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Abstrakt

Sdružené gradienty jsou jednou z nejpoužívanějších metod pro řešení rozsáhlých soustav
lineárních rovnic se symetrickou pozitivně-semidefinitní maticí. Jeden ze způsobů urychlení
konvergence metody je deflace. Principem deflace je skrývání té části spektra matice, která
způsobuje zpomalení konvergence. Tato diplomová práce se zabývá efektivní implementací
různých deflated verzí sdružených gradientů. Velká pozornost je také věnována teorii a volbě
deflačního prostoru. Možnosti implementace jsou demonstrovány na rozsáhlém množství
příkladů.

Klíčová slova: deflace, předpodmínění projektorem, sdružené gradienty, deflatované sdružené
gradienty, DCG, CG, waveletová komprese, multigrid, hrubý problém, Krylovův podprostor

Abstract

The conjugate gradient algorithm is one of the most popular methods for the solution of
large systems of linear equations with symmetric positive semi-definite matrix. One of the
schemes accelerating the convergence of conjugate gradients is deflation which effectively hides
parts of the matrix spectrum that slows down the convergence. This master’s thesis deals
with efficient parallel implementation of the deflated conjugate gradient method with various
modifications. Detailed theoretical considerations and the crucial choice of the deflation space
are also discussed. The implementation is showcased on a wide range of benchmarks.

Keywords: deflation, preconditioning by projector, conjugate gradient, deflated conjugate
gradient, DCG, CG, wavelet compression, multigrid, coarse problem, Krylov subspace
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1 Introduction

A large number of problems in engineering, physics, finance, etc. transform into some system
of linear equations with a positive definite matrix. Moreover, with the continuing increase in
the available computational resources the problem sizes also grow rapidly.

The conjugate gradient (CG) algorithm is one of the most widely used methods for the
solution of such systems. This is due to several favourable factors like a small memory foot-
print or the ability to scale to a large number of computational cores very well. Another
advantage is that it is generally implemented as an iterative method allowing for early ter-
mination if we are in a certain sense close to the solution. These and other factors make the
method successful, especially for very large matrices.

For the last few decades, various schemes accelerating the convergence of CG and similar
methods were and still are in the forefront of the development in the field of the numerical
methods.

One of such schemes is deflation. The speed of the convergence of the CG method depends
highly on the spectrum of the matrix comprising the linear system. Some parts of the
spectrum can slow down the convergence. The idea behind the deflation is to hide (deflate)
from the CG method the part of the spectrum that retards the convergence. This is achieved
by splitting the problem into two parts. The first one is a directly obtained solution on the
space representing the part of the spectrum with bad convergence and the second one is
computed by the CG method operating only on the complement of the first space.

The aim of this thesis is to create an efficient implementation of the deflated conjugate
gradient (DCG) method with various modifications. Moreover, we also discuss the theoretical
considerations and demonstrate the efficiency by numerical experiments.

This thesis is divided into the following sections. First, we derive the CG method in
Section 2. This is done through the derivation of the steepest descent method and the
Lanczos method. We also discuss the convergence of CG and preconditioning.

In Section 3 we describe the DCG method and its variant InitCG. Then we discuss the
convergence of the algorithm. We also investigate how to solve the coarse problem (CP) that
is part of the DCG operator. A scheme of nesting DCGs for the CP solution is proposed.

Section 4 describes some choices of deflation spaces. These include deflation by ei-
genvectors, subdomain aggregation, discrete wavelet compression and finally the prolong-
ation/restriction multigrid operators.

A brief overview of the libraries and the high performance computing (HPC) infrastructure
used for the numerical experiments can be found in Section 5.

Section 6 discusses the implementation. Various options for the solver are described. Im-
plementation choices about handling the matrices in the deflation operator are also discussed.

Finally, in Section 7 we show how DCG and its modification with various deflation spaces
perform on a wide range of benchmarks.
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2 Conjugate Gradient Method

Krylov subspace methods represent one of the most successful classes of methods for solving
large and often sparse linear systems of equations as well as eigenvalue problems. In fact,
the Krylov subspace methods were named as one of the ’Top 10 algorithms of the 20th
century’ [1, 2]. These methods are nowadays generally viewed as iterative. The CG method
[3] developed independently by Hestenes and Stiefel and the method due to Lanczos [4, 5],
both introduced in the early 1950s, were the first to spark the interest in the Krylov subspace
iterative methods.

The following subsections introduce the CG method. We start with the steepest descent
method. Then we derive a strategy based on special subspaces designed to improve upon the
convergence of the steepest descent method. After that, we derive Lanczos tridiagonalization
which generates the subspaces we need, and then we adapt it to solve linear systems. We then
simplify the method to get the common formulation of CG. We also discuss the convergence
of CG and finally, we derive the preconditioned version of CG.

For the whole thesis, we assume that we have the following system of linear equations

Ax = b, (1)

where A is a symmetric positive definite (SPD) matrix and b is the right-hand side. We
denote by x∗ the solution of (1). The matrix and the vectors are assumed to be real and
n-dimensional.

The solution of the linear system given by (1) is equivalent to a problem of an uncon-
strained quadratic minimization

min
x

f(x), where f(x) = 1
2xT Ax − xT b. (2)

Notice that from the necessary condition for extrema x∗ minimizes f(x) if

∇f(x∗) = Ax∗ − b = o.

The quadratic form f(x) can be visualized for an SPD matrix A of dimension n = 2 , see
Figure 1. It is helpful to think about finding the solution of the linear system (1) as finding
the minimum of the elliptic paraboloid of appropriate dimension given by (2).

2.1 Steepest Descent Method

The steepest descent method is based on the line search procedure. Given xk approximating
solution of (2), search direction vk, and step length αk the line search generates a new
approximation xk+1 by

xk+1 = xk + αkvk. (3)

To ensure that f(xk+1) < f(xk) we need to choose appropriate search direction and step
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f(x)

x2 x1

x1

x2

Figure 1: Surface and contour plot of f(x) for an SPD matrix of dimension n = 2

length. Naturally, the search direction should be the negative gradient of f(x) because the
gradient is the direction in which f(x) most rapidly increases. Note that the choice of the
search direction suggests the reason for method’s name. Therefore, we have

vk = −∇f(xk) = b − Axk.

Let us define a residual rk = b − Axk. Note that vk = rk. Rewriting (3) using residuals as
the descent directions yields

xk+1 = xk + αkrk.

Scaling the previous equation by −A and adding b to both sides, we obtain the following
recurrence for the residuals

rk+1 = rk − αkArk.

Now, the only thing missing is the value of αk. Knowing the search direction, we just need
to minimize f(xk+1) with respect to the single variable αk. So again, using the necessary
condition for extrema we have

d

dαk
f(xk+1) = d

dαk

(1
2 (xk + αkrk)T A (xk + αkrk) − (xk + αkrk)T b

)
= rT

k ∇f(xk+1) = rT
k (−rk+1) = 0. (4)

We have found out that the descent direction rk is orthogonal to the gradient ∇f(xk+1) =
−rk+1. See Figure 2 for an illustration and notice that the orthogonality of the descent
directions means that we might minimize in the same direction more than once. Using the
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x1

x2

x1

x2

Figure 2: Contour plots of f(x) for an SPD matrix of dimension n = 2 with plotted steps of
the steepest descent method (left) and CG (right)

orthogonality of the residuals, we may find the value of αk as follows

rT
k+1rk = 0

(b − Axk+1)T rk = 0

(b − A (xk + αkrk))T rk = 0

(b − Axk)T rk − α (Ark)T rk = 0

rT
k rk = α (Ark)T rk

αk = rT
k rk

(Ark)T rk

= rT
k rk

rT
k Ark

. (5)

When should we stop refining our approximation? Let us define the error ϵk = xk − x∗.
Naturally, we would like to stop the iterations when the error is sufficiently small. However,
the solution x∗ is unknown. Luckily we can notice that rk = −Aϵk and so we can use the
norm of the residual as a stopping criterion.

We can sum up the previous observations in Algorithm 1.

Algorithm 1: Steepest descent method
Input: A, x0, b

1 r0 = b − Ax0
2 for k = 0, · · · :
3 s = Ark

4 αk =
(
rT

k rk

)
/
(
sT rk

)
5 xk+1 = xk + αkrk

6 rk+1 = rk − αks
Output: xk
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2.2 Minimize over Subspace

The problem with the steepest descent method is that in each step it minimizes f(x) only
in a single direction. Therefore, it might minimize in the same direction more than once,
because it can not use the information obtained by the previous steps. What we would prefer
is a method that in a single iteration would find minimizer over some subspace and a way
to extend this subspace for the next iteration. Formally, we would like to create a nested
sequence of subspaces

S1 ⊂ S2 ⊂ · · · ⊂ Rn,

where dim(Sk) = k. Now, given an initial guess x0 for each k we could solve

f(xk) = min
x0+Sk

f(x).

Because the subspaces are expanding, we will obtain better and better approximation of
the solution x, and after n steps the exact solution. However, we would like to get a good
approximation far sooner than after n steps. Therefore, we need to construct subspaces Sk

so that f(x) decreases quickly.

Since the subspaces are nested we know, that Sk+1 contains the previous minimizer xk.
Moreover, we already know that the objective function f(x) decreases most rapidly in the
direction of the negative gradient. Therefore, it seems reasonable to extend Sk into Sk+1 by
the gradient gk = ∇f(xk). This choice makes the next approximation xk+1 at least as good
as the one that the steepest descent method would make.

It follows that S1 = span{g0}. Now, as discussed above, we extend the space by g1, i.e.
S2 = span{g0, g1}. It turns out we can rewrite this slightly because

g1 = Ax1 − b = Ax1 − Ax0 + g0 = A(x0 + αg0) − Ax0 + g0 ∈ span{g0, Ag0},

where α ∈ R. We used the fact that x1 is minimizer on x0 +span{g0} = x0 +αg0. Similarly,
for the next space, we have

g2 = Ax2 − b = Ax2 − Ax1 + g1

= A(x0 + αg0 + βAg0) − A(x0 + γg0) + g1 ∈ span{g0, Ag0, A2g0},

where α, β, γ ∈ R. By repeating this process we obtain that

Sk+1 = span{g0, g1, g2, . . . , gk} = span{g0, Ag0, A2g0, . . . , Akg0} = Kk+1 (A, g0) . (6)

The space Kk+1 (A, g0) = span{g0, Ag0, A2g0, . . . , Akg0} is called the Krylov subspace.
Thus we found that we can hope for a faster convergence than that of the steepest descent
method by minimizing the functional (2) in the Krylov subspaces.
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2.3 Lanczos Method

Any symmetric matrix has a so called tridiagonal decomposition. More formally, we can find
an orthonormal matrix Q = (q1, . . . , qn) such that

QT AQ = T , (7)

where T is a tridiagonal matrix using e.g. Householder transformations [6]. The reductions
to the tridiagonal matrices are very favourable for solving eigenvalue problems [7] as A and
T are similar matrices, and therefore they have the same spectrum.

However, using something like the Householder transformations would be very expensive,
so let us instead try to form matrix T directly. Thanks to the symmetry of A we can write
T as

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1 δ1 · · · 0

δ1 γ2
. . . ...

. . . . . . . . .
... . . . . . . δn−1

0 · · · δn−1 γn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Assume Q is given, then premultiplying Equation (7) by Q we have AQ = QT . This can be
equivalently rewritten for each column index k ∈ {1, . . . , n − 1} as

Aqk = δk−1qk−1 + γkqk + δkqk+1, (8)

where δ0q0 = 0. Premultiplying the previous equation by qT
k and using the orthonormality

of Q we obtain
γk = qT

k Aqk.

From Equation (8) we can also easily get that

qk+1 = (A − γkI) qk − δk−1qk−1
δk

= rk

δk
,

and since qk+1 is supposed to be orthonormal, we have

δk = ±||rk||.

Without the loss of generality we can choose δk = ||rk||.

We sum up our observations into Algorithm 2. Notice that given q̃1 the outlined procedure
generates a sequence of orthonormal qk called the Lanczos vectors such that qk ∈ Kk (A, q̃1).
Also note that the iteration can breakdown before k = n. If rk = o then from (8)

AQk = QkTk,
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and so Qk range is invariant for A. Which is a good news if we try to find the solution of
(1) in the subspace spanned by the columns of Qk.

Algorithm 2: Lanczos method
Input: A, q̃1

1 q0 = o
2 r0 = q̃1
3 δ0 = ||r0||
4 q1 = r0/δ0
5 k = 1
6 while δk−1 ̸= 0:
7 s = Aqk

8 γk = qT
k s

9 rk = s − γkqk − δk−1qk−1
10 δk = ||rk||
11 qk+1 = rk/δk

12 k = k + 1
Output: Qk, Tk

2.4 Using Lanczos Method to Solve Linear Systems

We outlined in Section 2.2 a way to improve the convergence of the steepest descent method.
The key ingredient was that we are minimizing f(x) over subspace x0 + Kk (A, g0). In the
previous section we discovered that this subspace is generated by the Lanczos procedure, i.e.
we can minimize over the subspace

x0 + K (A, g0, k) = x0 + span{q1, . . . , qk} = x0 + {α1q1 + · · · + αkqk : αk ∈ R}

assuming q1 = r0/δ0 where r0 = b − Ax0 and δ0 = ||r0||.

Now, by setting Qk = (q1, . . . , qk) we can rewrite the problem as finding yk ∈ Rn that
minimizes

f(x0 + Qkyk) = 1
2 (x0 + Qkyk)T A (x0 + Qkyk) − (x0 + Qkyk)T b

= 1
2 (Qkyk)T A (Qkyk) + (Qkyk)T Ax0 − (Qkyk)T b + 1

2x0Ax0 − xT
0 b

= 1
2yT

k QT
k AQkyk + yT

k QT
k (Ax0 − b) + f(x0)

= 1
2yT

k

(
QT

k AQk

)
yk − yT

k

(
QT

k r0
)

+ f(x0).

Therefore, in each iteration our algorithm will generate a new approximation

xk = x0 + Qkyk, (9)
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where yk is obtained as a solution of

QT
k AQkyk = QT

k r0

Tkyk = QT
k r0

Tkyk = δ0QT
k q1

Tkyk = δ0e1. (10)

Pluging in these observations into Algorithm 2 we obtain Algorithm 3.

Algorithm 3: Lanczos method for linear systems
Input: A, x0, b0

1 q0 = o
2 r0 = b − Ax0
3 δ0 = ||r0||
4 q1 = r0/δ0
5 k = 1
6 while δk−1 ̸= 0:
7 s = Aqk

8 γk = qT
k s

9 Tkyk = δ0e1
10 xk = x0 + Qkyk

11 rk = s − γkqk − δk−1qk−1
12 δk = ||rk||
13 qk+1 = rk/δk

14 k = k + 1
Output: xk

However, the formulation has several drawbacks. The first one, is that in the kth iteration
we have to do a matrix vector multiplication with n × k (dense) matrix. Moreover, to obtain
this matrix we have to store all previous Lanczos vectors. The second drawback is the need
to solve the tridiagonal system in order to obtain yk.

