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ABSTRACT

Michael Malahe: PDE Solvers for Hybrid CPU-GPU Architectures
(Under the direction of Sorin Mitran)

Many problems of scientific and industrial interest are investigated through numerically solving

partial differential equations (PDEs). For some of these problems, the scope of the investigation

is limited by the costs of computational resources. A new approach to reducing these costs is the

use of coprocessors, such as graphics processing units (GPUs) and Many Integrated Core (MIC)

cards, which can execute floating point operations at a higher rate than a central processing unit

(CPU) of the same cost. This is achieved through the use of a large number of processors in a single

device, each with very limited dedicated memory per thread. Codes for a number of continuum

methods, such as boundary element methods (BEM), finite element methods (FEM) and finite

difference methods (FDM) have already been implemented on coprocessor architectures. These

methods were designed before the adoption of coprocessor architectures, so implementing them

efficiently with reduced thread-level memory can be challenging. There are other methods that do

operate efficiently with limited thread-level memory, such as Monte Carlo methods (MCM) and

lattice Boltzmann methods (LBM) for kinetic formulations of PDEs, but they are not competitive

on CPUs and generally have poorer convergence than the continuum methods.

In this work, we introduce a class of methods in which the parallelism of kinetic formulations on

GPUs is combined with the better convergence of continuum methods on CPUs. We first extend an

existing Feynman-Kac formulation for determining the principal eigenpair of an elliptic operator

to create a version that can retrieve arbitrarily many eigenpairs. This new method is implemented

for multiple GPUs, and combined with a standard deflation preconditioner on multiple CPUs to

create a hybrid concurrent method with superior convergence to that of the deflation preconditioner

alone. The hybrid method exhibits good parallelism, with an efficiency of 80% on a problem with

300 million unknowns, run on a configuration of 324 CPU cores and 54 GPUs.
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CHAPTER 1

Introduction

1.1 Numerical Approaches to PDEs

The numerical solution of PDEs has relevance to a large number of scientific and industrial

problems. These problems include those of fluid flow, heat conduction, and elasticity, and the PDEs

often arise as the continuum limit of microscale interactions. In the case of heat conduction for

example, the Laplace operator captures the spatially-averaged effects of elastic collisions at the

molecular level.

This perspective, that interactions at the microscale underly all of these PDEs, is not typically

leveraged by traditional solvers, such as Finite Element Methods (FEM) [7] and Boundary Element

Methods (BEM) [8]. Instead, these methods take the continuum limit as the starting point, from

which the domain is discretized into elements representative of a physical volume or surface.

These discretization approaches come with two main computational expenses, which are the

discretization of the domain through generating volume and surface meshes, and the solution of

linear systems. Solving the linear systems is often only feasible with the addition of mechanisms

to accelerate convergence. Some simple examples are linear element preconditioning [9] and sparse

approximate inverses [10], which are a part of a large catalogue of acceleration techniques.

The need for complex mesh generation and the solution of linear systems is avoided entirely

by kinetic methods such as kinetic Monte Carlo methods [11] and Lattice-Boltzmann Methods

(LBM) [12], both of which leverage descriptions of the interactions at the microscale. The major

drawback is that these methods are only feasible for relatively low accuracy computations, because

their computational expense grows rapidly with increased accuracy. This makes their use in isolation

worthy of consideration for only a small class of problems.

There is the potential however, for these methods to be used in conjunction with standard

continuum methods. A number of combined schemes are proposed here, in which a kinetic method

is used to approximate the structure of the differential operator in the PDE, which is then used to

1



accelerate a continuum solver. The kinetic method is implemented on a GPU, and the continuum

method is implemented on a CPU, so that each method is running on the architecture where it is

the most efficient. These proposed schemes with results and analysis are presented in Chapter 5 and

Chapter 6.

The description of the schemes is preceded by a description of relevant applications in Section 1.2,

a survey of existing processor architectures in Chapter 2, and a short review of the current state of

continuum methods in Chapter 3 and linear solvers in Chapter 4.

