd(r,n) is odd. Very recently,
Kim and Mesnager in [22] further studied the equation for the case q = 2 and gcd(r,n) = 1
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and explicitly calculated all possible zeros of Fc(x) in Fqn . Since for general AGTG codes,
the parameter q0 is always greater than 2. Below we shall recall the result by Helleseth and
Kholosha [18] and apply it to find the roots of the projective polynomial P(x) in some cases.

Note that in the AGTG codes are defined over Fqn with q a prime power. In this context, we
assume q is a power of 2. To avoid potential confusion of notations, below we recall the result
from [18] and treat the underlying finite field as F2m , where m is a positive integer. Let l be a
positive integer with d = gcd(l,m) and denote m1 = l/d. Define two sequences of polynomials
in recurrence as follows: C1(x) =C2(x) = Z1(x) = 1, and

Ci+2(x) =Ci+1(x)+ x2il
Ci(x), Zi(x) =Ci+1(x)+ xC2l

i−1(x) (3.23)

for i = 1,2, · · · ,m1 −1.

Proposition 8. [18, Prop. 3-5] Gvien a polynomial

Fc(x) = x2l+1 + x+ c, c ∈ F
∗
2m , (3.24)

i) it has exactly one zero in F2m if and only if Zm1(c) = 0 and Cm1(c) �= 0; and this zero is
given by x = (cC2l−1

m1
(c))2m−1

;

ii) it has exactly two zeros F2m if and only if Zm1(c) �= 0 and Trd
1(N

m
d (c)/Z2

m1
(c)) = 0, where

the trace function Trd
1(z) = ∑d−1

i=0 z2i
and Nm

d (z) is the norm function defined by Nm
d (z) =

∏m1−1
i=0 x2di

. Moreover, if d is odd, then these two zeros are (W + μ)Zm1(c)/Cm1(c) for
μ ∈ {0,1}, where

W =
Cm+1(c)
Zm+1(c)

+

d−1
2

∑
i=0

(
Nm

d (c)
Z2

m1
(c)

)22i

;

iii) it has exactly 2d +1 zeros in F2m if and only if Cm1(c) = 0.

As an illustration, we apply Proposition 8 i) to a general polynomial G(x) in the following
proposition, which will be used to explicitly give the zero of P(x) in F2m with m = nuw. The
second cases can be applied in the similar manner.

Proposition 9. The polynomial

G(x) = x2l+1 +a1x2l
+a2x+a3

over F2m has exactly one zero in F2m if and only if one of the following conditions holds:

i) a2 = a2l

1 and a3 = a2l+1
1 ; or

ii) a2 = a2l

1 , a3 �= a2l+1
1 and m1 is odd; or

iii) a2 �= a2l

1 , Zm1(c) = 0 and Cm1(c) �= 0 with c = (a1a2 +a3)
/
(a1 +a2n−l

2 )2l+1.

Moreover, for Cases (i) and (ii), the zero of G(x) is given by x = a1+(a1a2+a3)
1

2l+1 ; for Case
(iii), the unique zero is given by x = (a1 +a2n−l

2 )(cC2l−1
m1

(c))2n−1
+a1.
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Proof. It is relatively easy to verify Case i) and Case ii). In fact, when a2 = a2l

1 , one obtains
the equation

G(x) = (x+a1)
2l+1 +(a1a2 +a3) = 0.

The statement of Case i) immediately follows; and for Case ii), it is easily seen that the equa-
tion has a single solution only if gcd(2l + 1,2n − 1) = 1, equivalently, m1 = n/gcd(l,n) is
odd.

For Case iii), the equation G(x) = 0 can be reduced to a polynomial of the form Fc(y) =
y2l+1 + y+ c = 0 by the following substitution

Fc(y) =s−(2l+1)G(sy+a1)

=s−(2l+1)
(
(sy+a1)

2l+1 +a1(sy+a1)
2l
+a2(sy+a1)+a3

)
=s−(2l+1)

(
s2l+1y2l+1 + s(a2l

1 +a2)y+a1a2 +a3

)
=y2l+1 + y+ c,

where

s = (a2l

1 +a2)
2m−l

= (a1 +a2m−l

2 ) and c =
a1a2 +a3

s2l+1
=

a1a2 +a3

(a1 +a2m−l

2 )(2
l+1)

.

It is clear that y is a zero of Fc(y) = y2l+1 + y+ c if and only if x = sy+ a1 is a zero of G(x).
The desired statement follows from Proposition 8.

Corollary 1. Let q0 = 2w for a positive integer w, l =wv, m=wun and m1 =m/gcd(l,m). Let
Ci(x), Zi(x) be defined as in (3.23) respectively. Then the polynomial xqv

0+1 +a1xqv
0 +a2x+a3

over Fqn has exactly one solution in Fqn given by

i) x = a1 if a2 = a
qv

0
1 and a3 = a1a2;

ii) x = a1 +(a1a2 +a3)
1

qv
0+1 if a2 = a

qv
0

1 , a3 �= a1a2 and m1 is odd;

iii) x = (a1 + a
qn−v

0
2 )(cC

qv
0−1

m1 (c))2m−1
+ a1 if a2 �= a

qv
0

1 , Zm1(c) = 0 and Cm1(c) �= 0 with c =

(a1a2 +a3)
/
(a1 +a

qn−v
0

2 )qv
0+1.

3.4.2 Solving the equation P(x) = 0 over Fqn when gcd(r,n) = 1

For the projective polynomial P(x) = xqr+1+ax+b with gcd(r,n) = 1, McGuire and Sheekey
recently in [29] gave a complete criteria on the coefficients a,b for P(x) = 0 to have 0,1,2 and
q+1 solutions in Fqn by the analysis of the companion matrix of P(x).

Let σ = qr and define a sequence of 2×2 matrices as follows:

C0 = I2, C =C1 =

(
0 −b
1 −a

)
, and Ck =Ck−1Cσ k−1

=CCσ
k−1, (3.25)
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where C1 is termed the companion matrix of P(x), and Cσ i

k is the matrix obtained from Ck by
applying to each of its entries the automorphism x �→ xσ i

. Furthermore, define a matrix

AP =Cn =CCσ · · ·Cσn−1
. (3.26)

Since det(C1) = b and N(b) = b1+σ+···+σn−1
, one can easily verify det(AP) = N(b). Denote

X =

(
b/a 0
0 1

)
,Zn =

(
a(n−1) 0

0 a(n)

)
and Ym =

(−Gσ
n−2 −Gσ

n−1
Gn−1 Gn

)
, (3.27)

where a(i) = a
σ i−1
σ−1 and Gn can be computed using the recursive relation

Gσ2

n −Gn = Gσ
n−1 −Gσ2

n−1. (3.28)

Then it follows that
AP =Cn = XYnZn. (3.29)

Hence one can express AP associated with P(x) in terms of Gn as follows:

AP = N(a)

(
−uq−1

.Gσ
n−2 −b

a .G
σ
n−1

1
aσ−1 .Gn−1 Gn

)

where N(a) denotes the field norm of a ∈ Fqn from Fqn to Fq and u = bq/aq+1. Note that if
Gn−1 = 0 then AP will be a diagonal matrix.

Theorem 24. [29] The number of roots of the projective polynomial P(x) in Fqn is given by

∑
λ∈Fq

qnλ −1
q−1

where nλ is the dimension of the eigenspace of AP corresponding to the eigenvalue λ . The
number of roots of L(x) in Fqn is given by qn1 . In other words, the dimension of the kernel of
L(x) is 2−Rank(AL − I2).

Theorem 25. [29] The polynomial P(x) has
qd −1
q−1

roots in Fqn if and only if

AP = λ I2

where d is the dimension of the eigenspace of the matrix AP.

The characteristic polynomial SP(x) ∈ Fq[x] of a 2×2 matrix AP is of the form

SP(x) = x2 −Tr(AP)x+det(AP), (3.30)

where Tr(AP) is the trace of the matrix AP and it is defined as the sum of its diagonal elements
and det(AL) is the determinant of the matrix AP. The polynomial SP(x) can have 0,1 or 2 roots
in Fq. For odd prime power q, the discriminant ΔS of the quadratic polynomial SP(x) is of the
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form

ΔS =Tr(AP)
2 −4det(AP). (3.31)

Case 1) if ΔS is a non-square in Fq, SP(x) has no solutions in Fq, then P(x) has no solution in
Fqn .

Case 2) If ΔS = 0, SP(x) has a unique solution λ in Fq, then P(x) has 1 or q+1 solutions in
Fqn .

i) If the dimension of the eigenspace corresponding to λ is two, then P(x) has q+1
solutions in Fqn . Due to Theorem 25, this will happen if and only if AP = λ I2
i.e. Gn−1 = 0 and Gn ∈ Fq.

ii) If the dimension of the eigenspace corresponding to λ is one, then P(x) has one
solution in Fqn . Due to Theorem 25, this will happen if and only if AP is not a
multiple of I2 i.e. Gn−1 �= 0.

Case 3) If ΔS is a non-zero square in Fq, SP(x) has two distinct roots (eigenvalues) in Fq. If di-
mension of the eigenspaces corresponding to each eigenvalue is one, due to Theorem
24, P(x) has two solutions in Fqn .

Note that the projective polynomial P(x) = xqr+1 + ax+ b associates with the following lin-
earized polynomial

L(x) = xP(xqr−1) = xq2r
+axqr

+bx, a,b ∈ Fqn .

It is readily seen that if we can efficiently solve the linearized polynomial L(x), the roots of
P(x) can be obtained accordingly. In [29] the authors also applied companion matrices to
study the number of roots of the above linearized polynomial. Further works on the roots of
linearized polynomials can be found in [7, 33, 47].

Below we provide another way of studying the roots of the linearized polynomials L(x) via the
Dickson matrix directly.

Theorem 26. Let α0,α1, . . . ,αn−1 be a basis of Fqn over Fq and L(x) = ∑n−1
i=0 lixqi

a linearized
polynomial in Ln(Fqn) with rank r. Let D be the associate Dickson matrix of L(x). Suppose
D0,D1, . . . ,Dn−1 are the n rows of D and Dr = z0D0+z1D1+ · · ·+zr−1Dr−1, where z0, . . . ,zr−1
in Fqn. Then the elements

βi =
r−1

∑
j=0

αqn− j

i zqn− j

j −αqn−r

i , i = 0,1, . . . ,n−1,

are roots of L(x). Moreover, the kernel of L(x) in Fqn is given by

ker(L) = spanFq
〈β0,β1, . . . ,βn−1〉.

Proof. From Proposition 4 it is clear that the r-th row Dr can be expressed by a linear com-
bination of D0,D1, . . . ,Dr−1 as Dr = ∑r−1

t=0 ztDt . That is to say, the vector z = (z0, . . . ,zn−1) =



58 On decoding additive generalized twisted Gabidulin codes

(z0, . . . ,zr−1,−1,0, . . . ,0) satisfies z ·D = (0, . . . ,0). Define

DT
z = D

(z0,z
q
n−1,...,z

qn−1
1 )

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z0 . . . zr−1 −1 0 . . . 0
0 zq

0 . . . zq
r−1 −1 . . . 0

... . . . . . . . . .
. . . . . . ...

0 . . . 0 zqn−r−1

0 . . . zqn−r−1

r−1 −1
. . . . . . . . .

. . . . . .

zqn−1

1 . . . zqn−1

r 0 . . . 0 zqn−1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It follows from the pattern of the Dickson matrix D that DT
z ·D = 0n×n, where 0n×n is the n×n

all zero matrix.

According to the definition of Dz, it is clear that it has rank at least n− r. On the other hand,
since the Dickson matrix D has rank r and all rows of Dz are solution of (y0, . . . ,yn−1)D =
(0, . . . ,0), the rank of Dz is at most n− r. This means that Dz has rank exactly n− r.

Let Mα be the Moore matrix associated with the basis α0, . . . ,αn−1. It follows from Lemma 3
i) and iv) that

MαDT
z = MαDz′ = Mβ =

⎛⎜⎜⎜⎜⎝
β0 β q

0 . . . β qn−1

0

β1 β q
1 . . . β qn−1

1
...

... . . . ...

βn−1 β q
n−1 . . . β qn−1

n−1

⎞⎟⎟⎟⎟⎠ ,

where z′ = (z0,z
q
n−1, . . . ,z

qn−1

1 ) = (z0,0, . . . ,0,−1,zqn−(r−1)

r−1 , . . . ,zqn−1

1 ) and

βi =
n−1

∑
j=0

αq j

i zq j

n− j =
n−1

∑
j=0

αqn− j

i zqn− j

j =
r−1

∑
j=0

αqn− j

i zqn− j

j −αqn−r

i

for i = 0,1, . . . ,n−1. Recall that DT
z ·D = 0n×n. It immediately follows that

0n×n = Mβ ·D =

⎛⎜⎜⎜⎜⎝
β0 β q

0 . . . β qn−1

0

β1 β q
1 . . . β qn−1

1
...

... . . . ...

βn−1 β q
n−1 . . . β qn−1

n−1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

l0 lq
n−1 . . . lqn−1

1

l1 lq
0 . . . lqn−1

2
...

... . . . ...

ln−1 lq
n−2 . . . lqn−1

0

⎞⎟⎟⎟⎟⎠ .

Hence L(βi) = 0 for i = 0,1, . . . ,n−1. Moreover, since the Moore matrix Mα is nonsingular,
the rank of Mβ is the same as that of the rank of Dz, which implies that the rank of β0, . . . ,βn−1
over Fq is equal to n− r. Thus the linear combination of β0, . . . ,βn−1 over Fq yields all the
solution of L(x) in Fqn . The desired conclusion follows. �

From Theorem 26, we see that finding solutions of a linearized polynomial can be converted
to the task of computing the rank of its associated Dickson matrix D = (D0, . . . ,Dn−1)

T and of
finding a solution of Dr = x0D0+ · · ·+xr−1Dr−1. In general, calculating the rank of a Dickson
matrix D is nontrivial. Recently Csajbók in [6] proposed an interesting characterization of the
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rank of D.

Theorem 27. [6] Let D be the associated Dickson matrix of a linearized polynomial L(x) =
∑n−1

i=0 lixqi
over Fqn. Denote by Dt the submatrix of D by removing the first t rows and the last

t columns. Then L(x) has rank r if and only if

|D0|= · · ·= |Dn−r−1|= 0 and |Dn−r| �= 0.

By Theorem 27, in order to determine the rank of the Dickson matrix associated with L(x), we
need to calculate the determinant of D0,D1 and D2. The calculation for the case D2 is trivial.
We only need to consider D0 and D1. To this end, we need the following result.

Theorem 28. The determinant of the Dickson matrix

D0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b 0 0 . . . 0 1 aqr(n−1)

a bqr
0 . . . 0 0 1

1 aqr
bq2r

0 0

0 1 aq2r ...
...

... . . . . . .
. . . aqr(n−3)

bqr(n−2)
0

0 . . . 1 aqr(n−2)
bqr(n−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.32)

associated with the linearized polynomial L(x) = xq2r
+axqr

+bx can be calculated using the
recursive relation

|D0|= (−1)n+1 ·aqr(n−1) |Mn−1|+2bqr(n−1) |Mn−2|+N(a)+1, (3.33)

where N(a) denotes the field norm of a ∈ Fqn from Fqn to Fq, Mn is a tridiagonal matrix of
order n and Mn−1 = D1.

Note that D2 is a lower triangular matrix and its determinant can be directly computed |D2|= 1.
In order to prove Theorem 28 we need the following observation.

Lemma 4. The determinant of the tridiagonal matrix

Mn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a bq 0 . . . 0
c aq bq2

0 cq aq2

. . . . . . . . .
bqn−2

0
cqn−3

aqn−2
bqn−1

0 . . . 0 cqn−2
aqn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.34)

is given by the recurrence relation

|Mn|= aqn−1 |Mn−1|−bqn−1 · cqn−2 |Mn−2| (3.35)
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where |M0|= 1 and |M−1|= 0.

Proof. Using Laplace expansion on the last column for n ≥ 2 gives

|Mn|=(−1)2n ·aqn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a bq 0 . . . 0
c aq bq2

0 cq aq2

. . . . . . . . .
bqn−3

0
cqn−4

aqn−3
bqn−2

0 . . . 0 cqn−3
aqn−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+(−1)2n−1 ·bqn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a bq 0 . . . 0
c aq bq2

0 cq aq2

. . . . . . . . .
0

aqn−3
bqn−2

0 . . . 0 cqn−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= aqn−1 |Mn−1|−bqn−1 · cqn−2 |Mn−2|.

Proof of Theorem 28. The proof follows immediately by applying Laplace expansion and
Lemma 4. Note that the determinant of an upper (lower) triangular matrix is the product of the
elements in its main diagonal.

Theorem 28 characterizes the conditions for the associated Dickson matrix of L(x) = xq2r
+

axqr
+bx to have rank n,n−1 and n−2. According to Theorem 26, one can obtain the roots of

L(x) by finding the coefficients in the linear combination of the first n−1 rows of D when D
has rank n−2 and coefficients in the linear combination of all rows of D when D has rank n−1.
Here the modified BM algorithm [44] will be employed, which requires O(n2) operations in
Fqn for these two cases. With the coefficients, the roots of L(x) are given by Theorem 26.

Instead of using Theorem 26 to compute the roots of the linearized polynomial L(x), one
may use the probabilistic method given in [47]. The problem of finding the root space of the
linearized polynomial L(x) is reduced to find the image space of another linearized polynomial
K(x) derived from

xqn − x =W (x)◦K(x),

where W (x) = gcd(L(x),xqn −x). The idea is to randomly choose yi ∈ Fqn and calculate K(yi)
until the base elements for the image space of K(x) are obtained. Since L(x) has σ -degree
2, we need to find two basis elements K(y1),K(ys) for the image space of K(x). According
to [47], the algorithm has complexity in the order of O(n) operations in Fqn . In general the
expected number of y j ∈ Fqn that need to be evaluated in order to find n linearly independent
basis elements K(y0), . . . ,K(yn−1) is given by 1

1−q j−n [47].
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3.5 The decoding algorithm of AGTG codes

With the discussion in Subsections 3.3.2-3.4, we summarize the interpolation polynomial de-
coding algorithm of AGTG codes in Algorithm 2, and analyze its complexity accordingly.

Recall that reconstruction the error interpolation polynomial g(x) is to solve (3.15) based on
the available information in (3.13). For the case that t = n−k

2 with even n− k, according to
Algorithm 1, Λ(n−k−1)(x) is the linearized polynomial obtained after n− k iteration and its
coefficients are the desired vector (λ1, . . . ,λt). L is the linear complexity of Λ(n−k−1)(x) and
B(n−k−1)(x) is the auxiliary linearized polynomial which is used to store the value of Λ(i)(x)
with the largest degree Li such that Li < L. Hence one can obtain from Algorithm 1 two
t-dimensional vectors λ and λ ′ over Fqn . Then the solution of (3.13) is given as

λ +ωλ ′ = (λ1 +ωλ ′
1, . . . ,λt +ωλ ′

t ),

from which the coefficients g0, . . . ,gk can be calculated recursively. The relation of g0 and gk
in (3.13) leads to a quadratic equation

P(x) = u0xqv
0+1 +u1xqv

0 +u2x+u3 = 0.

If u0 = 0 calculate its zeros by cases i)-iv) after (3.19) or use Theorem 28, Berlekamp Massey
Algorithm 1, Theorem 26 and Corollary 1 otherwise. The above process therefore can be
integrated into the explicit Algorithm 2.

Remark 2. In the proposed Algorithm 2, we reconstruct the error interpolation polynomial
g(x) by two major steps: calculate the coefficients λ1, . . . ,λt by the modified BM algorithm,
and deal with the case t = �(n− k)/2� by investigating the zero of the established polynomial
P(x). Subsection 3.4 investigates the solutions to P(x) = 0 In the process, the calculation
of the characterized conditions in Theorem 25 dominates the overall complexity. In Line 1 of
Algorithm 2, the calculation of the interpolation polynomial γ(x) at points (αi,ri) for 1≤ i≤ n.
It has complexity in the order of O(n3) operations over Fqn, which can be further optimized
by the method in [35]. For the remaining steps in Algorithm 2, the modified BM algorithm
dominates the overall complexity. Since the modified BM algorithm has operations in the
order of O(n2) over Fqn, the overall complexity of Algorithm 2 is in the order of O(n2) over
Fqn when normal bases are used in the interpolation step.
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Algorithm 2: Interpolation decoding of AGTG codes

Input: A received word r with t ≤ �n−k
2 � errors and linearly independent evaluation

points α1, . . . ,αn
Output: The correct codeword c ∈ F

n
qn or “Decoding Failure"

1 Calculate γ(x) = ∑n−1
i=0 γix[i] such that γ(αi) = ri for i = 1, . . . ,n;

2 Apply modified BM algorithm to (gk+1, . . . ,gn−1) = (γk+1, . . . ,γn−1) and output L,
Λ(n−k−1)(x), B(n−k−1)(x);

3 if L = (n− k)/2 then

4 Denote Δ =−ω +∑L
i=1 Λ(n−k−1)

i gqsi

n−1−i with ω ∈ Fqn ;
5 Express the coefficients of the polynomial

Λ(n−k)(x) =
1
Δ

Λ(n−k−1)(x)+ xqs ◦B(n−k−1)(x),

Derive the connection vector (λ1, . . . ,λt) from sonic Λ(n−k)(x);
6 Derive the polynomial P(x) = u0xqv

0+1 +u1xqv
0 +u2x+u3 in (3.19);

7 if u0 = 0 then

8 Calculate the zero to P(x) by Cases i)-iv) after (3.19);
9 else

10 Calculate the zero to P(x) by Theorem 28, the modified BM algorithm and
Theorem 26;

11 end

12 Set (λ1, . . . ,λt) = λ +ωλ ′ with ω as the zero of P(x);
13 Calculate g0,gk from (3.19);
14 end

15 for each i in {1, . . . ,k} do

16 Calculate gi = λ1g[1]i−1 + · · ·+λtg
[t]
i−t , where the subscripts of g j’s are taken modulo n;

17 end

18 if The sequence g0, . . . ,gn−1 derived from λ1, . . . ,λt has period n then

19 Return the codeword c = (c1, . . . ,cn) with ci = ri +g(αi)
20 else

21 Return “Decoding Failure"
22 end

3.6 Conclusion

This chapter further investigates the interpolation-based decoding algorithm for additive gener-
alized twisted Gabidulin codes over finite fields with any characteristic. The main contribution
of this chapter includes the discussion of efficiently finding the roots of the involved project
polynomials and their corresponding linearized polynomials.
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Chapter 4

On interpolation-based decoding of a class

of maximum rank distance codes

In this chapter we present an interpolation-based decoding algorithm to decode a family of
maximum rank distance codes proposed recently by Trombetti and Zhou. We employ the
properties of the Dickson matrix associated with a linearized polynomial with a given rank
and the modified Berlekamp-Massey algorithm in decoding. When the rank of the error vector
attains the unique decoding radius, the problem is converted to solving a quadratic polynomial,
which ensures that the proposed decoding algorithm has polynomial-time complexity. This
chapter is based on my work with Chunlei Li and Ferdinando Zullo [11].