2.4.1 Recursive Formulation

Fortunately, the problems outlined above can be circumvented. Let us start with the solution
of the tridiagonal system (10). Because T is similar to A it is SPD and therefore it has an
LDLT factorization [6], where

Lk =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 · · · 0

l1 1
...

... . . . . . . 0
0 . . . lk−1 1

⎞⎟⎟⎟⎟⎟⎟⎠ , Dk =

⎛⎜⎜⎜⎜⎜⎜⎝
d1 0 · · · 0

0 d2
...

... . . . ...
0 . . . 0 dk

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Thanks to the tridiagonality of T , Lk is only bidiagonal. By setting

Tk = LkDkLT
k ,

and comparing the coefficients we have

d1 = γ1,

li = δi/di,

di+1 = γi+1 − liδi, i ∈ {1, . . . , k − 1}.

Now we can rewrite (10) as

LkDkLT
k yk = δ0e1

LkDkuk = δ0e1, (11)

where uk = LT
k yk. By taking a closer look at (11)⎛⎜⎜⎜⎜⎜⎜⎝

d1 0 · · · 0

d1l1 d2
...

... . . . . . . 0
0 . . . dk−1lk−1 dk

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
u1

u2
...

uk

⎞⎟⎟⎟⎟⎟⎠
k

=

⎛⎜⎜⎜⎜⎜⎝
δ0

0
...
0

⎞⎟⎟⎟⎟⎟⎠ ,

we can easily evaluate the solution

uk =

⎧⎨⎩δ0/d1 if k = 1

−dk−1lk−1uk−1/dk if k > 1.

It turns out that we actually do not need to compute yk. If we take Ck ∈ Rn×k satisfying

CkLT
k = Qk,

which in the expanded form reads as

(
c1 c2 · · · ck

)
⎛⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0

l1 1
...

... . . . . . . 0
0 . . . lk−1 1

⎞⎟⎟⎟⎟⎟⎟⎠ =
(
q1 q2 · · · qk

)
,
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then we immediately see that

ck =

⎧⎨⎩q1 if k = 1

qk − lk−1gk−1 if k > 1.

Using this and LT
k yk = uk we can rewrite (9) as

xk = x0 + Qkyk = x0 + CkLT
k yk = x0 + Ckuk = x0 + Ck−1uk−1 + ukck = xk−1 + ukck.

We have found a recursive formula for xk. Moreover both uk and ck are also obtained
recursively. This means that we do not have to store the Lanczos vectors or the tridiagonal
matrix. By using the derived recursions we rewrite Algorithm 3 into recursive formulation of
the Lanczos method for linear system (Algorithm 4).

Algorithm 4: Recursive Lanczos method for linear systems
Input: A, x0, b0

1 q0 = o
2 r0 = b − Ax0
3 δ0 = ||r0||
4 q1 = r0/δ0
5 c1 = q1
6 k = 1
7 while δk−1 ̸= 0:
8 s = Aqk

9 γk = qT
k s

10 if k = 1:
11 d1 = γ1
12 u1 = δ0/d1
13 else:
14 lk−1 = δk−1/dk−1
15 dk = γk − δk−1lk−1
16 uk = −δk−1uk−1/dk

17 xk = xk−1 + ukck

18 rk = s − γkqk − δk−1qk−1
19 δk = ||rk||
20 qk+1 = rk/δk

21 ck+1 = qk+1 − lkck

22 k = k + 1
Output: xk

2.4.2 Conjugacy of Gradients and Directions

We call two vectors conjugate if they are orthogonal (xT y = 0) and A-conjugate (or A-
orthogonal) if they are orthogonal with respect to A-based dot product (xT Ay = 0).
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Let
gk = Axk − b = ∇f(xk)

be the gradient in each iteration of Algorithm 4. Then we can rewrite it as

gk = A (x0 + qkyk) − b = −r0 +
(
QkTk + rkeT

k

)
yk,

where we used AQk = QkTk +rkeT
k that follows from (8) and an examination of the columns

of QkTk. Because QkTkyk = δ0Qke1 = r0 we have

gk =
(
eT

k yk

)
rk =

(
eT

k yk

)
δkqk+1. (12)

Since gk is a multiple of qk+1 we have from mutual orthogonality of qk that gk are also
mutually orthogonal. Moreover, from (6) it follows that gk is orthogonal to Kk(A, g0).

We can also show that the search directions ck are mutually A-orthogonal. We have

Tk = QT
k AQk =

(
CkLT

k

)T
A
(
CkLT

k

)
= Lk

(
CT

k ACk

)
LT

k ,

and from uniqueness of the Tk = LkDkLT
k factorization [6] it follows

Dk = CT
k ACk.

Since Dk is diagonal the search directions ck are mutually A-orthogonal.

2.5 Conjugate Gradients Algorithm

Let us redefine rk as a residual

rk = bk − Axk = −gk.

We can make the last algorithm easier to read by considering the search direction

ck+1 = qk+1 − lkck.

From (12), qk+1 is just some multiple of rk. This allows us to write the search direction (with
numbering shifted so that the first search direction is p0) as

pk+1 = rk+1 + βk+1pk. (13)

Premultiplying by (Apk)T it follows from the A-conjugacy of the search directions that

βk+1 = −pT
k Ark+1
pT

k Apk
. (14)
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If we instead premultiply by (Apk+1)T and again use the A-conjugacy of the search directions
we get a handy identity

pT
k+1Apk+1 = pT

k+1Ark+1.

Because p0 = c1, pk is multiple of ck+1. Therefore, we need to update the step-length in
the line-search

xk+1 = xk + αkpk.

Scaling the equation by −A and adding b leads to a residual recurrence

rk+1 = rk − αkApk. (15)

Premultiplying by rT
k and using the orthogonality of gradients it follows that

αk = rT
k rk

rT
k Apk

= rT
k rk

pT
k Apk

.

We can further simplify the relation for βk. Premultiplying the residual recurrence (15) by
rT

k+1 and using the orthogonality of residuals we get

rT
k+1rk+1 = −αkrT

k+1Apk.

Doing the same with rT
k yields

rT
k rk = αkrT

k Apk = αkpT
k Apk.

Substituting these into (14) allows us to compute βk+1 as

βk+1 =
rT

k+1rk+1

rT
k rk

.

Rewriting Algorithm 4 using the derived formulas yields the CG method illustrated in
Algorithm 5.

2.5.1 From CG back to Lanczos

The previous section derived CG from the Lanczos method for the solution of linear systems.
It is clear that given same inputs the methods generate same approximation in each iteration.
However, we did not establish direct relations between various coefficients and vectors that
these methods generate. It would be useful if we could while performing solve with CG obtain
the Lanczos vectors and the tridiagonal matrix. For example, it would enable us to fairly
cheaply obtain the extremal eigenvalues of A.

To derive (13) we have used the fact that qk is a multiple of rk−1. Since qk is normalized
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Algorithm 5: CG
Input: A, x0, b

1 r0 = b − Ax0
2 p0 = r0
3 for k = 0, · · · :
4 s = Apk

5 αk =
(
rT

k rk

)
/
(
sT pk

)
6 xk+1 = xk + αkpk

7 rk+1 = rk − αks

8 βk+1 =
(
rT

k+1rk+1
)

/
(
rT

k rk

)
9 pk+1 = rk+1 + βk+1pk

Output: xk

it follows that
qk = ± 1

||rk−1||
rk−1. (16)

Defining

Rk = (r0, · · · , rk−1) , Pk = (p0, · · · , pk−1) , Bk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −β1 0 · · · 0

0 1 −β2
...

. . . . . . . . . 0
... . . . . . . −βk−1

0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and by using (13) and p0 = r0 we have

Rk = PkBk.

Moreover, thanks to mutual A−orthogonality of pk it follows that

RT
k ARk = BT

k P T
k APkBk = BT

k diag
(
pT

0 Ap0 . . . pT
k−1Apk−1

)
Bk.

Setting
Kk = diag

( 1
||r0||

, . . . ,
1

||rk−1||

)
,

and using (16) we can write the Lanczos tridiagonal matrix as

Tk = QT
k AQk = KT

k RT
k ARkKk = KT

k BT
k diag

(
pT

0 Ap0 . . . pT
k−1Apk−1

)
BkKk.

By carrying out the multiplication on the right-hand side and comparing the result with the
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coefficients of Tk, it follows

γk = 1
αk

+ βk

αk−1
, β1 = 0, α0 = 1,

δk =
√

βk+1
αk

.

2.5.2 CG Convergence

We have constructed the CG algorithm so that in every iteration it minimizes f(x) over the
Krylov subspace x0 + Kk (A, r0). With the error of approximation defined as ϵk = xk − x∗

we have

f(xk) = 1
2xT

k Axk − xT
k b = 1

2 (xk + x∗ − x∗)T A (xk + x∗ − x∗) − xT
k b

= 1
2ϵT

k Aϵk + 1
2ϵT

k Ax∗ + 1
2xT

∗ Axk − xT
k b = 1

2ϵkAϵk − 1
2xT

∗ Ax∗,

and since f(x∗) = −xT
∗ Ax∗/2 the equation can be rewritten as

f(xk) = 1
2 ||ϵk||2A + f(x∗).

In other words, each iteration of CG minimizes the error in A-norm over the subspace x0 +
Kk (A, r0). Since

ϵk = xk − x∗ ∈ −x∗ + x0 + span{r0, . . . , Ak−1r0} = ϵ0 + span{Aϵ0, . . . , Akϵ0},

the error term can be written as a linear combination

ϵk =
(

I +
k∑

i=1
ϕiA

i

)
ϵ0,

where ϕi ∈ R are coefficients chosen by CG so that ||ϵk||A is minimized. Moreover, using a
polynomial Pk(A) of degree k that satisfies P (O) = I, we can rewrite the previous equation
as

ϵk = Pk(A)ϵ0. (17)

This presents another way of thinking about CG – in kth iteration it finds a polynomial
Pk(A) that minimizes the error term given by (17) in A-norm, i.e.

||ϵk||A = min
Pk

||Pk(A)ϵ0||A.
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Given the λmin = λ1, . . . , λn = λmax eigenvalues of A and their corresponding normalized
eigenvectors v1, . . . , vn, the error term ϵ0 can be expressed as a linear combination

ϵ0 =
n∑

i=1
ξivi,

which allows us to write (17) as

ϵk = Pk(A)
n∑

i=1
ξivi =

n∑
i=1

ξiPk(λi)vi.

Note that given eigenvector v and its associated eigenvalue λ of A, we have P (A)v = P (λ)v.
Therefore we will use the same notation for Pk regardless whether the argument is a matrix
or scalar. If we use a scalar as an argument we will expect the result to be scalar as well.
Therefore, it follows that Pk(0) = 1. Using the orthonormality of vi we can express the
square of A-norm of the error as

||ϵk||2A = min
Pk

n∑
i=1

ξ2
i (Pk(λi))2 λi ≤ min

Pk

max
λ∈σ(A)

(Pk(λ))2
n∑

i=1
ξ2

i λi

= min
Pk

max
λ∈σ(A)

(Pk(λ))2 ||ϵ0||2A. (18)

This result gives us some insight into what is and is not a favourable spectrum of A.
Assuming our initial guess x0 was not a solution, then the error is zero if Pk is zero for each
distinct eigenvalue. If A was only positive semi-definite and the linear system was consistent
(right-hand side b was in the range of A) we can still use CG for the solution of such system
[8]. Moreover, the zero eigenvalues are ignored, and therefore null space of A is ignored
as well. Tight clusters of eigenvalues or eigenvalues with high multiplicity are (essentially)
reduced by the same Pk, which saves a number of iterations. The eigenvalues close to the
zero are problematic because of the restriction Pk(0) = 1 it is hard to find a polynomial that
is small in these small eigenvalues.

It follows from (18) that the relative error in A-norm can be bounded by

||ϵk||A
||ϵ0||A

≤ min
Pk

max
λ

|Pk(λ)| ≤ 2
(√

κ − 1√
κ + 1

)k

,

where κ = λmax/λmin is called the condition number of A. The last inequality is derived by
bounding the value of maxλ |Pk(λ)| by the kth scaled and shifted Chebyshev polynomial on
the [λmin, λmax] interval, see e.g. [9, 10] for a proof.

2.5.3 Preconditioned CG

As was shown in the previous section, the speed of convergence depends on the spectral
properties of A. To improve the convergence of the CG method we can precondition the
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system of linear equations [10]. A preconditioner for CG is the inverse of an SPD matrix M

that is applied to both sides of the system (1), i.e.

M−1Ax = M−1b.

Note that if M−1 = A−1 then x = A−1b and we have found the solution. Finding the inverse
of A is however costly. Therefore, we try to find some matrix (often some approximation
of A−1) that is easy to compute as well as easy to apply, while significantly improving the
spectral properties of the preconditioned system M−1A. Overviews of the most widely used
preconditioners can be found, e.g. in [6, 9, 11].

The problem with preconditioner M−1 is that M−1A is not generally an SPD matrix.
Fortunately, this problem can be avoided because for every square SPD matrix M there
exists an SPD matrix C such that M = CC [6]. Moreover, C−1AC−1 is SPD and has the
same eigenvalues as M−1A.

We can transform the system (1) into

C−1AC−1x̃ = C−1b, x̃ = Cx,

Ãx̃ = b̃,

use the CG method to find x̃, and then from the equation above we get x. However, we
would have to factorize the preconditioning matrix M to obtain its square root C. Luckily,
it turns out that this is not necessary. Let us write the update formulas for the modified
system

αk =
(
r̃T

k r̃k

)
/
(
p̃T

k Ãp̃k

)
,

x̃k+1 = x̃k + αkp̃k,

r̃k+1 = r̃k − αkÃp̃k,

βk+1 =
(
r̃T

k+1r̃k+1
)

/
(
r̃T

k r̃k

)
,

p̃k+1 = r̃k+1 + βk+1p̃k.

Using xk = C−1x̃k and definition of b̃, we can rewrite the residual as

r̃k = b̃ − Ãx̃k = C−1 (b − Axk) = C−1rk.
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Substituting this into our update formulas and using the definition of Ã we get

αk =
(
rT

k M−1rk

)
/

((
C−1p̃k

)T
A
(
C−1p̃k

))
,

Cxk+1 = Cxk + αkp̃k,

C−1rk+1 = C−1rk − αkC−1AC−1p̃k,

βk+1 =
(
rT

k+1M−1rk+1
)

/
(
rT

k M−1rk

)
,

p̃k+1 = C−1rk+1 + βk+1p̃k.