1.2 Applications

This work deals primarily with PDEs of the form

∂u(x, t)

∂t
= L(u) + f(x, t), (1.1)

where

L(u) =
d∑
i=1

αi(x)
∂u(x, t)

∂xi
+

1

2

d∑
i,j=1

βij(x)
∂2u(x, t)

∂xi∂xj
+ q(x, t)u(x, t), (1.2)

and d is the dimension of the problem, which is defined for x ∈ Ω ⊂ Rd and t ∈ [0,∞), with

appropriate initial and boundary conditions. There are many possible applications of PDEs of

this form, but here we choose one that is representative of the case where the linear solvers for

discretizations of the PDE suffer from poor convergence. The application is described briefly in the

following subsection.

1.2.1 Inhomogeneous diffusion

For inhomogeneous diffusion, the problem is given by

−∇ · (K(x)∇u(x)) = f(x), (1.3)

where K(x) is the diffusivity, u is the scalar of interest, and f(x) is the sum of the source terms. In

the notation Equation (1.1), this corresponds to

βij(x) = 2δijK(x)

αi =
∂K

∂xi

q(x) = 0.
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Figure 1.1: Example domain for Equation (1.3). Dirichlet conditions in the interior boundaries
and Neumann conditions on the outer boundary would be notated ΓD = ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω2, and
ΓN = ∂Ω0.

The boundary conditions are

u(x) = g(x) on ΓD,

K(x)∇u(x) · n = h(x) on ΓN ,

ΓD ∪ ΓN = ∂Ω,

ΓD ∩ ΓN = ∅,

where g(x) is the Dirichlet condition on ΓD, and h(x) is the Neumann condition on ΓN . The domain

labeling is illustrated in Figure 1.1.

The application to time-steady porous media flow is chosen as a simple example. First, we take

the Navier Stokes equations in the zero Reynolds number limit to recover the Stokes equation:

∇P = µ∇2u+ f . (1.4)
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For steady flow in a porous medium, Darcy’s Law gives

q(x) =
−k(x)

µ
∇P (x), (1.5)

where q(x) is the flux and k(x) is the permeability. Imposing incompressibility gives

∇ · q = 0,

⇒ ∇ ·
(
−k(x)

µ
∇P (x)

)
= 0.

Thus the problem has been reduced to solving

∇ · (K(x)∇P (x)) = 0, (1.6)

where K(x) = k(x)
µ . The problems of interest are those with large and rapid changes in the diffusivity

throughout the domain. One such problem is groundwater flow.

1.3 Processor architectures

The effectiveness of numerical methods for solving these elliptic PDEs depends both on the

mathematical properties of the method and on the properties of the processor architectures on

which the method is implemented. The most popular architecture currently available is on-die CPUs

[13], for which all of the cores reside on the same continuous piece of silicon. This architecture has

low latency and high memory throughput, which makes method design for a single machine quite

straightforward. In high performance systems, the need for additional processing power is met by

creating a network that connects multiple machines that are each based around this architecture. If

more than one of these computational nodes is needed for a given application, the overhead from

network communication can be a dominant factor in the overall processing time [14]. The difficulty

then is designing algorithms that cut down as much as possible on this communication.

The extent of the network communication that is required can be reduced by improving the

processing throughput of a single node, which is currently being done with two kinds of alternative

architectures. The first is the Many Integrated Core (MIC) architecture [15, 16], developed by Intel,

and the second is general-purpose Graphics Processing Units (GPUs) [17], chiefly supported by

NVIDIA in the realm of scientific computing through their Tesla, Fermi and Kepler microarchitectures.
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Both of these architectures can be regarded as coprocessors, which deliver their high throughput by

using a discrete card with a large number of cores that is is connected to the motherboard through a

Peripheral Component Interconnect Express (PCIe). The historical peak processing throughput for

the CPU, MIC and GPU architectures is plotted in Figure 1.2.