4.1 Introduction

Rank metric codes were independently introduced by Delsarte [5], Gabidulin [7] and Roth
[25]. Those rank metric codes that achieve Singleton-like bound are called maximum rank dis-
tance (MRD) codes. The well known family of MRD codes are the Gabidulin codes. Later
this family was generalized by Kshevetskiy and Gabidulin [13] which is known as the general-
ized Gabidulin (GG) codes. These codes are linear over Fqn . Sheekey [28] introduced a large
family of Fq-linear MRD codes called twisted Gabidulin (TG) codes, which were extended
to generalized twisted Gabidulin (GTG) codes by employing arbitrary automorphism [28, Re-
mark 9],[17]. Later additive MRD codes were proposed by Otal and Özbudak [19] and they
are known as additive generalized twisted Gabidulin (AGTG) codes. AGTG codes contain all
the aforementioned MRD codes as subfamilies. There are also some other MRD codes that
are not equivalent to the above codes, for instance the non-additive MRD codes by Otal and
Özbudak [20], new MRD codes by Sheekey [29], Trombetti-Zhou (TZ) codes [32], etc. For
more constructions of MRD codes, please refer to [27].

MRD codes have gained much interest in the last decades due to their wide applications in stor-
age system [25], network coding [31] and cryptography [6]. Efficient decoding of MRD codes
is critical for their applications. There are different decoding approaches for Gabidulin codes.
Gabidulin [7] presented decoding based on a linearized equivalent of the Extended Euclidean
Algorithm. The generalized Berlekamp-Massey algorithm was given by Richter and Plass in
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[23]. Later Loidreau [16] proposed the Welch-Berlekamp like algorithm to decode Gabidulin
codes. Nevertheless, the above algorithms can not be directly applied to the new MRD codes
with twisted evaluation polynomials. Randrianarisoa and Rosenthal in [24] proposed a decod-
ing method for a subfamily of TG codes. Randrianarisoa in [22] gave an interpolation-based
decoding algorithm for GTG codes. He reduced the decoding problem to finding zeros of pro-
jective equations. Kadir and Li in [10] applied the interpolation approach to decoding AGTG
codes and studied the final projective equations in greater depth. Li [14] used a similar idea in
decoding the non-additive partition MRD codes in [20].

In this chapter we propose an interpolation-based decoding algorithm for TZ codes. We also
compare the interpolation-based decoding algorithms for MRD codes when the rank of the
error vector reaches the unique decoding radius, which shows that decoding TZ codes requires
less operations than decoding GTG and AGTG codes as the problem can be reduced to solving
a quadratic equation.

4.2 Preliminaries

Definition 38. Let q be a power of prime p and Fqn be an extension of the finite field Fq.
A q-polynomial is a polynomial of the form L(x) = a0x+ a1xq + · · ·+ ak−1xqk−1

over Fqn. If
ak−1 �= 0, then we say that L(x) has q-degree k−1. The set of these polynomials is denoted by
Lk(Fqn).

When q is fixed or the context is clear, it is also customary to speak of a linearized polynomial
as it satisfies the linearity property: L(c1x+c2y) = c1L(x)+c2L(y) for any c1,c2 ∈ Fq and any
x,y in an arbitrary extension of Fqn . Hence a linearized polynomial L(x) ∈ Lk(Fqn) defines
an Fq-linear transformation L from Fqn to itself. The rank of a nonzero linearized polynomial
L(x) = ∑n

i=0 aixqi
over Fqn is given by Rank(L) = n− dimFq(Ker(L)), where Ker(L) is the

kernel of L(x).

Proposition 10. Let L(x) = ∑n−1
i=0 aixqi

over Fqn be a linearized polynomial with rank t. Then
its associated Dickson matrix

D =
(

aqi

i− j(modn)

)
n×n

=

⎛⎜⎜⎜⎜⎝
a0 aq

n−1 · · · aqn−1

1

a1 aq
0 · · · aqn−1

2
...

...
. . .

...

an−1 aq
n−2 · · · aqn−1

0

⎞⎟⎟⎟⎟⎠ , (4.1)

has rank t over Fqn. Moreover, any t × t submatrix formed by t consecutive rows and t consec-
utive columns in D is non-singular.

The first part of Prop. 10 is given in [33], whereas the second part can be found in [22] and
[1].
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4.3 Maximum rank distance (MRD) codes

The rank of a vector a = (a1, . . . ,an) in F
n
qm , denoted as Rank(a), is the number of its linearly

independent components, that is the dimension of the vector space spanned by ai’s over Fq.
The rank distance between two vectors a,b ∈ F

n
qm is defined as dR(a,b) = Rank(a−b).

Definition 39. A subset C ⊆ F
n
qm with respect to the rank distance is called a rank metric

code. When C contains at least two elements, the minimum rank distance of C is given by
d(C) = min

A,B∈C, A �=B
{dR(A,B)}. Furthermore, it is called a maximum rank distance (MRD) code

if it attains the Singleton-like bound |C| ≤ qmin{m(n−d+1),n(m−d+1)}.

The most famous MRD codes are Gabidulin codes [7] which were further generalized in [13,
26]. The generalized Gabidulin (GG) codes GGn,k with length n ≤ m and dimension k over Fqm

is defined by the evaluation of { k−1

∑
i=0

fixqsi | fi ∈ Fqm

}
, (4.2)

where (s,m) = 1, on linearly independent points α0,α1, . . . ,αn−1 in Fqm . The choice of αi’s
does not affect the rank property and it is customary to exhibit Gabidulin codes and its gener-
alized families without the evaluation points as in (4.2). For consistency with the parameters
of MRD codes in [19, 28, 32], through what follows we always assume n = m.

For a linearized polynomial L(x) = ∑k
i=0 lixqi

over Fqn , it is clear that Rank(L)≥ n−k if lk �= 0.
Gow and Quinlan in [9, Theorem 10] (see also [28]) characterize a necessary condition for L(x)
to have rank n− k as below, see [3, 18] for other necessary conditions.

Lemma 5. [9] Suppose a linearized polynomial L(x) = l0x + l1xq + · · ·+ lkxqk
, lk �= 0, in

Ln(Fqn) has qk roots in Fqn. Then Normqn/q(lk) = (−1)nk Normqn/q(l0), where Normqn/q(x) =

x1+q+···+qn−1
is the norm function from Fqn to Fq.

According to Lemma 5, a linearized polynomial L(x) of q-degree k − 1 has rank at least
n− k+ 1 if the condition in Lemma 5 is not met. Sheekey [28] applied Lemma 5 and con-
structed a new family of MRD codes, known as twisted Gabidulin (TG) codes, and the gen-
eralized TG codes are investigated in [17]. Later Otal and Özbudak [19] further generalized
this family by manipulating some terms of linearized polynomials and constructed the addi-
tive generalized twisted Gabidulin (AGTG) codes which contains all the aforementioned MRD
codes as subfamilies.

Below we recall from [32] the Trombetti-Zhou (TZ) code, which has been proved to be in-
equivalent to subfamilies of AGTG codes, further generalized twisted Gabidulin codes [21],
Sheekey’s new MRD codes [29] and those with minimum distance equals to n− 1, such as
[2, 4]. We are going to propose an interpolation-based decoding algorithm for TZ codes in the
next section.

Proposition 11. [32] Let n,k,s ∈ Z
+ satisfying (s,2n) = 1 and let γ ∈ Fq2n satisfy that

Normq2n/q(γ) is a non-square element in Fq. Then the set
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Dk,s(γ) =

{
ax+

k−1

∑
i=1

fixqsi
+ γbxqsk | fi ∈ Fq2n ,a,b ∈ Fqn

}
is an Fqn-linear MRD code of size q2nk and minimum rank distance 2n− k+1.

The first and the last coefficients of the above polynomial are chosen independently from the
base field Fqn . If q is even, all the elements of Fq are square elements, so TZ codes exist only
when the characteristic of Fq is odd.

4.4 Encoding and decoding of TZ codes

For the rest of this chapter, we will denote [i] := qsi for i = 0, . . . ,2n− 1 , where (s,2n) = 1,
for simplicity.

4.4.1 Encoding

For a TZ MRD code with evaluation points α0,α1, . . . ,α2n−1 that are linearly independent over
Fq, the encoding of a message f = ( f0, . . . , fk−1) is the evaluation of the following linearized
polynomial at points α0,α1, . . . ,α2n−1:

f (x) = ax+
k−1

∑
i=1

fix[i] + γbx[k], (4.3)

where (a,b) ∈ Fqn × Fqn corresponds to f0 via an Fqn-basis of Fq2n . Let f̃ =

(a, f1, . . . , fk−1,γb,0, . . . ,0) be a vector of length 2n over Fq2n and M =
(

α [ j]
i

)
2n×2n

be the

2n× 2n Moore matrix generated by αi’s, where 1 ≤ i, j ≤ 2n− 1. Then the encoding of TZ
codes can be expressed as

(a, f1, . . . , fk−1,γb) �→ c = ( f (α0), . . . , f (α2n−1)) = f̃ MT , (4.4)

where MT is the transpose of matrix M. Here it is worth noting that in encoding process, one
actually only needs to calculate the multiplication of the (k+1)-tuple (a, f1, . . . , fk−1,γb) and
the first k+1 rows of M. Here we express it as in (4.4) for being consistent with the decoding
procedure.

4.4.2 Decoding

For a received word r = c+ e with an error e added to the codeword c during transmission,
when the error e has rank t ≤ �2n−k

2 �, the unique decoding task is to recover the unique code-
word c such that dR(c,r)≤ �2n−k

2 �.
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Suppose g(x) = ∑2n−1
i=0 gix[i] is an error interpolation polynomial such that

g(αi) = ei = ri − ci, i = 0, . . . ,2n−1. (4.5)

It is clear that the error vector e is uniquely determined by the polynomial g(x) and denote
g̃ = (g0, . . . ,g2n−1). From (4.4) and (4.5) it follows that

r = c+ e = ( f̃ + g̃)MT .

This is equivalent to

r · (MT )−1 =(a, f1, . . . , fk−1,γb,0, . . . ,0)+
(g0,g1, . . . ,gk−1,gk,gk+1, . . . ,g2n−1).

Letting β = (β0, . . . ,β2n−1) = r · (MT )−1, we obtain

(gk+1, . . . ,g2n−1) = (βk+1, . . . ,β2n−1) (4.6)

and {
g0 +a = β0

gk + γb = βk
→
{

g0 −β0 =−a
γ−1(gk −βk) =−b.

With a,b ∈ Fqn , one obtains{
(g0 −β0)

[n] = g0 −β0

(γ−1(gk −βk))
[n] = γ−1(gk −βk).

(4.7)

which yields two linearized equations{
g[n]0 −g0 −θ1 = 0, (4.8)

g[n]k − γ [n]−1gk −θ2 = 0, (4.9)

where θ1 = β [n]
0 −β0, θ2 = β [n]

k − γ [n]−1βk.

Therefore, the task of correcting error e is equivalent to reconstructing g(x) from the available
information characterized in (4.6), (4.8) and (4.9). This reconstruction process heavily depends
on the property of the associated Dickson matrix of g(x) and will be discussed in Subsection
4.4.3.

4.4.3 Reconstructing the interpolation polynomial g(x)

The Dickson matrix associated with g(x) can be given by

G =
(

g[ j]i− j (mod 2n)

)
2n×2n

= (G0 G1 . . . G2n−1) , (4.10)

where the indices i, j run through {0,1, . . . ,2n−1} and G j is the j-th column of G.
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Since gcd(2n,s) = 1, Proposition 10 can be easily adapted for the Dickson matrix G in (4.10).
Hence G has rank t and any t × t matrix formed by t successive rows and columns in G is
nonsingular. Then G0 can be expressed as a linear combination of G1, . . . ,Gt , namely, G0 =
λ1G1 + λ2G2 + · · ·+ λtGt , where λ1, . . . ,λt are elements in Fq2n . This yields the following
recursive equations

gi = λ1g[1]i−1 +λ2g[2]i−2 + · · ·+λtg
[t]
i−t , 0 ≤ i < 2n, (4.11)

where the subscripts in gi’s are taken modulo 2n. Recall that the elements gk+1, . . . ,g2n−1 are
known from (4.6). Hence we obtain the following linear equations with known coefficients
and variables λ1, . . . ,λt :

gi = λ1g[1]i−1 +λ2g[2]i−2 + · · ·+λtg
[t]
i−t , k+ t +1 ≤ i < 2n. (4.12)

The above recurrence gives a generalized version of q-linearized shift register as described in
[30], where (λ1, . . . ,λt) is the connection vector of the shift register. It is the key equation for
the decoding algorithm in this chapter, by which we shall reconstruct g(x) in two major steps:

Step 1. derive λ1, . . . ,λt from (4.6)-(4.9), and (4.12);

Step 2. use λ1, . . . ,λt to compute gk, . . . ,g0 from (4.11).

Step 1 is the critical and challenging step in the decoding process, and Step 2 is simply a
recursive process that can be done in linear time in Fq2n . The following discussion shows how
the procedure of Step 1 works.

As discussed in the beginning of this section, for an error vector with Rank(e) = t ≤ �2n−k
2 �,

i.e., 2t + k ≤ 2n, we can divide the discussion into two cases.

Case 1: 2t+k < 2n. In this case, (4.12) contains 2n−k−t−1 ≥ t affine equations in variables
λ1, . . . ,λt , which has rank t. Hence the variables λ1, . . . ,λt can be uniquely determined. In
this case, the code can be seen as a sub-code of an GG2n,k+1 code and any Gabidulin codes
decoding algorithm is applicable. Here we assume the code has high code rate, for which the
Berlekamp-Massey algorithm is more efficient. In addition it is consistent with the notation
used in Case 2. Although the recurrence equation (4.12) is a generalized version of the ones
in [23, 30], the modified Berlekamp-Massey algorithm can be applied here to recover the
coefficients λ1, . . . ,λt .

Case 2: 2t+k = 2n. In this case (4.12) gives 2n−k−t−1= t−1 independent affine equations
in variables λ1, . . . ,λt . For such an under-determined system of linear equations, we will have
a set of solutions (λ1, . . . ,λt) that has dimension 1 over Fq2n . Namely, the solutions will be of
the form

λ +ωλ ′ = (λ1 +ωλ ′
1, . . . ,λt +ωλ ′

t ),

where λ ,λ ′ are fixed elements in F
t
q2n and ω runs through Fq2n . As shown in [30, Th. 10], the

solution can be derived from the modified BM algorithm with a free variable ω . Next we will
show how the element ω is determined by other information in (4.6), (4.8) and (4.9).

Observe that in (4.11), by taking i = 0 and i = k+ t and substituting the solution λ +ωλ ′, one
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gets the following two equations

g0 = (λ1 +ωλ ′
1, . . . ,λt +ωλ ′

t ) · (g[1]2n−1, . . . ,g
[t]
2n−t)

T ,

gk+t = (λ1 +ωλ ′
1, . . . ,λt +ωλ ′

t ) · (g[1]k+t−1, . . . ,g
[t]
k )T ,

where g0,gk and ω are the only unknowns. Re-arranging the equations gives

g0 = c0 + c1ω, (4.13)

and
gk+t = c2 + c3ω +(λt +λ ′

t ω)g[t]k , (4.14)

where c0,c1,c2,c3 are derived from λ , λ ′ and the known coefficients gi’s. Furthermore, from
(4.8) and (4.9) we have g[n]0 − g0 +θ1 = 0 and g[n]k − γ [n]−1gk +θ2 = 0. Substituting (4.13) in
(4.8) gives

c1ω [n] +β1ω +β2 = 0. (4.15)

If λt +λ ′
t ω = 0 then we have the solution ω = −λt/λ ′

t . This solution can be further checked
in (4.14) by gk+1,c2 and c3. Otherwise, one can raise both sides of (4.14) to the [2n− t]-th
power and obtain

gk =
a1 +a2ω [2n−t]

a3 +a4ω [2n−t]
. (4.16)

Replacing this value in (4.9), raising it to the [t]-th power and rearranging the terms implies

ζ1ω [n]+1 +ζ2ω [n] +ζ3ω +ζ4 = 0, (4.17)

where ζ1 = (a[n]2 a4 + θ2a[n+t]
4 )[t]. Furthermore, by (4.15) and (4.17) we have the following

quadratic equation over Fq2n

ζ1x2 +ζ5x+ζ6 = 0. (4.18)

When ζ1 = 0 and ζ2 �= 0, the unknown ω can be uniquely determined. When ζ1 �= 0, the above
quadratic equation can be reduced to

x2 + rx+ s = 0, (4.19)

where r = ζ5/ζ1 and s = ζ6/ζ1.

Since the characteristic of Fq is odd, Equation (4.19) can be solved explicitly as follows:

a) if r2 −4s is a quadratic residue in Fq2n , then it has two solutions x = −r±
√

r2−4s
2 ;

b) if r2 = 4s, then it has a single solution x =−r/2;

c) it has no solution in Fq2n otherwise.

Since the error e with rank t = 2n−k
2 = d−1

2 can be uniquely decoded, our quadratic equation
should have roots w in Fq2n that lead to solutions λ +ωλ ′ in (4.12) and (g0,gk) in (4.13).
With the coefficients λ1, . . . ,λt in Step 1 and the initial state g2n−1, . . . ,g2n−t , one can re-
cursively compute g0, . . . ,gk−1 according to (4.11) in Step 2. Note that even if the equation
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(4.18) has two different solutions, they don’t necessarily lead to correct coefficients of the er-
ror interpolation polynomial. In fact, by the expression of Dickson matrix of g(x), the correct
g(x) should have the sequence (g2n−1, . . . ,g2n−t , . . .) generated from (4.11) has period 2n. In
other words, if the output sequence has period 2n, we know that the corresponding polyno-
mial g(x) = ∑2n−1

i=0 gix[i] is the desired error interpolation polynomial. For self-completeness,
the decoding process of TZ codes is summarized in Algorithm 3.

Algorithm 3: Interpolation decoding of TZ codes
Input: A received word r with t ≤ � 2n−k

2 � errors and linearly independent evaluation points
α1, . . . ,α2n

Output: The correct codeword c ∈ F
n
q2n or “Decoding Failure"

1 Calculate β (x) = ∑2n−1
i=0 βix[i] such that β (αi) = ri for i = 1, . . . ,2n;

2 Apply modified BM algorithm to (gk+1, . . . ,g2n−1) = (γk+1, . . . ,γ2n−1) and output L, Λ(2n−k−1)(x),
B(2n−k−1)(x);

3 if L = (2n− k)/2 then

4 Denote Δ = ω +∑L
i=1 Λ(2n−k−1)

i gqsi

2n−1−i with ω ∈ Fq2n ;
5 Express the coefficients of the polynomial

Λ(2n−k)(x) = Λ(2n−k−1)(x)− 1
Δ

xqs ◦B(2n−k−1)(x),

Derive the vector λ +λ ′ω by negating the coefficients of Λ(2n−k)(x);
6 if λt +λ ′

t ω = 0 then

7 ω =−λt/λ ′
t ;

8 else

9 Derive the polynomial P(x) = ζ1x2 +ζ5x+ζ6 as in (4.18);
10 if ζ1 �= 0 then

11 Solve P(x) = 0 by Cases a)-c) after (4.19);
12 else

13 The zero of P(x) is x = ζ6/ζ5;
14 end

15 end

16 Set (λ1, . . . ,λt) = λ +ωλ ′ with ω as the zero of P(x);
17 Calculate g0,gk from (4.13) and (4.14);
18 end

19 for each i in {0, . . . ,k} do

20 Calculate gi = λ1g[1]i−1 + · · ·+λtg
[t]
i−t , where the subscripts of g j’s are taken modulo 2n;

21 end

22 if The sequence g0, . . . ,g2n−1 derived from λ1, . . . ,λt has period 2n then

23 Return the codeword c = (c0, . . . ,c2n−1) with ci = ri −g(αi)
24 else

25 Return “Decoding Failure"
26 end
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4.4.4 Complexity Analysis

As summarized in Algorithm 3, we have two major steps to construct the error interpolation
polynomial g(x). The first step is to use the modified BM algorithm for obtaining the coeffi-
cients λ1, . . . ,λt . Calculating the interpolation polynomial at points (αi,ri) has complexity in
the order of O(n3), but according to [8], if α0, . . . ,α2n−1 is taken as a self-dual normal basis, M
is orthogonal, which means MT = M−1 and computation of (MT )−1 is no longer required. So
the complexity of computing polynomial β is reduced to O(n2) over Fq2n . The second major
component of the first step is the modified BM algorithm which is known to have complexity
in the order of O(n2) over Fq2n . The second step is to deal with the case t = �(2n−k)/2� by in-
vestigating the solutions of the equation (4.18). This step involves checking whether (r2 −4s)
is a quadratic residue or not. In order to check whether an element a ∈ Fq2n is square or not,

one calculates a
q2n−1

2 = a
q−1

2 ·(q2n−1+···+q+1) = bq2n−1+···+q+1 which has complexity O(n) over
Fq2n , or directly check its exponent if in implementation an element in Fq2n is represented in
exponential form. As a result, the complexity of our decoding method is in the order of O(n2)
over Fq2n .

Therefore, the previous two sections imply the following result.

Theorem 29. Consider the evaluation code obtained from Dk,s(γ) over an Fq-basis of Fq2n .
Every received word can be uniquely decoded up to rank t ≤ 2n−k

2 errors in polynomial time.

4.5 Comparing the known decoding algorithms

Known decoding algorithms for Gabidulin codes can be generally classified in two different
approaches: syndrome decoding as in [6, 7, 23, 25] and interpolation-based decoding as in
[10, 14, 15, 16, 22]. When the rank of the error vector reaches the maximal unique decoding
radius, syndrome decoding approach works only for Fqn-linear MRD codes. Since Sheekey
[28] introduced TG codes, which is not always Fqn-linear, a new (non syndrome) decoding al-
gorithm for rank metric codes has been required for the extreme case when t = �n−k

2 �. When
the rank of the error is not the maximal unique decoding radius, i.e., t < �n−k

2 �, the syndrome
decoding algorithms are still applicable. Loidreau [16] proposed the first interpolation-based
decoding approach for MRD codes and considered the analogue of Welch-Berlekamp algo-
rithm, which was originally used to decode Reed-Solomon codes. Later Randrianarisoa [22]
employed Berlekamp-Massey algorithm as the main seed and introduced a decoding algorithm
for GTG codes. Later Kadir and Li [10, 15] used the same idea to decode AGTG codes. In
the rest of this section, we compare the existing interpolation-based decoding algorithms for
MRD codes when t = �n−k

2 �.