Finally, substituting zk = M−1rk and pk = C−1p̃k into the derived formulas yields the
preconditioned conjugate gradient (PCG) method illustrated in Algorithm 6.

Algorithm 6: PCG
Input: A, M−1, x0, b

1 r0 = b − Ax0
2 z0 = M−1r0
3 p0 = z0
4 for k = 0, · · · :
5 s = Apk

6 αk =
(
rT

k zk

)
/
(
sT pk

)
7 xk+1 = xk + αkpk

8 rk+1 = rk − αks
9 zk+1 = M−1rk+1

10 βk+1 =
(
rT

k+1zk+1
)

/
(
rT

k zk

)
11 pk+1 = zk+1 + βk+1pk

Output: xk

Algorithm: CG
Input: A, x0, b

1 r0 = b − Ax0
2
3 p0 = r0
4 for k = 0, · · · :
5 s = Apk

6 αk =
(
rT

k rk

)
/
(
sT pk

)
7 xk+1 = xk + αkpk

8 rk+1 = rk − αks
9

10 βk+1 =
(
rT

k+1rk+1
)

/
(
rT

k rk

)
11 pk+1 = rk+1 + βk+1pk

Output: xk
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3 Deflated Conjugate Gradients

Deflation for CG, also known as CG with preconditioning by projectors, was introduced
independently in [12–14]. As we saw in the previous section, CG finds in the kth iteration a
minimizer of f(x) over the Krylov subspace Kk(A, r0). The basic idea of DCG is to enrich
this Krylov subspace by some subspace W. If the subspace is properly chosen it follows
that since every iteration finds a minimizer over a larger subspace, we can hope for faster
convergence.

3.1 Deriving DCG

Let us define the deflation matrix as

W = (w1, w2, . . . , wm) ∈ Rn×m, m < n

Assuming that W is a full rank matrix and W is a subspace spanned by columns of W , we
can denote a projector

P = I − W
(
W T AW

)−1
W T A = I − QA

onto an A-conjugate complement of W.
We can split the solution into the solution on the deflation space W and the solution on

the A-conjugate complement of W. As we discussed in Section 2.4.2 the kth residual has to
be orthogonal to the kth subspace that CG minimizes over. This leads to the restriction that
the first residual is orthogonal to W , i.e.

W T r0 = 0.

Given an arbitrary initial guess x−1 and defining the residual r−1 = b − Ax−1 we can choose
x0 to be

x0 = x−1 + W
(
W T AW

)−1
W T r−1. (19)

Multiplying from left by W T A gives

W T Ax0 = W T Ax−1 + W T (b − Ax−1)

W T Ax0 = W T Ab (20)

o = W T Ab − W T Ax0 = W T r0. (21)

From (20) it follows that x0 is the exact solution of (1) in W and therefore (Equation (21))
r0 is orthogonal to W. If we use x0 as the initial guess for CG, we obtain the InitCG method
[15] illustrated in Algorithm 7.

If the columns of W are exact eigenvectors then in exact arithmetic W is orthogonal
to Kk(A, r0) because the residuals will not have any components in the direction of the
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Algorithm 7: InitCG
Input: A, x−1, b, W

1 r−1 = b − Ax−1
2 x0 = x−1 + Qr−1
3 r0 = b − Ax0
4 p0 = r0
5 for k = 0, · · · :
6 s = Apk

7 αk =
(
rT

k rk

)
/
(
sT pk

)
8 xk+1 = xk + αkpk

9 rk+1 = rk − αks

10 βk+1 =
(
rT

k+1rk+1
)

/
(
rT

k rk

)
11 pk+1 = rk+1 + βk+1pk

Output: xk

eigenvectors spanning W. However if W does not consist of the exact eigenvectors or the
computations are done in finite precision, this relation does not hold, and we need to use
some sort of correction.

Our first problem is that p0 = r0 is not necessarily A-orthogonal to W. If this is the
case, then x1 has components in W. We resolve this by setting

p0 = P r0.

Similarly, since rk+1 = r0 − A (α0p0 + · · · + αkpk) we have to use the same trick as above,
so that the update formula for descent direction becomes

pk+1 = P rk+1 + βk+1pk.

Effectively, we are making the search direction A-conjugate to W by projecting the compon-
ents in W out of the residual. This ensures that CG is not searching in W but only in its
A-conjugate complement. Thus we have achieved the required splitting of the solution. The
coefficient βk+1 is chosen so that it orthogonalizes rk+1 against the previous direction, so
should it change because we are orthogonalizing P rk+1 instead? No because, following the
derivation of (14) and using that pk is A-orthogonal to W we have

βk+1 = −pT
k AP rk+1
pT

k Apk
= −

pT
k A

(
rk+1 − W

(
W T AW

)−1
W T Ark+1

)
pT

k Apk
= −pT

k Ark+1
pT

k Apk
.

From derivation αk it follows that this coefficient does not have to be changed either.

Modifying Algorithm 7 so that we explicitly A-orthogonalize the search directions with
respect to W gives us the deflated conjugate gradient (DCG) method as shown in Algorithm 8.
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Algorithm 8: DCG
Input: A, x−1, b, W

1 P = I − QA
2 r−1 = b − Ax−1
3 x0 = x−1 + Qr−1
4 r0 = b − Ax0
5 p0 = P r0
6 for k = 0, · · · :
7 s = Apk

8 αk =
(
rT

k rk

)
/
(
sT pk

)
9 xk+1 = xk + αkpk

10 rk+1 = rk − αks

11 βk+1 =
(
rT

k+1rk+1
)

/
(
rT

k rk

)
12 pk+1 = P rk+1 + βk+1pk

Output: xk

Algorithm: CG
Input: A, x0, b

1 r0 = b − Ax0

2 p0 = r0
3 for k = 0, · · · :
4 s = Apk

5 αk =
(
rT

k rk

)
/
(
sT pk

)
6 xk+1 = xk + αkpk

7 rk+1 = rk − αks

8 βk+1 =
(
rT

k+1rk+1
)

/
(
rT

k rk

)
9 pk+1 = rk+1 + βk+1pk

Output: xk

3.1.1 Preconditioned DCG

We can also derive a preconditioned version of the previous algorithm. The derivation is done
in the same way as in Section 2.5.3. Carrying this out yields preconditioned DCG (PDCG)
illustrated in Algorithm 9.

Algorithm 9: PDCG
Input: A, x−1, b, W

1 P = I − QA
2 r−1 = b − Ax−1
3 x0 = x−1 + Qr−1
4 r0 = b − Ax0
5 z0 = M−1r0
6 p0 = P z0
7 for k = 0, · · · :
8 s = Apk

9 αk =
(
rT

k zk

)
/
(
sT pk

)
10 xk+1 = xk + αkpk

11 rk+1 = rk − αks
12 zk+1 = M−1rk+1

13 βk+1 =
(
rT

k+1zk+1
)

/
(
rT

k zk

)
14 pk+1 = P zk+1 + βk+1pk

Output: xk
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3.2 Preconditioning Effect of Deflation

We derived the DCG method so that it splits the solution into two parts where the first part
is given by (19). Therefore, we have

x = x0 + u, (22)

where

u = x − x0 = x − x−1 − W
(
W T AW

)−1
W T r−1

= x − x−1 − W
(
W T AW

)−1
W T (b − Ax−1)

= x − x−1 − W
(
W T AW

)−1
W T A (x − x−1)

= P (x − x−1) .

Premultiplying the above equation by P and using the defining property of projectors (P P =
P ) yields

P u = P P (x − x−1) = P (x − x−1) = u. (23)

Since x0 in (22) is known we can rewrite the system (1) as

Ax = b

A (x0 + u) = b

Au = b − Ax0 = r0. (24)

By (23), u is a solution of the deflated system

AP y = r0.

Conversely, given a solution y, we can set u = P y, that solves (24) and at the same time
obeys (23). Therefore, the solution of (1) can take the form

x = x0 + P y.

To recover the solution x, we premultiply the equation by P A which yields

P Ax = P Ax0 + P AP y = P Ax0 + P r0 = P Ax0 + P (b − Ax0) = P b. (25)

On the other hand, premultiplying by P T A gives

P T Ax = P T Ax0 + P T AP y = P T Ax0 + P T r0 = P T Ax0 + P T (b − Ax0) = P T b. (26)

This suggests that the projectors P and P T can be thought of as "preconditioners".
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Moreover, applying PCG described in Algorithm 6 to solve (1) with the preconditioner
M−1 = P P T , i.e. solving

P P T Ax = P P T b (27)

using the initial guess defined by (19) is equivalent to DCG. By induction, it is obvious that
W T rk = 0, therefore P T rk = rk. From this it follows that the update formulas for the
search directions pk are the same. By the same argument, we have

rT
k zk = rT

k P P T rk = rT
k rk,

and therefore the coefficients αk and βk are also equivalent.

Additionally, it follows by a straightforward comparison and with some rewriting (carried
out e.g. in [16]) that the DCG method is equivalent to the standard CG method applied to
the linear system

P T AP x = P T b. (28)

The equivalence to CG and PCG described above suggests that the rate of convergence
of DCG depends on the spectrum of P T AP or equivalently of P P T A. In fact we will show
that the spectra of all of the linear system operators defined in (25), (26), (27) and (28) are
equivalent. We have

AP = A (I − QA) = A − AQA = (I − AQ) A = P T A.

Since σ(AP ) = σ(P A) we conclude that σ(P A) = σ(P T A). Premultiplying the previous
equation by P T it follows that

P T AP = P T P T A = P T A.

If we instead postmultiply the equation by P , we have

AP P = AP = P T AP .

Therefore, it was shown that

σ(P A) = σ(P T A) = σ(P P T A) = σ(P T AP ).

Now, assume that the columns of the deflation matrix W are exact eigenvectors of A.
Then immediately

P T AW = AW − AW
(
W T AW

)−1
W T AW = O = diag(0, . . . , 0)W ,

i.e. the columns of W are eigenvectors of P T A belonging to λ = 0 eigenvalues. Moreover, if
λ and v is an eigenpair of A but v is not a column of W then thanks to the symmetry of A
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we have W T v = o and also W T Av = o, therefore

P T Av = Av − AW
(
W T AW

)−1
W T Av = Av = λv.

In other words DCG operator has the same spectrum as A except that the eigenvalue be-
longing to eigenvector comprising W are shifted to zero. As was mentioned in Section 2.5.2,
the CG method ignores the space spanned by the null space of the operator. This allows us
to consider the effective condition number

Keff = λmax

λmin
,

where λmax and λmin is respectively the maximal and the minimal non-zero eigenvalue of
P T A or one of the spectrally equivalent operators.

3.2.1 Shifting the Eigenvalues

We saw that if W consists of the exact eigenvectors of A, then the associated eigenvalues
are shifted to zero. However, if the deflated eigenvectors are only approximate, then the
associated eigenvalues might not be zeroed out completely but be just very small instead.
The eigenvalues close to zero can significantly slow down the convergence as was discussed in
Section 2.5.2.

It was suggested in [17] that we can add a correction factor Q to projector P leading to
a so-called projector with coarse problem correction

Ps = P + Q.

We can straightforwardly replace P in DCG with Ps. More care has to be taken for PDCG,
see [17] for the resulting algorithm. Similarly to above we have

P T
s AW = AW − AW

(
W T AW

)−1
W T AW + W

(
W T AW

)−1
W T AW

= W = diag(1, . . . , 1)W ,

and since Q is orthogonal to eigenvectors not in W , we can show in the same way as above
that the rest of the eigenvalues are not changed. Therefore, using Ps leads to the operators
having the same spectrum as A except that the eigenvalues belonging to the columns of W

are shifted to one.
Since

Ps = I − QA + Q = I − Q (A − I) ,

the cost of applying Ps compared to P is one more vector-vector addition.
We note, however, that this approach can be problematic because in some case it can

create an unfavourable spectrum. For example, let the extremal eigenvalues of A be λmin =
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102 and λmax = 104 and assume that the eigenvector belonging to λmax is not a column in
W , then this approach creates a new isolated eigenvalue λ = 1 and the effective condition
number of DCG is hundred times worse than that of A. Therefore we suggest multiplying the
correction factor Q in Ps by a constant C that does not create the unfavourable spectrum. A
good choice is an eigenvalue belonging to an eigenvector not in W as the deflated eigenvalues
will coalesce into the chosen non-deflated eigenvalue. If the eigenvectors in W are inexact,
then the deflated eigenvalues will create eigenvalue cluster near C, and we can still expect a
good convergence.

The numerical experiments in [17] showed that Ps also has a stabilization effect when
the projections P and especially the application of the inverse in P are computed with low
accuracy.

3.3 DCG Coarse Problem

The inverse in the projector P is called coarse problem (CP) while W T AW is called coarse
problem matrix. We will employ a direct solver for solving CP.

Assuming a row-wise distribution of matrices, the rows of the CP matrix are distributed
among the same number of cores we are using to solve the linear system. However, the
dimension of CP is smaller than the dimension of A, quite often significantly (even just
a few rows). If we tried to solve this problem by a fully parallel approach, the cost of
communication, as well as the required time, could be extremely high. To solve this problem,
we employ the same strategy that was successfully used for the solution of the FETI method
CP [18–21]. We create MPI sub-communicators, and then we copy the whole matrix into
each sub-communicator distributing it over the available ranks in each sub-communicator.
This allows us to factorize the CP matrix redundantly on each sub-communicator. The
forward and backward solves are done by scattering the whole input vector into each sub-
communicator leading also to redundant solves on sub-communicators. Apart from scattering
the input vector into sub-communicator the communication in the solves is restricted to
the sub-communicators. Therefore, the number of sub-communicators effectively controls
the level of parallelization of the CP solution. It was pointed out in [18] that assuming
the computational cores are assigned to the sub-communicators contiguously then the sub-
communicator approach exploits data locality and can be thought of as a communication
avoiding technique.

3.3.1 Required Accuracy for CP Solution

While we remarked that CP would be solved by a direct solver and therefore with full machine
precision, it will prove useful to have a look at the accuracy level that is actually needed for
the CP solution.

Given the relative tolerance ϵ for the outer iteration, the numerical experiments in [22]
showed that to get the same convergence as that obtained by using a direct solver, the
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stopping criterion of the inner solver (CG) used for solving CP has the form

||rinner
k || ≤ cϵ||binner||, 0 < c ≤ 1.

It was shown in [23], using the theory developed for the inexact Krylov subspace methods
[24, 25], that this accuracy is needed only in the first few iterations of the outer solver and
can be relaxed as we are getting closer to the solution of the original system. Their stopping
criterion has the form of

||rinner
k || ≤ cϵ

||router
i ||

||binner||, c > 0.

