51 research outputs found

    Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps

    Get PDF
    Coarse spaces are instrumental in obtaining scalability for domain decomposition methods for partial differential equations (PDEs). However, it is known that most popular choices of coarse spaces perform rather weakly in the presence of heterogeneities in the PDE coefficients, especially for systems of PDEs. Here, we introduce in a variational setting a new coarse space that is robust even when there are such heterogeneities. We achieve this by solving local generalized eigenvalue problems in the overlaps of subdomains that isolate the terms responsible for slow convergence. We prove a general theoretical result that rigorously establishes the robustness of the new coarse space and give some numerical examples on two and three dimensional heterogeneous PDEs and systems of PDEs that confirm this property

    Implementation of the deflated variants of the conjugate gradient method

    Get PDF
    Sdružené gradienty jsou jednou z nejpoužívanějších metod pro řešení rozsáhlých soustav lineárních rovnic se symetrickou pozitivně-semidefinitní maticí. Jeden ze způsobů urychlení konvergence metody je deflace. Principem deflace je skrývání té části spektra matice, která způsobuje zpomalení konvergence. Tato diplomová práce se zabývá efektivní implementací různých deflated verzí sdružených gradientů. Velká pozornost je také věnována teorii a volbě deflačního prostoru. Možnosti implementace jsou demonstrovány na rozsáhlém množství příkladůThe conjugate gradient algorithm is one of the most popular methods for the solution of large systems of linear equations with symmetric positive semi-definite matrix. One of the schemes accelerating the convergence of conjugate gradients is deflation which effectively hides parts of the matrix spectrum that slows down the convergence. This master's thesis deals with efficient parallel implementation of the deflated conjugate gradient method with various modifications. Detailed theoretical considerations and the crucial choice of the deflation space are also discussed. The implementation is showcased on a wide range of benchmarks9600 - IT4Innovationsvýborn

    KSPHPDDM and PCHPDDM: Extending PETSc with advanced Krylov methods and robust multilevel overlapping Schwarz preconditioners

    Full text link
    [EN] Contemporary applications in computational science and engineering often require the solution of linear systems which may be of different sizes, shapes, and structures. The goal of this paper is to explain how two libraries, PETSc and HPDDM, have been interfaced in order to offer end-users robust overlapping Schwarz preconditioners and advanced Krylov methods featuring recycling and the ability to deal with multiple right-hand sides. The flexibility of the implementation is showcased and explained with minimalist, easy-to-run, and reproducible examples, to ease the integration of these algorithms into more advanced frameworks. The examples provided cover applications from eigenanalysis, elasticity, combustion, and electromagnetism.Jose E. Roman was supported by the Spanish Agencia Estatal de Investigacion (AEI) under project SLEPc-DA (PID2019-107379RB-I00)Jolivet, P.; Roman, JE.; Zampini, S. (2021). KSPHPDDM and PCHPDDM: Extending PETSc with advanced Krylov methods and robust multilevel overlapping Schwarz preconditioners. Computers & Mathematics with Applications. 84:277-295. https://doi.org/10.1016/j.camwa.2021.01.0032772958

    PDE Solvers for Hybrid CPU-GPU Architectures

    Get PDF
    Many problems of scientific and industrial interest are investigated through numerically solving partial differential equations (PDEs). For some of these problems, the scope of the investigation is limited by the costs of computational resources. A new approach to reducing these costs is the use of coprocessors, such as graphics processing units (GPUs) and Many Integrated Core (MIC) cards, which can execute floating point operations at a higher rate than a central processing unit (CPU) of the same cost. This is achieved through the use of a large number of processors in a single device, each with very limited dedicated memory per thread. Codes for a number of continuum methods, such as boundary element methods (BEM), finite element methods (FEM) and finite difference methods (FDM) have already been implemented on coprocessor architectures. These methods were designed before the adoption of coprocessor architectures, so implementing them efficiently with reduced thread-level memory can be challenging. There are other methods that do operate efficiently with limited thread-level memory, such as Monte Carlo methods (MCM) and lattice Boltzmann methods (LBM) for kinetic formulations of PDEs, but they are not competitive on CPUs and generally have poorer convergence than the continuum methods. In this work, we introduce a class of methods in which the parallelism of kinetic formulations on GPUs is combined with the better convergence of continuum methods on CPUs. We first extend an existing Feynman-Kac formulation for determining the principal eigenpair of an elliptic operator to create a version that can retrieve arbitrarily many eigenpairs. This new method is implemented for multiple GPUs, and combined with a standard deflation preconditioner on multiple CPUs to create a hybrid concurrent method with superior convergence to that of the deflation preconditioner alone. The hybrid method exhibits good parallelism, with an efficiency of 80% on a problem with 300 million unknowns, run on a configuration of 324 CPU cores and 54 GPUs.Doctor of Philosoph

    A Massively Parallel Sparse Eigensolver for Structural Dynamics Finite Element Analysis

    Full text link

    Deflation for the off-diagonal block in symmetric saddle point systems

    Full text link
    Deflation techniques are typically used to shift isolated clusters of small eigenvalues in order to obtain a tighter distribution and a smaller condition number. Such changes induce a positive effect in the convergence behavior of Krylov subspace methods, which are among the most popular iterative solvers for large sparse linear systems. We develop a deflation strategy for symmetric saddle point matrices by taking advantage of their underlying block structure. The vectors used for deflation come from an elliptic singular value decomposition relying on the generalized Golub-Kahan bidiagonalization process. The block targeted by deflation is the off-diagonal one since it features a problematic singular value distribution for certain applications. One example is the Stokes flow in elongated channels, where the off-diagonal block has several small, isolated singular values, depending on the length of the channel. Applying deflation to specific parts of the saddle point system is important when using solvers such as CRAIG, which operates on individual blocks rather than the whole system. The theory is developed by extending the existing framework for deflating square matrices before applying a Krylov subspace method like MINRES. Numerical experiments confirm the merits of our strategy and lead to interesting questions about using approximate vectors for deflation.Comment: 26 pages, 12 figure

    Schnelle Löser für Partielle Differentialgleichungen

    Get PDF
    The workshop Schnelle Löser für partielle Differentialgleichungen, organised by Randolph E. Bank (La Jolla), Wolfgang Hackbusch (Leipzig), and Gabriel Wittum (Frankfurt am Main), was held May 22nd–May 28th, 2011. This meeting was well attended by 54 participants with broad geographic representation from 7 countries and 3 continents. This workshop was a nice blend of researchers with various backgrounds
    corecore