The goal of the WB algorithm is to find two linearized polynomials V and N with q-degrees
less than or equal to t and less than k+ t, respectively, which satisfy the system of equations
V (ri)−N(αi) = 0 where i = 1, . . . ,n. The system is a linear system consists of n equations
and n+ 1 unknowns. This is equivalent to interpolating two pairs of linearized polynomials
(V0,N0) and (V1,N1). After an initialization step, the polynomials are interpolated via a loop
with indices ranging from k to n−1. If one manages to bound the q-degree of the polynomials
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as degq(Vj)≤ t and degq(Nj)≤ k+ t −1 for j = 0 or 1, it is done. The complexity of the WB
algorithm is in the order of O(n2) over Fqn .

The decoding algorithms in [22] and [10] interpolated the polynomial f (x)+g(x) where f (x)
and g(x) correspond to message vector c and error vector e, respectively. The decoding prob-
lem is reduced to the problem of solving an under-determined system of linear equations with
t − 1 equations and t unknowns. This approach benefits from the properties of Dickson ma-
trix associated with g(x), known coefficients of g(x) and the relation between f0 and fk which
enable us to convert the system of equations to a single projective polynomials of the form
P(x) = xqv+1 + u1x+ u2 = 0 for GTG and AGTG codes. The zeros of this polynomial were
discussed in [10] when (v,n) = 1. Very recently Kim et al.in [12] provide the complete solu-
tion of P(x) = 0 over Fqn for any power prime q and any integers n and v. Note that the relation
between the coefficients of the first and the last terms of f (x) in the decoding algorithm for TZ
codes provides more useful information than the corresponding equations for GTG and AGTG
codes. It turns out that we only need to deal with a quadratic polynomial instead of a projec-
tive polynomial. This makes the decoding algorithm for TZ codes faster than decoding GTG
and AGTG codes.

4.6 Conclusion

In this chapter we proposed an interpolation-based decoding algorithm for Trombetti-Zhou
MRD codes. We have shown that the decoding algorithm has polynomial time complexity
as low as O(n2) over Fq2n . It involves Berlekamp-Massey algorithm similar to the decoding
approaches in [10, 22] but end up with a quadratic polynomial, rather than a projective poly-
nomial, which requires less operations (O(n)) to compute the zeros.
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Chapter 5

New Communication Models and

Decoding of Maximum Rank Distance

Codes

In this chapter an interpolation-based decoding algorithm to decode Gabidulin codes transmit-
ted through a new communication model is proposed. The algorithm is able to decode rank
errors beyond half the minimum distance by one unit. Also the existing decoding algorithms
for generalized twisted Gabidulin codes and additive generalized twisted Gabidulin codes are
improved. This chapter is based on my work in [10].

5.1 Introduction

Delsarte [2], Gabidulin [5] and Roth [30] independently introduced rank metric codes. Those
rank metric codes that achieve Singleton-like bound are called maximum rank distance (MRD)
codes. Gabidulin codes are the most well known family of MRD codes. Later this family
was generalized by Kshevetskiy and Gabidulin [14] to generalized Gabidulin (GG) codes.
These codes are linear over Fqn . Sheekey in [33] defined twsited Gabidulin (TG) codes and
established a way to generalize GG codes to linear MRD codes over a base fields and then
he was followed by Lunardon et al.[20], Otal and Özbudak [23], Trombetti and Zhou [38]
and Sheekey [35] to define generalized twisted Gabidulin (GTG) codes, additive generalized
twisted (AGTG) codes, Trombetti-Zhou (TZ) codes and new MRD codes by Sheekey, repce-
tively. For more constructions of MRD codes, please refer to [34].

Efficient decoding is required for the wide range of applications of MRD codes in storage sys-
tem [30], network coding [37] and cryptography [4]. There are plenty of algorithms that de-
code Gabidulin codes up to half the minimum distance [5, 17, 26, 28] and some which decode
Gabidulin codes beyond half the minimum distance by considering restricted communication
models [6, 7, 9, 25, 27]. The previously proposed restricted models, can generate error vectors
that hold some structure and they do not look random.

Randrianarisoa in [26] gave an interpolation-based decoding algorithm for Gabidulin codes
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and also for GTG codes. This idea is used later in [11],[15], [13] and [12] to decode AGTG
[23], Non-additive partition MRD codes [24], TZ codes [38] and Hermitain Rank metric codes
[32], respectively.

In this chapter we decode Gabidulin codes beyond half the minimum distance and also improve
the decoding algorithms for GTG in [26] and AGTG codes in [11, 16] by making some delicate
restrictions on the communication model. In the previously defined restricted models, the
error vectors hold some specific structures, for instance symmetric error vectors [6], space-
symmetric error vectors [9], but the channels in our model generate error vectors without any
specific structure. Moreover, we use low rate GTG and AGTG codes at the end of this chapter
to decode error vectors with rank ≤ k where k is the dimension of the code.

5.2 Preliminaries

Definition 40. Let q be a power of prime p and Fqm be an extension of the finite field Fq.
A q-polynomial is a polynomial of the form L(x) = a0x+ a1xq + · · ·+ ak−1xqk−1

over Fqm. If
ak−1 �= 0, then we say that L(x) has q-degree k−1. The set of all linearized polynomials of the
form L(x) is denoted by Lk(Fqm).

When q is fixed or the context is clear, it is also customary to speak of a linearized polynomial
as it satisfies the linearity property: L(c1x+c2y) = c1L(x)+c2L(y) for any c1,c2 ∈ Fq and any
x,y in an arbitrary extension of Fqm . Hence a linearized polynomial L(x) ∈ Lk(Fqm) defines
an Fq-linear transformation L from Fqm to itself. The rank of a nonzero linearized polynomial
L(x) = ∑n

i=0 aixqi
over Fqm is given by Rank(L) = n− dimFq(Ker(L)), where Ker(L) is the

kernel of L(x).

Proposition 12. Let L(x) = ∑n−1
i=0 aixqi

over Fqm be a linearized polynomial with rank t. Then
its associated Dickson matrix

D =
(

aqi

i− j(modn)

)
n×n

=

⎛⎜⎜⎜⎜⎝
a0 aq

n−1 · · · aqn−1

1

a1 aq
0 · · · aqn−1

2
...

...
. . .

...

an−1 aq
n−2 · · · aqn−1

0

⎞⎟⎟⎟⎟⎠ , (5.1)

has rank t over Fqm [26]. Moreover, any t × t submatrix formed by t consecutive rows and t
consecutive columns in D is non-singular [3, 22].

5.3 Maximum rank distance (MRD) codes

The rank of a vector a = (a1, . . . ,an) in F
n
qm , denoted as Rank(a), is the number of its linearly

independent components, that is the dimension of the vector space spanned by ai’s over Fq.
The rank distance between two vectors a,b ∈ F

n
qm is defined as dR(a,b) = Rank(a−b).

Definition 41. A subset C ⊆ F
n
qm with respect to the rank distance is called a rank metric

code. When C contains at least two elements, the minimum rank distance of C is given by
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d(C) = min
A,B∈C, A �=B

{dR(A,B)}. Furthermore, it is called a maximum rank distance (MRD) code

if it attains the Singleton-like bound |C| ≤ qmin{m(n−d+1),n(m−d+1)}.

The most famous MRD codes are Gabidulin codes [5] which were further generalized in [14,
31]. The generalized Gabidulin (GG) codes GGn,k with length n ≤ m and dimension k over Fqm

is defined by the evaluation of { k−1

∑
i=0

fixqsi | fi ∈ Fqm

}
, (5.2)

where (s,m) = 1, on linearly independent points α0,α1, . . . ,αn−1 in Fqm . The choice of αi’s
does not affect the rank property and it is customary to exhibit Gabidulin codes and its gener-
alized families without the evaluation points as in (5.2). For consistency with the parameters
of MRD codes in [23, 33, 38], through what follows we always assume n = m.

For a linearized polynomial L(x) = ∑k
i=0 lixqi

over Fqn , it is clear that Rank(L)≥ n−k if lk �= 0.
Gow and Quinlan in [8, Theorem 10] (see also [33]) characterize a necessary condition for L(x)
to have rank n− k as below, see [1, 21] for other necessary conditions.

Lemma 6. [8] Suppose a linearized polynomial L(x) = l0x + l1xq + · · ·+ lkxqk
, lk �= 0, in

Ln(Fqn) has qk roots in Fqn. Then Normqn/q(lk) = (−1)nk Normqn/q(l0), where Normqn/q(x) =

x1+q+···+qn−1
is the norm function from Fqn to Fq.

According to Lemma 6, a linearized polynomial L(x) of q-degree k has rank at least n− k+1
if the condition in Lemma 6 is not met. Sheekey [33] applied Lemma 6 and constructed a new
family of Fq-linear MRD codes, known as twisted Gabidulin (TG) codes, and the generalized
TG codes are investigated in [20] as follows:

Hk,s(ε,h) =

{
k−1

∑
i=0

fixqsi
+ ε f qh

0 xqsk | fi ∈ Fqn

}
, (5.3)

where n,k,s,h are positive integers such that k < n and (s,n) = 1. Here ε is a nonzero element
in Fqn satisfying Normqsn/qs(ε) �= (−1)nk. Later Otal and Özbudak [23] further generalized this
family by manipulating some terms of linearized polynomials and constructed the following
Fq0-linear MRD codes, known as additive generalized twisted Gabidulin (AGTG) codes

Ak,s,q0(ε,h) =

{
k−1

∑
i=0

aixqsi
+ εa

qh
0

0 xqsk | ai ∈ Fqn

}
, (5.4)

where q = qu
0 and nonzero ε in Fqn satisfies Normqsnu

0 /qs
0
(ε) �= (−1)nku.

For the rest of this chapter, we use the notation [i] := qsi for i = 0, . . . ,n−1 , where gcd(s,n) =
1, for simplicity.
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5.4 New Communication Models

In this section we define two new communication models. The models contain two authorized
parties as sender and receiver. The sender encodes his/her message and then an error vector
with rank t is added to the encoded message. The receiver will be able to decode the error
vector and recover the message. Each models uses a different form of interpolation polynomial
to generate its corresponding error vector.

5.4.1 First Model

In this modes, a linearized polynomial of the form

eθ1,θ2(x) =
n−1

∑
i=0

zix[i], zi ∈ Fqn , (5.5)

z[n/2]
0 − z0 = αθ1 , (5.6)

z[n/2]
k−1 − zk−1 = αθ2 , (5.7)

is used as the error interpolation polynomial where θ1,θ2 ∈ [0,n− 1] are the models’ public
parameters. We denote this model by Qθ1,θ2 .

5.4.2 Second Model

In this model we have two cases:

• case 1. Suppose n is an odd integer, then

b(x) = b0x[0] +

n−1
2

∑
i=1

(bix[i] + (bix)[n−i]), (5.8)

is the error interpolation polynomial where b̃ = (b0, . . . ,bn−1), bi ∈ Fqn and

bn−i = b[n−i]
i for i = 1, . . . ,

n−1
2

. (5.9)

• case 2. Suppose n is an even integer, then

h(x) = h0x[0] +

n
2−1

∑
i=1

(hix[i] + (hix)[n−i−1])+hn−1x[n−1], (5.10)
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is the error interpolation polynomial where h̃ = (h0, . . . ,hn−1), hi ∈ Fqn , and

hn−i−1 = h[n−i−1]
i for i = 1, . . . ,

n
2
−1. (5.11)

Suppose s(x) be one of the polynomials eθ1,θ2 ,b(x) or h(x). We use s(x) such that

s(αi) = ei, i = 0, . . . ,n−1, (5.12)

where e = (e0, . . . ,en−1) is the error vector and α0, . . . ,αn−1 are ordered linearly independent
points in Fqn over Fq.

5.5 Decoding Gabidulin codes beyond half the minimum

distance

5.5.1 Encoding

Let GGn,k, where n is even and k is odd, be a Gabidulin code with ordered Fq-linearly indepen-
dent evaluation points α0,α1, . . . ,αn−1. The encoding of a message m = (m0, . . . ,mk−1) is the
evaluation of the following linearized polynomial at points α0,α1, . . . ,αn−1:

f (x) =
k−1

∑
i=0

mix[i], (5.13)

Let m̃ = (m0,m1, . . . ,mk−1,0, . . . ,0) be a vector of length n over Fqn and M =
(

α [ j]
i

)
n×n

be the

Moore matrix generated by αi’s, where 1 ≤ i, j ≤ n−1. Then the encoding of the message m
can be expressed as

(m0,m1, . . . ,mk−1) �→ c = ( f (α0), . . . , f (αn−1)) = m̃ ·MT , (5.14)

where MT is the transpose of matrix M. In this process since only the first k components of m̃
are nonzero, so only the first k rows of M are involved.

5.5.2 Decoding errors with rank t ≤ n−k+1
2

Let the error vector e = (e0, . . . ,en−1) of rank t be added to the codeword c = (c0 . . . ,cn−1)
during transmission and let r = (r0 . . . ,rn−1) = c+ e be the received vector.

Suppose we use the communication model Qθ1,θ2 and let eθ1,θ2 in (5.5) be the error interpola-
tion polynomial such that

eθ1,θ2(αi) = ei = ri − ci, i = 0, . . . ,n−1, (5.15)

where α0, . . . ,αn−1 are ordered linearly independent points over Fq in Fqn . One can see that the
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error vector e is uniquely determined by the polynomial eθ1,θ2(x) and denote z = (z0, . . . ,zn−1).
From (5.14) and (5.15) it follows that

r = c+ e = (m̃+ z) ·MT .

Since M is nonsingular, this can be rewritten as

r · (MT )−1 =(c0,c1, . . . ,ck−1,0, . . . ,0)+
(z0,z1, . . . ,zk−1,zk, . . . ,zn−1).

Let r̃ = (η0, . . . ,ηn−1) = r · (MT )−1, then the known coefficients zi’s are

(zk, . . . ,zn−1) = (ηk, . . . ,ηn−1), (5.16)

and we also have the auxiliary equations (5.6) and (5.7) which we will use later.

5.5.3 Reconstructing the interpolation polynomial eθ1,θ2(x)

Let
E =

(
z[ j]i− j (mod n)

)
n×n

= (E0 E1 . . . En−1) , (5.17)

be the Dickson matrix associated with the linearized polynomial eθ1,θ2(x), where the indices
i, j run through {0,1, . . . ,n−1} and E j is the j-th column of E.

According to Proposition 12, since eθ1,θ2(x) has rank t, so E has rank t and any t×t sub-miatrix
of E which contains t consecutive rows and columns is nonsingular. Hence the first column E0
can be written as the linear combination of columns E1 . . . ,Et as E0 = γ1E1+γ2E2+ · · ·+γtEt ,
where γ1, . . . ,γt are elements in Fqn . Then we can obtain the following recursive equations

zi = γ1z[1]i−1 + γ2z[2]i−2 + · · ·+ γt z
[t]
i−t , 0 ≤ i < n. (5.18)

Due to the relation in (5.16), we already know zk, . . . ,zn−1. These known coefficients leads us
to the following linear recursive equation

zi = γ1z[1]i−1 + γ2z[2]i−2 + · · ·+ γt z
[t]
i−t , k+ t ≤ i < n, (5.19)

where γ0 . . . ,γt are unknowns. In [36], the q-linearized shift register is given and the above
recursive relation (5.19) can be seen as its generalized version. Here (γ1, . . . ,γt) is the connec-
tion vector of the shift register. We call the equation (5.19) as the key equation for the decoding
algorithm in this chapter and due to the properties of shift register, finding γ1, . . . ,γt leads us
to find the unknown coefficients z0 . . . ,zk−1, recursively. The most complex task in our decod-
ing algorithm is finding γ1, . . . ,γt and then the remaining task (calculating unknown zi’s) will
be a recursive process. We consider Rank(e) = t ≤ n−k+1

2 , i.e., 2t + k ≤ n+1, and the task of
finding γ1 . . . ,γt via (5.19) is divided into two cases:

Case 1: If 2t + k < n+ 1. In this case, (5.19) contains n− k − t ≥ t affine equations and t
variables γ1, . . . ,γt , which has rank t. Hence the variables γ1, . . . ,γt can be uniquely deter-
mined. Here any Gabidulin decoder can be applied, but here we assume the code has high
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code rate, for which the Berlekamp-Massey algorithm is more efficient and it has polynomial
time complexity.

Case 2: If 2t +k = n+1. In this case (5.19) is an under-determined system of n−k− t = t −1
equations with t variables γ1, . . . ,γt . A set of solutions (γ1, . . . ,γt) with dimension one can be
expressed of the form

γ +Xγ ′ = (γ1 +Xγ ′1, . . . ,γt +Xγ ′t ), (5.20)

where γ,γ ′ are fixed elements in F
t
qn and X runs through Fqn . The modified BM algorithm in

[36, Th. 10] can give the solution with a free variable X .

If we take i = 0 and i = k+ t −1 in (5.19) and substitute the solution (5.20), then we get

z0 = δ0 +δ1X , (5.21)

and
zk+t−1 = δ2 +δ3X +(γt + γ ′t X)z[t]k−1, (5.22)

where in (5.21) and (5.22), z0,zk−1 and X are the only unknowns and δ0,δ1,δ2,δ3 are derived
from γ,γ ′ and known coefficients zk, . . . ,zn−1. X =−γt/γt if γt + γ ′t X = 0 and this solution can
be verified by δ2,δ3 and a known coefficient zi in (5.22). Substituting (5.21) in (5.6) gives

τ0X [n/2] + τ1X + τ2 = 0. (5.23)

As the next step, we rise both sides of (5.22) to the [−t]-th power and obtain

zk−1 =
a1 +a2X [−t]

a3 +a4X [−t]
. (5.24)

We also substitute (4.16) in (5.7) and rise both sides to the [t]-th power to get

u1X [n/2]+1 +u2X [n/2] +u3X +u4 = 0. (5.25)

Finally, one can substitute (5.23) into (5.25) and obtain the following quadratic polynomial
equation over Fqn

μ1X2 +μ2X +μ3 = 0. (5.26)

If μ1 = 0, then X =−μ3/μ2 and if μ1 �= 0, equation (5.26) can be reduced to

X2 + rX + s = 0, (5.27)

where r = μ2/μ1 and s = μ3/μ1. When the characteristic of Fq is odd, equation (5.27) can be
solved explicitly as follows:

a) if r2 −4s is a quadratic residue in Fqn , then it has two solutions X = −r±
√

r2−4s
2 ;

b) if r2 = 4s, then it has a single solution X =−r/2;

c) it has no solution in Fqn otherwise.
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When the characteristic of Fq is two, we have the following cases:

1. if r = 0, it has a single solution X = s2nl−1
, where q = 2l;

2. if r �= 0, the equation (5.27) can be reduced to y2 + y = β , where X = ry and β = s/r2.
Then y2 + y = β has

• no zero if ∑n−1
i=0 β 2i

= 1;

• two zeros of the form W = ∑n−1
j=1 β 2 j

(∑ j−1
k=0 c2k

) and W +1 where ∑n−1
i=0 β 2i

= 0 and c

is any fixed element such that ∑n−1
i=0 c2i

= 1.

We expect our quadratic equation to have roots X in Fqn that lead to solutions γ + Xγ ′ in
(5.19) and z0 in (5.21). With the coefficients γ1, . . . ,γt and also the initial state zn−1, . . . ,zn−t ,
one can recursively compute z1, . . . ,zk−1 according to (5.18). Note that even if the equation
(5.26) has two different solutions, they don’t necessarily lead to correct coefficients of the error
interpolation polynomial. In fact, by the expression of the Dickson matrix of eθ1,θ2(x), the
correct eθ1,θ2(x) should have the sequence (zn−1, . . . ,zn−t , . . .) with period n. In other words, if
the output sequence has period n, we know that the corresponding polynomial eθ1,θ2(x) is the
desired error interpolation polynomial.

5.6 An improvement of the decoding of GTG and AGTG

codes

In the interpolation-based decodings of GTG and AGTG codes in [16, 26, 29] and[11], when
the rank of the error vector e is t < n−k

2 , one can use any decoder of a Gabidulin code GGn,k+1

to recover the message. But when t = n−k
2 , the problem of decoding the error vector is trans-

formed to the problem of solving the projective polynomial P(x) = xqw+1 +u1x+u2 = 0 over
Fqn . In the following, we show that how one can decode GTG and AGTG codes more effi-
ciently if he/she communicates via the communication model Qθ1,θ2 . Moreover, we show that
one will be able to decode any error vector with rank t ≤ k added to a low rate GTG and AGTG
code if one uses the second communication model. In this chapter by a low rate code we mean
a code with k ≤ �n−1

2 �.

5.6.1 Decoding GTG and AGTG codes

Here we explain an improvement of the decoding algorithm for GTG codes and the same
procedure can be applied to AGTG codes with some minor differences. In this subsection we
assume n as an even positive integer. To be self-contained, we recall the decoding algorithm
from [11] where the general communication model is replaced by the communication model
Qθ1,θ2 .
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Encoding

The encoding of a message m = (m0, . . . ,mk−1) is the evaluation of the following linearized
polynomial at ordered points α0,α1, . . . ,αn−1:

f (x) =
k−1

∑
i=0

mix[i] + εmqh

0 x[k]. (5.28)

Then the encoding of GTG codes can be expressed as

(m0,m1, . . . ,mk−1) �→ c = ( f (α0), . . . , f (αn−1)) = m̃ ·MT , (5.29)

where m̃ = (m0, . . . ,mk−1,εmqh

0 ,0, . . . ,0).

Decoding

Let the error vector e = (e0, . . . ,en−1) of rank t be added to the codeword c = (c0 . . . ,cn−1)
during transmission and let r = (r0 . . . ,rn−1) = c+ e be the received vector. Take e(x) be the
error interpolation polynomial of the form given in (5.5) where instead of (5.7) we have

z[n/2]
k − zk = αθ2 . (5.30)

Then
e(αi) = ei = ri − ci, i = 0, . . . ,n−1. (5.31)

As we mentioned before, e is uniquely determined by the polynomial e(x) and denote z =
(z0, . . . ,zn−1). From (5.14) and (5.15) it follows that

r = c+ e = (m̃+ z) ·MT .