The constant c is guaranteed to exist. However, we do not know the upper bound - the
value that would lead to maximal stopping criteria relaxation while keeping the number of
iterations required by the outer solver to converge same as when CP is solved directly. We
call DCG that uses this stopping criterion adaptive precision DCG.

3.3.2 Nested DCG

Given a hierarchy of the deflation matrices Wk, k ∈ {1, . . . , n} such that

W T
1 AW1 (29)

is a coarse problem matrix, and
W T

2 W T
1 AW1W2

is even coarser. We assume that this hierarchy continues until the coarsest problem matrix
reads

W T
n · · · W T

2 W T
1 AW1W2 · · · Wn.

Then we can use DCG to solve (1) with W1 being the deflation matrix. If W1 is large, then
it would be very costly to factorize (29). Instead, we can again use DCG but this time to
solve (29) where the deflation matrix will be W2. We can nest DCG solvers for CP until the
coarsest level with the coarsest problem matrix which is hopefully small enough that we can
solve it easily with a direct method.

To nest DCG solvers for the CP solution was suggested in [26]. Using nested DCG with
the stabilising effect provided by the shifted projector Ps and with the adaptive precision
could lead to significant speed-up of the application of deflation thanks to the cheap CP
solution on the coarsest level and the reduction of the number of iteration required by the
inner solvers.
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4 Deflation Spaces

The choice of the deflation space is crucial because if we choose the space properly, DCG can
be significantly faster.

There are several factors that need to be considered. The deflation matrix should be read-
ily obtainable. The CP should be easily solvable. And our deflation space should significantly
improve time to solution.

4.1 Eigenvectors

We already saw in Section 3.2 that if we create the deflation space from eigenvectors, we
effectively hide (deflate) the associated eigenvalues from the CG method.

Obviously, we should deflate the eigenvectors that are slowing down the convergence the
most. As discussed in Section 2.5.2 these are quite often the eigenvectors belonging to the
smallest eigenvalues [8, 16]. In general, the eigenvectors belonging to extremal eigenvalues
are a good choice [27] as it can lead to a significant decrease of the effective condition number.

Note that if the eigenvalues we try to deflate are in a cluster and we do not deflate the
whole cluster we will not see essentially any improvement in the convergence rate.

The good thing about the eigenvector-based deflation is that in general, we can see sig-
nificant improvements in the convergence with relatively small deflation matrices. Therefore
the CP solution is cheap.

We also note, that if the columns of W have associated eigenvalues λi, λk, . . . we can
essentially for free obtain AW or W T A by just scaling the columns of W or rows of W T

respectively by the appropriate eigenvalues, i.e.

AW = W diag(λi, λk, . . . ) or W T A = diag(λi, λk, . . . )W T . (30)

However, the problem is how to obtain the eigenvectors. In general, finding the approx-
imate eigenvectors is very costly. In our experience Locally Optimal Block Preconditioned
Conjugate Gradient (LOBPCG) [28, 29] is fast if we have a good preconditioner. However,
the solution of the linear system (1) with this good preconditioner is even faster, and there
is essentially no need to use DCG. Since we quite often do not have a good preconditioner
we generally used the Jacobi-Davidson (JD) method on subspaces as described in [30]. This
method is fairly robust, but it is also quite slow.

If we are solving the same linear system with multiple right-hand sides, we can use the
equivalence of CG with the Lanczos method (see Section 2.5.1) to obtain eigenvectors ap-
proximation at the end of CG/DCG solves [16]. A significant improvement upon the idea is
the eigCG algorithm [31].

4.2 Subdomain Aggregation

The subdomain aggregation was introduced in [12] and successfully applied in e.g. [32–34]
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The idea is that if we solve a problem using a finite element method, we can split the
computational domain into a number of non-overlapping subdomains. Then each subdomain
contributes a single vector to W that contains ones on the indices of the grid points belong-
ing to the subdomain and zeros otherwise. Note that the CP matrix then aggregates the
components of A on subdomains.

It was pointed out in [33] that the subdomain aggregation often approximate the small
eigenvalues of A.

The choice of subdomains should take into account irregularities in the computational
domain, e.g. jumps in coefficients [34].

4.3 Discrete Wavelet Compression

It was observed in [26] that since the CP matrix represents a coarse grid approximation of
A we can create the CP matrix by a discrete wavelet compression.

The idea of a discrete wavelet compression using the fast wavelet transform (FWT) [35–
37] can be described as follows. Assume that the input we want to compress is a matrix
A ∈ Rn×n, and that number of rows n is divisible by 2. First, we create an orthonormal
projector onto a scaling subspace with the decomposition low-pass filter coefficients h1, . . . , hk

in each row shifted by two positions against the previous row, i.e.

H1,n =

⎛⎜⎜⎜⎜⎜⎝
h1 h2 h3 . . . 0 · · · 0 0
0 0 h1 h2 · · · · · · 0 0
...

...
...

...
... . . . ...

...
hk−1 hk 0 0 0 · · · hk−3 hk−2

⎞⎟⎟⎟⎟⎟⎠ ∈ R
n
2 ×n.

Notice the filter is wrapped around when it overflows the matrix dimension. Similarly, we can
create projector onto a wavelet subspace with the same structure but with the decomposition
high-pass filter g1, . . . , gk in each row, i.e.

G1,n =

⎛⎜⎜⎜⎜⎜⎝
g1 g2 g3 . . . 0 · · · 0 0
0 0 g1 g2 · · · · · · 0 0
...

...
...

...
... . . . ...

...
gk−1 gk 0 0 0 · · · gk−3 gk−2

⎞⎟⎟⎟⎟⎟⎠ ∈ R
n
2 ×n.

Note that the number of columns of each projector is the same as the number of rows of
the matrix that we want to compress, while the number of rows is just a half. First index
describes the projector level, and will be explained later. The second one tells us the number
of rows in the input matrix. Finally, we can create a transformation matrix

M1,n =
(

H1,n

G1,n

)
∈ Rn×n.
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Applying transformation matrix M1,n from left and its transpose from right on the input
matrix, we obtain

M1,nAMT
1,n =

(
H1,nAHT

1,n H1,nAGT
1,n

G1,nAHT
1,n G1,nAGT

1,n

)
∈ Rn×n.

The resulting matrix contains all information of the input. However, the first block of the
resulting matrix contains the most useful information (so-called trends), while the other
blocks contains just fine details of the input. This is because the application of H cuts of the
high frequencies, while G cuts of the low frequencies of the signal it is applied on. Therefore,
assuming that n/2 is divisible by 2, we can create another transformation matrix M1,n/2,
and apply it in the same way as before, but now just on the first block

M1,n/2H1,nAHT
1,nMT

1,n/2 =⎛⎝H1,n/2H1,nAHT
1,nHT

1,n/2 H1,n/2H1,nAHT
1,nGT

1,n/2
G1,n/2H1,nAHT

1,nHT
1,n/2 G1,n/2H1,nAHT

1,nGT
1,n/2

⎞⎠ ∈ R
n
2 × n

2 .

Again, the first block contains the most useful information and now its dimension is a quarter
of the original. We can obtain this block without creating the matrices G1,∗ and M1,∗.
Moreover, we can directly assemble the product of H1,n/2H1,n as a second level projection
matrix

H2,n = H1,n/2H1,n.

A two-level wavelet decomposition using Haar wavelet is illustrated in Figure 3. Notice
that most of the information is contained in the upper left part of the image. If we zeroed out
all of the resulting image except the upper left 1/16th, and then we reconstructed the picture
[35], the resulting image would still look reasonably well. This is the basic idea behind using
wavelets for data compression.

Assuming that n is divisible by 2m we can create up to m level projection matrix Hm,n

in the same way.

On the other hand, if n is not divisible by 2m and we would still like to use m level
projection matrix, we have to employ some form of extension of wavelet transforms for ar-
bitrary lengths of input data, see, e.g. [40]. We implemented the truncated and extended
filter matrices. The truncation leads to errors on the boundaries while extension leads to
redundancy. In our use case, we did not observe any significant difference between the two.
To construct these wavelet projections, let N be the number of the filter coefficients, the
number of rows for the truncated matrix is r = ⌈n/2⌉ and it is r = ⌊(n + N − 1) /2⌋ for
the extended matrix. Let k = N − 2. Now we can create a larger variant of the deflation
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Figure 3: Example of a two-level decomposition (right) [38] using Haar wavelet of Lenna test
picture (left) [39]

projection matrix as

H̃ =

⎛⎜⎜⎜⎝
h1 h2 h3 . . . 0 · · · 0 0
0 0 h1 h2 · · · · · · 0 0
...

...
...

...
... . . . ...

...

⎞⎟⎟⎟⎠ ∈ Rr×2r+k.

Now set c = k+1 for the extended matrix and c = k/2+1 for the truncated matrix. Then our
filter matrix H1,n ∈ Rr×n is obtained by taking all columns from cth column up to (c + n)th
column from the previous matrix H̃.

If the columns of W are eigenvectors belonging to the smallest eigenvalues, then the DCG
coarse problem consists of the lowest frequency components of A. Similarly, our input matrix
transformed by Hm,n projection, contains the lowest frequency components of A. Then in a
sense, we can set

W T AW = Hm,nAHT
m,n,

and therefore we can choose our deflation space as a transpose of the m level projection
matrix onto the scaling subspace, i.e. W = HT

m,n. Note that this choice allows us to use the
nested DCG.

We implemented a general function to assemble these scaling matrices with arbitrary
filter coefficients. Our implementation can currently generate the matrices with Haar, 4, 8,
and 16 coefficients Daubechies (db4,db8,db16), Biorthogonal 2.2, and discrete Meyer (FIR
approximation) filters. An illustration of the implemented scaling functions can be found in
Figure 4.
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Figure 4: Implemented scaling functions
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Haar wavelet is especially interesting as it has only two coefficients, both of them equal to
1/

√
2. Given the level m, we can observe that the compressed operator effectively aggregates

2m entries in the input matrix. Therefore, it can be viewed as an algebraic subdomain
aggregation.

Note that the presented discrete wavelet compression was obviously designed for dense
matrices. We can expect that the behaviour of the wavelet compression will depend highly
on the way the filters fit the sparsity pattern of the input matrix.

4.4 Multigrid Prolongation and Restriction

In the previous section, we noted that the CP matrix consists of the lowest frequency com-
ponents of A or equivalently it contains the more coarse view of the initial matrix. The same
CP matrix arises in multigrid [11, 41]. In fact, the similarity of DCG and two-grid iteration
was noted in [17, 23, 42].

Therefore, we can set W to be the multigrid prolongation operator making W T the
restriction operator. Moreover, our wavelet-based deflation matrices are also used as algebraic
multigrid operators [43]. Therefore we conclude that essentially any geometric or algebraic
prolongation matrices from multigrid might be used as a deflation matrix.

Similarly to the wavelet-based deflation, we can create a hierarchy of prolongation matrices.
We reuse the notation of the previous section and refer to the individual prolongation matrices
by their level in the hierarchy. Note that this choice of the deflation matrix also allows for
nesting DCGs.

Note that the resulting operator is essentially a multigrid operator without smoothers.
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5 Libraries and HPC environment

This section provides a brief overview of the numerical libraries and HPC computational
environment used to obtain the numerical results.

5.1 PETSc

The Portable, Extensible Toolkit for Scientific Computation (PETSc) [44–46] is a suite of
data structures and routines providing building blocks for the implementation of scientific
applications suitable for parallel computers. It is written in C and uses the MPI standard
for parallelization. The parallelization comes mostly from a row-wise distribution of the
matrices over a number of computational cores. The building blocks that PETSc provides
are for example parallel vectors and matrices or a number of parallel solvers for linear, non-
linear or optimization problems. PETSc also has many nice features like automatic profiling
or a possibility to change applications behaviour by command line options.

Our implementation of DCG method described in the next section is built as a PETSc
linear solver.

The newest version of PETSc (3.9.0) was used for all the numerical experiments.

5.2 PERMON

PERMON (Parallel, Efficient, Robust, Modular, Object-oriented, Numerical) [47] is a scal-
able software toolbox for solution of quadratic programming (QP) problems. It is based
on PETSc, and it follows its highly successful design. The main module PermonQP in-
cludes data structures, transformations, algorithms, and supporting functions for QP. Other
modules include PermonFLLOP implementing FETI type domain decomposition and Per-
monSVM implementing linear support vector machines.

Our DCG implementation is part of PERMON.

5.3 SuperLU

It was mentioned in Section 3.3 that we employ a direct solver for the CP solution. In our
experience, a supernodal LU factorization approach is generally the fastest, and it scales
reasonably well. If the CP is small, we use a sequential solve provided by SuperLU [48]. If on
the other hand, CP is larger we employ several cores for its solution using SuperLU_DIST
[49].

5.4 SLEPc

SLEPc [7, 50], the Scalable Library for Eigenvalue Problem Computations, is a PETSc-
based software library for the solution of large-scale sparse eigenvalue problems on parallel
computers.
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We used it for the computation of the eigenvector deflation spaces using either the JD
method on subspaces [30] or LOBPCG [28] implemented in BLOPEX [29].

The version 3.9.0. was used.

5.5 MFEM

MFEM [51] is a free, lightweight, scalable C++ library for finite element methods. It sup-
ports wide variety of finite element spaces, various discretization techniques, etc. It employs
HYPRE [52] for most of the linear algebra routines and ParMETIS/METIS 5 [53] for sub-
domain partitioning.

Several examples in the numerical experiments were constructed using the library.
We used the newest version 3.3.2.

5.6 ARCHER

The numerical tests were run on the ARCHER supercomputer [54]. ARCHER is a Cray
XC30 based supercomputer that consists of 4920 compute nodes. With each compute node
containing two 2.7 GHz, 12-core Intel E5-2697 v2 (Ivy Bridge) processors, the total number of
cores available on ARCHER is 118,080. Each compute node has at least 64 GB of memory.
Compute nodes are interconnected by the Aries interconnect using a Dragonfly topology.
According to the current (November 2017) TOP500 list [55], the ARCHER is the 79th most
powerful supercomputer with Rmax of 1642.5 TFlop/s in the Linpack benchmark.

For each library, we used the following modules. As a compiler, the cce/8.6.5 (Cray
Compiler Environment) was used. An MPI library was provided by the cray-mpich/7.7.0
module. The module libsci/17.12.1 was used as an implementation of the BLAS, LAPACK
and ScaLAPACK routines. The Cray Third Party Scientific Libraries (TPSL) collection
version 17.11.1 provided SuperLU 5.2.1, SuperLU_DIST 5.1.3, HYPRE 2.11.2 and METIS
5.1.0.
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6 Implementation

In this section, we describe the implementation of the DCG method. The method was
implemented as a linear solver (KSP) in PETSc with the KSP type being KSPDCG. The developed
implementation is available in the PERMON toolbox on its GitHub page [56].