It should be noted that reaching these peaks for the coprocessor architectures in non-trivial

applications is still challenging [18, 19]. While there are many cores, each one has very limited

dedicated memory, which poses a challenge for algorithm design. Despite this, a number of scientific

computing applications and libraries have been ported to one or both of the coprocessor architectures.

For both architectures the focus has mostly been on dense (MIC [20, 21], GPU [22, 23]) and sparse

(MIC [24], GPU [25]) linear algebra libraries. The effectiveness of this approach is supported by the

high performance computing community [26, 27, 28], and the current 1st, 2nd, 6th and 7th most

powerful supercomputers in the world all rely heavily on coprocessors [4]. The top 10 supercomputers

in June 2014 are listed with their coprocessor adoption in Table 1.1.

While these coprocessors are powerful and delay the need for inter-node communication, they

increase the cost of intra-node communication by requiring communication between the CPU and

the coprocessor through the PCIe bus. This again places constraints on algorithm design, where now

the communication between the CPU and the coprocessor has to be minimized. It is this constraint

that influences the computational approach put forward in this proposal.

Rank Machine Name Coprocessors Throughput (TFlop/s) Power (kW)
1 Tianhe-2 MIC 33862 17808
2 Titan GPU 17590 8209
3 Sequoia - 17173 7890
4 RIKEN K Computer - 10510 12660
5 Mira - 8586 3945
6 Piz Daint GPU 6271 2325
7 Stampede MIC 5168 4510
8 JUQUEEN - 5008 2310
9 Vulcan - 4293 1972
10 US Govt. Unnamed - 3143 -

Table 1.1: Architecture adoption among the world’s top 10 supercomputers in June 2014 (as measured
by realized maximum FLOP rate) [4].
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Figure 1.2: History of the three dominant processor architectures in terms of peak TFLOP/s
throughput with perfect parallelization [1, 2, 3]

.
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CHAPTER 2

Computer Architectures

In this chapter we describe the current computer architectures available for scientific computing.

In particular, we highlight the features of each architecture that strongly influence the design of

numerical methods for PDEs. The existing work on implementing continuum methods on these

architectures is presented in Section 3.2.

2.1 CPUs

For describing CPUs, we take the Intel Xeon family of processors to be representative of modern

multi-core CPUs. In the last decade, the process has gone from 65 nm dual-core [29] to 45 nm 8-core

[30] to 22 nm 15-core [5] processors. In their current (2016) state, multi-core CPUs are distinguished

from GPUs and MICs by their large cache and large instruction set. The memory transfer rates for

a representative multi-core CPU are given in Table 2.1. In that table, and in the tables for GPUs

and MICs, “throughput up” is the cost of transferring memory between the given tier and the one

above it.

Memory type Size Throughput up
RAM 48+ GB -
L3 cache 37.5 MB 1866 - 2667 MT/s (= 119 - 171) GB/s

Table 2.1: Memory transfer rates for a 22 nm, 15-core Intel Xeon processor [5]

2.2 GPUs

For describing GPUs, we take the Tesla architecture [17] to be representative of modern GPUs.

2.2.1 Memory

For GPUs, there are four relevant tiers of memory, each with significant transaction costs between

them. They are random access memory (RAM), then the global, shared, and thread memory of

the GPU. The sizes and throughput rates for the a representative GPU are given in Table 2.2.

“Throughput up” is the cost of transferring memory between the given tier and the one above it.

The key limitations are the 16 kB of shared memory and the 1 kB of thread memory.
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Memory Hardware Software Number Size Throughput up (GB/s)
Global Card Device 1 12GB 8
Shared SMP Block 15 per device 16kB 216
L1 cache (per core) Core Thread 192 per block 1 kB 216

Table 2.2: Memory hierarchy of a Tesla K40

Figure 2.1: Threads accessing the same memory location in each bank. These broadcast operations
do not incur any serialization.