This is equivalent to

r · (MT )−1 =(m0,m1, . . . ,mk−1,εmqh

0 ,0, . . . ,0)+
(z0,z1, . . . ,zk−1,zk,zk+1, . . . ,zn−1).

Letting r̃ = (η0, . . . ,ηn−1) = r · (MT )−1, we obtain

(zk+1, . . . ,zn−1) = (ηk+1, . . . ,ηn−1), (5.32)

and we also have the relations (5.6) and (5.30). In (5.32) we have n−k−1 known coefficients
zi’s, while in (5.16) we had n− k known coefficients ‘i’s.
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Reconstructing the interpolation polynomial e(x)

If we write the 0th column E0 of the Dickson matrix associated to e(x) as the linear combina-
tion of E1, . . . ,Et we will get the recursive equation

zi = γ1z[1]i−1 + γ2z[2]i−2 + · · ·+ γt z
[t]
i−t , 0 ≤ i < n, (5.33)

same as (5.18), where the subscripts in zi’s are taken modulo n. Recall that the elements
zk+1, . . . ,zn−1 are known from (5.32). Hence we obtain the following linear equations to re-
place the key equation in (5.19), with known coefficients zi and variables γ1, . . . ,γt :

zi = γ1z[1]i−1 + γ2z[2]i−2 + · · ·+ γt z
[t]
i−t , k+ t +1 ≤ i < n. (5.34)

For an error vector with Rank(e) = t ≤ n−k
2 , i.e., 2t + k ≤ n, we can divide the discussion into

two cases.

Case 1: 2t + k < n. In this case, (5.34) contains n− k− t −1 ≥ t affine equations in variables
γ1, . . . ,γt , which has rank t. Hence the variables γ1, . . . ,γt can be uniquely determined. Any
Gabidulin GGn,k+1 decoder can be applied. Here we assume the code has high code rate, for
which the Berlekamp-Massey algorithm gives a better complexity. Although the recurrence
equation (5.34) is a generalized version of the ones in [28] and [36], the modified Berlekamp-
Massey algorithm can be applied here to recover the coefficients γ1, . . . ,γt .

Case 2: 2t + k = n. In this case (5.34) gives n− k− t −1 = t −1 independent affine equations
in variables γ1, . . . ,γt . For such an under-determined system of linear equations, we will have
a set of solutions (γ1, . . . ,γt) that has dimension 1 over Fqn . Namely, the solutions will be of
the form

γ +Xγ ′ = (γ1 +Xγ ′1, . . . ,γt +Xγ ′t ),

where γ,γ ′ are fixed elements in F
t
qn and X runs through Fqn . As shown in [36, Th. 10], the

solution can be derived from the modified BM algorithm with a free variable X .

Observe that in (5.33), by taking i = 0 and i = k+ t and substituting the solution γ +Xγ ′, one
gets the following two equations

z0 = δ ′
0 +δ ′

1X , (5.35)

and
zk+t = δ2 +δ3X +(γt + γ ′t X)z[t]k , (5.36)

where in (5.35) and (5.36), z0,zk and X are unknowns. Using equations (5.6),(5.30), (5.35)
and (5.36) instead of (5.6),(5.7), (5.21) and (5.22) and going through the same procedure in
Subsection 5.5.3, we can get a quadratic equation of the form

μ1X2 +μ2X +μ3 = 0. (5.37)

which can be solved in polynomial time as discussed in Subsection 5.5.3. Hence, if the com-
munication parties use the model Qθ1,θ2 to transfer their messages, then GTG and AGTG codes
can be decoded with less time complexity.
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5.7 Decoding error rank vectors with any rank t ≤ k

In this subsection we consider the second communication model described in 5.4.2 , but the
generated error vectors are still look random and they can have any rank up to n.

In the decoding of GTG codes in Subsection 5.6.1, let r̃ = (η0, . . . ,ηn−1) = r · (MT )−1, then
we obtain

(zk+1, . . . ,zn−1) = (ηk+1, . . . ,ηn−1), (5.38)

and also based on the definition of GTG codes we have an auxiliary equation

− εzqh

0 + zk = ηk − εηqh

0 , (5.39)

since εmqh

0 + zk = ηk, and m0 + z0 = η0. Let k ≤ �n−1
2 �. If we use (5.8) ((5.10)) as the error

interpolation polynomial, one can employ (5.9) ((5.11)) and directly obtain z1, . . . ,zk from the
known coefficients in (5.38). The only remaining unknown coefficient z0 can be calculated
using the auxiliary equation (5.39) since zk is already calculated.

Hence, by restricting the error interpolation polynomial we can decode any rank error vector
with rank t ≤ k added to a low rate GTG (AGTG) code.

Remark 3. In [9], an application of space-symmetric rank errors in code-based cryptography
is proposed. But space-symmetric rank errors similar to symmetric rank errors [6], contain
some structures and this may lead to a new structural attack. If we use rank error vectors
defined in Subsection 5.7 instead of space-symmetric rank errors and use GTG codes instead
of Gabidulin codes in GPT variants [18] and [19], we can avoid potential structural attacks
and possibly get the same key size found in [9, Section VI.]. This will be investigated in future
works.

Remark 4. The advantage of the model Qθ1,θ2 or even the second model 5.4.2 is that it can
generate error vectors that do not carry a specific structure since the structured coefficients’
vector of the error interpolation polynomial goes through an interpolation process on linearly
independent points. Even in subsection VI. the error space has dimension n/2 but it contains
error with high or low ranks with no specific structure. So based on this observation, to
find more suitable rank-based scheme, besides looking for new MRD codes and find the most
efficient one, one can also look for new communication models with higher error correctability.

5.8 Conclusion

In this chapter we made some delicate restrictions on the communication model and decode
Gabidulin codes beyond half the minimum distance by one unit in polynomial time. The error
vectors which are added to the codewords in our model, do not carry a specific structure.
Moreover, we improved the decoding algorithms for GTG and AGTG codes proposed in [26]
and [11], if two parties communicate through the first defined models. We are also able to
decode any error vector with any rank t ≤ k added to low rate (k ≤ �n−1

2 �) GTG and AGTG
codes if we employ the second communication model.
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Chapter 6

Encoding and Decoding of Several

Optimal Rank Metric Codes

This chapter presents encoding and decoding algorithms for several families of optimal rank
metric codes whose codes are in restricted forms of symmetric, alternating and Hermitian ma-
trices. First, we show the evaluation encoding is the right choice for these codes and then we
provide easily reversible encoding methods for each family. Later unique decoding algorithms
for the codes are described. The decoding algorithms are interpolation-based and can uniquely
correct errors for each code with rank up to �(d − 1)/2� in polynomial-time, where d is the
minimum distance of the code. This chapter is based on my work with Chunlei Li and Ferdi-
nando Zullo [13]. The sections related to the encoding and decoding algorithms for optimal
Hermitian (Theorem 36) were presented in BFA 2021 conference [11].

6.1 Introduction

Rank metric codes were introduced first by Delsarte in [2], and independently by Gabidulin in
[14] and Roth in [29]. They have been extensively investigated because of their applications
in crisscross error correction [29], cryptography [7] and network coding [37]. The coding-
theoretic properties of these codes have been studied in detail, and constructions of optimal
codes with respect to a Singleton-like bound, known as MRD codes, have been found. An
interested reader may refer to [8, 33] for more details.

Known decoding algorithms for MRD codes can be generally classified in two different ap-
proaches: syndrome-based decoding as in [5, 6, 27, 29] and interpolation-based decoding as
in [9, 10, 15, 16, 18, 26]. Gabidulin in [6] solves the key equation in the decoding process
by employing the linearized version of extended Euclidean (LEE) algorithm, while in [27],
the key equation was solved by a linearized version of Berlekamp-Massey (BM) algorithm.
The error values in both decoding algorithms in [6] and [27] are computed by an algorithm
called Gabidulin algorithm. Loidreau in [18] proposed the first interpolation-based decoding
approach for MRD codes and considered the analogue of Welch-Berlekamp (WB) algorithm,
which was originally used to decode Reed-Solomon codes [40]. The algorithm directly gives
the code’s interpolation polynomial and computing the error vector is not required in the de-
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coding process.

In [34], Sheekey proposed the first family of MRD codes over Fqn which is linear over Fq (in-
stead of Fqn as the well-known Gabidulin codes) and his idea were used later to introduce new
MRD codes that are linear over a sub-field of Fqn [20, 22, 23, 24, 38]. When the rank of the
error vector reaches the maximum unique decoding radius, the syndrome-based decoding ap-
proach works only for MRD codes that are linear over the main extension field. Randrianarisoa
in [26, 28], gave an interpolation based decoding algorithm for twisted Gabidulin codes. Later
this idea was adopted to decode additive generalized twisted Gabidulin codes and Trombetti-
Zhou rank metric codes [10, 12]. Again BM algorithm is involved in the process of solving
the key equations in [10] and [12] and it reduces the decoding problem to the problem of solv-
ing the projective polynomial equation xqv+1 +ax+b = 0 and quadratic polynomial equation
x2 + cx+ d = 0 over Fqn , respectively. A similar idea is also used in [9] to decode Gabidulin
codes beyond half the minimum distance. All the decoding algorithms described above have
polynomial-time complexities. The result in [36] shows that when low-complexity normal ba-
sis are used, the complexity can be reduced even further. Solving the key equations carried out
by BM or LEE algorithm are the most expensive steps in the above decoding algorithms.

Besides the aforementioned new MRD codes, there are also some restricted rank metric codes
that are linear over a subfield of Fqn which are not defined based on Sheekeys’ idea. The study
of subsets of restricted matrices equipped with rank metric was started in 1975 by Delsarte
and Goethals in [3], in which they considered sets of alternating bilinear forms. The theory
developed in [2] and [3] found applications also in the classical coding theory. Indeed, the
evaluations of the forms found in [3] give rise to subcodes of the second-order Reed-Muller
codes, including the Kerdock code and the chain of Delsarte–Goethals codes; see also [30].

Using the theory of association schemes, bounds, constructions and structural properties of
restricted rank metric codes have been investigated in symmetric matrices [19, 31, 41], alter-
nating matrices [3] and Hermitian matrices [32, 39].

In this chapter we will present both encoding and decoding algorithms for several optimal
symmetric, alternating and Hermitian rank metric codes. Since the targeted codes are not
linear over the extension field, syndrome-based decoding algorithms in [6] is not applicable.
We choose interpolation-based decoding approach which is able to decode errors up to half
of the minimum distance in polynomial time for all the aforementioned codes. A part of our
work in this chapter responds to a suggestion in [1], where the authors suggested studying the
decoding of Hermitian rank metric codes.

6.2 Preliminaries

Let Fρ denote a finite field of ρ elements and F
n×n
ρ be the set of the square matrices of order n

defined over Fρ . We can equip F
n×n
ρ with the following metric

dr(A,B) = rk(A−B),
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where rk(A−B) is the rank of the difference matrix A−B. If C is a subset of Fn×n
ρ with the

property that
d = min{rk(A−B) : A,B ∈ C,A �= B},

then C is called a rank metric code with minimum distance d, or that C is a d-code, see e.g. [30].
A rank metric code C is said to be additive if it is closed under the classical matrix addition
+ and said to be linear over a subfield E of Fρ if it is closed under both matrix addition and
scalar multiplication by any element in E.

Let Ln,ρ denote the quotient F-algebra of all ρ-polynomials over Fρn with degree smaller than
n , namely,

Ln,ρ =

{
n−1

∑
i=0

aixρ i
: ai ∈ Fρn

}
.

It is well known that the Fρ -algebra Ln,ρ is actually isomorphic to the Fρ -algebra Fn×n
ρ . Hence

many rank metric codes C⊆F
n×n
ρ are expressed in terms of ρ-polynomials in Ln,ρ . If ρ is fixed

or the context is clear, we can use the term linearized polynomials instead of ρ-polynomials.

Here we recall one important property of the Dickson matrix associated with ρ-polynomials
which is critical for the decoding in this chapter.

Proposition 13. Let L(x) =
n−1
∑

i=0
aixρ i

over Fρn be a ρ-polynomial with rank t. Then its associ-

ated Dickson matrix

D =
(

aρ i

i− j(modn)

)
n×n

=

⎛⎜⎜⎜⎜⎝
a0 aρ

n−1 · · · aρn−1

1

a1 aρ
0 · · · aρn−1

2
...

...
. . .

...

an−1 aρ
n−2 · · · aρn−1

0

⎞⎟⎟⎟⎟⎠ , (6.1)

has rank t over Fρn and any t × t submatrix formed by t consecutive rows and t consecutive
columns in D is non-singular.

For the first part of the above result see [4, 21], whereas for the last part we refer to [26].

Below we shall introduce three families of rank metric codes whose codewords have restrictive
forms. The first two consist of symmetric and alternating matrices over Fq, respectively, and
the third one consists of Hermitian matrices defined over Fq2 , where q is a prime power.

Recall that a matrix A ∈ F
n×n
q is said to be symmetric if AT = A and is said to be alternating

if AT = −A, where AT is the transpose matrix of A. Let Sn(q) and An(q) be the set of all
symmetric matrices and alternating matrices of order n over Fq, respectively. Following the
connection given in [19], the set Sn(q) can be identified as

Sn(q) =

{
n−1

∑
i=0

cixqi
: cn−i = cqn−i

i for i ∈ {0, . . . ,n−1}
}

⊆ Ln,q.
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The set An(q) can be identified as

An(q) =

{
n−1

∑
i=0

cixqi
: cn−i =−cqn−i

i for i ∈ {0, . . . ,n−1}
}

⊆ Ln,q.

Consider the conjugation map · from Fq2 to itself: x �→ x = xq. For a matrix A ∈ F
n×n
q2 , we

denote by A∗ the conjugate transpose of A, which is obtained by applying the conjugate map to
all entries of AT . Recall that a matrix A ∈ F

n×n
q2 is said to be Hermitian if A = A∗. Let Hn(q2)

be the set of all Hermitian matrices of order n over Fq2 . Similarly, it can be identified as

Hn(q2) =

{
n−1

∑
i=0

cixq2i
: cn−i+1 = cq2n−2i+1

i for i ∈ {0, . . . ,n−1}
}

⊆ Ln,q2 ,

where the indices are taken modulo n. Note that if n is odd then c(n+1)/2 belongs to Fqn .

It can be easily verified that these three sets, together with the classical sum of matrices and
the scalar multiplication by elements in Fq, are Fq-vector spaces with dimensions

dimFq(Sn(q)) =
n(n+1)

2
, dimFq(An(q)) =

n(n−1)
2

, dimFq(Hn(q2)) = n2.

A subset of Sn(q), An(q) or Hn(q2) endowed with the rank distance will be termed a sym-
metric, alternating or Hermitian rank metric code, respectively, or symmetric, alternating or
Hermitian d-code if d is the minimum distance of the considered code. With the isomorphism
between F

n×n
ρ and Ln,ρ , ρ ∈{q,q2}, the codewords in these restricted rank metric codes will be

represented in polynomials throughout this chapter. For simplicity, we will denote by x[i] := xqi

and x〚i〛 := xq2i
for any non-negative integer i.

6.2.1 Optimal Symmetric and Alternating d-Codes

For symmetric and alternating rank metric codes, the following bounds on their size have been
established [3, 31].

Theorem 30. [31, Theorem 3.3] Let C be a symmetric d-code in F
n×n
q . If d is even, suppose

also that C is additive. Then

#C≤
{

qn(n−d+2)/2 if n−d is even,
q(n+1)(n−d+2)/2 if n−d is odd.

Theorem 31. [3, Theorem 4] Let m = �n
2�. Let C be an alternating 2e-code in F

n×n
q . Then

#C≤ q
n(n−1)

2m (m−e+1).

A symmetric (resp. alternating) d-code is said to be optimal if its parameters satisfy the equal-
ity in Theorem 30 (resp. Theorem 31). The following theorems present some instances of
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optimal symmetric (resp. alternating) d-codes, where Trqn/q(x) = x+ xq + · · ·+ xqn−1
is the

trace function from Fqn to Fq.

Theorem 32. [31, Theorem 4.4] Let n and d be two positive integers such that 1 ≤ d ≤ n and
n−d is even. The symmetric forms S : Fqn ×Fqn → Fq given by S(x,y) = Trqn/q (yL(x)) with

L(x) = b0x+

n−d
2

∑
j=1

(
b jxq j

+(b jx)qn− j
)
, (6.2)

as b0, . . . ,b n−d
2

range over Fqn, form an additive optimal d-code in Sn(q).

In [31, Theorem 4.1] it has been shown that constructions of optimal symmetric d-codes with
n−d odd in Sn(d) can be obtained by puncturing the examples of optimal symmetric d-codes
found in [31, Theorem 4.4].

Theorem 33. [3, Theorem 7] Let n and e be two positive integers such that n is odd and
1 ≤ 2e ≤ n− 1, and let d = 2e. The alternating forms A : Fqn ×Fqn → Fq given by A(x,y) =
Trqn/q (yL(x)) with

L(x) =

n−1
2

∑
j=e

(
b jxq j − (b jx)qn− j

)
, (6.3)

as be, . . . ,b n−1
2

range over Fqn, form an additive optimal d-code in An(q).

6.2.2 Optimal Hermitian d-Codes

Schmidt characterized the upper bound on the size of Hermitian d-codes as follows [32, The-
orem 1].

Theorem 34. [32, Theorem 1] An additive Hermitian d-code C in F
n×n
q2 satisfies

#C≤ qn(n−d+1).

Moreover, when d is odd, this upper bound holds also for non-additive Hermitian d-codes.

A Hermitian d-code is called a optimal Hermitian d-code if it attains the above bound. Schmidt
in [32] also gave constructions for optimal Hermitian d-codes for all possible value of n and d,
except if n and d are both even and 3 < d < n. There are some examples of optimal Hermitian
d-codes, see [32, 39]. We recall two examples given in [32, Theorems 4 and 5], where Trq2n/q2

is the trace function from Fq2n to Fq2 .

Theorem 35. [32, Theorem 4] Let n and d be integers of opposite parity satisfying 1 ≤ d ≤ n.
The Hermitian forms H : Fq2n ×Fq2n → Fq2 given by H(x,y) = Trq2n/q2 (yqL(x)) with

L(x) =

n−d+1
2

∑
j=1

(
(b jx)q(2n−2 j+2)

+bq
jx

q(2 j)
)
, (6.4)

as b1, . . . ,b n−d+1
2

range over Fq2n , form an additive optimal d-code in Hn(q2).
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Theorem 36. [32, Theorem 5] Let n and d be odd integers satisfying 1≤ d ≤ n. The Hermitian
forms H : Fq2n ×Fq2n → Fq2 given by H(x,y) = Trq2n/q2 (yqL(x)) with

L(x) = (b0x)q(n+1)
+

n−d
2

∑
j=1

(
(b jx)q(n+2 j+1)

+bq
jx

q(n−2 j+1)
)
, (6.5)

as b0 ranges over Fqn and b1, . . . ,b n−d
2

range over Fq2n , form an additive optimal d-code in

Hn(q2).

6.3 Encoding

In the literature, no encoding method has been given for symmetric, alternating and Hermitian
d-codes. This section is dedicated to the encoding of these three types of restricted d-codes.
As a matter of fact, the encoding of an optimal d-code C is mainly concerned with setting up a
one-to-one correspondence between a message space of size #C and the code C in an efficient
way, which ideally also allows for an efficient decoding algorithm.

6.3.1 Encoding of symmetric d-codes

We start with the encoding of the optimal symmetric d-codes of size qn(n−d+2)/2 in Theorem
32, where n − d is even. The family of codes is linear over Fq and the message space is
naturally a vector space over Fq with dimension n(n− d + 2)/2. But we can represent each
message in the form of a k-dimensional vector over Fqn where k = (n−d+2)/2 and the set of
all the message vectors are closed under Fq-linear operations.

In order to present a polynomial-time decoding algorithm for the optimal symmetric d-codes in
Theorem 32, we shall express their codewords as evaluations of certain polynomials at linearly
independent points over Fq. For this reason, we need to employ a pair of dual bases in Fqn

over Fq. Recall that given an ordered Fq-basis (α1, . . . ,αn) of Fqn , its dual basis is defined as
the ordered Fq-basis (β1, . . . ,βn) of Fqn such that

Trqn/q(αiβ j) = δi j for i = 1,2, . . . ,n,

where δi j denotes the Kronecker delta function. Note that a dual basis always exists for a given
order basis (α1, . . . ,αn) of Fqn [17, Definition 2.30].

Let (α1, . . . ,αn), (β1, . . . ,βn) be a pair of dual bases of Fqn over Fq. We will write Trqn/q(x)
as Tr(x) for simplicity when the context is clear. Let L(x) be a linearized polynomial as in
Theorem 32. For the symmetric form we have

S(x,y) = Tr(xL(y)).

Now, we denote the associated matrix of S with respect to the ordered Fq-basis (α1, . . . ,αn) by
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S, of which the (i, j)-th entry S(i, j) is given by

S(i, j) = S(αi,α j) = Tr(α jL(αi)).

Furthermore, the codewords of the additive d-code in Theorem 32 can be expressed in the

symmetric matrix form as follows: let x,y ∈ Fqn , then x =
n
∑

i=1
xiαi and y =

n
∑
j=1

y jα j for some

xi,y j ∈ Fq and

S(x,y) = Tr

((
∑

j
y jα j

)
∑

i
xiL(αi)

)
= Tr

(
∑
i, j

xiy jα jL(αi)

)

= ∑
i, j

xiy jTr
(
α jL(αi)

)
= ∑

i, j
xiS(i, j)y j = (x1, . . . ,xn) ·S ·

⎛⎜⎜⎜⎝
y1
y2
...

yn

⎞⎟⎟⎟⎠ ,

where S(i, j) is the (i, j)-th entry in S.

In the following we show that the evaluation of the corresponding linearized polynomial at
linearly independent elements α1, . . . ,αn is a proper encoding method.

Define an n-dimensional vector over Fq as

s = (s1, . . . ,sn) = (β1, . . . ,βn) ·ST .

Since the i-th row of S is given by (Tr(α1L(αi)), . . . ,Tr(αnL(αi))) and since each L(αi) can
be written as ∑t ctβt for some ct ∈ Fq, we can write si as

si = ∑
j

β jS(i, j) = ∑
j

β jTr(α jL(αi))

= ∑
j

β jTr
(
α j ∑

t
ctβt

)
= ∑

j
β j ∑

t
ctTr(α jβt)

= ∑
j

β jc j = L(αi)

since Tr(x) is linear over Fq and (β1, . . . ,βn) is the dual basis of (α1, . . . ,αn). From the equality
si = L(αi), we see that the encoding of symmetric d-codes given by Tr(yL(x)), as in Theorems
32 and 33, can be seen as the evaluation of L(x) at the basis (α1, . . . ,αn) of Fqn .