The implementation uses the linear algebra building blocks (Mat,Vec,IS, etc. routines)
provided by PETSc and some useful utilities provided by PERMON.

6.1 Solver Settings

Since KSPDCG implements the KSP interface the common options are available, e.g.,
-ksp_monitor command line option for monitoring the residuals. All the available parameters
can be obtained by setting KSPDCG as the solver and running with -help. We will describe
some of these command line options available for our implementation.

KSPDCG implements at the same time (preconditioned) InitCG and PDCG (DCG is ob-
tained by setting PCNONE as the preconditioner). By default PDCG is used. To use InitCG
the user can requested it with the -ksp_dcg_initcg option.

To use the correction described in Section 3.2.1 which is by default not employed, one
can set the -ksp_dcg_correct option.

The adaptive precision shown in Section 3.3.1 is also not used by default. User can
request it by setting -ksp_dcg_adaptive, the constant c defaults to one and can be changed
by -ksp_dcg_adaptive_const.

To control the maximal number of nested DCGs (Section 3.3.2), user can set
-ksp_dcg_max_nested_level. If the hierarchy of the deflation operators contains more than
this number of matrices then the the smallest matrices are multiplied with each other to
create a single grouped operator. The default value is zero, i.e. no nesting of DCGs is done.

6.1.1 Setting the Deflation Matrix

User can set the deflation matrix or its transpose with the KSPDCGSetDeflation() function.
If the matrix set is an implicit product matrix (MATPROD that is equivalent to multiplicative
MATCOMPOSITE) then the nested DCG can be used.

If the deflation matrix is not set then the transpose of the 1-level Haar deflation matrix is
computed. A computation of a different basis can be requested by -ksp_dcg_compute_space.
The possible options for wavelet based deflation matrices are:

• haar – Haar deflation matrix with ⌈n/2⌉ rows where the filter is cut off on the last row
of the deflation matrix, if it does not fit

• jackethaar – same as haar except that if the filter on the last row does not fit the last
two rows are constructed as a 2-point Jacket-Haar, see [57]

• db2 – 2 Daubechies coefficients (Haar)
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• db4 – 4 Daubechies coefficients

• db8 – 8 Daubechies coefficients

• db16 – 16 Daubechies coefficients

• biorth22 – Biorthogonal 2.2 (6 coefficients)

• meyer – Discrete Meyer (FIR Approximation) (62 coefficients)

The number of the deflation levels defaults to one but can be changed by
-ksp_dcg_compute_space_size. We always directly assemble haar and jackethaar spaces.
The others are assembled on their individual levels, but the whole operator is kept as an
implicit product matrix. This allows us to use them in the nested DCG scheme. By default
these filters are truncated, by setting the option -ksp_dcg_space_extended the filters are
extended instead.

Another deflation matrix that is possible to compute is the subdomain aggregation. It
is obtained by using the aggregation argument of the option. This assumes that each core
owns the whole subdomain. This is, e.g. the case when a domain is partitioned by METIS
into subdomains assigned to different cores, and then each core computes "locally" its own
part of the linear system.

If SLEPc is available, then we can also specify slepc as the argument of the option. This
creates a SLEPc solver for the eigenvalue problems (EPS) and tries to compute the number
of eigenvectors specified by -ksp_dcg_compute_space_size associated with the smallest
eigenvalues. The options for the solver can be changed using the standard prefix -eps_.
The argument slepc-cheap works in the same way but it also directly assemble AW by
scaling the obtained eigenvectors by their eigenvalues as was shown in (30).

6.2 Cost of Matrices Assembly and Operations

For a good parallel implementation, it is necessary to ascertain whether some matrix operators
should be assembled and how costly are their applications. For example, AW has significantly
fewer columns than A so that W T A applied by matrixTranspose-vector multiplication could
be faster than matrix-vector multiplication by A followed by matrix-vector multiplication by
W T . On the other hand, assembled AW can be expected to be denser and therefore, matrix-
vector operations with this operator might require more communication than applying the
operators one after the other. Of course, the above discussion applies only to large and sparse
deflation matrices, like those created by wavelet compression described in Section 4.3.

Several numerical experiments were performed to show the costs of various operations
involving deflation matrices. Time in seconds needed by the operations was used as a metric
because it best captures the costs of both computation and communication. While these tests
were done only on a single benchmark, they should represent the broad trends with reason-
able accuracy. These experiments were run on Archer (see Section 5.6). Linear elasticity
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benchmark, described in Section 7.1.3, with db4 wavelet-based deflation (Section 4.3) with 1,
3, 5, and 7 wavelet compression levels, was chosen as a problem with non-trivial linear system
matrix. The results are reported for a medium sized problem in Table 1. The number of
cores was chosen so that there were, respectively, at least 20,000, 40,000, and 80,000 degrees
of freedom (DOFs) per core.

A number of operations was tested. These included matrix-vector operations reported
in the upper half of the table. The operations with operator MATRIX are denoted as
"Mv(MATRIX)" and "MTv(MATRIX)" for matrix-vector (MatMult() in PETSc) and trans-
pose matrix-vector (MatTransposeMult()) product, respectively. MATRIXt represents an
explicit transpose of MATRIX. The prefix "i" symbolises that the operation is implicit, i.e.
the operator MATRIX is not explicitly assembled. Note that times for the matrix-vector
operations are multiplied by 103. Similarly, in the lower part of the table, purely matrix op-
erations are reported. First, the sum of the times needed for individual assembly of all of the
deflation matrices as either implicit W or W T is shown. Then we have the cost of the explicit
assembly of W or W T . Note, that there is no appreciable difference between the assembly
from local matrices or their transpose. For completeness, the cost of the explicit transpose
of the deflation matrix and its transpose is also shown. Next section of the table illustrates
the cost of explicitly forming the W A and W T A with (transpose) matrix-matrix products
(Mat(Transpose)MatMult()). The last section of the tables represents various ways to as-
semble CP. Not yet described operations are "MMM" representing MatMatMatMult() function
and "PTAP" that corresponds to MatPtAP() which should be optimal for the assembly of CP.

Based on the reported results, it seems that the application of W and W T should be
done implicitly. It does not make much of a difference, whether we store the individual
wavelet-based matrices or their transpose. Considering the application of W T A, it is again
faster to multiply individually by A and then by W T than to use the assembled operator.
In the previous cases, the advantage of the implicit operators lies in their sparsity (less
communication is required). On the other hand, it is definitely worth to assemble W T AW

because, while denser, the dimension is significantly reduced. If CP is solved with a direct
solver, it has to be assembled anyway. If on the other hand, we use an iterative solver, we do
not have to assemble CP. However, for the worst case (1 level wavelet compression) it starts
to pay off to assemble the operator after less than 300 applications. With increasing number
of the compression levels, it starts to pay off much sooner (generally tens of applications).

The actual assembly of both individual and global deflation matrices is extremely cheap.
The assembly of the individual wavelet-based deflation matrices in the transposed form has
the advantage of being purely local.

With the previous discussion of the results in mind, the actual implementation computes
wavelet-based individual deflation matrices as their transpose, creating implicit W T . From
these individual matrices, W is explicitly assembled. For the action of W and its transpose,
the implicitly represented W T is used. CP is directly formed by MatPtAP(), the memory
taken by explicitly formed W is then freed, leaving more space for possibly solving CP by a
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direct method. The same implementation is used for other large and sparse deflation matrices.
The situation is different for a dense deflation matrix with relatively few columns (like

those obtained from eigenvectors based deflation). In this case, in order to assemble W T AW

we first assemble AW and then using the MatTransposeMatMult() operation, we obtain the
CP matrix. The advantage of this approach is that the cost of applying W T using W is the
same as applying W T A using already assembled AW , i.e. we save the cost of the matrix-
vector multiplication by A in every application of the deflation projector. Note, that for
eigenvectors based deflation we can assemble AW cheaply thanks to Equation (30).
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7 Numerical Experiments

We tested the implementation on several benchmarks described in Section 7.1. In Section 7.2
we compare InitCG and DCG convergence and investigate the choice of deflation space, the
effect of chosen levels for wavelet-based and multigrid-based deflation spaces, the nested DCG
with and without corrections, and finally we showcase the scalability of DCG. All tests were
done on the ARCHER supercomputer (Section 5.6).

7.1 Benchmarks

This section introduces the benchmarks used to evaluate selected options of the implement-
ation. Our aim was to provide a wide variety of benchmarks so that the various aspects of
the method can be appropriately tested. We made the benchmarks available on GitHub [58]
in order to make our results reproducible.

7.1.1 SuiteSparse Matrix Collection

The SuiteSparse Matrix Collection (formerly known as the University of Florida Sparse Mat-
rix Collection), is a large and actively growing set of sparse matrices that arise in real applic-
ations [59, 60].

The collection provides matrices from a wide range of domains that include structural en-
gineering, computational fluid dynamics, circuit simulation, power networks, financial mod-
elling, etc. Moreover, the benchmarks are repeatable and quite often comparable. These are
the reasons why it is widely used for tests of various linear solvers.

If the benchmark included a right-hand side it was used, otherwise we used a constant
vector with the Euclidean norm of 1.

7.1.2 MFEM Example 1: Laplace Equation

This benchmark is based on Example 1 included in MFEM (Section 5.5). It solves the Laplace
equation

−∆u = 1

with homogeneous Dirichlet Boundary condition. We used a square with a disc-shaped hole
in the middle discretized with triangular elements as an input mesh. Figure 5 illustrates the
solution.

To understand how we obtain some of the deflation spaces, let us briefly describe a
common MFEM workflow. First, a small sequential mesh is loaded, and we do several
sequential mesh refinements. After that, we partition the mesh using METIS among available
cores. Then we generally refine the mesh further in parallel. With each parallel refinement
we are able to generate a geometric multigrid prolongation operator facilitating transfers
between the coarser and the refined grid. After we refined the mesh enough, we describe
a weak form including boundary conditions of our problem and set the appropriate finite
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Figure 5: Laplace: solution

element collection and space. Then we can finally assemble the system matrix and right-
hand side in parallel and mostly locally. Note that the subdomain aggregation used in the
numerical experiments works by aggregating the unknowns/DOFs on the subdomains defined
by METIS partitioning of the domain.

7.1.3 MFEM Example 2: Linear Elasticity

The benchmark is adapted version of MFEM Example 2 that solves a linear elasticity problem
describing multi-material cantilever beam with the weak form of

−div(σ(u)) = 0,

where
σ(u) = λdiv(u)I + µ(∇u + ∇uT )

is the stress tensor corresponding to the displacement field u, and λ and µ are the material
Lame constants. One side of the beam is fixed the other is pulled down by a constant force.
The geometry is illustrated by Figure 6. We used hexahedral finite elements for discretization.
The solution is depicted in Figure 7.

Figure 6: Linear elasticity: geometry [51]
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Figure 7: Linear elasticity: solution

7.1.4 2D BEM Laplace

The last benchmark, kindly provided by Dalibor Lukáš [61], represents the boundary element
method (BEM) discretization of the Laplace equation on an L-shaped domain (a square with
one quarter missing). The right-hand-side is a constant vector with the Euclidean norm of 1.

The benchmark was chosen because it generates a dense matrix.

7.2 Results

This section investigates various aspects of the implementation. For brevity, most of these
aspects are reported only for the Laplace benchmark. All times are reported in seconds.

Unless stated otherwise, the solver settings for the tests are as follows. The initial guess
was a null vector. Maximum number of iterations was set to 30, 000, The stopping criterion
is given by relative residual ∥ri∥ / ∥r0∥ < ϵ for CG and ∥ri∥ / ∥r−1∥ < ϵ for DCG, ensuring a
fair comparison. The tolerance is usually ϵ = 10−6.

The eigenvectors are computed by the JD method implemented in SLEPc (Section 5.4)
with maximum subspace dimension (ncv) set to 400, convergence tolerance of ϵ ·10−2 and the
maximum number of iterations set to 10,000. We always compute the eigenvectors belonging
to the smallest eigenvalues.

Throughout the section we use several abbreviations:

• DTOL – solver is diverging; residual norm increased by more than 104 from its initial
value

• DSF – direct solver failed (this is an old problem with direct solvers compiled with
the Cray compiler, a factorization can fail depending on the number of cores and sub-
communicators); happily, this did not occur often

• EDC – eigensolver did not converge or provided less than the number of requested
eigenvectors

• ITS – solver reached the maximum number of iterations without converging
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• NA – the estimated conditioned number is not available (CG did not converge), or
deflation space is not available/applicable

We also abbreviate names of the deflation spaces as follows. Space "None" represents
CG. We use "eigN" where N is some number to represent a deflation space comprising of N
eigenvectors. The prolongation multigrid operators are denoted by "mg". The subdomain
aggregation space is abbreviated "agg". The wavelet-based deflation uses the abbreviations
described in Section 6.1.1.

7.2.1 InitCG vs DCG

In this section, we briefly compare the convergence of InitCG and DCG. We can expect
that for eigenvector deflation we will obtain the same convergence if our space is a good
approximation of the exact eigenvector space. We present the results for the deflation space
with 5 and 40 eigenvectors, as well as for 1-level db2 as a representative of the rest of the
available spaces that we observed share similar behaviour. The results are reported for the
Laplace benchmark with 79,616 DOFs in Table 2 and for the linear elasticity benchmark with
316,928 DOFs in Table 3. We also varied the eigensolver relative tolerance. The value 0 in
InitCG row means that DCG was used.

Space none db2 db2 eig5 eig5 eig5 eig40 eig40 eig40
InitCG NA 0 1 0 1 1 0 1 1
Eig. Tol. NA NA NA 1e-2 1e-2 1e-4 1e-2 1e-2 1e-4
Iters. 858 124 568 609 640 609 272 492 277

Table 2: InitCG(1) vs DCG(0): Laplace benchmark

Space none db2 db2 eig5 eig5 eig5 eig5 eig40 eig40 eig40 eig40
InitCG NA 0 1 0 1 0 1 0 1 0 1
Eig. Tol. NA NA NA 1e-2 1e-2 1e-8 1e-8 1e-2 1e-2 1e-8 1e-8
Iters. 2103 847 4176 2442 2919 1645 1645 2224 757 723 724

Table 3: InitCG(1) vs DCG(0): Linear elasticity benchmark

Interestingly, DCG in the Laplace benchmark is not very sensitive to the eigensolver
tolerance while this is certainly not true in the case of the elasticity benchmark. On the
other hand, supporting well the theory, InitCG performs comparably to DCG only if the
eigenvectors are computed with a high enough precision.

As for the wavelet-based db2 deflation, we can observe that it performs poorly in InitCG.

7.2.2 Choice of Deflation Space

As was mentioned in Section 4, the choice of the deflation space is a crucial factor in the
convergence of DCG. As such we tested the method on all available benchmarks.
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In these tests, we used for the wavelet-based deflation and multigrid prolongation only a
single level.

