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In [6], Lilya Budaghyan and Claude Carlet introduced a family of
APN functions on F22k of the form F (x) = x(x2i + x2k + cx2k+i

) +
x2i

(c2k
x2k + δx2k+i

) + x2k+i+2k
. They showed that this infinite family

exists provided the existence of the quadratic polynomial G(y) =
y2i+1 + cy2i + c2k

y + 1, which has no zeros such that y2k+1 = 1,
or in particular has no zeros in F22k . However, up to now, no
construction of such polynomials is known. In this paper, we
show that, when k is an odd integer, the APN function F is CCZ-
equivalent to the one in [2, Theorem 1]; and when k is even
with 3 � k, we explicitly construct the polynomial G , and hence
demonstrate the existence of F . More generally, it is well known
that G relates to the polynomial Pa(x) = x2i+1 + x + a ∈ F2n [x]
and Pa has applications in many other contexts. We determine all
coefficients a such that Pa has no zeros on F2n when gcd(i,n) = 1
and n is even.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let F2n be a finite field. The number of zeros of the polynomial

Pa(x) = x2i+1 + x + a, a ∈ F∗
2n (1)
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has been studied in [17,18] as it has applications in several different contexts. For example, construct-
ing difference sets with Singer parameters [10,11], finding crosscorrelation between m-sequences
[13,16] and more recently in constructing error correcting codes [3]. Also, a similar problem con-
cerning the polynomial xpi+1 + ax + b over Fpn has been considered by Bluher in [1] for any prime p.

The following result from [15, Lemma 9] (for n odd), and [1, Theorem 5.6] (for any n and without
the condition gcd(i,n) = 1) shows that, when gcd(i,n) = 1, the polynomial Pa can only have none,
one or three zeros.

Result 1.1. For any a ∈ F∗
2n and a positive integer i with gcd(i,n) = 1, the polynomial Pa(x) = x2i+1 +

x + a has either none, one, or three zeros in F2n . Further, let M j denote the number of a such that
Pa(x) has j zeros, then

(1) If n is odd,

M0 = 2n + 1

3
, M1 = 2n−1 − 1, M3 = 2n−1 − 1

3
,

(2) If n is even,

M0 = 2n − 1

3
, M1 = 2n−1, M3 = 2n−1 − 2

3
.

Furthermore, it was studied in [17, Theorem 1] that, for which a, Pa(x) has exactly one zero. But
it is still unclear that for which a, Pa(x) has no zeros. In Theorem 2.1, when n is even, we solve the
following problem.

Problem 1.2. For which a ∈ F∗
2n , does Pa(x) have no zeros.

It is well known that Pa(x) are related to other polynomials. More precisely, for a polynomial of
the form G(x) = x2i+1 + αx2i + βx + γ over F2n , by substituting x with x + α, G(x) can be reduced

to the form H(x) = x2i+1 + αx + β . Moreover, by a simple substitution x = sx with s2i = α, H(x)

can be transformed into the form Pa(x) = x2i+1 + x + a. Through the above transformations and the
polynomials obtained in Theorem 2.1, we may get the polynomials with the forms G and H which
has no zeros on F2n . These polynomials of the form G and H , especially those with no zeros, are of
interest in other contexts, which is another reason for us to consider Problem 1.2. We will explain its
applications to APN functions below.

Before discussing the application to APN functions, we would like to briefly introduce these func-
tions. A function F : F2n → F2n is called almost perfect nonlinear (APN) if the number of solutions in
F2n of the equation

F (x + a) + F (x) = b

is at most 2, for all a,b ∈ F2n ,a �= 0. We also say it has differential uniformity of 2. APN functions
were introduced by Nyberg in [20], who defined them as the mappings with highest resistance to
differential cryptanalysis. In other words, APN functions are those for which the plaintext difference
x − y yields the ciphertext difference f (x) − f (y) with probability 1/2n−1. Since Nyberg’s character-
ization, many new APN functions have been constructed, see [6,2,5,7] and the references there. All
the new infinite families (from 2005) have been quadratic (algebraic degree of 2) multinomials, as
is the one F in this article. Note that, for a function F (x) = ∑2n−1

i=0 ai xi ∈ F2n [x], its algebraic degree,
denoted by deg F , is defined to be the maximal 2-weight of the exponent i such that ai �= 0, where
the 2-weight of an integer i is the number of ones in its binary expression.
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Another application of APN functions is in the construction of error correcting codes. Each new
APN function yields a new and inequivalent error correcting code with the parameters of the double
error correcting BCH code. In fact, APN functions are said to be inequivalent if the extended BCH-like
codes constructed from them are inequivalent codes, see [2] for details. We refer to inequivalent APN
functions as CCZ-inequivalent (named after Carlet, Charpin and Zinoviev) [8]. This is a more general
form of equivalence than the previously used affine and extended affine equivalences. It is well known
that CCZ equivalence preserves the differential and extended Walsh spectrum of the function. Some
other equivalent descriptions of CCZ-equivalence and its invariants may be found in [14].