With the above preparation, we are now ready to look at the encoding of the optimal symmetric
d-codes in Theorem 32 more explicitly.

Let ω0, . . . ,ωn−1 be a basis of Fqn over Fq. For optimal symmetric d-codes in Theorem 32, the
linearized polynomial can be expressed as

L(x) = b0x+
k−1

∑
j=1

(
b jx[ j] + (b jx)[n− j]

)
,
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where k = (n− d + 2)/2. Then the encoding of a message f = ( f0, . . . , fk−1) ∈ F
k
qn for the

symmetric codes in Theorem 32 can be expressed as the evaluation of the following linearized
polynomial at points ω0, . . . ,ωn−1:

L(x) = f0x+

(
k−1
∑
j=1

f jx[ j] + ( f jx)[n− j]

)
=

n−1
∑

i=0
f̃ix[i],

where
f̃ = ( f̃0, . . . , f̃k−1,0, . . . ,0, f̃n−k+1, . . . , f̃n−1)

= ( f0, . . . , fk−1,0, . . . ,0, f [n−k+1]
k−1 , . . . , f [n−1]

1 ).
(6.6)

Let N =
(

ω [ j]
i

)
n×n

be the n×n Moore matrix generated by ωi’s. So the encoding of optimal

symmetric and optimal alternating d-codes can be expressed as

( f0, . . . , fk−1) �→ (L(ω0), . . . ,L(ωn−1)) = f̃ ·NT , (6.7)

where f̃ = ( f̃0, . . . , f̃n−1) and NT is the transpose of the matrix N. Note that the first k and the
last k−1 elements of f̃ are nonzero. This means at most n−d +1 columns of the matrix NT

are involved in the encoding process.

6.3.2 Encoding of alternating d-codes

The encoding of alternating d-codes in Theorem 33 can be done similarly since the codewords
in A(x,y) has the same form Tr(yL(x)) as in Theorem 32.

For alternating d-codes in Theorem 33, the linearized polynomial can be expressed as

L(x) =

n−1
2

∑
j=e

(
b jx[ j]− (b jx)[n− j]

)
.

Note that in Theorem 33, the parameters n is odd and d = 2e. The optimal alternating codes
are Fq-linear with dimension n(n− d + 1)/2. For simplicity, we again consider the message
vectors in the form of vectors over Fqn .

Let (ω0, . . . ,ωn−1) be a basis of Fqn over Fq. The encoding of a message f = ( f0, . . . , fk−1) ∈
F

k
qn can be expressed as the evaluation of the following linearized polynomial at points

ω0, . . . ,ωn−1:

L(x) =

(
n−1

2
∑
j=e

f j−ex[ j]− ( f j−ex)[n− j]

)
=

n−1
∑

i=0
f̃ix[i],

where
f̃ = (0, . . . ,0, f̃e, . . . , f̃ n−1

2
, f̃ n+1

2
, . . . , f̃n−e,0, . . . ,0)

= (0, . . . ,0, f0, . . . , fk−1,− f
[ n+1

2 ]
k−1 , . . . ,− f [n−e]

0 ,0, . . . ,0).
(6.8)



6.3 Encoding 101

Similarly, the encoding of optimal alternating d-code can be expressed as

( f0, . . . , fk−1) �→ (L(ω0), . . . ,L(ωn−1)) = f̃ ·NT , (6.9)

where f̃ = ( f̃0, . . . , f̃n−1) and NT is the transpose of the matrix N. As shown in (6.8), at most
n−d +1 columns of the matrix N are involved in computation.

6.3.3 Encoding of Hermitian d-codes

This section is dedicated to the encoding of the optimal Hermitian d-codes of size qn(n−d+1)

explained in Theorems 35 and 36. Given positive integers d,n with 1 ≤ d ≤ n, for encoding
of optimal Hermitian d-codes we are going to set up a one-to-one correspondence between
a message space of size qn(n−d+1), and Hermitian optimal d-code, which later permits us
to decode efficiently. Therefore, for a message space of size qn(n−d+1), we may assume its
elements as vectors over Fqn of dimension k = n−d +1.

For the optimal Hermitian d-codes in Theorems 35 and 36, we shall express their codewords as
evaluations of certain polynomials at linearly independent points over Fq2 . For this reason, we
need to introduce the Hermitian variant of a basis in Fq2n over Fq2 . Given an ordered Fq2-basis
(α1, . . . ,αn) of Fq2n , its Hermitian dual basis is defined as the ordered Fq2-basis (β1, . . . ,βn)
of Fq2n such that

Trq2n/q2(αq
i β j) = δi j for i = 1,2, . . . ,n,

where Trq2n/q2 is the relative trace function from Fq2n to Fq2 , namely, Trq2n/q2(x) =
n−1
∑

i=0
xq2i

and δi j denotes the Kronecker delta function. Note that such a Hermitian dual basis always
exists for a given order basis (α1, . . . ,αn). Indeed, since there exist a dual basis (γ1, . . . ,γn) for
(α1, . . . ,αn) satisfying Trq2n/q2(αiγ j) = δi j, one can simply takes β j = γq2n−1

j for j = 1,2, . . . ,n
and then the above Hermitian dual property follows. We shall also write Trq2n/q2() as Tr() for
simplicity whenever there is no ambiguity.

Let (α1, . . . ,αn) be an Fq2-basis of Fq2n and (β1, . . . ,βn) be its Hermitian dual as described

above. Let x,y ∈ Fq2n , then x =
n
∑

i=1
xiαi and y =

n
∑

i=1
yiβi, for some xi,yi ∈ Fq2 . It is clear that

Tr(xqy) =
n
∑

i, j=1
xq

i y jTr(αq
i β j) =

n
∑

i=1
xq

i yi = 〈(xq
1, . . . ,x

q
n),(y1, . . . ,yn)〉.

Note that the Hermitian forms in Theorems 35 and 36 are of the form H(x,y) = Tr(xqL(y)).
Now, we denote the associated matrix of H with respect to the ordered Fq2-basis (α1, . . . ,αn)
by H, of which the (i, j)-th entry H(i, j) is given by

H(i, j) = H(αi,α j) = Tr(αq
j L(αi)).

Furthermore, the codewords of the additive d-code in Theorem 36 can be expressed in the
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Hermitian matrix form as follows

H(x,y) = Tr

((
∑

j
y jα j

)q
∑

i
xiL(αi)

)
= Tr

(
∑
i, j

xiy
q
jα

q
j L(αi)

)

= ∑
i, j

xiy
q
jTr
(

αq
j L(αi)

)
= ∑

i, j
xiH(i, j)yq

j = (x1, . . . ,xn) ·H ·

⎛⎜⎜⎜⎝
yq

1
yq

2
...

yq
n

⎞⎟⎟⎟⎠ ,

where H(i, j) is an element in H. In the following we show that the evaluation of the corre-
sponding linearized polynomial at linearly independent elements α1, . . . ,αn is a proper encod-
ing method. Define an n-dimensional vector over Fq2 as

h = (h1, . . . ,hn) = (β1, . . . ,βn) ·HT .

Since the i-th row of H is given by (Tr(αq
1 L(αi)), . . . ,Tr(αq

n L(αi))) and since each L(αi) can
be written as ∑t ctβt for some ct ∈ Fq2 , we can write hi as

hi = ∑
j

β jH(i, j) = ∑
j

β jTr(αq
j L(αi))

= ∑
j

β jTr
(
αq

j ∑
t

ctβt
)
= ∑

j
β j ∑

t
ctTr(αq

j βt)

= ∑
t

βtct = L(αi),

where the fourth and fifth equality signs hold because Tr(x) is linear over Fq2 and (β1, . . . ,βn)
is the Hermitian dual basis of (α1, . . . ,αn). From the equality hi = L(αi), we see that the
encoding of Hermitian d-codes given by Tr(yqL(x)), as in Theorems 35 and 36, can be seen as
the evaluation of L(x) at the basis α1, . . . ,αn of Fq2n .

With the above preparation, we are now ready to look at the encoding of the Hermitian d-codes
in Theorems 35 and 36 more explicitly.

Let κ = �n−d
2 � and H be the Hermitian form given in Theorem 35. The linearized polynomial

in (6.4) can be written as

L(x) =
κ

∑
j=1

(
(b jx)〚n+1− j〛+bq

jx
〚 j〛
)
,

and assuming m = n+1
2 , similarly one can write the linearized polynomial in (6.5) as

L(x) = (b0x)〚m〛+
κ

∑
j=1

(
(b jx)〚m+ j〛+bq

jx
〚m− j〛

)
.

Let {1,η} be an Fqn-basis of Fq2n . Let α0,α1, . . . ,αn−1 be a basis of Fq2n over Fq2 . Raising all
the basis elements αi to the q2-th power will still give a linearly independent set of elements
in Fq2n . We use αq2

0 ,αq2

1 , . . . ,αq2

n−1 as the evaluation points for optimal Hermitian d-codes
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in Theorem 35. The reason for this is to keep the consistent form L(x) = l0x〚0〛 + l1x〚1〛 +
· · ·+ ln−1x〚n−1〛 for the linearized polynomial representation (employing α0, . . . ,αn−1 as the
evaluation points for this codes will obligate us to use the linearized polynomial of the form
L(x) = l0x〚1〛+ l1x〚2〛+ · · ·+ ln−1x〚n〛).

The encoding of a message f = ( f0, . . . , fk−1) ∈ F
k
qn can be expressed as the evaluation of the

following linearized polynomial at points αq2

0 ,αq2

1 , . . . ,αq2

n−1:

L(x) =

(
κ−1
∑
j=0

( f j +η fκ+ j)
qx〚n−1− j〛+( f j +η fκ+ jx)〚 j〛

)
=

n−1
∑

i=0
f̃ix〚i〛, (6.10)

where

f̃ = ( f̃0, . . . , f̃κ−1,0, . . . ,0, f̃n−κ , . . . , f̃n−1) = (( f0 +η fκ)
〚0〛, . . . ,

( fκ−1 +η f2κ−1)
〚κ−1〛,0, . . . ,0,( fκ−1 +η f2κ−1)

q, . . . ,( f0 +η fκ)
q),

(6.11)

and k = 2κ . For the optimal Hermitian d-code in Theorem 36 and the evaluation points
α0,α1, . . . ,αn−1, the encoding of a message f = ( f0, . . . , fk−1) ∈ F

k
qn can be expressed as the

evaluation of the following linearized polynomial at points α0,α1, . . . ,αn−1:

L(x) = ( f0x)〚m〛+

(
κ
∑
j=1

( f j +η fκ+ j)
qx〚m− j〛+(( f j +η fκ+ j)x)〚m+ j〛

)
=

n−1
∑

i=0
f̃ix〚i〛,

(6.12)

where
f̃ = (0, . . . ,0, f̃m−κ , . . . , f̃m−1, f̃m, f̃m+1, . . . , f̃m+κ ,0, . . . ,0)

= (0, . . . ,0,( fκ +η f2κ)
q, . . . ,( f1 +η fκ+1)

q, f 〚m〛
0 ,

( f1 +η fκ+1)
〚m+1〛, . . . ,( fκ +η f2κ)

〚m+κ〛,0, . . . ,0),

(6.13)

and k = 2κ +1.

Let Ml =
(

α〚 j+l〛
i

)
n×n

be the n × n Moore matrix generated by αq2l

0 ,αq2l

1 , . . . ,αq2l

n−1 where

l ∈ {0,1}. We take l = 1 when we consider αq2

0 ,αq2

1 , . . . ,αq2

n−1 as the evaluation points which
is used in (6.10) and l = 0 when α0,α1, . . . ,αn−1 are the evaluation points in (6.12).

So the encoding of the optimal Hermitian rank metric codes can be expressed as

( f0, . . . , fk−1) �→ (L(αq2l

0 ), . . . ,L(αq2l

n−1)) = f̃ ·MT
l , (6.14)

where f̃ = ( f̃0, . . . , f̃n−1) and MT
l is the transpose of the matrix Ml .

When n,d are integers with opposite parities as shown in (6.10), only the first κ and the last κ
elements of f̃ are nonzero. Also in the case when n,d are both odd integers, as can be seen in
(6.12), the first m−κ and the last m−κ −2 elements of f̃ are zero. So we only use n−d +1
columns of the Moore matrix in the encoding process.
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In summary, the encoding of the optimal symmetric, alternating and Hermitian d-codes relies
on converting the codewords of those codes to simplified linearized polynomials L(x) under
carefully-chosen base of the extension fields, which enables us to treat encoding of those codes
as evaluations of L(x) at linearly independent points.

6.4 Decoding

In Section 3 the encodings of symmetric, alternating and Hermitian d-codes are in the form of
polynomial evaluation. In this section we will present interpolation-based decoding of those
codes, which make use of some nice properties of Dickson matrices in Proposition 13.

6.4.1 Key equations for error interpolation polynomials

We start with the optimal symmetric and alternating d-codes in Theorems 32 and 33. Note
that their codewords are in the form Tr(yL(x)) and can be deemed as n-dimensional vectors
(L(ω0), . . . ,L(ωn−1)) over Fqn . We assume errors that occur in transmission or storage medium
are also vectors in F

n
qn .

Given a message f = ( f0, . . . , fk−1) ∈ F
k
qn , its corresponding codeword c = f̃ ·NT , where f̃

and NT are as given in Section 3. Let r = (r0, . . . ,rn−1) over Fqn be a received word when the
codeword c ∈ F

n
qn is transmitted, namely, r = c+ e for certain error vector e ∈ F

n
qn . Suppose

g(x) =
n−1
∑

i=0
gix[i] is the error interpolation polynomial such that

g(ωi) = ei = ri − ci, i = 0, . . . ,n−1. (6.15)

Clearly the error vector e is uniquely determined by the error interpolation polynomial g(x),
and vice versa. Denote g̃ = (g0, . . . ,gn−1). Then it follows that

r = c+ e = ( f̃ + g̃)NT . (6.16)

Denote by G the associated Dickson matrix of the q-polynomial g(x), i.e.,

G =
(

g[ j]i− j (mod n)

)
n×n

= (G0 G1 . . . Gn−1) =

⎡⎢⎢⎢⎢⎣
g0 g[1]n−1 . . . g[n−1]

1

g1 g[1]0 . . . g[n−1]
2

...
... . . . ...

gn−1 g[1]n−2 . . . g[n−1]
0

⎤⎥⎥⎥⎥⎦ ,
where the subscripts are taken modulo n. Suppose the error e has rank t, by Proposition 13 we
know that G has rank t and any t × t submatrix formed by t consecutive rows and columns in
G has rank t. Furthermore, the first column of G can be expressed as a linear combination of
G1, . . . ,Gt as

G0 = λ1G1 + · · ·+λtGt , (6.17)
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where G1, . . . ,Gt are linearly independent over Fqn .

In the following we will make use of the pattern of L(x) in Theorems 32 and 33, which have
consecutive d −1 zero coefficients (up to a cyclic shift on the coefficients), and the properties
of G in recovering the vector g̃.

Optimal symmetric d-codes in Theorem 32

For optimal symmetric d-codes, by (6.6) we can rewrite (6.16) as

r · (NT )−1 =( f̃0, . . . , f̃k−1,0, . . . ,0, f̃n−k+1, . . . , f̃n−1)

+(g0, . . . ,gk−1,gk, . . . ,gn−k,gn−k+1, . . . ,gn−1).

where f̃0 = f [0]0 , f̃ j = f j and f̃ j = f̃ [n− j]
n− j for j = 1, . . . ,k−1. Recall that k = (n−d +2)/2 for

symmetric d-codes in Theorem 32. Letting β = (β0, . . . ,βn−1) = r · (NT )−1, we obtain

gi =

{
βi for i = k, . . . ,k+d −2,
βi − f̃i for i = n− k+1, . . . ,n−2k+1,

(6.18)

where the subscripts are taken modulo n. Since the elements gk, . . . ,gn−k are known, from
(6.17) we can have the following system of linear equations:

gi = λ1g[1]i−1 +λ2g[2]i−2 + · · ·+λtg
[t]
i−t , k+ t ≤ i ≤ n− k, (6.19)

which contains t unknowns λ1, . . . ,λt in d −1− t linear equations.

Optimal alternating d-codes in Theorem 33

From (6.8) it follows that (6.16) is equivalent to

r · (NT )−1 =(0, . . . ,0, f̃e, . . . , f̃n−e,0, . . . ,0)
+(g0, . . . ,ge−1,ge, . . . ,gn−e,gn−e+1, . . . ,gn−1).

where f̃ j+e = f j and f̃n−e+ j = − f [n−e− j]
j for j = 0, . . . ,k. Suppose we have β =

(β0, . . . ,βn−1) = r · (NT )−1, similarly we obtain

gi =

{
βi for i = n− e+1, . . . ,n+ e−1,
βi − f̃i for i = e, . . . ,n− e,

(6.20)

where the subscripts are taken modulo n. Based on (6.20), we obtain the following linear
system of equations

gi = λ1g[1]i−1 +λ2g[2]i−2 + · · ·+λtg
[t]
i−t , n− e+1+ t ≤ i < n+ e mod n (6.21)

with t unknowns λ1. . . . ,λt in 2e−1− t = d −1− t linear equations.
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From the above analysis, one sees that the equations (6.19) and (6.21) are the key equations
for decoding optimal symmetric and optimal alternating d-codes, respectively.

Optimal Hermitian d-codes

The approach of establishing the key equations in decoding Hermitian d-codes is similar to
that for symmetric and alternating d-codes. Because Hermitian d-codes are defined over Fq2

instead of Fq, we briefly describe the process in the sequel.

Suppose a Hermitian codeword c∈F
n
q2n is transmitted and a word r = c+e, with an error e with

rank t added to the codeword c, is received. Suppose g(x) =
n−1
∑

i=0
gix〚i〛 is an error interpolation

polynomial with rank t such that

g(α〚l〛
i ) = ei = ri − ci, i = 0, . . . ,n−1 and l ∈ {0,1}, (6.22)

where we use l = 1 for the Hermitian d-codes in Theorem 35 and l = 0 for the codes in
Theorem 36. It is clear that the error vector e = (e0, . . . ,en−1) is uniquely determined by the
polynomial g(x). Denote by

G = (G0, . . . ,Gn−1) =
(

g〚 j〛
i− j (mod n)

)
,

the Dickson matrix associated with g(x), then G has rank t and we can express

G0 = λ1G1 + · · ·+λtGt , (6.23)

with unknown λi’s in Fq2n .

Denote g̃ = (g0, . . . ,gn−1). From (6.14) and (6.22) it follows that

r = c+ e = ( f̃ + g̃)MT
l . (6.24)

Case 1. This case considers the optimal Hermitian d-codes in Theorem 35. Recall that in
Theorem 35 the Hermitian d-codes have parameters n,d with opposite parities and the message
space was represented in k-dimensional vectors over Fqn which are closed under Fq-linear
operations. Denoting κ = �n−d

2 �, we can rewrite (6.24) as

r · (MT
1 )

−1 =( f̃0, . . . , f̃κ−1,0, . . . ,0, f̃n−κ , . . . , f̃n−1)

+(g0, . . . ,gκ−1,gκ , . . . ,gn−κ−1,gn−κ , . . . ,gn−1),

where for j = 0,1, . . . ,κ − 1, f̃n− j−1 = ( f j +η fκ+ j)
q and f̃ j = f̃ q2 j+1

n− j−1, and {1,η} is an Fqn-
basis of Fq2n .
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Let β = (β0, . . . ,βn−1) = r · (MT
1 )

−1. Since 2κ = n−d+1, we have n−κ −1 = κ +d−2 and

gi =

{
βi for i = κ, . . . ,κ +d −2
βi − f̃i for i = n−κ, . . . ,n+κ −1.

(6.25)

This together with (6.23) gives a system of d−1−t linear equations over Fq2n with t unknowns
λi’s in Fq2n .

Case 2. This case considers the optimal Hermitian d-codes in Theorem 36. In this case n,d
are both odd integers. Denote m = (n+1)/2 and κ = (n−d)/2. Note that (6.24) is equivalent
to

r · (MT
0 )

−1 =(0, . . . ,0, f̃m−κ , . . . , f̃m+κ ,0, . . . ,0)
+(g0, . . . ,gm−κ−1,gm−κ , . . . ,gm+κ ,gm+κ+1, . . . ,gn−1).

where f̃m = f 〚m〛
0 and for j = 1,2, · · · ,κ , f̃m− j = ( f j +η fκ+ j)

q and f̃m+ j = f̃ qn+2 j

m− j . Denote
β = (β0, . . . ,βn−1) = r ·(MT

0 )
−1. Since κ = (n−d)/2, we have n−1−(m+κ +1)+1+(m−

κ) = n−2κ −1 = d −1 known gi’s and we can obtain

gi =

{
βi for i = m+κ +1, . . . ,m+κ +d −1
βi − f̃i for i = m−κ, . . . ,m+κ,

(6.26)

where the subscripts are taken modulo n. Similarly, this together with (6.23) gives a system of
d −1− t linear equations over Fq2n with t unknowns λi’s in Fq2n .

6.4.2 Reconstruction of the error polynomial

Recall that the error polynomials g(x) for symmetric and alternating d-codes are q-polynomials
over Fqn and the one for Hermitian d-codes are q2-polynomials over Fq2n . Despite the differ-
ence in representation, the approach used for recovering the coefficients will be the same for
those error polynomials. This observation allows us to present the common procedure of re-
constructing g(x)’s in a unified manner.

Let ρ ∈ {q,q2}. Given an error polynomial g(x) =
n−1
∑

i=0
∈ Fρn [x] with rank t, its associate

Dickson matrix given by

G = (G0,G1, . . . ,Gn−1) =
(

gρ i

i− j(modn)

)
n×n

also has rank t and G0 = λ1G1 + · · ·+λtGt for t unknown λi’s in Fρn , which gives rise to a
linearized recurrence as

gL = λ1gρ
L−1 +λ2gρ2

L−2 + · · ·+λtg
ρt

L−t for L = 0,1, . . . ,n−1 (6.27)

where the subscripts of gi’s are taken modulo n. For the optimal symmetric, alternating and
Hermitian d-codes in Section 2, Section 4.1 has established a system of d −1− t linear equa-
tions over Fρn in t unknowns λi ∈ Fρn for each of them.
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According to the pattern in G, we have the following major steps for recovering the coefficients
gi’s:

Step 1. derive the unknowns λ1, . . . ,λt from the d − 1− t linear equations given in Section
4.1 for each optimal d-code;

Step 2. use λ1, . . . ,λt to recursively compute unknown gi’s in G.