First, we tested DCG on 236 matrices that, at the time of writing, represents all the
available SPD matrices in the SuiteSparse collection. The results are reported in Appendix A.
The table includes id and name of the matrix in the collection, problem dimension, estimated
condition number, and the number of iterations needed by CG and DCG with various deflation
spaces to converge. Only eigenvector and wavelet-based deflation are available for these
matrices.

For each matrix, if CG did not converge, we reduced the relative tolerance to ϵ = 10−4.
Such cases are highlighted in the results by a light grey background. There were 47 matrices
that did not converge with either CG or DCG even with the reduced precision. Their list is
available at the top of the results.

In the following, we analyse the results and highlight the behaviour on some of the
matrices. We refer to the matrices by their id:name (short description) trio. CG converged in
170 cases. On average (counting only cases when CG also converged), db2 brought a speed-up
of iteration by a factor of 4.5 and converged for 177 matrices while eig40 with the total of 162
converged cases averaged the iterations speed-up of about 4.0 without counting an outlier.
The maximum factor was observed in 1899:tmt_sym (electromagnetics problem) for both
eig40 and db2, where CG took 3, 042 iterations to converge while db2 took 27 iterations (112
times speed-up) and eig40 took only a single iteration. Interestingly, there were other (non-
trivial) benchmarks where, in this case, db2 needed just a single iteration as well. These were
1331:Muu (structural problem) and 2259:thermomech_dM (deformation of a steel cylinder)
which both needed about 50 iterations for CG to converge.

There were some matrices for which we could see that increasing the wavelet filter size
decreases the number of iteration, i.e. CP better approximates the original matrix. We
observed this behaviour on, e.g. 1883:ecology2 (using electrical network theory to model
animal movement and gene flow) that needed 5, 393 CG iterations while DCG with db2
required only 226 iterations and was further reduced to 193 iterations for the largest, discrete
Meyer, filter. But in general, the results show that db2 often outperforms other wavelets or
is just slightly slower. However, since db2 is more sparse and therefore cheaper to work with
than the other wavelet filters, we generally give preference to it.

Let us draw the attention to some matrices were DCG performed exceptionally well. Ei-
genvector deflation was very successful for 1435:gyro (model reduction problem) achieving
convergence in 1, 680 iterations while CG needed 28, 927. CG applied to 69:bcsstm19 (struc-
tural problem, part of a suspension bridge) took modest 473, but DCG with db2 solved
the same problem in just 23 iterations. Discrete Meyer wavelet-based deflation reduced for
427:ex3 (computational fluid dynamics) the number of iterations from 10, 073 achieved by
CG to only 402.

There were also several matrices that did not converge with standard CG but converged
with DCG. The most striking example of this is 2664:bundle_adj (sparse bundle adjustment
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Benchmark DOFs none eig5 eig40 agg mg db2
Laplace 79,616 858 609 272 545 22 124
Laplace 316,928 1,781 1,247 560 1093 21 193
Laplace 1,264,640 3,680 2,548 1,148 2,221 21 278
Elasticity 15,795 1,130 853 390 2,825 249 763
Elasticity 111,843 2,103 1,645 724 5,097 245 847
Elasticity 839,619 3,962 3,200 1415 9,811 243 902
BEM 200 24 25 26 NA NA 5
BEM 2,000 57 54 59 NA NA 4
BEM 20,000 112 113 116 NA NA 2

Table 4: Number of iterations for various deflation spaces and benchmarks
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Figure 8: Number of iterations for various deflation spaces using Laplace benchmark

problem) where CG did not converge in 30, 000 iterations, but DCG with db8 took only 32
iterations to converge.

The results for the Laplace, linear elasticity and BEM benchmarks (computed with 24
cores) are reported in Table 4 with visualization provided in Figures 8 to 10. These results
include from wavelet-based deflations only db2. In Table 5 we also compare the efficiency of
different wavelet scaling functions.

Let us analyse the results of the sparse (Laplace and Elasticity) benchmarks first. We
specifically emphasised that 24 cores were used for this test because it determines the number
of subdomains for the aggregation deflation space. A rule of thumb when computing in
parallel with sparse matrices is that we should have at least 20,000 rows per core [62] to have
enough work for each core so that the communication does not overweigh the computation. A
large amount of rows per core is unfavourable to the subdomain aggregation based on METIS
partitioning because the aggregated space is probably going to be too coarse to capture the
essence of the fine grid well enough. We can see a slightly faster convergence of the subdomain
aggregation than when using the eig5 deflation space on the Laplace benchmark. On the other
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Figure 9: Number of iterations for various deflation spaces using linear elasticity benchmark
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Figure 10: Number of iterations for various deflation spaces using BEM benchmark

Benchmark DOFs none db2 db4 db8 db16 biorth meyer
Laplace 79,616 858 124 110 105 104 114 101
Laplace 316,928 1,781 193 161 160 152 168 150
Laplace 1,264,640 3,680 278 240 231 227 249 221
Elasticity 15,795 1,130 763 764 737 741 747 742
Elasticity 111,843 2,103 847 802 790 780 817 782
Elasticity 839,619 3,962 902 872 840 841 896 DFS
BEM 200 24 5 6 6 7 6 6
BEM 2,000 57 4 4 5 6 4 4
BEM 20,000 112 2 2 3 4 2 2

Table 5: Number of iterations for various wavelet-based deflation spaces and benchmarks
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hand, the subdomain aggregations perform very poorly on the linear elasticity benchmark.
However, this is probably more due to the inability of a simple subdomain aggregation to
capture the rigid body modes rotations of the beam rather than due to the small number of
subdomains.

The eigenvectors in both sparse benchmarks perform reasonably well. The problem is
that the number of iterations with increasing problem size increases with roughly the same
speed as is increasing the number of iterations needed by CG. Meaning that we would ideally
increase the number of eigenvectors used for deflation when increasing the problem size.
However, the drawback is that not only we would need to compute more eigenvectors, but
the cost of the eigensolvers grows with the size of the system.

The wavelet-based deflation does not have this problem. The number of iterations grows
when the problem size increases but the growth is fairly modest. Overall, it performs very
well.

Multigrid prolongation operator performs the best. We can see the multigrid property of
keeping the number of iterations constant. However, the problem with both multigrid and
wavelet-based deflation is that the cost of CP is increasing with increasing problem size.

Finally, we turn our attention to the BEM benchmark. Deflating eigenvectors does not
seem to have any effect. This is probably due to not hiding the whole cluster of small
eigenvalues with the chosen size of the deflation space.

On the other hand, wavelet-based deflation performs on this benchmark exceptionally
well. In fact, we can see that the number of iterations is actually slightly decreasing with
increasing problem size.

7.2.3 Level of Deflation Matrices

We would expect to see a deterioration of convergence when we increase the number of
levels of multigrid prolongation and wavelet-based deflation matrices because the CP matrix
becomes a worse approximation of the original operator. This behaviour is illustrated in
Table 6 and Figure 11 using db2 deflation space for the Laplace benchmark with 20,197,376
DOFs computed on 120 cores. The results are reported with a near-optimal redundancy
parameter (number of sub-communicators used for CP solution).

Increasing the level of deflation matrices decreases the CP size making the factorization
and the subsequent solves faster. The drawback is the increase in the number of iterations.
The presented results suggest that we need to balance these two considerations to obtain the
fastest time to the solution.
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Level Iterations Time Time per Iteration Redundancy CP size
none 15,574 174.3 0.0112 none none
13 5,374 122.1 0.0227 5 2,466
12 5,302 124.4 0.0235 5 4,931
11 5,214 125.9 0.0241 5 9,862
10 4,996 131.8 0.0264 5 19,724
9 4,686 143.1 0.0305 2 39,448
8 4,094 135.1 0.0330 2 78,896
7 3,491 147.3 0.0422 1 157,792
6 2,828 174.3 0.0616 1 315,584

Table 6: The effect of increasing levels of the deflation matrices illustrated on 20,197,376
DOFs Laplace Benchmark with db2 deflation computed on 120 cores
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Figure 11: The effect of increasing levels of the deflation matrices illustrated on 20,197,376
DOFs Laplace Benchmark with db2 deflation computed on 120 cores

7.2.4 Potential of Adaptive Precision Nested DCG with CP Corrections

While doing tests with nested deflation matrices, we discovered that using the CP corrections
allows us to decrease the required accuracy of the nested DCGs massively. Our results are
reported for 4-level multigrid deflation space on the Laplace benchmark with 79, 616 DOFs
computed on 24 cores in Table 7.

Note that in this case, the nested DCG scheme is not faster than using 4-level multi-
grid prolongation directly (in this case DCG converges with 156 iterations in 2.15 s). For
comparison, a single level multigrid deflation took 21 iterations in 6.98 s.

However, the results are still very interesting. If we did not use the adaptive precision,
then, since we use multigrid prolongation matrices, we would have about 21 iterations in
each nested solve, i.e. a total of 212, 213 and 214 for respectively levels 1, 2 and 3. However,
thanks to the adaptive precision, we average, with constants equal to 1, respectively less than
12, 8 and 6 iterations per outer iteration for the consecutive levels.

If we set the adaptive precision constants above 1 and do not use the CP corrections,
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Adaptive constant Iterations Time
lvl1 lvl2 lv3 DCG lvl1 lvl2 lvl3

1 1 1 21 240 1,857 11,008 21.96
8 5 10 21 305 912 1,420 4.45
8 5 50 21 1,069 731 323 3.69
8 5 75 21 1,557 732 203 4.29
8 5 100 21 2,244 775 139 5.32
8 5 200 21 3,604 901 45 7.49
8 12 75 22 1,633 583 117 4.22
8 12 100 22 2,081 648 70 4.98
8 15 75 407 1,552 576 100 6.05
8 15 100 460 2,040 580 58 7.06

Table 7: Illustrating the effect of adaptive precision nested DCG with various adaptive pre-
cision constants on the Laplace benchmark with 79, 616 DOFs computed on 24 cores using
mg deflation

we would not have guaranteed number of iterations to be the same as in the case when
direct solver is used. Using the CP corrections, we can significantly reduce the accuracy
while keeping the convergence of the outermost DCG constant. Moreover, we can reduce
the number of innermost iterations significantly. The innermost iterations are relatively
expensive due to the cost of the triangular solves needed by CP. However, while we can keep
constant the number of iterations of the outermost DCG and reduce the number of iterations
on the last and the second to last levels, the number of iterations on the first nested level is
increasing.

If we reduce the accuracy too much, we see an increase in the number of iterations even
on the outermost level. The problem is that at present we do not have a clear idea how to
choose the adaptive precision constants depending on the benchmark, number of levels, etc.

However, looking at the results, we see that from the point of the convergence of the
outermost DCG it is not necessary to go to the coarsest levels in each iteration. We can
perhaps expand upon the idea. Recall that from our derivation of the method we projected
the current residual so that the new descent direction is A-orthogonal to the deflation space.
This suggests that perhaps we should look at some measure of A-orthogonality of the residual.
Since we have to compute

W T Ark

before we solve CP, we could look at the norm of this expression because if it is small, we
know that the residual is almost A-orthogonal to the deflation space and therefore there is
no need to carry out the projection. Unfortunately, we so far do not know what can be
considered as a small enough value of the norm.
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7.2.5 Parallel Scalability

This section presents the parallel scalability of our implementation. We used the Laplace and
linear elasticity benchmarks with the number of cores chosen so that the number of rows is
respectively about 20, 40, 80 and 160 thousand per core. Optimal settings for deflation level
and redundancy are reported.

The results for the Laplace benchmark with 20,197,376 DOFs can be found in Table 8
and Figure 12.

As we mentioned earlier, computation of eigenvectors is very expensive. We used the fact
that DCG in the Laplace benchmark is not sensitive to the accuracy of the approximated
eigenvectors (see Table 2) by setting eigensolver tolerance to 10−2. However, even then the
computation of 40 eigenvectors on this larger benchmark was too costly making the solution
time almost 20 times slower than that of CG.

The presented results show that in this case CG almost achieves strong scaling. Using mg
deflation space yields the best performance (about 10 to 25 times faster than CG). However, it
does not scale very well because to achieve optimal ratio of computation and communication
in CP we are forced to keep about 1000 rows of the CP matrix per core regardless of the
number of cores. Making the cost of the CP matrix factorization essentially constant.

While we are forced to treat CP in the same way also for db2 deflation, DCG with this
space achieves super-linear scaling. However, the db2 deflation is...well, let us say slightly
cheating. As we mentioned in Section 7.1.2, METIS partitions the input mesh into subdo-
mains, and we then assemble the linear system matrix mostly locally (and using the subdo-
main local numbering of DOFs). If we increase the number of cores, we increase the number
of subdomains which leads to a different permutation of the resulting matrix. In the case of
the Laplace benchmark, this permutation is favourable to db2 in the sense that the number
of iterations decreases with increasing number of cores (see Table 8). The speed-up for db2
over CG was up to 3.

We also tried to increase the size of the Laplace the benchmark, but in order to achieve
a reasonable convergence of CG, we had to drop the relative tolerance to ϵ = 10−4. We also
took the opportunity to showcase the possibility to couple preconditioning and deflation. In
this case, we employed a simple Jacobi preconditioner. The results for the Laplace benchmark
with 80,764,928 DOFs are reported in Table 9 and Figure 13.

The scalability results are similar to the previous example. The effect of the Jacobi
preconditioner has a comparable efficiency in both CG and DCG. The mg deflation again
performs the best with speed-up over CG between 11 and 32. The wavelet-based deflation
db2 achieved speed-up between 2 and 4.

The last scalability test was done on the linear elasticity benchmark with 51,171,075
DOFs. The results can be found in Table 10 and Figure 14.