In [6], the authors constructed a family of quadratic APN functions provided the existence of cer-
tain polynomials.

Result 1.3. Let n and i be any positive integers, n = 2k, gcd(i,k) = 1, and c, δ ∈ F2n be such that
δ /∈ F2k . If the equation

G(x) = x2i+1 + cx2i + c2k
x + 1 = 0

has no solution x such that x2k+1 = 1, and in particular if the polynomial G has no zeros in F2n , then
the function

F (x) = x
(
x2i + x2k + cx2k+i ) + x2i (

c2k
x2k + δx2k+i ) + x2k+i+2k

is an APN function.

It was verified by a computer in [6] that the aforementioned irreducible polynomial G exists on
fields F22k with 3 � k � 500. But, up to now, there is no construction of an infinitive family of such
polynomials. In Section 3, when n = 2k with k even and 3 � k, we construct the polynomials with the
form G(x) without zeros on F22k (Theorem 3.4) by applying the techniques used in Section 2.

We will conclude this section by giving some remarks on the APN function F in Result 1.3. One
may check that, if n = 2k with k odd, F is CCZ-equivalent to the multinomial APN function in [2,
Theorem 1] by substituting x with x + γ x2k

. Indeed, let T (x) = bx2i+1 + b2k
x2k+i+2k + cx2k+1 + x2k+i+2i

be an APN function in [2, Theorem 1]. Substituting x with x+γ x2k
(γ 2k+1 �= 1) into T , after expanding,

simplifying and leaving the linear terms, we may get an APN function of the form F in Result 1.3.
Therefore, to prove the existence of the APN function F in Result 1.3, it is sufficient to consider the
case k is even and the existence of F .

It should be mentioned that we know the family of APN functions we are demonstrating the ex-
istence is inequivalent to other families, as computer evidence has verified that it is not equivalent
to any power mapping when n = 2k = 8 [6]. Also for n = 8 we have checked by computer that F
in not equivalent to x3 + Tr(x9). This is because F has Γ -rank 13 200 (see the definition in [14]),
while x3 + Tr(x9) has Γ -rank 13 800. Furthermore, it must be different from the other recently dis-
covered non-power APN functions as they are defined on fields with different degrees. In fact, it is
a distinguishing factor of the family under consideration here that it can be defined on fields with
degrees that are powers of 2. This property is seen as desirable for some (and necessary by others)
cryptographic applications. The only other APN functions with this property are the Gold mapping
x2i+1, Kasami mapping x22i−2i+1, as well as the mapping x3 + Tr(x9). These three mappings are de-
fined on fields with any degree. Finally, by a computer, when n = 8, the function F in Result 1.3 is
CCZ-equivalent to the No. 4 function in Dillon’s slides [12].

2. A type of quadratic polynomial with no zeros

In this section, we will study for which a ∈ F∗
2n , the polynomial Pa(x) = x2i+1 + x + a has no zeros,

where n = 2k and gcd(n, i) = 1. For the convenience of the expression, throughout the rest of the
paper, we denote q = 2k , q′ = 2i and Q = q2.
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Theorem 2.1. Let Pa(x) = xq′+1 + x + a ∈ FQ [x], with (n, i) = 1. Let C be set of non-cubes in FQ and A be a
function from C to FQ defined by

A(b) � b(b + 1)q′+q′ −1

(b + bq′ −1
)

q′+1
, (2)

where xq′ −1
denotes x1/q′

. Then Pa has no zeros in FQ if and only if a ∈ Im(A).

Proof. We start with the following polynomial,

K (x) = b

(
x + bq′ −1 + 1

b + bq′ −1

)q′+1

+
(

x + bq′ −1+1 + b

b + bq′ −1

)q′+1

.