Step 1 is the critical step in the decoding process. In Step 1 one has a system of d − 1− t
linear equations for each optimal d-codes with t unknowns. There are two options for solving
the unknowns. The first option is simply applying Gaussian elimination algorithm on the
equations; and the second option is to apply the modified Berlekamp-Massey algorithm in
[35]. As a matter of fact, with the linearized recurrence in (6.27), the task of Step 1 becomes
finding the coefficients of modified version of a linear shift register as in [35] for given d −1
consecutive inputs gi’s for each optimal d-codes.

For Step 2, with the recursive relation in (6.27), one can calculate the remaining unknown
coefficients gi’s in a sequential order.

6.4.3 Reconstruction of the original message

Recall that for each optimal d-code, it is assumed that a codeword c is transmitted and a word
r = c+ e is received. With the error polynomials g(x) obtained in Section 4.2, we are directly
able to derive the codeword c = r − e. With the codeword c, we can obtain the coefficient

vector f̃ of the interpolation polynomial f (x) =
n−1
∑

i=0
f̃ixqui

where u ∈ {1,2}. One can compute

f̃ = ( f̃0, . . . , f̃n−1) = c · (AT )−1 where A is the Moore matrix associated with the linearly
independent evaluation points. When the f̃ is obtained, we can further reconstruct the original
message f = ( f0, . . . , fk−1) according to the encoding for each optimal d-code as follows:

• Symmetric d-codes.

f = ( f0, . . . , fk−1) = ( f̃0, . . . , f̃k−1).

• Alternating d-codes.

f = ( f0, . . . , fk−1) = ( f̃e, . . . , f̃ n−1
2
).

• Hermitian d-codes.

– Case 1. When n,d have different parities: for j ∈ {0, . . . ,κ −1} where k = 2κ we
have the following equations{

f̃ j = ( f j +η fκ+ j)
q2 j

f̃n− j−1 = ( f j +η fκ+ j)
q.

(6.28)
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The unknown coefficients f j, fk+ j ∈ Fqn for j ∈ {0, . . . ,κ − 1} can be seen as the

unique coordinate vector of f̃ q−2 j

j (or f̃ q−1

n− j−1) expressed with respect to the basis
{1,η} of Fq2n over Fqn and can be computed directly.

– Case 2. When n,d are both odd: for j ∈ 1, . . . ,κ −1 where k = 2κ +1 we have the
following linear system of equations⎧⎪⎨⎪⎩

f̃m = f q2m

0

f̃m+ j = ( f j +η fκ+ j)
q2(m+ j)

f̃m− j = ( f j +η fκ+ j)
q.

(6.29)

The coefficient f0 can be computed from the first equation as f0 = f̃ q−2m

m . Similar
to the Case 1, the unknown coefficients f j, f j+κ can be seen as coordinate vector

of f̃ q−1

m− j (or f̃ q−2(m+ j)

m+ j ) written with respect to the basis {1,η}. So we can compute
all the unknown coefficients f0, . . . , fk−1 ∈ Fqn and recover the message.

6.4.4 Summary

The decoding algorithms in Section 6.4 share some similarities and one can summarize the
decoding algorithms for all the restricted codes as follows:

• Input: a received word r = (r0, . . . ,rn−1) with errors of t ≤ d−1
2 rank and linearly inde-

pendent points θ0, . . . ,θn−1 in Fqun where u ∈ {1,2}.

• Idea: Reconstructing the code’s interpolation polynomial f (x) =
n−1
∑

i=0
f̃ixqui

via the error

interpolation polynomial g(x) =
n−1
∑

i=0
gixqui

where f (θi)+g(θi) = ci + ei = ri.

• Output: The codeword c = r− e.

(1) Compute the coefficients βi of the polynomial β (x) =
n−1
∑

i=0
βixqui

where ri = β (θi). This

is equivalent to r · (MT )−1, where M is the Moore matrix associated with θi’s.

(2) Specify the known coefficients (g j, . . . ,g j+d−2) = (β j, . . . ,β j+d−2), where the subscripts
are taken modulo n, based on the code.

(3) Use the 2t known coefficients gi as the initial state in the BM algorithm and find the
unique connection vector λ = (λ1, . . . ,λt).

(4) Let G be the Dickson matrix associated with g(x) with rank t. Write the first column
G0 as the linear combination of the columns G1, . . . ,Gt which can be written as the
following recursive equations

gi = λ1gqu

i−1 +λ2gq2u

i−2 + · · ·+λtg
qtu

i−t , 0 ≤ i < n. (6.30)
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(5) Find the remaining coefficients gi using the recursive equation (6.30).

(6) Compute f̃ = (β0, . . . ,βn−1)− (g0, . . . ,gn−1).

(7) Compute the codeword c = f̃ ·MT−1.

The lines (1) and (7) in the above procedure need O(n3) operations over Fqun which can be
optimized if one applies the ideas in [25]. The line (2) needs linear complexity while the
line (3) dominates the complexity of the whole process. The BM algorithm has complexity
in the order of O(n2) operations over Fqun . The complexity of the the remaining steps can be
neglected.

6.4.5 Examples

Example 2 (Symmetric d-Codes). Let C be an optimal symmetric d-code with minimum dis-
tance d = 5 and length n = 7 defined over F27 . We consider a normal basis of F27 over F2 with
normal element w = z95 as the evaluation points. Here z is a primitive element in F

∗
27 .

Encoding: Suppose Alice wants to transfer the message f = ( f0, f1) = (z7,z13) to Bob
via a noisy channel. The code’s evaluation polynomial would have the coefficient vector
f̃ = ( f0, f1,0,0,0,0, f q6

1 ) = (z7,z13,0,0,0,0,z70) which gives the codeword

c = f̃ (MT ) = (z108,z36,z11,z12,z57,z24,z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 1 1 0
0 0 1 0 0 1 0
1 1 0 0 1 0 1
1 0 0 0 0 0 1
1 0 1 0 1 0 1
1 1 0 0 0 0 0
0 0 1 1 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

in symmetric form.

Channel’s transmission: We assume that the noisy channel adds an error vector e =
(z63,z126,z126,z63,z126,z126,z126) with rank t = 2 to the codeword c and Bob receives the
word

r = c+ e = (z4,z45,z124,z52,z37,z104,z13).

Decoding: Now Bob received r and he wants to recover the message f . He first com-
putes β = r · (MT )−1 = (z17,z51,z98,z124,z100,z83,z86) and directly gets the coefficients

(g2,g3,g4,g5) = (β2,β3,β4,β5) where g(x) =
6
∑

i=0
gix2i

is the error interpolation polyno-

mial and g̃ = (g0, . . . ,g6). Then he submits (g2,g3,g4,g5) in the BM algorithm and obtains
the unique connection vector (λ1,λ2) = (z25,z126). Now he uses both (g2,g3,g4,g5) and
(λ1,λ2) as inputs for modified version of LFSR described in [35] and get the vector

a = (g2,g3,g4,g5,g6,g0,g1) = (z98,z124,z100,z83,z55,z115,z71).



6.4 Decoding 111

Now he can rearrange the components of a and gets g̃ = (z115,z71,z98,z124,z100,z83,z55).
Since he knows β and g̃, he is able to compute f̃ = β − g̃= (z7,z13,0,0,0,0,z70) and finally
f = ( f̃0, f̃1) = (z7,z13).

Example 3 (Alternating d-Codes). Suppose D ∈ F29 be an alternating d-code with length
n = 9 and minimum distance d = 6. Let w = z347 be the normal element for our
normal basis which is used as the interpolation points. For the received word r =
(z293,z389,z430,z227,z481,z445,z426,z404,z339) containing error of t = �(d − 1)/2� = 2 rank,
we can compute β ,(λ1,λ2),a, g̃, f̃ ,c and f similar to Example 2 as follows:

• β = (z486,z233,z334,z155,z167,z226,z483,z231,z88),

• (β0,β1,β2,β7,β8) = (g0,g1,g2,g7,g8).

• BM algorithm input (β7,β8,β0,β1,β2) gives (λ1,λ2) = (z154,z262),

• modified LFSR input (β7,β8,β0,β1,β2) and (λ1,λ2) gives

a = (β7,β8,β0,β1,β2,g3,g4,g5,g6)

= (z231,z88,z486,z233,z334,z505,z113,z265,z425),

• g̃ = (z486,z233,z334,z505,z113,z265,z425,z231,z88),

• f̃ = β − g̃ = (0,0,0,z77,z397,z440,z329,0,0),

• c = f̃ · (MT ) = (z244,z412,z364,z400,z368,z161,z122,z59,z122),

• f = ( f0, f1) = ( f̃3, f̃4) = (z77,z397).

Example 4 (Hermitian d-Codes). Suppose C ∈ F
7
214 be an optimal Hermitian d-code with

length n = 7, minimum distance d = 5 and η = z . We use the normal basis W of F214 over
F22 with normal element w = z8591 as the evaluation points, where z is the primitive element
in F

∗
210 . Let r = (z3672,z2957,z1343,z3039,z10923,z9913,z1618) be a received word with error of

t = (d−1)/2 = 2 rank. Then β = r ·(MT )−1 = (z5036,z5234,z203,z840,z2939,z13080,z15830). Let

g(x)=
6
∑

i=0
gix22i

be the error interpolation polynomial. Due to the expected form of f̃ in optimal

Hermitian d-codes we have (β0,β1,β2,β6) = (g0,g1,g2,g6). Now we submit (β6,β0,β1,β2) in
the BM algorithm and get the output (λ1,λ2) = (z11141,z14283). using both (β6,β0,β1,β2) and
(λ1,λ2) as the input for the modified version of linear feedback shift register explained in [35],
we get

a = (β6,β0,β1,β2,g3,g4,g5) = (z15830,z5036,z5234,z203,z12223,z9784,z1048).

So g̃ = (z5036,z5234,z203,z12223,z9784,z1048,z15830) and the code’s evaluation polynomial has
the coefficient vector f̃ = (0,0,0,z4446,z11481,z15498,0). Then the codeword is
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c = f̃ ·MT = (z781,z1313,z4481,z5130,z1671,z9656,z1567)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 y y2 1
0 1 0 y y y 1
0 0 1 0 y2 0 y2

1 y2 0 0 y2 y2 0
y2 y2 y y 1 y y2

y y2 0 y y2 1 1
1 1 y 0 y 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where y is the primitive element in F
∗
22 and the message is f = ( f0, . . . , fk−1) = (l89, l97, l32)

where l is the primitive element in F
∗
27 .

6.5 Conclusion

This work proposes the first encoding and decoding methods for three restricted families of
rank metric codes including optimal symmetric, optimal alternating and optimal Hermitian
rank metric codes. We showed that the evaluation encoding is a right choice for the afore-
mentioned families and the proposed encoding methods are easily reversible and efficient. We
also introduce three interpolation-based decoding algorithms that are based on the properties
of Dickson matrix associated with linearized polynomials. In the decoding process we reduced
the rank decoding problem to the problem of solving a system of linear equations which can be
solved by Gaussian elimination method or Berlekamp-Massey algorithm in polynomial time.
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Chapter 7

On cryptographic properties of the Welch

permutation and a related conjecture

In this chapter, we determine the differential spectrum and the Walsh transform of the Welch
permutation g(x) = x2m+1+1 + x3 + x of GF22m+1 , which was derived from the Welch APN
power function x2m+3. As an application, the properties of g(x) are used to partly resolve a
conjecture by Ding [9] on a class of binary linear codes constructed from the Welch APN
power functions. This chapter is based on my work with Yibo Wang, Chunlei Li and Yongbo
Xia [14] which was presented at Sequences and Their Applications 2020 conference.

7.1 Introduction

Let GF2n denote the finite field of 2n elements and GF∗
2n be its multiplicative group. For a

vectorial Boolean function F(x) from F2n to F2n , denote

NF(a,b) = |{x ∈ GF2n |F(x+a)+F(x) = b}|. (7.1)

The differential uniformity of F(x) is defined by

ΔF = max{NF(a,b) | a ∈ F
∗
2n ,b ∈ F2n} .

Nyberg defined a mapping F(x) to be differentially δ -uniform if ΔF = δ [13]. Differential
uniformity is one of the most important notions in symmetric cryptography. It quantifies the
security of S-boxes used in block ciphers with respect to the differential attack. For practical
applications, cryptographic functions are desirable to have low differential uniformity. It is
clear that the equation F(x + a) + F(x) = b have solutions in pairs. Thus, ΔF = 2 is the
smallest possible value for the differential uniformity of F(x). A function F(x) is said to be
almost perfect nonlinear (APN) if its differential uniformity is 2. Equivalently, a function F(x)
is APN if its derivative function DaF(x) := F(x+a)+F(x), for any a ∈ GF∗

2n , is a two-to-one
function over GF2n . APN functions are of great interest due to their importance in the design
of S-boxes in block ciphers and their close connection to optimal objects in coding theory
and combinatorial theory. Constructing APN functions has been intensively studied in the last
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three decades, and by far the known families of APN functions over GF2n can be found in
the recent chapter [5]. Besides the differential uniformity, the differential spectrum of F(x),
namely the value distribution of NF(a,b) for a∈F

∗
2n and b∈F2n , is also an important notion for

estimating its resistance against variants of differential cryptanalysis [1, 2, 4, 7]. In addition to
differential properties, nonlinearity and Walsh transform are important measurements to assess
the properties of a vectorial Boolean function against linear cryptanalysis.

Nonlinear functions also have a number of applications in constructing error-correcting codes
with good properties [6, 9]. An [n,k,d] binary linear code C is a k-dimensional subspace of GFn

2
with minimum (Hamming) distance d. Let Ai denote the number of codewords with Hamming
weight i in a code C of length n. The weight enumerator of C is defined by 1+A1z+A2z2 +
· · ·+Anzn. The sequence (1,A1,A2, . . . ,An) is called the weight distribution of C. Clearly,
the weight distribution gives the minimum distance of the code, and thus the error correcting
capability. In addition, the weight distribution of a code allows the computation of the error
probability of error detection and correction with respect to some error detection and error
correction algorithms. A binary code C is said to be a t-weight code if the number of nonzero
Ai in the sequence (A1,A2, . . . ,An) is equal to t. Binary linear codes with few weights have
many applications [6, 9], including secret sharing schemes, authentication codes, association
schemes and strongly regular graphs.

Ding et. al in [9, 10] introduced a generic construction of binary linear codes from a subset
D = {d1,d2, . . . ,d�} of GF2n and the absolute trace function Trn

1(·) from GF2n to GF2 as

CD = {ca = (Trn
1(ad1),Trn

1(ad2), . . . ,Trn
1(ad�)) : a ∈ GF2n} . (7.2)

This construction is generic in the sense that many classes of known codes could be produced
by selecting proper defining sets D. When the defining set D is properly chosen, the code CD
can have a few nonzero weights. In [9] Ding investigated the properties of binary linear codes
from the images of certain functions on GF2n and proposed several conjectures on properties
of the constructed codes, including the following one from the Welch APN power functions.

Conjecture 1. [9, Conjecture 33] Let n = 2m+1, F(x) = x2m+3, f (x) = F(x)+F(x+1)+1
and D( f ) = {d1,d2, . . . ,d�}= { f (x) |x ∈ GF2n}. Define the binary code CD( f ) as

CD( f ) = {ca = (Trn
1(ad1),Trn

1(ad2), . . . ,Trn
1(ad�)) : a ∈ GF2n} .

If n ∈ {5,7}, then CD( f ) is a three-weight code with length 2n−1 and dimension n. If n ≥ 9,
then CD( f ) is a five-weight code with length 2n−1 and dimension n.

In this chapter, we investigate certain cryptographic properties, namely, the differential spec-
trum and the Walsh spectrum, of the permutation polynomial g(x) = x2m+1+1 + x3 + x over
GF22m+1 for a positive integer m ≥ 2. Here we call g(x) the Welch permutation polynomial
since via it Dobbertion proved that the Welch power function F(x) = x2m+3 is APN [11]. Fur-
thermore, based on an observation, the weight of a codeword in CD( f ) defined in Conjecture
1 can be expressed in terms of the Walsh transform of g(x) at certain points. This enables us
to show that the binary linear code CD( f ) has dimension n and at most five nonzero weights as
described in Conjecture 1.

The remainder of this chapter is organized as follows. Section 2 introduces basic notation and
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definitions. Section 3 studies the differential spectrum and Walsh transform of g(x). Section 4
provides a positive answer to Conjecture 1.

7.2 Preliminaries

7.2.1 Cryptographic properties of vectorial Boolean functions

Definition 42. Let F(x) be a function from F2n to itself, and NF(a,b) be defined as in (7.1).
Denote

ωi = |{(a,b) ∈ F
∗
2n ×F2n | NF(a,b) = i}|.

The differential spectrum of F(x) is defined as the multi-set

ΩF = {ω0,ω1, . . . ,ωδ} , (7.3)

where δ is the differential uniformity of F(x).

It is easily seen that ωi = 0 in the differential spectrum if i is odd. Moreover, we have the
following identities

δ

∑
i=0

ωi = 2n(2n −1) and
δ

∑
i=0

(i×ωi) = 2n(2n −1). (7.4)

For any APN function over GF2n , there are only two possible values 0 and 2 in its differential
spectrum. Thus, from the equalities in (7.4), the differential spectrum of an APN function over
GF2n can be uniquely determined.

Another important criterion of a vectorial Boolean function F(x) is its nonlinearity, which can
be given in terms of the Walsh transforms of F(x).

Definition 43. Let F(x) be a function from F2n to itself. The Walsh transform of F(x) at (a,b)
is defined by

WF(a,b) = ∑
x∈F2n

(−1)Trn
1(aF(x)+bx) (7.5)

for each a,b ∈ F2n . The Walsh spectrum of F(x) is the multi-set

ΛF = {WF(a,b) : a,b ∈ F2n ,a �= 0} . (7.6)

The nonlinearity of F(x) is given by

NL(F) = 2n−1 − 1
2

max{|WF(a,b) |: a,b ∈ F2n ,a �= 0}.

Given a quadratic Boolean function Q(x) from GF2n to GF2, the function Q(x+ z)+Q(x)+
Q(z) is a bilinear function in x and z. Define

VQ = {x ∈ GF2n | Q(x+ z)+Q(x)+Q(z) = 0,∀ z ∈ GF2n}. (7.7)
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The rank of Q(x) is defined by Rank(Q) = n−dimGF2 (VQ) . Note that(
∑

x∈GF2n

(−1)Q(x)

)2

= ∑
x∈GF2n

(−1)Q(x) ∑
z∈GF2n

(−1)Q(x+z)+Q(x)+Q(z) = 2n ∑
x∈VQ

(−1)Q(x), (7.8)

where VQ is the GF2-linear space defined as in (7.7). It is readily seen that Q(x) is linear over
VQ. Hence one has

∑
x∈GF2n

(−1)Q(x) =

{
±2n−Rank(Q)/2, if Q(x) = 0 for any x ∈VQ,

0, otherwise.

This implies that the Rank(Q) is always an even number 2h with 2 ≤ 2h ≤ n [12].

For a quadratic Boolean function Q(x) from GF2n to GF2, the definition of its Walsh transform
is modified slightly as

Q̂(λ ) = ∑
x∈F2n

(−1)Q(x)+Trn
1(λx).

Moreover, when λ runs through F2n , the distribution of Q̂(λ ) can be characterized below.

Lemma 7. [12, Theorem 6.2] Let Q(x) be a quadratic form on F2n to GF2 with rank 2h. Then
its Walsh transform Q̂(λ ) has the following distribution

Q̂(λ ) = ∑
x∈F2n

(−1)Q(x)+Trn
1(λx) =

⎧⎪⎨⎪⎩±2n−h, 22h−1 ±2h−1 times,

0, 2n −22h times.

For cryptographic applications, a vectorial Boolean function is desired to have low differential
uniformity and high nonlinearity [5].

7.2.2 The binary code from the Welch power function

Let n = 2m+ 1 for a positive integer m and F(x) = x2m+3. In Conjecture 1, the image of
f (x) = F(x+1)+F(x)+1 = D1F(x)+1 on GF2n , denoted by D( f ), is chosen as the defining
set. Note that f (x) is a two-to-one function on GF2n . Thus, the set D( f ) has size 2n−1. Using
the generic construction method in (7.2), the linear code CD( f ) in Conjecture 1 is obtained.
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Let ca be a codeword in CD( f ). Then, its weight is given by

wt(ca) =
∣∣{1 ≤ i ≤ 2n−1 : Trn

1(adi) = 1}∣∣
=

1
2

(
2n−1 − ∑

d∈D( f )
(−1)Trn

1(ad)

)

=
1
2

(
2n−1 − 1

2 ∑
x∈F2n

(−1)Trn
1(a f (x))

)

= 2n−2 − 1
4 ∑

x∈F2n

(−1)Trn
1(a f (x)).

(7.9)

The above formula shows that for studying the Hamming weight properties of the code CD( f ),
it is critical to investigate the Walsh transform of f (x) at (a,0), i.e., Wf (a,0).

7.3 The differential spectrum and the Walsh spectrum of the

Welch permutation

For the permutation g(x) = x2m+1+1 + x3 + x over GF2n with n = 2m + 1, this section will
determine the differential spectrum Ωg defined as in (7.3) and the Walsh spectrum Λg defined
as in (7.6).

Theorem 37. Let n= 2m+1 and g(x)= x2m+1+1+x3+x. Then g(x) is differentially 4-uniform.
Furthermore, its differential spectrum is given by

{ω0 = 22n−1 +22n−3 −3 ·2n−2,ω2 = 22n−2,ω4 = 22n−3 −2n−2}.

Proof. Let a,b ∈ F2n , a �= 0, and N(a,b) be the number of solutions of g(x+a)+g(x) = b in
F2n . Note that

g(x+a)+g(x)+b
= x2m+1

a+ xa2m+1
+a2m+1+1 + x2a+ xa2 +a3 +a+b

= ax2m+1
+ax2 +(a2m+1

+a2)x+g(a)+b.