In this case, the db2 deflation did not work in the sense that it did not reduce the number
of iterations enough to offset the cost of the CP factorization and solves. Overall it was
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Cores Space Deflation lvl. Redundancy Iterations Time
120 none none none 15,574 172.47
240 none none none 15,575 77.98
504 none none none 15,575 42.90
1,008 none none none 15,574 25.79
120 db2 13 5 5,374 121.30
240 db2 13 20 4,090 40.24
504 db2 13 42 2,986 16.09
1,008 db2 12 42 2,277 8.41
120 mg 4 1 154 6.92
240 mg 4 3 154 4.34
504 mg 5 21 319 3.32
1,008 mg 5 42 319 2.37
120 eig40 NA 120 5,403 3330.16

Table 8: Parallel scalability for 20,197,376 DOFs Laplace benchmark
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Figure 12: Parallel scalability for 20,197,376 DOFs Laplace benchmark
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Cores Space Precond. Deflation lvl. Redundancy Iterations Time
504 none none none none 22,549 254.08
1,008 none none none none 22,549 118.00
2,016 none none none none 22,549 72.91
4,032 none none none none 22,549 48.88
504 none Jacobi none none 19,592 227.33
1,008 none Jacobi none none 19,592 102.08
2,016 none Jacobi none none 19,592 60.87
4,032 none Jacobi none none 19,592 39.31
504 db2 none 13 21 4,363 104.87
1,008 db2 none 13 42 3,182 35.82
2,016 db2 none 13 84 2,574 18.30
4,032 db2 none 13 168 2,187 13.03
504 db2 Jacobi 13 21 4,055 98.75
1,008 db2 Jacobi 13 42 2,847 33.09
2,016 db2 Jacobi 13 84 2,282 16.38
4,032 db2 Jacobi 13 168 1,936 11.75
504 mg none 5 3 203 7.89
1,008 mg none 5 12 203 5.40
2,016 mg none 5 28 203 4.55
4,032 mg none 5 42 203 4.43

Table 9: Parallel scalability for 80,764,928 DOFs Laplace benchmark
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Cores Space Deflation lvl. Redundancy Iterations Time
300 none none none 15,165 883.17
600 none none none 15,165 384.13
1,200 none none none 15,165 195.57
2,400 none none none 15,165 111.86
300 mg 3 1 581 103.04
600 mg 3 2 581 61.77
1,200 mg 3 5 581 42.52
2,400 mg 4 80 1,107 34.58

Table 10: Parallel scalability for 20,197,376 DOFs linear elasticity benchmark

about three times slower than CG. Again, we believe that this is because the wavelet-based
deflation space does not capture the rigid body modes rotations.

The multigrid-based deflation performed reasonably well but not as good as in the case
of the Laplace benchmark. The achieved speed-up was between 3 and 9.

The scalability is similar to the Laplace benchmark. The CG method achieves ideal
scaling while, due to the CP solution, the mg deflation scalability is relatively poor.

Note that since a substantial cost of DCG lies in the CP matrix factorization, the scaling
would significantly improve if our problem involved solving for a number of right-hand sides
with the same system matrix.



65

 8

 16

 32

 64

 128

 256

 512

 1024

 300  600 1,200 2,400

T
im

e
 [

s
]

Cores

none mg ideal scaling

Figure 14: Parallel scalability for 51,171,075 DOFs linear elasticity benchmark



66



67

8 Conclusion

This thesis dealt with implementation of the deflated conjugate gradient method and its
various modifications. An efficient parallel implementation was created on top of the PETSc
framework for scientific computing and is now publicly available as part of the open-source
PERMON toolbox for quadratic programming.

The thesis also carefully reviews the theoretical aspects of the methods. Some of the
theory is described in the first sections. These sections aimed to provide an insightful view
of how and why the considered methods work.

As far as I know, the thesis contains several new ideas and observations. These include
improvements to the CP correction introduced in Section 3.2.1, and the introduction of the
nested DCG and the possibility to combine this with CP corrections and adaptive precision.

I also extended the wavelet-based deflation (introduced by me and my advisor in [26]) to
be able to handle matrices with dimensions not divisible by 2m and my experiments included
not only Haar but also several other scaling filters.

While thinking about the wavelet-based deflation, it occurred to me that the approach is
similar to the algebraic multigrid. The similarity of DCG to two-grid was known for a while,
but there does not appear to be any numerical experiments. This is probably because the CP
solution would be too expensive, but our exposure to the wavelet-based deflation presents an
idea to multiply the prolongation matrices to obtain a prolongation from the coarsest grid to
the finest grid.

Both the quality of the implementation and some of the theoretical considerations have
been backed up by the numerical experiments carried out on a large number of benchmarks.

A thorough investigation of choice of the deflation space was carried out from which
can be deduced a general order of precedence for the various deflation spaces as multigrid
prolongation, wavelet-based, eigenvectors and METIS subdomain aggregation. This assumes
that eigenvectors have to be computed and, as in our experiments, this computation is costly.

The adaptive precision nested DCG with the CP corrections showed an exciting poten-
tial and led to a suggestion to cheaply check whether the projection (or more precisely CP
solution) in the computation of the next search direction has to be carried out.

The parallel scalability experiments up to 4,032 cores were also carried out. While, due
to the costs of the CP solution, the scalability is not great, the results proved that DCG is
able to achieve large speed-ups (up to 32) over CG even on reasonably large benchmarks.

In future work, I would like to investigate the hinted potential of the adaptive precision
nested DCG with the CP corrections. Also, a comparison of DCG with multigrid precondi-
tioned CG could be very interesting.

Overall, I very much enjoyed my investigation of the CG and DCG methods, and I would
like to keep doing research in the area of the Krylov subspace methods.

Jakub Kružík
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A Results for Matrices from SuiteSparse Matrix Collection

Matrices diverging on DTOL (id:name): 74:bcsstm24 , 228:plat1919 , 356:ct20stif , 358:msc01050 , 411:ex13 , 413:ex15 , 430:ex33 , 791:aft01 ,
1253:bmw7st_1, 1278:ship_003 , 1425:bloweybq , 1437:LF10000
Matrices diverging on ITS (id:name): 40:bcsstk18 , 45:bcsstk23 , 46:bcsstk24 , 47:bcsstk25 , 341:bcsstk36 , 343:bcsstk38 , 362:msc23052 , 369:pwtk
, 440:ex9 , 817:raefsky4 , 1269:m_t1 , 1275:s3dkq4m2 , 1276:s3dkt3m2 , 1277:ship_001 , 1279:shipsec1 , 1280:shipsec5 , 1281:shipsec8 , 1283:thread
, 1287:vanbody , 1290:x104 , 1439:LFAT5000 , 1621:mhd1280b , 1623:mhd3200b , 1625:mhd4800b , 1644:msdoor , 1892:denormal , 2283:offshore
, 2541:Serena , 2542:Emilia_923 , 2543:Fault_639 , 2545:Geo_1438 , 2547:StocF-1465 , 2659:Bump_2911 , 2660:Queen_4147 , 2661:PFlow_742

id name rows cond none eig5 eig10 eig20 eig40 db2 db4 db8 db16 biorth meyer
1 1138_bus 1,138 8.6E+06 2,130 1,171 1,038 699 523 416 314 320 295 311 279
2 494_bus 494 2.4E+06 1,171 710 550 377 233 278 217 225 252 222 210
3 662_bus 662 7.9E+05 531 287 210 159 128 211 199 198 207 202 187
4 685_bus 685 4.2E+05 519 255 187 133 99 129 114 128 122 116 109
23 bcsstk01 48 8.8E+05 137 87 50 26 7 59 62 55 69 66 62
24 bcsstk02 66 4.3E+03 44 33 21 17 12 37 38 39 38 38 39
25 bcsstk03 112 6.8E+06 578 414 306 178 64 279 198 269 279 211 200
26 bcsstk04 132 2.3E+06 535 302 173 124 90 238 204 174 217 250 222
27 bcsstk05 153 1.4E+04 262 129 105 69 37 98 106 101 102 109 104
28 bcsstk06 420 7.6E+06 3,936 3,011 2,197 1,028 417 1,062 906 960 1,226 884 1,051
29 bcsstk07 420 7.6E+06 3,936 3,011 2,197 1,028 417 1,057 904 960 1,226 884 1,052
30 bcsstk08 1,074 2.6E+07 6,400 5,734 4,819 3,356 2,740 467 369 362 431 375 270
31 bcsstk09 1,083 9.5E+03 194 138 101 74 53 102 115 114 128 113 122
32 bcsstk10 1,086 5.2E+05 3,914 3,013 1,865 883 617 1,257 925 982 983 849 1,051
33 bcsstk11 1,473 2.2E+08 24,899 14,252 10,001 5,819 3,018 13,654 8,680 8,427 7,551 9,618 7,687
34 bcsstk12 1,473 2.2E+08 24,899 14,252 10,001 5,819 3,018 13,680 8,680 8,415 7,551 9,618 7,692
35 bcsstk13 2,003 NA its its its its its its its 27,669 22,501 its 25,753



76id name rows cond none eig5 eig10 eig20 eig40 db2 db4 db8 db16 biorth meyer
36 bcsstk14 1,806 1.2E+10 13,768 13,782 13,827 13,817 8,974 6,563 9,046 8,263 its 8,477 8,090
37 bcsstk15 3,948 6.5E+09 21,776 21,781 EDC EDC EDC 3,791 7,044 7,154 7,386 5,824 5,872
38 bcsstk16 4,884 4.9E+09 463 EDC EDC EDC EDC 235 511 1,080 1,190 581 801
39 bcsstk17 10,974 1.3E+10 21,810 21,775 21,829 21,875 21,989 its its its its its its
41 bcsstk19 817 NA its EDC EDC EDC EDC 8,325 8,768 9,016 11,560 9,154 9,594
42 bcsstk20 485 NA dtol EDC EDC EDC EDC 2,503 dtol dtol dtol dtol dtol
43 bcsstk21 3,600 1.8E+07 10,619 6,060 4,389 3,103 1,899 4,861 2,844 1,781 1,706 5,928 4,605
44 bcsstk22 138 1.1E+05 336 191 157 114 74 132 124 136 130 129 126
48 bcsstk26 1,922 1.7E+08 26,958 17,080 14,815 11,856 8,983 3,721 3,951 2,587 3,214 3,648 2,859
49 bcsstk27 1,224 2.2E+04 909 895 863 860 817 434 359 381 306 411 331
50 bcsstk28 4,410 9.5E+08 13,777 9,095 5,406 2,634 1,477 4,238 3,515 3,910 3,689 3,383 3,743
57 bcsstm02 66 8.8E+00 12 12 11 9 6 7 17 15 15 16 16
60 bcsstm05 153 1.3E+01 17 18 18 15 13 12 17 19 19 18 19
61 bcsstm06 420 3.5E+06 119 121 121 83 73 101 179 239 302 226 307
62 bcsstm07 420 7.4E+03 278 279 254 252 212 166 126 121 137 113 142
63 bcsstm08 1,074 8.3E+06 160 124 123 101 96 57 171 159 170 205 174
64 bcsstm09 1,083 1.0E+04 2 NA NA NA NA 2 4 12 13 7 7
66 bcsstm11 1,473 1.2E+05 25 26 27 22 22 25 55 57 59 56 72
67 bcsstm12 1,473 6.3E+05 2,787 2,788 2,597 2,290 2,076 1,539 959 989 873 1,138 955
69 bcsstm19 817 2.3E+05 473 469 438 427 425 23 39 33 41 45 35
70 bcsstm20 485 2.6E+05 281 263 265 264 264 41 48 47 49 49 41
71 bcsstm21 3,600 2.4E+01 3 4 4 4 4 3 6 13 14 12 19
72 bcsstm22 138 9.4E+02 50 36 29 27 27 34 52 49 45 50 48
73 bcsstm23 3,134 9.5E+08 5,608 2,594 2,137 1,812 1,567 2,991 4,475 4,425 4,749 5,423 5,059
75 bcsstm25 15,439 NA its its its its its 23,754 its 23,650 25,624 its 18,536
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id name rows cond none eig5 eig10 eig20 eig40 db2 db4 db8 db16 biorth meyer
76 bcsstm26 1,922 2.6E+05 2,103 1,842 1,487 1,323 1,016 226 726 886 837 689 761
159 gr_30_30 900 1.9E+02 34 29 25 20 15 8 11 10 11 11 10
206 lund_a 147 2.8E+06 342 182 121 75 45 193 208 205 250 212 222
207 lund_b 147 3.0E+04 393 243 157 110 62 130 134 134 147 131 127
217 nos1 237 2.0E+07 2,106 1,281 1,013 675 339 199 206 253 313 214 218
218 nos2 957 NA its 20,160 15,073 7,258 3,716 884 901 1,232 1,555 946 1,067
219 nos3 960 3.8E+04 230 112 82 53 36 118 102 114 117 100 111
220 nos4 100 1.6E+03 76 41 29 18 12 42 41 44 45 41 44
221 nos5 468 1.1E+04 428 265 177 116 58 245 298 241 269 279 256
222 nos6 675 7.6E+06 996 988 1,008 982 997 353 1,028 1,738 1,682 960 1,734
223 nos7 729 2.4E+09 3,248 2,051 1,811 1,491 EDC dtol 1,985 1,583 1,900 1,596 dtol
229 plat362 362 2.2E+11 6,729 EDC EDC EDC EDC its its its its its its
315 mhdb416 416 4.0E+09 4,876 2,909 2,168 1,568 1,033 2,252 2,680 3,003 3,066 2,649 2,857
339 bcsstk34 588 2.8E+04 791 631 542 511 418 117 79 116 132 72 116
349 bcsstm39 46,772 8.3E+03 307 309 308 308 308 221 411 410 406 416 408
353 crystm01 4,875 2.3E+02 70 71 63 63 60 55 62 68 58 58 76
354 crystm02 13,965 2.5E+02 79 80 80 80 68 56 64 71 78 60 80
355 crystm03 24,696 2.6E+02 78 79 79 79 70 61 70 76 80 66 80
357 msc00726 726 4.2E+05 1,018 887 820 745 657 663 165 281 229 156 207
359 msc01440 1,440 1.4E+06 5,719 5,680 5,251 3,401 1,498 2,037 2,141 1,976 2,063 2,262 2,015
360 msc04515 4,515 2.3E+06 4,410 2,574 1,913 1,057 760 666 692 710 684 812 703
361 msc10848 10,848 NA its 29,325 17,981 8,483 4,535 9,509 7,228 5,635 7,488 6,316 5,762
407 ex10 2,410 NA its EDC EDC EDC EDC 272 320 267 938 315 dtol
408 ex10hs 2,548 NA dtol EDC EDC EDC EDC 279 319 385 635 452 919
427 ex3 1,821 1.7E+10 10,073 6,511 5,111 4,052 2,927 683 420 608 415 641 402