Note that b+bq′ −1
is always not zero as b is neither 1 nor 0 (as b is a non-cube). We will demonstrate

that K has no zeros by setting K (x) = 0, which gives

b

(
x + bq′ −1 + 1

b + bq′ −1

)q′+1

=
(

x + bq′ −1+1 + b

b + bq′ −1

)q′+1

.

As one side of this expression is a cube, while the other is not, the only possible solutions are
when it is identically zero. This implies

x = bq′ −1 + 1

b + bq′ −1 = bq′ −1+1 + b

b + bq′ −1 ,

which in turn implies that b = 1, a contradiction.
Next, we expand K (x) = 0 and gather terms to obtain,

(b + 1)xq′+1 +
(

b · bq′ −1 + 1

b + bq′ −1 + bq′ −1+1 + b

b + bq′ −1

)
xq′ +

(
b · b + 1

b + bq′ + bq′+1 + bq′

b + bq′

)
x

+ b

(
bq′ −1 + 1

b + bq′ −1

)q′+1

+
(

bq′ −1+1 + b

b + bq′ −1

)q′+1

= 0.

This becomes

(b + 1)xq′+1 + (b + 1)x + b(b + 1)q′+q′ −1+1

(b + bq′ −1
)q′+1

= 0.

Now, dividing by b + 1 and with a few simplifications we obtain,

Pa(x) = xq′+1 + x + b(b + 1)q′+q′ −1

(b + bq′ −1
)

q′+1
= 0,

where a = b(b+1)q′+q′ −1

(b+bq′ −1
)

q′+1 . So Pa(x) = 0 cannot have solutions in FQ and hence Pa(x) has no zeros when

a has the required form.
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Conversely, it is easy to verify that A(b) = A(b−1) for any b ∈ C . Since |C | = 2(Q −1)
3 and by Re-

sult 1.1(2) there are Q −1
3 elements a such that Pa has no zeros, it will be sufficient to prove that A

is a 2-to-1 mapping. Writing b = c2q′
and substituting it into (2) we have

A(b) = c2q′
(c2q′ + 1)q′+q′ −1

(c2q′ + c2)q′+1
= c2q′

(c2q′ 2 + 1)(c2 + 1)

(c2q′ + c2)q′+1

= cq′ 2+2q′+1(cq′ 2 + c−q′ 2
)(c + c−1)

(c2q′ + c2)q′+1

= c(q′+1)2
(c + c−1)q′ 2+1

c(1+q′)2
(cq′−1 + c1−q′

)q′+1

= (c + c−1)q′ 2+1

(cq′−1 + c1−q′
)q′+1

.

Note that as b is a non-cube we have c �= 0,1 and letting e = 1
1+c , the following hold:

c + 1

c
= 1

e + e2
,

cq′−1 + c1−q′ =
(

1 + e

e

)q′−1

+
(

e

1 + e

)q′−1

= e2 + e2q′

(e + e2)q′+1
.

Substituting these two equations into A(b) above we obtain

A(b) =
(

1

e + e2

)q′ 2+1

·
(

(e + e2)q′+1

e2 + e2q′

)q′+1

= (e + e2)2q′

(e + eq′
)2q′+2

= 1

(e + e2)2
·
(

e + e2

e + eq′

)2q′+2

.

Now, we consider 1
A(b)

and by the fact that e + eq′ = (e + e2) + (e2 + e4) + · · · + (eq′/2 + eq′
), we get

1

A(b)
= (

e + e2)2 ·
(

e + eq′

e + e2

)2q′+2

= ((
e2 + e

) · (1 + (
e + e2) + · · · + (

e + e2)q′/2−1)q′+1)2

= Cq′
(
e2 + e

)2 = Cq′
(

c

1 + c2

)
,

where Cq′ (z) = z(
∑lg(q′)−1

j=0 z2 j−1)q′+1 is the Muller–Cohen–Matthews polynomial, and lg(q′) denotes

the integer i such that q′ = 2i . By [9, Theorem 1.2], Cq′ is a permutation polynomial on FQ if Fq′ ∩
FQ = F2, which is the case here as gcd(i,2k) = 1.
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Now, to prove that A(b) is a 2-to-1 mapping, it is equivalent to showing that 1
A(b)

is so. This is
clear as one can check easily c

1+c2 is a 2-to-1 mapping from C to FQ and from above Cq′(z) is a
permutation on FQ . We finish the proof. �

Particularly, when i = 1, we may show that Pa(x) is irreducible if and only if a has the form
described in Theorem 2.1. We may claim the polynomial is irreducible as it has degree 3.