Since a �= 0, g(x+a)+g(x)+b = 0 is equivalent to that

x2m+1
+ x2 + cx+d = 0, (7.10)

where

c = a2m+1−1 +a and d =
g(a)+b

a
. (7.11)

Note that c = 0 if and only if a = 1. Next we consider the following linearized polynomial

x2m+1
+ x2 + cx = 0. (7.12)

If c = 0 (i.e., a = 1), then (7.12) have two solutions in F2n , which are 0 and 1. If c �= 0 (i.e.,
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a /∈ F2), then by raising (7.12) to the power 2m, we get

x+ x2m+1
+ c2m

x2m
= 0. (7.13)

Adding up (7.12) and (7.13), we get

c2m
x2m

+ x2 +(c+1)x = 0,

which implies

x2m
=

x2

c2m +
c+1
c2m x. (7.14)

Substituting (7.14) into (7.13), we get

x4 +(c2m+1
+ c2 +1)x2 + c2m+1+1x = 0. (7.15)

The above argument shows that if x is a solution of (7.12), it must be a solution of (7.15). Note
that (7.15) is a linearized polynomial over F2n and the number of its solutions in F2n is 1, 2
or 4. Thus, we can conclude that the number of solutions of (7.12) in F2n is also 1, 2 or 4.
Moreover, note that

c = a2m+1−1 +a =
a2m+1

+a2

a
.

Thus, for any given a ∈ F2n \F2, x = a must be a solution of (7.12). Thus, when c �= 0, i.e.,
a /∈ F2, the number of solutions of (7.12) in F2n is 2 or 4.

Denote by M1 (resp. M2) the number of a ∈ F2n \F2 such that (7.12) has two (resp. four)
solutions in F2n . In what follows, we need to determine M1 and M2. We further investigate the
linearized polynomial (7.15). Since x = 0 and x = a are its solutions, the polynomial on the
left hand side of (7.15) has a factorization over F2n as follows

x4 +(c2m+1
+ c2 +1)x2 + c2m+1+1x = x(x+a)(x2 +ax+

c2m+1+1

a
),

where c = a2m+1
+a2

a . (One can verify that a2 + c2m+1+1

a = c2m+1
+ c2 + 1.) To check the exact

number of solutions of (7.12), we should investigate the solutions of the following quadratic
equation

x2 +ax+
c2m+1+1

a
= 0. (7.16)
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Note that

Trn
1

(
c2m+1+1

a3

)
= Trn

1

(
a2+a2m+2

a2m+1 · a2m+1
+a2

a4

)
= Trn

1

(
a4+a2·a2m+1

+a2m+2 ·a2m+1
+a2·a2m+2

a2m+1 ·a4

)
= Trn

1

(
1

a2m+1 +
1
a2 +

a2m+2

a4 + a2m+1

a2

)
= Trn

1
(1

a

)
+Trn

1
(1

a

)
+Trn

1

(
a2m+1

a2

)
+Trn

1

(
a2m+1

a2

)
= 0.

Thus, (7.16) has two solutions in F2n . This also shows that for any a ∈ F2n \F2, (7.15) always
has four solutions in F2n . By Theorem 1 in [8], one can get the solutions of (7.16), which are

x1 = a
m

∑
i=1

(
c2m+1+1

a3

)22i−1

, and x2 = x1 +a.

Next the main task is to verify that whether x1 is a solution of (7.12) or not.

Let y = x1
a , then by (7.16) we have

y2 + y+
c2m+1+1

a3 = 0. (7.17)

If x1 is a solution of (7.12), we also have

y2m+1
+

a2

a2m+1 y2 +
ca

a2m+1 y = 0. (7.18)

Combining (7.17) and (7.18), we have

y2m+1
+ y+

(c
a

)2m+1+1
= 0. (7.19)
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On the other hand, by (7.17) we have

y2m+1
+ y

=
m
∑

i=0

(
y2 + y

)2i

=
m
∑

i=0

(
c2m+1+1

a3

)2i

=
m
∑

i=0

(
1

a2m+1 +
1
a2 +

a2m+2

a4 + a2m+1

a2

)2i

=
m
∑

i=0

((
1
a2

)2m

+ 1
a2 +

(
a2m+1

a2

)2

+ a2m+1

a2

)2i

= Trn
1

(
1
a2

)
+ 1

a2m+1 +
a2m+1

a2 +

(
a2m+1

a2

)2m+1

= Trn
1

(
1
a2

)
+ 1

a2m+1 +
a2m+1

a2 + a2

a2m+2

= Trn
1

(
1
a2

)
+1+

(
a2m+1

+a2

a2

)2m+1

· a2m+1
+a2

a2

= Trn
1

(
1
a2

)
+1+

( c
a

)2m+1+1
.

(7.20)

By (7.20) and (7.19), we can conclude that for each a ∈ F2n \F2, the solution x1 of (7.16) is
also a solution of (7.12) if and only if Trn

1
(1

a

)
= 1. This means that for each a ∈ F2n \F2,

(7.12) has two (resp. four) solutions in F2n if and only if Trn
1
(1

a

)
= 0 (resp. Trn

1
(1

a

)
= 1). It is

obvious that the number of a ∈ F2n \F2 such that Trn
1
(1

a

)
= 0 (resp. Trn

1
(1

a

)
= 1) is equal to

2n−1 −1. Thus, we obtain that M1 = M2 = 2n−1 −1.

For each given a ∈ F
∗
2n , let La(x) = x2m+1

+ x2 + cx, and recall that c = a2m+1
+a2

a . Then, La(x)
is a linear transformation from F2n into itself. Let Ai = {a ∈ F2n \F2 | Trn

1(
1
a) = i}, where

i = 0,1. Note that F∗
2n = {1} ∪ A0 ∪ A1. The above arguments have shown that La(x) = 0

has two solutions in F2n if a ∈ {1}∪A0 and has four solutions in F2n if a ∈ A1. Moreover,
when (7.12) has two (resp. four) solutions in F2n , i.e., the kernel of La(x) has cardinality two
(resp. four), then by the homomorphism theorem the image of La(x) has cardinality 2n−1 (resp.
2n−2), and for each element d in the image, there exist exactly two (resp. four) elements x’s in
F2n such that La(x) = d.

For each a ∈ F
∗
2n , let Ba denote the image of the linear transformation La(x) = x2m+1

+x2 +cx.
We have obtained that |Ba| = 2n−1 if a ∈ {1} ∪ A0 and |Ba| = 2n−2 if a ∈ A1. By (7.11),
for a given element a ∈ F

∗
2n , the correspondence between d and b is one-to-one. Thus, we

can conclude that for each a ∈ {1}∪A0 (resp. a ∈ A1 ), N(a,b) = 2 (resp. 4) if and only if
b∈ aBa+g(a) = {ad+g(a) | d ∈Ba}, where N(a,b) denotes the number of solutions of (7.10)
in F2n . In other cases, we all have N(a,b) = 0. Thus, the number of pairs (a,b) ∈ F

∗
2n ×F2n

such that N(a,b) = 2 (resp. 4) is equal to 2n−1 · 2n−1 (resp.
(
2n−1 −1

) · 2n−2). This together
with (7.4) gives the differential spectrum.

Note that Trn
1(ag(x)) = Trn

1(a(x
2m+1+1 + x3 + x)) is a quadratic Boolean function from GF2n to

GF2. According to Lemma 7, the Walsh transform of Trn
1(ag(x)) heavily depends on its rank.

Below is an auxiliary result for the rank of Trn
1(ag(x)).
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Lemma 8. Let s, n, k be positive integers satisfying gcd(s,n)= 1, and without loss of generality
we also assume that k ≤ n/2. Let

Q(x) =
k

∑
i=1

Trn
1(cix2si+1),

where ci ∈ F2n and at least one ci is nonzero for 1 ≤ i ≤ k. Then, the rank 2h of Q(x) is in the
range n−2k ≤ 2h ≤ n.

Proof. We consider the following equation

Q(x)+Q(z)+Q(x+ z)

= Trn
1

(
k
∑

i=1

(
cix2si

z+ cixz2si
))

= Trn
1

(
k
∑

i=1

(
cix2si

z+ c2−is

i x2−is
z
))

= Trn
1

(
z

k
∑

i=1

(
cix2si

+ c2−is

i x2−is
))

= 0

for all z ∈ F2n . The above equation holds if and only if

k

∑
i=1

(
cix2si

+ c2−is

i x2−is
)
= 0,

which is equivalent to

k

∑
i=1

(
cix2si

+ c2−is

i x2−is
)2ks

=
k

∑
i=1

(
c2ks

i x2s(k+i)
+ c2s(k−i)

i x2s(k−i)
)
= 0. (7.21)

We can rewrite (7.21) in the following form

2k

∑
i=0

aix2si
= 0, (7.22)

where ai = c2si

k−i for i = 0,1, . . . ,k− 1, ak = 0 and ai = c2ks

i−k for i = k+ 1,k+ 2, . . . ,2k. Since
gcd(s,n) = 1, according to [3, Corollary 1], the equation (7.22) has at most 22k solutions in
F2n . The desired result then follows.

With Theorem 7.3 and Lemma 8, we are ready to prove the following theorem.

Theorem 38. Let n = 2m+1 and g(x) = x2m+1+1+x3+x. Then the Walsh spectrum of g(x) is
given in Table 7.1.

Proof. It is easily seen that
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Table 7.1: The Walsh spectrum of x2m+1+1 + x3 + x

Value Frequency

0 9 ·22n−4 +3 ·2n−3 −1

±2m+1 (5·2n−1−2)
3

(
2n−2 ±2

n−3
2

)
±2m+2 (2n−1−1)

3

(
2n−4 ±2

n−5
2

)

Wg(0,b) = ∑
x∈F2n

(−1)Trn
1(bx) =

⎧⎪⎨⎪⎩2n, if b = 0,

0, if b �= 0.

When a �= 0, Wg(a,b) = ∑
x∈F2n

(−1)Trn
1

(
ax2m+1+1+ax3+(a+b)x

)
, and Trn

1(ax2m+1+1 +ax3), denoted

by Qa(x), is a quadratic form on F2n . Note that

Qa(x) = Trn
1(ax2m+1+1 +ax3) = Trn

1(a
2m

x2m+1 +a22m
x22m+1).

Then, by Lemma 8, the rank of Qa(x) is n−3 or n−1 since n is odd and gcd(m,n) = 1. When
a runs through F

∗
2n , assume that the number of a ∈ F

∗
2n such that Qa(x) has rank n− (2i− 1)

is Ni, i = 1,2. Then, by Lemma 7, when (a,b) runs through F2n ×F2n , the Walsh transform
Wg(a,b) of g(x) has the following distribution

Wg(a,b) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, (2n −1)+N1(2n −2n−1)+N2(2n −2n−3) times,

±2m+1, N1(2n−2 ±2
n−3

2 ) times,

±2m+2, N2(2n−4 ±2
n−5

2 ) times.

Next we calculate the fourth power sum of Wg(a,b). On one hand, we have

∑
a,b∈F2n

(Wg(a,b))
4 = 24n +24m+4 ·2n−1 ·N1 +24m+8 ·2n−3 ·N2. (7.23)

On the other hand, we have

∑
a,b∈F2n

(Wg(a,b))
4

= ∑
x,y,u,v∈F2n

∑
b∈F2n

(−1)Trn
1(b(x+y+u+v)) ∑

a∈F2n
(−1)Trn

1(a(g(x)+g(y)+g(u)+g(v)))

= 22nT,

(7.24)

where T denotes the number of (x,y,u,v) ∈ (F2n)4 satisfying⎧⎪⎨⎪⎩x+ y+u+ v = 0,

g(x)+g(y)+g(u)+g(v) = 0.
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Let N(a,b) be the number of solutions of g(x+ a) + g(x) = b in F2n . Then, we have T =

∑
a,b∈F2n

N(a,b)2. Using the notation and results in Theorem 37 and its proof, we have

T = ∑
a,b∈F2n

N(a,b)2 = 22n +4ω2 +16ω4 = 4 · (22n −2n) . (7.25)

Combining (7.23), (7.24), (7.25) and the fact that N1 +N2 = 2n −1, we obtain the distribution
of the Walsh transform of g(x) as in Table 7.1.

7.4 Binary codes from the Welch APN power function

For the Welch APN power function F(x) = x2m+3 and f (x) = F(x+ 1)+F(x)+ 1, it is easy
to verify that

f (x) = F(x+1)+F(x)+1 = (x+ x2m
)(x2 + x+1) = g(x+ x2m

),

where g(x) is the Welch permutation discussed in Section 3. With the properties of g(x) pre-
sented in Section 3, we obtain the following result on the code CD( f ) constructed in Conjecture
1.

Theorem 39. Let n = 2m+ 1 with a positive integer m ≥ 2. The binary linear code CD( f )

defined in Conjecture 1 has length 2n−1, dimension n and its nonzero weights are contained in
the following set: {

2n−2,2n−2 ±2
n−3

2 ,2n−2 ±2
n−1

2

}
.

Proof. It is clear that the length of CD( f ) is 2n−1. As for the dimension, since CD( f ) is linear,
we need to consider the number of a ∈ GF2n such that Trn

1(a f (x)) = 0 for any x ∈ GF2n ,
equivalently, ∑x∈GF2n (−1)Trn

1(a f (x)) = 2n.

Define T0 = {x+ x2m |x ∈ GF2n} and T1 = {x+ 1 |x ∈ T0}. Note that x+ x2m
is a two-to-one

function over F2n . Thus T0 ∪T1 = GF2n . Since n is odd, we have Trn
1(1) = 1 and Trn

1(x) = 1
for any x ∈ T1. Since g(x) is a permutation of GF2n , one has

∑
z∈T0

(−1)Trn
1(bg(z)) + ∑

z∈T1

(−1)Trn
1(bg(z)) = ∑

z∈GF2n

(−1)Trn
1(bg(z)) = 0.
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Table 7.2: Some numerical results
Value of n Weight enumerator of CD( f )

5 1+6x10 +16x8 +10x6

7 1+64x32 +36x28 +28x36

9 1+ x144 +108x120 +286x128 +108x136 +9x112

11 1+440x496 +408x528 +22x480 +1156x512 +22x544

Then for any a ∈ GF∗
2n ,

∑
x∈F2n

(−1)Trn
1(a f (x)) = 2 ∑

z∈T0

(−1)Trn
1(ag(z))

= ∑
z∈T0

(−1)Trn
1(ag(z)) + ∑

z∈T0

(−1)Trn
1(ag(z+1)+1)

= ∑
z∈T0

(−1)Trn
1(ag(z)+z) + ∑

z∈T0

(−1)Trn
1(ag(z+1)+z+1)

= ∑
z∈T0

(−1)Trn
1(ag(z)+z) + ∑

z∈T1

(−1)Trn
1(ag(z)+z)

= ∑
x∈GF2n

(−1)Trn
1(ag(x)+x).

(7.26)

By the Walsh spectrum of g(x) in Theorem 38, it is clear that Wf (a,0) =Wg(a,1) �= 2n for any
nonzero a ∈ GF2n . This implies that CD( f ) has dimension n. Furthermore, it follows from (7.9)
that

wt(ca) = 2n−2 − 1
4 ∑

x∈F2n

(−1)Trn
1(ag(x)+x). (7.27)

From the Walsh spectrum of g(x) in Table 7.1, the possible nonzero weights of the code CD( f )
can be directly determined.

With the help of Magma, we obtain some numerical results list in Table 7.2 , which are in
accordance with Theorem 39.
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Chapter 8

Characterisation of the parameters of

MWS codes according to their spread

We introduce the concept of spread of a code, and we specialize it to the case of maximum
weight spectrum (MWS) codes. We classify two newly-defined sub-families of MWS codes
according to their weight distributions, and completely describe their fundamental parameters.
We focus on one of these families, the strictly compact MWS codes, proving their optimality as
MWS codes and linking them to known codes. This chapter is based on my work with Alessio
Meneghetti [9] which was presented at Sequences and Their Applications 2020 conference.

8.1 Introduction

Let Fq be a finite field with q elements. A [n,k]q linear code is a k-dimensional subspace of
F

n
q. The (Hamming) weight w(x) of a vector x ∈ F

n
q is defined to be the number of nonzero

components of x. The minimum of weights where x �= 0 is the minimal distance d of the
code. A linear code [n,k]q whose the minimum distance is d shall be denoted by [n,k,d]q.
A generator matrix for an [n,k]q linear code C is a k× n matrix over Fq whose row vectors
generate C. Let (n+1)-tuples {A0,A1, . . . ,An} be the weight distribution of an [n,k,d]q linear
code C where Ai is the number of codewords in C with weight i. We denote by S(C) the set of
non-zero weights of a linear code C, i.e. s ∈ S(C) if there exists c ∈C\{0} such that w(c) = s.

The weight distribution of linear codes has been appeared in many works over the years.
MacWilliams in [7] constructed linear codes by employing the elements of a given weight
set. She also proved that the weight set of a linear code can be derived from the weight set of
its dual. Delsarte in [4] discussed some properties of codes using their weight distributions. In
particular an upper bound

|C| ≤
r

∑
i=0

(
n
i

)
(q−1)i

on the size of a q-ary code C with r nonzero distinct weights was proposed. In addition, a
lower bound on the size of C was obtained using the number of distinct nonzero weights of its
dual code C⊥. More bounds on |C| can be found in [5].
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The concept of binary linear codes with distinct weights has been firstly proposed and fully
characterised in [6]. In this work, the authors define a distinct weight (DW) code as a binary
code whose weight distribution is of the form Ai ∈ {0,1} for each i. Other than providing an
infinite family of DW codes they study the automorphism group of DW codes.

Definition 44. We denote by Bk the [2k −1,k,1]2 DW code defined by the generator matrix

G =

⎡⎢⎢⎢⎢⎣
1(k)1

1(k)2
...

1(k)k

⎤⎥⎥⎥⎥⎦
where 1(k)i for i = 1, . . . ,k is the (2k −1)-bits row vector whose first 2i −1 bits are equal to 1
and the remaining are equal to 0, e.g.⎧⎪⎨⎪⎩

1(3)1 = (1,0,0,0,0,0,0)
1(3)2 = (1,1,1,0,0,0,0)
1(3)3 = (1,1,1,1,1,1,1)

⇒

⎡⎢⎣1(3)1

1(3)2

1(3)3

⎤⎥⎦=

⎡⎣1 0 0 0 0 0 0
1 1 1 0 0 0 0
1 1 1 1 1 1 1

⎤⎦ .

Due to [6], there exist binary linear codes in which no two distinct codewords have the same
Hamming weight and they are called distinct weight codes. Recently, independently from
[6], the authors of [12] proposed the problem of determining the maximum possible number
of distinct weights in a block code over any finite field Fq. Other than providing a complete
solution in the general nonlinear q-ary case, they showed a construction for binary linear codes
attaining the maximum possible number of distinct weights. This family coincides with the
family Bk recalled in Definition 44. In the same work, the authors proposed a bound and
conjectured that the maximum number of distinct nonzero weights that a k-dimensional q-
ary code can have is qk−1

q−1 . This work opened several lines of research, starting from two
independent works providing solutions for the conjecture [2], [8]. Following the notation
established in [2], the codes that attain this upper bound are now known as maximum weight
spectrum (MWS) codes. Observe that DW codes are a particular case of MWS codes. Shorter
codes with maximum number of weights for a given dimension were later discussed in [1, 3].
In [11], the authors discussed the largest number of nonzero weights a cyclic code of dimension
k over Fq can have.

Theorem 40. [12] Let C be a k-dimensional q-ary linear code. Then the maximum possible
number qk of distinct non-zero weights in C equals qk =

qk−1
q−1 .

Definition 45. [2] An [n,k]q code C such that |S(C)| = qk−1
q−1 is called maximum weight spec-

trum (MWS) codes.

We recall another important example of MWS code.

Definition 46. We denote with Dq the [q(q+1)
2 ,2, q(q−1)

2 ]q code generated by

G′ =

⎡⎢⎣ 1
α1︸︷︷︸

1

1 1
α2 α2︸ ︷︷ ︸

2

· · · 1 · · · 1
αq−1 · · · αq−1︸ ︷︷ ︸

q−1 times

1 · · · 1
0 · · · 0︸ ︷︷ ︸

q times

⎤⎥⎦ ,
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where α is a primitive element of Fq.

Observe that for k = 2 and q = 2, the codes Bk and Dq coincide. This is a hint that there exists
a family of MWS codes sharing the same structure and properties which will be named as
strictly compact MWS codes and denoted by SCq,k later.

Subsequent works propose several constructions for new families of codes [2, 3, 10], trying
in particular to obtain tight bounds on the minimum possible length of MWS codes. Another
related open question is whether, given two integers k and s, there exists a linear code with
dimension k and exactly s distinct weights. A positive answer has been provided in [8] for the
particular case of binary codes, while the q-ary case is left as a conjecture.

Due to [2], the minimum possible length of an [n,k,d]q MWS code is n = q
2 · qk−1

q−1 . An [n,k,d]q
MWS code achieves this length if it has codewords of every Hamming weight from d to n and
we call it strictly compact (Definition 47) MWS code. An [m, l,s]q compact (Definition 47)

MWS code has codewords of every Hamming weight from s to s+ ql−1
q−1 −1.

In this work we investigate the parameters of MWS codes according to new classifications.
The properties and parameters of MWS codes, strictly compact MWS codes and compact
MWS codes are discussed. In particular, the codes Bk and Dq are strictly compact, and, as all
strictly compact codes, they are optimal MWS codes (we will prove this in Corollary 2). We
introduce the concept of spread (Definition 48) of a code, a sort of distance between the weight
distribution of a code from a reference one. We use strictly compact codes as a reference code
to measure the spread of MWS codes, namely, the spread of a MWS code C is the distance
between its weight distribution and the one of a hypothetical strictly compact MWS code with
equal length (see Definition 49). This choice is based upon the optimality of strictly compact
codes, and it turns out that the spread is deeply linked with the length of MWS. Moreover, we
investigate bounds on the minimum distance and the spread of known MWS codes.

8.2 Notation and remarks

In this section we discuss the parameters of MWS codes according to their weight distribution.
In particular we will see how length, dimension and minimum distance of MWS codes are
related to their weight distribution. Particular emphasis will be put on the parameters of the
family SCq,k briefly introduced in Section 8.1. The following lemma is a direct consequence
of the definition of linear codes, hence we recall it without providing a proof.

Lemma 9. Let {Ai}i∈{0,...,n} be the weight distribution of an [n,k,d]q linear code C. If C has
no coordinate position is identically 0 (non-degenerate), then

n =
∑i Aii

qk −qk−1 .

We introduce some useful definitions to classify MWS codes according to their weight distri-
bution.



134 Characterisation of the parameters of MWS codes according to their spread

Definition 47. An MWS [n,k,d]q code C is compact if its set of weights S(C) is S(C) = {d,d+

1, . . . ,d + qk − 1} where qk =
qk−1
q−1 , and it is strictly compact if it is compact and n ∈ S(C).

SCq,k denotes a strictly compact MWS code with dimension k over Fq.