78id name rows cond none eig5 eig10 eig20 eig40 db2 db4 db8 db16 biorth meyer
436 ex5 27 6.6E+07 53 29 17 1 NA 29 28 28 21 30 29
752 finan512 74,752 2.9E+01 36 35 35 35 34 29 21 26 23 22 23
757 nasa1824 1,824 1.4E+06 2,544 1,967 1,630 1,175 967 1,006 834 632 678 753 664
758 nasa2146 2,146 NA 0 1 2 3 4 5 6 7 8 9 10
759 nasa2910 2,910 6.0E+06 3,453 2,713 1,953 1,648 1,257 1,358 1,216 905 976 1,092 987
760 nasa4704 4,704 3.1E+07 9,858 7,626 6,069 4,212 3,184 3,636 2,487 1,808 1,932 2,276 1,901
761 nasasrb 54,870 4.8E+07 15,080 9,037 9,014 9,016 6,093 8,839 6,104 12,427 9,500 9,330 9,975
804 cfd1 70,656 3.4E+05 1,622 888 636 569 454 786 822 837 832 817 837
805 cfd2 123,440 1.5E+06 5,935 4,031 2,929 2,185 1,705 5,874 5,152 5,287 4,979 5,387 5,191
813 olafu 16,146 NA its its its its its its 28,393 27,087 26,792 23,976 25,329
845 qa8fm 66,127 7.0E+01 50 51 51 48 47 38 38 38 38 38 37
868 bodyy4 17,546 7.3E+02 157 157 158 158 158 122 119 123 122 119 125
869 bodyy5 18,589 7.4E+03 492 493 493 495 492 365 378 379 388 372 393
870 bodyy6 19,366 7.3E+04 1,519 1,516 1,520 1,518 1,518 1,234 1,210 1,215 1,211 1,196 1,208
872 mesh1e1 48 5.2E+00 15 13 12 10 6 10 11 10 11 11 11
873 mesh1em1 48 1.9E+01 27 24 21 16 7 16 18 17 18 18 16
874 mesh1em6 48 5.9E+00 15 14 13 11 7 11 11 11 12 11 11
875 mesh2e1 306 2.8E+02 76 77 77 74 68 39 44 48 48 40 49
876 mesh2em5 306 2.4E+02 63 64 64 62 59 31 33 36 37 32 36
877 mesh3e1 289 8.8E+00 18 17 16 15 13 13 14 14 14 13 14
878 mesh3em5 289 5.0E+00 12 13 13 13 12 12 13 13 13 13 13
887 fv1 9,604 8.7E+00 19 20 20 19 18 8 8 8 8 8 7
888 fv2 9,801 8.7E+00 19 20 20 19 18 7 7 7 8 7 7
889 fv3 9,801 2.0E+03 112 94 82 63 49 11 10 10 10 10 9
924 Andrews 60,000 3.3E+16 135 EDC EDC EDC EDC dtol dtol dtol dtol dtol dtol
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id name rows cond none eig5 eig10 eig20 eig40 db2 db4 db8 db16 biorth meyer
936 nd3k 9,000 1.6E+07 6,018 2,281 1,094 748 515 4,472 4,813 5,051 5,236 4,524 5,144
937 nd6k 18,000 1.6E+07 6,577 2,732 1,452 1,019 757 5,647 6,109 6,327 6,589 5,833 6,643
938 nd12k 36,000 1.3E+07 7,612 2,914 1,665 1,290 978 5,603 5,972 6,339 6,458 5,660 6,533
939 nd24k 72,000 1.3E+07 8,335 3,072 2,041 1,439 1,066 6,057 6,352 6,802 6,961 5,987 7,007
942 af_shell3 504,855 3.5E+02 88 90 90 89 90 1,122 1,091 1,186 1,176 1,096 1,170
943 af_shell4 504,855 3.5E+02 82 84 84 84 84 1,120 1,090 1,186 1,176 1,097 1,173
946 af_shell7 504,855 3.4E+02 85 86 86 86 86 1,193 1,153 1,256 1,254 1,163 1,264
947 af_shell8 504,855 3.5E+02 80 81 81 81 81 1,197 1,156 1,262 1,261 1,167 1,278
1184 Pres_Poisson 14,822 2.0E+06 1,906 1,172 1,169 1,053 965 529 385 409 371 396 367
1202 gyro_k 17,361 1.1E+09 28,927 17,218 12,835 4,794 1,680 14,114 14,107 14,460 14,816 13,621 15,197
1203 gyro_m 17,361 2.5E+06 7,083 6,198 6,199 5,883 5,395 5,357 5,202 5,325 5,456 4,850 5,510
1205 t2dah_e 11,445 NA its its its 26,423 17,341 its its its its its its
1207 t2dal_e 4,257 3.8E+07 17,632 15,988 10,203 7,039 4,945 10,201 15,469 18,386 19,161 17,422 22,194
1211 t3dl_e 20,360 5.9E+03 262 263 256 256 256 342 522 512 515 533 524
1214 sts4098 4,098 2.1E+08 29,588 29,569 27,340 23,259 20,598 4,404 3,949 4,014 3,892 4,228 3,724
1252 audikw_1 943,695 NA its its 28,019 13,365 7,792 17,261 14,049 DFS DFS DFS DFS
1254 bmwcra_1 148,770 3.8E+08 10,000 6,936 4,206 1,780 1,119 5,171 5,683 5,813 5,983 5,431 5,968
1257 crankseg_1 52,804 4.9E+07 3,262 1,907 1,402 1,179 1,021 1,041 1,040 1,163 1,156 982 DSF
1258 crankseg_2 63,838 4.8E+07 4,295 2,524 2,005 1,641 1,409 1,196 1,228 1,334 1,339 1,143 1,394
1266 hood 220,542 2.3E+08 24,903 22,640 22,668 19,161 16,954 7,557 27,871 26,273 its 29,187 its
1267 inline_1 503,712 NA its its 28,991 14,256 8,350 its its its its its its
1268 ldoor 952,203 1.7E+08 25,533 22,520 19,809 17,602 15,574 11,754 13,871 DSF DSF DSF DSF
1270 oilpan 73,752 NA its 22,128 15,492 11,437 8,451 15,458 17,100 22,415 24,289 15,118 22,235
1288 wathen100 30,401 5.8E+03 256 145 129 113 93 98 79 105 101 76 97
1289 wathen120 36,441 2.6E+03 286 169 131 111 95 112 95 131 120 83 109



80id name rows cond none eig5 eig10 eig20 eig40 db2 db4 db8 db16 biorth meyer
1310 cvxbqp1 50,000 2.2E+06 7,527 EDC EDC EDC EDC 3,203 3,656 3,137 3,186 3,816 3,406
1311 gridgena 48,962 1.0E+00 1 2 2 1 1 1 1,739 1,797 1,958 1,723 1,714
1312 jnlbrng1 40,000 1.8E+02 85 84 83 81 77 32 41 34 39 40 37
1313 minsurfo 40,806 7.7E+01 49 52 52 52 51 19 28 22 25 28 30
1314 obstclae 40,000 1.0E+00 1 2 2 1 1 1 18 23 24 19 22
1315 torsion1 40,000 1.0E+00 1 2 2 1 1 1 18 23 24 19 22
1330 Kuu 7,102 1.6E+04 480 366 263 207 142 305 323 366 368 322 325
1331 Muu 7,102 7.6E+01 50 51 46 44 41 1 40 40 37 43 38
1347 bundle1 10,581 1.0E+03 155 156 156 155 155 87 56 37 40 51 36
1401 Chem97ZtZ 2,541 2.5E+02 87 88 88 88 88 45 47 45 45 47 45
1402 thermal1 82,654 3.2E+05 1,099 563 436 295 223 134 125 124 123 129 DSF
1403 thermal2 1,228,045 4.9E+06 3,627 1,746 1,534 1,035 751 598 DSF DSF DSF 590 DSF
1406 ted_B 10,605 1.9E+07 845 750 771 750 699 397 713 865 808 716 890
1409 ted_B_unscaled 10,605 1.3E+11 978 EDC EDC EDC EDC 25 dtol dtol dtol 642 dtol
1412 G2_circuit 150,102 1.3E+07 8,918 5,661 4,093 2,956 2,324 900 2,186 1,835 2,415 2,256 DSF
1421 G3_circuit 1,585,478 1.5E+07 12,685 11,119 10,366 8,068 1,307 1,307 2,496 2,092 DSF 2,403 DSF
1422 apache1 80,800 3.0E+06 1,261 758 457 370 232 464 741 761 758 760 673
1423 apache2 715,176 3.1E+06 3,973 1,955 1,385 908 625 472 425 417 416 442 399
1435 gyro 17,361 1.1E+09 28,927 17,218 12,835 4,794 1,680 14,174 14,103 14,823 14,805 13,604 14,754
1438 LF10 18 3.9E+06 39 EDC EDC NA NA 10 10 13 17 10 10
1440 LFAT5 14 1.4E+08 25 EDC EDC EDC EDC 8 8 11 13 8 8
1453 bone010 986,703 4.7E+08 16,416 9,401 5,825 2,066 951 12,761 11,375 12,943 13,727 10,860 14,002
1454 boneS01 127,224 1.7E+07 2,355 1,024 697 534 406 1,329 1,358 1,453 1,498 1,282 1,536
1455 boneS10 914,898 NA its 18,509 10,369 6,801 3,838 20,722 20,739 22,462 23,032 19,718 DSF
1506 Journals 124 9.8E+03 127 90 80 67 46 59 58 59 60 59 57
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id name rows cond none eig5 eig10 eig20 eig40 db2 db4 db8 db16 biorth meyer
1580 af_0_k101 503,625 1.4E+08 28,753 20,496 13,578 7,218 4,294 16,672 15,689 15,914 15,222 16,348 15,800
1581 af_1_k101 503,625 1.4E+08 29,716 17,308 12,976 7,517 4,111 16,820 16,265 16,993 16,144 17,147 16,235
1582 af_2_k101 503,625 1.0E+06 1,661 1,628 1,616 1,611 1,406 1,549 1,505 1,037 864 1,549 1,516
1583 af_3_k101 503,625 1.1E+08 25,545 12,768 6,510 5,237 3,504 14,580 14,124 14,372 13,639 14,847 13,729
1584 af_4_k101 503,625 2.3E+08 29,171 9,985 9,079 5,249 3,699 16,432 15,931 16,207 15,894 16,809 16,223
1585 af_5_k101 503,625 2.3E+08 27,599 7,996 7,586 5,159 3,534 15,562 15,130 15,452 14,527 15,917 14,837
1605 s1rmq4m1 5,489 1.8E+06 6,011 4,426 3,976 3,171 2,471 2,592 2,398 1,859 2,601 2,718 2,662
1606 s2rmq4m1 5,489 1.8E+08 20,319 11,672 8,787 7,121 5,849 3,455 2,180 2,172 2,773 3,698 2,896
1607 s3rmq4m1 5,489 NA its 19,085 15,378 11,630 9,797 3,890 7,245 3,413 4,790 5,612 3,896
1608 s1rmt3m1 5,489 2.5E+06 6,592 4,444 3,662 2,867 2,167 2,728 3,002 2,021 2,563 3,896 3,747
1609 s2rmt3m1 5,489 2.5E+08 28,826 16,691 11,845 9,889 7,847 4,149 3,166 2,600 3,200 5,146 4,034
1610 s3rmt3m1 5,489 NA its EDC EDC EDC EDC 4,805 9,330 4,334 7,271 7,288 5,268
1611 s3rmt3m3 5,357 NA its its its its 28,828 its 14,571 7,884 8,334 12,664 9,833
1847 Dubcova1 16,129 1.0E+03 87 72 63 52 46 33 33 33 34 33 DSF
1848 Dubcova2 65,025 4.0E+03 157 132 114 89 69 37 37 36 36 37 36
1849 Dubcova3 146,689 4.0E+03 159 133 116 90 71 47 48 47 46 49 47
1850 BenElechi1 245,874 NA its 20,313 11,838 5,747 3,224 22,030 22,212 20,059 20,753 21,631 17,958
1853 parabolic_fem 525,825 2.1E+05 1,487 880 646 487 387 185 127 143 118 145 127
1883 ecology2 999,999 6.5E+07 5,393 2,421 1,563 1,109 771 226 210 208 207 219 193
1899 tmt_sym 726,713 7.9E+08 3,042 810 385 238 1 27 43 44 47 47 48
1909 smt 25,710 1.6E+09 9,283 3,835 2,425 1,531 1,041 3,222 3,581 3,576 3,849 3,445 3,929
1911 plbuckle 1,282 1.3E+06 1,966 1,104 704 420 273 1,146 480 958 660 507 771
1912 cbuckle 13,681 1.7E+06 4,865 4,853 4,868 4,855 4,866 5,627 3,187 3,011 2,383 3,788 2,689
1919 2cubes_sphere 101,492 NA 19,480 21,485 EDC EDC EDC 24,961 its its its its its
1939 bibd_81_2 3,240 1.0E+00 1 2 2 2 2 1 2 2 2 2 2
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2203 Trefethen_20b 19 3.0E+01 19 EDC EDC NA NA 10 10 10 10 10 10
2204 Trefethen_20 20 6.3E+01 20 EDC EDC EDC NA 11 11 11 11 11 11
2205 Trefethen_150 150 7.7E+02 95 54 37 25 16 56 57 60 67 56 57
2206 Trefethen_200b 199 5.2E+02 100 58 41 28 19 61 61 65 74 60 62
2207 Trefethen_200 200 1.1E+03 114 64 43 29 19 67 68 73 82 67 68
2208 Trefethen_300 300 1.8E+03 146 81 55 37 24 85 87 93 106 86 87
2209 Trefethen_500 500 3.2E+03 197 108 73 49 32 115 118 127 145 115 117
2210 Trefethen_700 700 4.7E+03 240 131 88 60 39 139 143 153 176 140 142
2211 Trefethen_2000 2,000 1.6E+04 435 235 157 106 69 251 259 279 320 253 257
2212 Trefethen_20000b 19,999 9.6E+04 1,338 738 508 352 236 805 816 852 1,026 779 819
2213 Trefethen_20000 20,000 2.0E+05 1,545 814 544 364 237 889 912 988 1,135 897 915
2257 thermomech_TC 102,158 6.5E+01 51 50 49 48 45 31 31 30 30 32 30
2258 thermomech_TK 102,158 3.0E+18 2,054 EDC EDC EDC EDC dtol dtol dtol dtol dtol dtol
2259 thermomech_dM 204,316 6.5E+01 51 50 49 48 45 1 DSF DSF DSF DSF DSF
2261 shallow_water1 81,920 3.4E+00 10 11 11 11 11 8 9 9 9 8 9
2262 shallow_water2 81,920 1.0E+01 18 19 19 19 19 13 14 15 15 14 14
2373 pdb1HYS 36,417 3.5E+11 4,740 EDC EDC EDC EDC dtol dtol dtol dtol dtol dtol
2374 consph 83,334 3.9E+06 13,112 10,974 9,641 7,958 6,383 7,046 7,441 8,566 9,176 6,929 9,895
2375 cant 62,451 2.6E+10 10,026 EDC EDC EDC EDC dtol dtol dtol dtol dtol dtol
2544 Flan_1565 1,564,794 1.2E+08 17,399 11,901 9,027 5,638 3,506 10,884 14,163 13,854 15,997 13,082 16,602
2546 Hook_1498 1,498,023 3.6E+06 8,285 EDC EDC EDC EDC 4,747 5,453 5,540 DFS 5,356 DSF
2664 bundle_adj 513,351 NA its EDC EDC EDC EDC 1,066 33 32 73 DSF 66
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