Corollary 2.2. The polynomial Pa(x) = x3 + x + a is irreducible over FQ if and only if a = d + d−1 for some
non-cube d.

Proof. As i = 1 we have q′ = 2i = 2 in A(b). Now

A(b) = b(b + 1)2+2−1

(b + b2−1
)2+1

= b(b2−1 + 1)2·(2+2−1)

b3·2−1
(b2−1 + 1)3

= b + 1

b2−1 .

By Theorem 2.1, Pa(x) has no zeros if and only if a = A(b) = b+1
b2−1 for some b ∈ C . For a simpler form

we let b = d2 and a has the form d + d−1 for a non-cube d. The proof is finished. �
By Theorem 2.1 and the relationship between the polynomials of the form G(x) = xq′+1 + αxq′ +

βx + γ and Pa(x) = xq′+1 + x + a mentioned in Section 1, we may obtain polynomials of the form G
which has no zeros in FQ . In the next section, when n ≡ 0 mod 4 and 3 � n, we will use a variation of
the method used in Theorem 2.1 to find the polynomial with the form xq′+1 + cxq′ + cqx + 1 ∈ FQ [x]
and with no zeros in FQ for some c ∈ FQ . It is the existence of this polynomial that guarantees the
existence of the infinite family of APN functions in Result 1.3. We will show that for all relevant fields
a coefficient c exists such that the polynomial has no zeros.

3. The existence of a family of hexanomial APN functions

In this section, we will demonstrate the existence of the hexanomial APN function F proposed in
Result 1.3. Throughout this section, we assume n = 2k with k is an even integer and 3 � k. In this
section, we will show that the function

F (x) = x
(
xq′ + xq + cxqq′) + xq′(

cqxq + δxqq′) + xqq′+q

is an APN function over FQ by choosing a particular type of c, δ ∈ FQ . The nature of the coefficients
was difficult to find and we require the following lemma to show that they exist. First we give the
following results appeared in [21, Lemmas 1, 2, Main Theorem].

Result 3.1.

(1) Any element of the finite field Fpn , except F4 and F7, can be decomposed into the sum of two
cubes.

(2) Let F2n be the finite field with n even, ω be a generator of F4 and C be the set of cubes in F2n .
Then an element in ωC is the sum of two cubes α, β if and only if t = αβ−1 ∈ C and t + 1 ∈ ωC .
An element in ω2C is the sum of two cubes α, β if and only if t = αβ−1 ∈ C and t + 1 ∈ ω2C .

Now we give the following two lemmas which will be used later. Recall that q = 2k , q′ = 2i and
Q = q2.
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Lemma 3.2. Let L = FQ and k, i be integers such that (i,2k) = 1 with k is even and 3 � k. Let L3 be the set
of all cubes in FQ , ω be the generator of F4 and D = FQ \ Fq. Then, there exist a ∈ D ∩ L3 , b ∈ Fq ∩ L3 and
c ∈ L3 such that

a + b = ωc. (3)

Proof. First, notice that, when n is even and 3 � n, all non-cubes in L can be written as ωc, ω2c for
some c ∈ L3. To prove the result, it suffices to show that there exist a ∈ D ∩L3 and c ∈ L3 such that

a + 1 = ωc (4)

holds. Now, (i) if a ∈ D ∩ L3 and a + 1 ∈ ωL3, Eq. (4) clearly holds for some c ∈ L3; (ii) if a ∈ D ∩ L3

and a + 1 ∈ ω2L3, we may then have an element c ∈ L3 such that a + 1 = ω2c and then a2 + 1 = ωc2,
thus we have Eq. (4) by replacing a, c with a2, c2 respectively. Therefore, we only need to exclude the
case that a + 1 ∈ L3 for all a ∈ D ∩L3.