Proposition 14. Bk and Dq in Definitions 44 and 46 are strictly compact for respectively any
choice of k and q. In particular

S(Bk) = {1, . . . ,n}= { 1 , 2 , . . . , 2k −2 , 2k −1︸ ︷︷ ︸
qk consecutive integers

},

and

S(Dq) = {d, . . . ,n}=
{

q(q−1)
2

, . . . ,
q(q+1)

2︸ ︷︷ ︸
qk consecutive integers

}
.

Proof. It follows from computation.

Equivalent to Definition 47, an MWS is compact if its weight distribution is

{Ai}i∈{0,...,n} = {1, 0, . . . ,0︸ ︷︷ ︸
1≤i≤d−1

, q−1, . . . ,q−1︸ ︷︷ ︸
d≤i≤d+qk−1

, 0, . . . ,0︸ ︷︷ ︸
i>d+qk−1

}

while it is strictly compact if

{Ai}i∈{0,...,n} = {1, 0, . . . ,0︸ ︷︷ ︸
1≤i≤d−1

, q−1, . . . ,q−1︸ ︷︷ ︸
i≥d

}.

Observe that for a strictly compact MWS we can write

S(C) = {d,d +1, . . . ,n}= {n−qk +1, . . . ,n−1,n}= {n− i | i = 0,1, . . . ,qk −1} ,

and in the general case, we can write the set of weights of an MWS code as

S(C) = {n− s0, . . . ,n− sqk−1}. (8.1)

A strictly compact MWS code with d = 1 is called full weight spectrum (FWS) code in [1].

Definition 48. Let C and C̄ be two q-ary codes with the same length n and dimension k. We
define the spread of C w.r.t a target code C̄ as the value

ΔC̄(C) =
1

q−1

M

∑
i=1

(w̄i −wi) ,

where {w1, . . . ,wM} and {w̄1, . . . , w̄M} are the multiset of all non-zero weights of C and C̄.

We remark that ΔC̄(C) is therefore equal to 1
q−1

(
∑n

i=1 iĀi −∑n
j=1 jA j

)
, with Āi and A j the

weight distributions of C̄ and C respectively. Observe that ΔC̄(C) =−ΔC(C̄).
For our purposes, we specialize Definition 48 to the case of MWS codes, using a hypothetical
strictly compact MWS code as the target code. In this case we can therefore omit to specify
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the target code, since given the [n,k]q MWS code C we know exactly the weight distribution
of a strictly compact [n,k]q MWS code.

Definition 49. The spread of an MWS code C with S(C) = {n− s0, . . . ,n− sqk−1} is the value

Δ(C) = (s0 −0)+(s1 −1)+ · · ·+(sqk−1 −qk +1) =
qk−1

∑
i=0

(si − i). (8.2)

With this definition, Δ(C) can be thought as a measure of how much the weight distribution
of an MWS code is spread across the entire set {1, . . . ,n}, in terms of the distance from the
weight distribution of a hypothetical strictly compact MWS code of length n. Due to Definition
49, we can equivalently define a strictly compact MWS code C as an MWS code with spread
Δ(C) = 0. As we will see, strictly compact MWS codes are optimal codes, namely, there exist
no MWS code with equal dimension and length strictly less than their length. To prove this
claim, the next section deals with the characterisation of the parameters of strictly compact
MWS codes and their comparison with general MWS codes.

8.3 Strictly Compact MWS codes

In this section we use the notation introduced in previous section to discuss the parameters of
MWS codes, with a focus on strictly compact codes. We prove in particular the link between
length and spread of MWS codes, implying the optimality of strictly compact codes.

Theorem 41. Let SCq,k be a strictly compact MWS code of dimension k over Fq. Then its
parameters are [ q

2
qk , k ,

(q
2
−1

)
qk +1

]
q
.

Proof. A strictly compact [n,k,d]q MWS code C is by definition a code with spread Δ(C) = 0.
In particular

S(C) = {n,n−1, . . . ,n−qk +1}, and Ai = q−1, i ∈ S(C). (8.3)

By Lemma 9 we have n = ∑i Aii
qk−qk−1 , which, due to Equation (8.3), can be written as

n =
∑qk−1

i=0 (q−1)(n− i)
qk −qk−1 =

n ·qk −∑qk−1
i=0 i

qk−1 =
n ·qk − (qk−1)qk

2
qk−1 ,

hence

n
(

qk −qk−1
)
=

(qk −1)qk

2
(8.4)

We observe that on the left-hand side of Equation (8.4), the coefficient of n is qk−qk−1 = qk−1,
while on the right-hand side we have qk −1 = q ·qk−1. By substitution, we deduce

nqk−1 =
(q ·qk−1)qk

2
, (8.5)
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which leads to the claimed length of C.
The proof that d =

(q
2 −1

)
qk + 1 is then a direct consequence of C being a strictly compact

MWS code, since in this case the minimum weight is n−qk +1.

Example 5. As expected, if we use q = 2, then the parameters are [2k − 1,k,1]2, namely the
parameters of the known code SC2,k. Similarly, if we use k = 2, the parameters listed in Theo-
rem 41 become

[ q
2 q2 , 2 ,

(q
2 −1

)
q2 +1

]
q =

[ q
2 (q+1) , 2 , q

2(q−1)
]

q, i.e. the parameters
of SCq,2.

Example 6. Consider q = 4 and k = 3, namely the smallest case with q even which are not
covered by SC2,k or SCq,2. If a strictly compact MWS code would exists, then it would be a
[42,3,22]4 code.

Theorem 42. Let C be an MWS code. Then n = q
2qk +

Δ(C)
qk−1

.

Proof. We proceed similarly to the proof of Theorem 41, where Equation (8.3) is substituted
by Equation (8.1). This implies, after some computation, that Equation (8.4) becomes

n
(

qk −qk−1
)
=

(qk −1)qk

2
+

qk−1

∑
i=0

(si − i) .

We recall that by Equation (8.2) the sum on the right-hand side is Δ(C). In this way, instead of
Equation (8.5) we have nqk−1 =

(q·qk−1)qk
2 +Δ(C).

Corollary 2. Strictly compact MWS codes are optimal among MWS codes.

Proof. It follows from Theorem 41 and Theorem 42. The spread of an MWS code is indeed
equal to zero if and only if the code is strictly compact, and the length of an MWS code grows
together with its spread.

8.4 On the parameters of MWS codes

In this section we consider again general MWS codes, and we use strictly compact MWS
codes to obtain a characterization of their parameters.

Corollary 3. Let C be an MWS code with q odd and odd dimension k. Then Δ(C) > 0. In
particular, there does not exist a strictly compact MWS code SCq,k for q and k both odd.

Proof. If Δ(C) = 0 then C is a strictly compact MWS code, hence by Theorem 41 we know
that its length is n = q

2qk ∈ Z. We have two possible cases: either q is even, or qk is. Observe
that if q is odd, the latter is true if and only if k is even.

Corollary 4. Let C be an [n,k,d]q MWS code.

1. Let q · k be even. Then Δ(C) = hqk−1, with h a non-negative integer.
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2. Let q · k be odd. Then Δ(C) = 2h+1
2 qk−1, for some positive integer h.

Proof. The length of C is equal to q
2qk +

Δ(C)
qk−1

∈ Z.

1. If q · k is even, then either q is even or qk is. This implies that q
2qk ∈ Z, and since n ∈ Z, so

has to be n− q
2qk =

Δ(C)
qk−1

.

2. If both q and k are odd, then q
2qk is not an integer. However, since n ∈ Z, Δ(C)

qk−1
is equal to

2h+1
2 for a positive integer h. This implies that the spread of C is Δ(C) = 2h+1

2 qk−1.

Example 7. Consider an MWS code C of dimension k = 3 over F3, so that by Corollary 4
C has spread Δ(C) = 2h+1

2 qk−1 = 2(2h+ 1) ≥ 6. If we assume Δ(C) = 6 then we can apply
Theorem 42 to deduce that the length of C is

n =
q
2
· qk −1

q−1
+

q−1
qk−1 −1

·6 =
3
2
· 33 −1

2
+

2
32 −1

·6 =
3
2
· 26

2
+

3
2
=

39
2
+

3
2
= 21.

Some possible sets of non-zero weights of such an MWS code are

{3,10,11,12,13,14,15,16,17,18,19,20,21}
{4,9,11,12,13,14,15,16,17,18,19,20,21}
{5,8,11,12,13,14,15,16,17,18,19,20,21}
{6,7,11,12,13,14,15,16,17,18,19,20,21}
{7,8,9,12,13,14,15,16,17,18,19,20,21}.

Proposition 15. Let C be an [n,k,d]q MWS code.

1. If either q or k are even, then

⎧⎪⎨⎪⎩
n = q

2qk +h

d ≥ qk(
q
2 −1)+h(qk−1

qk
−qk−1)+1

d ≤ qk(
q
2 −1)+hqk−1

qk
+1

where h is a non-negative integer.

2. If both q and k are odd, then⎧⎪⎨⎪⎩
n = q

2qk +h+ 1
2

d ≥ qk(
q
2 −1)+(2h+1

2 qk−1)(
1
qk
−1)+1

d ≤ qk(
q
2 −1)+(2h+1

2 )(qk−1

qk
)+1
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where h is a positive integer.

Proof. It follows from Corollary 4, noticing that the minimum distance is linked to the spread
of the code, which in turn depends on h.

8.5 Compact MWS codes

In this section we focus on the parameters of compact MWS codes, which are MWS codes
whose set of weights is of the form {d,d +1, . . . ,d +qk −1}.
Let us start with considering a code with either q odd and k even or with q even, i.e. as in
Corollary 4, case 1, so that the spread is hqk−1 and the length is n = q

2qk +h.
If we suppose that An = 0, then the spread has to be at least qk, and this implies h ≥ qk

qk−1
. As a

consequence n ≥ q
2qk +

qk
qk−1

.
Suppose now the maximum weight in C is n− j, namely An− j �= 0 and Ai = 0 for any i > n− j.
Similarly to above, h ≥ j qk

qk−1
. In this case we have obtained that n ≥ q

2qk + j qk
qk−1

. We obtain
the following complete characterization of the parameters of compact MWS codes.

Corollary 5. Consider an [n,k,d]q compact MWS code C. Then

1. if q · k is even, then the parameters of C are[
(
q
2
+

j
qk−1

)qk , k , qk(
q
2
−1)+ j(

qk

qk−1
−1)+1

]
,

where qk−1| j.
2. if q · k is odd, then the parameters of C are[

(
q
2
+

j
qk−1

)qk , k , qk(
q
2
−1)+ j(

qk

qk−1
−1)+1

]
,

where j = 2r+1
2 qk−1 and r ∈ N.

Proof. If q · k is even, which was already introduced in the discussion above, we consider
a code with maximum weight n− j, and we assume it is compact. Then the length is n =
q
2qk + j qk

qk−1
and therefore the distance is

d = n− j−qk +1 =
q
2

qk + j
qk

qk−1
− j−qk +1 = qk(

q
2
−1)+ j(

qk

qk−1
−1)+1

The case in which q · k is odd, namely as in Corollary 4, case 2, is very similar, since if the
maximum weight is n− j, the spread is hqk−1+

1
2 ≥ jqk, then h≥ j qk

qk−1
− 1

2 . As a consequence,

the length is n ≥ q
2qk + j qk

qk−1
+ 1

2 : which coincides with the bound in the first case and this
bound is attained with equality if the code is compact.
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As a consequence of Corollary 5 we have the following result.

Corollary 6. The only compact MWS code with d = 1 is the binary full weight spectrum code.

8.6 Known codes

MWS codes have been studied in [2, 8], where the authors also presented some bounds on the
length of [n,k]q MWS codes. In this section we investigate bounds on the minimum distance
and the spread of known MWS [n,k,d]q codes. In this section, by vector A = [a1, . . . ,ak] we
mean a nonzero element of Fk

q up to projective equivalence. We only consider non-degenerate
[n,k]q codes. Let us first give some definitions and a simple observation.

Definition 50. Let m1, . . . ,mk be elements in Fq not all equal to zero. The set H consisting of
all vectors X = [x1, . . . ,xk] such that

m1x1 + · · ·+mkxk = c , for c ∈ Fq ,

is called a hyperplane, which is a (k−1)-dimensional subspace of (Fq)
k.

The number of the 1-dimensional vector spaces in (Fq)
k is equal to qk−1

q−1 = qk which coincides
with the number of (k−1)-dimensional subspaces (hyperplanes) of (Fq)

k. Consequently, every

hyperplane contains qk−1−1
q−1 = qk−1 k-vectors over Fq. Any pair of distinct hyperplanes in (Fq)

k

intersects in a (k−2)-dimensional subspace over Fq.

Definition 51. Let C be an [n,k]q code with generator matrix G where M is the (multi)set
of columns of G and A is a subspace in (Fq)

k. Then CharG(A) is the number, including
multiplicity, of k-vectors in the (multi)set M ∩A. We denote by m(v) the multiplicity of the
vector v in M.

Remark 5. Let G be a generating matrix of an [n,k]q code C. For any non-zero vector
m = (m1, . . . ,mk) ∈ (Fq)

k, the hyperplane m1x1 + · · ·+mkxk = 0 contains n− s columns (with
multiplicity) of G if and only if the codeword mG has weight s. So we have a hyperplane with
CharG(H) = n− s if and only if there is a codeword c ∈C with weight s.

Theorem 43. There exists an [n,k,d]q MWS code for each prime power q and k ≥ 2, where

n = 2qk −1 and d = 2qk−1−1 −1.

Proof. The geometric construction given in [2, Theorem 3.4] leads to an [n,k,d]q code of
length n = 2qk −1. In the proof the characters of different hyperplanes are ranged from 2qk−1 −
1 to 2qk −2qk−1−1. So the minimum distance is n−2qk −2qk−1−1 = 2qk−1−1 −1.

Lemma 10. If C is an [n,k,d]q MWS code with k ≥ 2, then

n ≥ �q
2

qk� , d ≥ �q
2

qk −qk +1� and Δ(C)≥ 0.
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Proof. The lower bound for n was proven in [2, Lemma 5.1] and also can be seen as a con-
sequence of Theorem 42 and the bound for minimum distance is already given in Proposition
15. Finally the bound for Δ(C) comes from its definition.

Proposition 16. For k = 2 the bounds in Lemma 10 are tight for all prime powers q.

Proof. The proof follows from Definition 46, Proposition 14 and [2, Proposition 5.4].

Remark 6. Let β ∈ Fq and let c = (c1, . . . ,cn) be a vector in (Fq)
n. The number of coordinates

of c equal to β is denoted by c[β ], namely c[β ] = |{i ∈ {1, . . . ,n} | ci = β}| . In [2] the authors
considered codes with the following property:

There exists β ∈ Fq, β �= 0, such that, for a,b ∈C, a[β ] = b[β ] only if a = b. (A)

Due to [2, Corollary 5.2], if an [n,k,d]q MWS code C satisfy property (A), then n ≥ �q·qk+1
2 �.

This follows by applying the bound in the Lemma 10 to the [2n+ 1,k+ 1,d′]q MWS code C̄
arisen from the construction given in [2, Proposition 4.1]. Using the same strategy we can get

Δ(c)≥ (q−2)(qk −q)(qk+1 −1)
4(q−2)2 ·q .

In this setting the qk smallest elements in S(C̄) are exactly the elements in S(C). So the mini-
mum distance of the new [2n+1,k+1,d′]q MWS code C̄ coincides with the minimum distance
of [n,k,d]q code C which means d′ = d.

Proposition 17. There exists an [7,3]2 strictly compact MWS code C, and there exists an
[32,3]3 MWS code C′ which is not strictly compact.

Proof. The generator matrix of an [7,3]2 is a matrix G ∈ F
3×7
2 where the (multi)set of columns

M can be generated by 3 linearly independent vectors v1,v2,v3 in F
3
2 where m(vi) = 2i. F

3
2

contains q3 = 7 hyperplanes (2-dimensional subspaces) with characters {0,1, . . . ,6}. Due to
Remark 5, the set of nonzero weights is S(C) = {1,2, . . . ,7}. It is easy to verify that d = 1,
Δ(C) = 0, |S(C)| = qk and n ∈ S(C). So C is a strictly compact MWS code. The existence of
[7,3]2 MWS code is also shown in [2, 12].

The second part was also proven in [2]. Using the set of characters of hyperplanes, we can
determine S(C′) = {10,14,16,19,20,21,22,24,26,27,28,30,31}, d = 10 and Δ(C′) = 50. All
the parameters satisfy the bounds given in the Lemma 10. Moreover, we already proved that
there is no strictly compact MWS code when q.k is odd.

Proposition 18. For each k ≥ 2 there exists an MWS code C of length, minimum distance and
spread

n = qk−1

(
qk

2

)
, d = qk−2

[(
qk −1

2

)
−qk +1

]
and Δ(C) =

qk ·qk−1(qk ·qk−1 −qk−1 −q)
2

.

Proof. Let {H0, . . . ,Hqk−1} be the set of hyperplanes in (Fq)
k. Define the generating matrix

G as follows. For each vector v ∈ F
k
q, let m(v) = ∑v∈Hi i. For k = 2, a hyperplane is just a

single vector of length k over Fq, so two hyperplanes might coincide or disjoint. If k = 3,
then two distinct hyperplanes have intersection in a 1-dimensional subspace. So for k ≥ 3, a
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pair of distinct hyperplanes have intersection in a k− 2-subspace. As a result, for k ≥ 2 and
0 ≤ s ≤ qk−1

q−1 −1 = qk −1 we have

CharG(Hs) = qk−2

(
qk

2

)
+(qk−1 −qk−2) · s,

which tells the minimum distance is d = n−CharG(Hqk−1) = qk−2
[(qk−1

2

)−qk +1
]

and the

number of columns of G should be n = qk−1
(qk

2

)
. The rest follows by applying Theorem

42.

The above length was given in [1, Proposition 3.3] and in [2, Corollary 5.9] the existence of

MWS codes with length n < q
k2+k−4

2 and dimension k ≥ 3 is proven. The later gives a shorter
length than the length in Proposition 18 where k = 3.

8.7 Conclusions

In this work we introduce the notion of spread of a code, a tool to study the fundamental pa-
rameters of a code w.r.t the weight distribution of a target code. More precisely, the spread is
a measure of how much the weight distribution of a a code C is distant from the weight distri-
bution of a target code. We focus here on MWS codes, a class of codes studied in the past few
years by several authors, and we apply our methods to study the parameters of known exam-
ples of MWS codes. As a result of our approach, we are able to completely characterise the
length of MWS codes according to the their spread and to provide bounds on their minimum
distances (Proposition 15). Moreover, we specialise our results to two sub-families, namely
to compact (Corollary 5) and strictly-compact (Theorem 41) MWS codes. We believe that the
results obtained for MWS codes are a hint for the usefulness of analysing the parameters of
families of codes according to their spread.
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Chapter 9

Conclusion

The main goal of this PhD project was to provide efficient decoding algorithms for the new de-
fined families of rank metric codes. Beside our main research topic, we have also worked on
two other problems in Hamming metric. The work presented in the included Chapters illus-
trates our results to this end. In particular, in Chapter 3, we have introduced an interpolation-
based decoding algorithm for AGTG codes and it is able to decode rank errors of rank up to
half the minimum distance. The decoding problem of AGTG codes has been reduced to the
problem of solving a projective polynomial equation of the form p(x) = u0xqr+1+u1x+u2 = 0
over Fqn . We have investigated the solutions of this equation when gcd(n,r) = 1 and proposed
a deterministic method to compute zeros of a linearized polynomial which has a close con-
nection with the zeros of p(x). Very recently, Kim, Choe and Mesnager provided a complete
solution for p(x) = 0 [4] and employing their result enables us to decode AGTG codes for all
the possible values under the condition of knowing a single solution of p(x) = 0.

In Chapter 4, a decoding algorithm for another new family of MRD codes called Trombetti-
Zhou codes [11] is provided. We used a similar interpolation-based approach as we used
in Chapter 3 but we managed to reduce the decoding problem to the problem of solving a
quadratic polynomial equation q(x) = x2 +ax+b = 0 over Fq2n . This equation can be solved
with linear-time complexity and the complexity of the whole decoding algorithm is dedicated
by the complexity of Berlekamp-Massey algorithm which is O(n2).

In Chapter 5, two new communication models which employ particular families of lin-
earized polynomials as error interpolation polynomial are introduced. We managed to decode
Gabidulin codes and go beyond the unique decoding radius by one unit. Using our models,
we are also able to reduce the complexity of decoding GTG and AGTG codes. Moreover, we
showed that one can define more constraints on error interpolation polynomials and decode
any errors of rank ≤ k, where k is the dimension of the code, added to GTG and AGTG codes.

Chapter 6 deals with different classes of rank metric codes that are not MRD but they are
optimal with respect to different Singleton-like bounds. Efficient encoding and decoding al-
gorithms were proposed for Hermitian, symmetric and alternating optimal rank metric codes.
In Chapters 3-5 we used the relations between the coefficients of the codes evaluation polyno-
mials but in this work we did not use the present symmetric relations and if someone manage
to involve them, it may lead them to go further and decode optimal codes beyond the unique
decoding radius.
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Chapter 7 is dedicated to the properties of Welch permutation polynomial g(x)= x2n+1+1+x3+
x over F22n+1 where n ≥ 2. We have derived the differential spectrum and Walsh transform of
g(x) which consequently lead us to compute the weight distribution of the code constructed in
[1, Conjecture 33].

Chapter 8 studied a class of linear codes named as maximum weight spectrum (MWS) codes
and they are linear codes with maximum number of distinct non-zero weights. We have intro-
duced two new sub-families of MWS codes called compact and strictly compact MWS codes
and studied the properties of these subfamilies. We also defined a new parameter called spread
for MWS codes and we proved that strictly compact MWS codes are optimal codes among all
MWS codes since they have spread equal to zero.

For future work on the the area of new optimal rank metric codes, the following research
questions are interesting to explore.

• Gabidulin codes has been used as an alternative for Goppa code in McElice cryptosystem
[2] and they have been shown to be vulnerable against structural attacks [7, 8]. With
our efficient decoding algorithms for the new MRD codes AGTG and TZ codes, one
may think of employing them to replace Gabidulin codes in GPT cryptosystem. So far
only one of the generalized versions of Gabidulin codes [10] has been used to replace
Gabidulin codes in [9].

• One can also use rank error vectors defined in Chapter 5 (first model) instead of space-
symmetric rank errors in [3] and use GTG (or AGTG) codes instead of Gabidulin codes
in GPT variants [5] and [6] then we may avoid potential structural attacks and possibly
get the same key size found in [3, Section VI.].

• Due to the symmetric and Hermitian properties of the codes investigated in Chapter 6,
there are some internal relations between the codewords components but in our decoding
algorithms non of these internal relations have been used and investigating the existing
relations may lead us to some new applications.
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