Assume this is true. Choosing one element β ∈ Fq ∩ L3, β �= 0,1, such that β + 1 ∈ Fq ∩ ωL3.
The existence of such β is guaranteed by Result 3.1(1) as the element in Fq ∩ ωL3 = ωF3

q can be
decomposed into the sum of two cubes of Fq , and by Result 3.1(2) this holds if and only if such
β exists. Now, given any a ∈ D ∩ L3 (and then a + 1 ∈ L3 by the assumption), we claim that a′ =
aβ + a + β ∈ D ∩ L3 but a′ + 1 = (aβ + a + β) + 1 /∈ L3, which gives the contradiction. We split the
arguments into three steps:

(i) aβ + a + β = a(β + 1) + β ∈ D , this is clear as β ∈ Fq and a ∈ D .
(ii) aβ +a +β ∈ L3. Let η = aβ

a+β
, then η belongs to D as otherwise, if η ∈ Fq , we have a = ηβ

η+β
∈ Fq ,

which contradicts to a ∈ D (note that η �= β since otherwise we will have ηβ = 0 from η =
aβ/(a + β) and then η = β = 0, which contradicts to the choice of β above). Furthermore, η ∈ L3

since clearly aβ ∈ L3, and a + β = β(aβ−1 + 1) ∈ L3 by the fact that aβ−1 ∈ D ∩ L3 and then
aβ−1 +1 ∈ L3 by the assumption above. It then follows from η ∈ D ∩L3 that η+1 = aβ+a+β

a+β
∈ L3,

and then a′ = aβ + a + β ∈ L3.
(iii) (aβ + a + β) + 1 /∈ L3. This is because (aβ + a + β) + 1 = (a + 1)(β + 1), and by the assumption

a + 1 ∈ L3 and β + 1 /∈ L3.

We complete the proof. �
Lemma 3.3. Let L = FQ and k, i be integers such that (i,2k) = 1 with k is even and 3 � k. Let the other
notations are the same as Lemma 3.2. Then there exist β,γ ∈ L∗(� L \ {0}) such that

γ q′+1 + ωβq′+1 + 1 = 0, (5)

where ω has order 3 in L and γ q−1 �= βq−1 .

Proof. By Lemma 3.2, there exist a ∈ D ∩ L3,b ∈ Fq ∩ L3 and c ∈ L3 such that a + b = ωc holds. We
divide a + b = ωc by a to obtain,

1 + b

a
+ ω

c

a
= 0.

Letting α be primitive in L and assuming that b/a = αt , ωc/a = αr for some integers r, t , we rewrite
the above equation as,

1 + αt + αr = 0. (6)

All we can say about t and r is that 3 | t while 3 � r and that at least one of αt and αr is not in Fq .
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From (6) we will give the construction of the required equation

γ q′+1 + ωβq′+1 + 1 = 0,

and show that the condition γ q−1 �= βq−1 is satisfied.
We start with (6). Dividing by αt to obtain

α−t + 1 + αr−t = 0.

Now, we let α−t = γ q′+1 and αr−t = ωβq′+1 and then get the required Eq. (5). The existence of β,γ
is guaranteed by the fact that (i,2k) = 1 and then (q′ + 1, Q − 1) = 3, so all cubes can be represented
as (q′ + 1)-th powers. Now assume that

γ q−1 = βq−1,

which implies,

γ (q′+1)(q−1) = β(q′+1)(q−1).

We write this in terms of α and get

α−t(q−1) = (
ω2αr−t)q−1

.

This yields

αr(q−1) = 1.

In this case αr ∈ Fq . However, this will not happen as otherwise by (6), αr ∈ Fq will yield αt ∈ Fq ,
which contradicts to the assumption that one of αt and αr is not in Fq . The proof is complete. �

Next we will use β and γ in Lemma 3.3 and a modification of the techniques in Theorem 2.1 to
prove the existence of the following family of APN functions.

Theorem 3.4. Let i and k be integers, with k even, such that (i,2k) = 1 and 3 � k. Denoting by q′ = 2i , q = 2k

and Q = q2 . We choose δ /∈ Fq, ω to have order 3 and β and γ such that γ q′+1 + ωβq′+1 + 1 = 0 with
γ q−1 �= βq−1 . Then the function

F (x) = x
(
xq′ + xq + cxqq′) + xq′(

cqxq + δxqq′) + xqq′+q

is an APN function on FQ , where c = ωβq+q′ + γ q+q′
.

Proof. The existence of β and γ is guaranteed from Lemma 3.3. By Result 1.3, to prove F is an APN
function, it suffices to show that

G(y) = yq′+1 + (
ωβq+q′ + γ q+q′)

yq′ + (
ωβqq′+1 + γ qq′+1)y + 1

has no zeros in FQ . In the following, we set G(y) = 0 and then use the techniques in Theorem 2.1 to
produce a factorization which allows no solutions. The β and γ were chosen very carefully to allow
the usage of this technique.
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From ω2β−q′−1G(y) = 0, we obtain

ω2β−q′−1 yq′+1 + (
βq−1 + ω2γ q′+qβ−q′−1)yq′ + (

βqq′−q′ + ω2γ qq′+1β−q′−1)y + ω2β−q′−1 = 0.

A simple rearrangement of γ q′+1 + ωβq′+1 + 1 = 0 will allow us to write the coefficient of yq′+1

as ω2(
γ
β
)

q′+1 + 1. The coefficient of yq′
can be rewritten as

ω2
(

γ

β

)q′+1

γ q−1 + βq−1,

while the coefficient of y can be written as

ω2
(

γ

β

)q′+1

γ qq′−q′ + βqq′−q′
.

Now, using the fact that,

γ q(q′+1) + ωβq(q′+1) = 1,

we can alter the last term, ω2β−q′−1, as follows,

ω2β−q′−1 = ω2β−q′−1(γ q(q′+1) + ωβq(q′+1)
)

= ω2
(

γ

β

)q′+1

γ (q′+1)(q−1) + β(q′+1)(q−1).

Placing these alternate forms of the coefficients into ω2β−q′−1G(y) = 0 yields,

(
ω2

(
γ

β

)q′+1

+ 1

)
yq′+1 +

(
ω2

(
γ

β

)q′+1

γ q−1 + βq−1
)

yq′ +
(
ω2

(
γ

β

)q′+1

γ qq′−q′ + βqq′−q′
)

y

+ ω2
(

γ

β

)q′+1

γ (q′+1)(q−1) + β(q′+1)(q−1) = 0.

This implies

ω2
(

γ

β

)q′+1(
yq′+1 + γ q−1 yq′ + γ q′(q−1) y + γ (q′+1)(q−1)

)

= yq′+1 + βq−1 yq′ + βq′(q−1) y + β(q′+1)(q−1).

Next we factor each side to obtain,

ω2
(

γ

β

)q′+1(
y + γ q−1)q′+1 = (

y + βq−1)q′+1
.

Clearly the right hand side of this expression is a cube while the left hand side is not. So the
only possible solutions occur when y = γ q−1 = βq−1, but as we have chosen γ and β such that
γ q−1 �= βq−1, we can now say that G(y) has no zeros and the proof is complete. �
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We cannot determine the Fourier (Walsh) spectrum of the APN function F in Theorem 3.4 and we
leave this as an open problem. By a computer (with n = 8), the Fourier spectrum of F is the same as
the Gold APN functions, i.e., the spectrum takes the values {0,±2n/2,±2(n+2)/2}.

All other known APN functions have had their Fourier spectra computed, see [4] and references
therein. This is done for two reasons. The first is a cryptographic application. Knowing a function’s
spectrum can allow us to compute its nonlinearity, which measures the function’s resistance to Mat-
sui’s linear attack [19]. Secondly, the weight distribution of the codewords in the BCH-like code
constructed from the function is also determined by the functions spectrum. All codes derived from
an APN function will have a minimum distance of 5, but the weight distributions differ among some
of the six power mapping APN functions. The infinite families of multi-term quadratic APN functions
discovered since 2005 all have the same spectrum as the Gold function and we expect the function
in this article to be no different.

Conjecture 3.5. The Fourier spectrum of the APN function F in Theorem 3.4 is {0,±2n/2,±2(n+2)/2}.

4. Conclusions

In this paper, we considered for which a ∈ F2n , the polynomial Pa(x) = x2i+1 + x + a ∈ F2n [x] has
no zeros in F2n , where gcd(n, i) = 1 and n = 2k. It is shown that Pa(x) = 0 has no solutions in F2n if
and only if

a = b(b + 1)2i+2−i

(b + b2−i
)

2i+1

for some non-cube b. Particularly, we show that x3 + x + a ∈ F2n [x] is irreducible if and only if a =
d + d−1, for some non-cube d. By applying the techniques used here, when gcd(2k, i) = 1, 3 � k and

k even, we obtain an infinite family of polynomials of the form x2i+1 + cx2i + c2k
x + 1 ∈ F22k [x] which

has no zeros in F22k . This guarantees the existence of the infinite family of quadratic APN functions
proposed by Budaghyan and Carlet in [6].
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