Optimal memory transfers Due to the very small per-thread and shared memory, high through-

put applications require a large number of memory transfers. These transfers are frequently the

main bottleneck in these applications, so doing them optimally is essential. One area in which these

transfers can be processed at drastically different speeds, despite delivering the same amount of

data, is in the accessing of memory from the GPU’s shared memory banks. If two threads attempt

to access two different locations within the same memory bank, a bank conflict occurs, and the

accesses must be serialized. Ideally, the threads are either all accessing the same memory location

in each bank (Figure 2.1), or are accessing memory from different banks (Figure 2.2). Following

the intuition from CPU programming, one might assign each thread a contiguous chunk of memory

addresses to read from, but this leads to the worst case bank conflict (Figure 2.3).

Figure 2.2: Threads accessing memory from completely separate banks. This is the best case scenario.
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Figure 2.3: Threads accessing memory from contiguous memory addresses. This is the worst case
scenario.

2.3 MICs and other architectures

The first attempt by Intel at creating a GPU-like device was the Larrabee architecture [31],

which was designed to be capable of carrying out actual graphics processing, but was abandoned in

2010. Its successor was the MIC architecture, which was designed to function purely as a coprocessor

[32, 33]. As with GPUs, MICs rely on a large number of smaller cores for their throughput, but

have an instruction set very similar to a multi-core CPU, allowing for easier porting of existing CPU

codes to the architecture. For MICs, there are 5 relevant tiers of memory, which are detailed in

Table 2.3. While the memory hierarchy is similar to that of a GPU, and the memory sizes for global

and on-core memory are similar, MICs are distinguished from GPUs by having significantly more

shared memory, at the cost of reduced transfer rates between this shared memory and the other

tiers of memory.

Memory type Size Throughput up (GB/s)
RAM 48+ GB -
Main memory 2 GB 8
L2 Cache 8 MB 96
L1 Cache 1 MB 73
CPU registers (per core) 2 kB 20

Table 2.3: Memory transfer rates for a 32-core Intel Xeon Phi coprocessor[6]
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CHAPTER 3

Continuum Methods

3.1 Finite Difference Methods

In this work, we use a finite difference discretization in all of the methods. For the inhomogeneous

diffusion problem in 2D, the standard second-order discretization is

∇h · (Kh∇huij) =
1

h2

(
Ki+ 1

2
(ui+1 − ui)−Ki− 1

2
(ui − ui−1)

)
+

1

h2

(
Kj+ 1

2
(uj+1 − uj)−Kj− 1

2
(uj − uj−1)

)
,

where the indices are i and j if omitted. The grid dimensions are i = 0, . . . ,m−1 and j = 1, . . . , n−1.

We’ll use the index renumbering Iij = i+mj. Again, the indices are i and j if omitted. The full

system is then

−∇h · (Kh∇huij) = fij

⇒ Ki+ 1
2
(ui+1 − ui)−Ki− 1

2
(ui − ui−1) +Kj+ 1

2
(uj+1 − uj)−Kj− 1

2
(uj − uj−1) = −h2fij

The matrix A represents the action of −∇h · (Kh∇h·), so the non-zero entries are

AI,I =
1

h2

(
Ki− 1

2
+Ki+ 1

2
+Kj− 1

2
+Kj+ 1

2

)
,

AI,Ii−1 = − 1

h2
Ki− 1

2
,

AI,Ii+1 = − 1

h2
Ki+ 1

2
,

AI,Ij−1 = − 1

h2
Kj− 1

2
,

AI,Ij+1 = − 1

h2
Kj+ 1

2
.
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The system matrix now has the following structure:

Ah =
1

h2



Km− 1
2
,0 +K 1

2
,0 +K0,n− 1

2
+K0, 1

2
−K 1

2
,0 0 . . . 0 −K0, 1

2
0 . . . 0 0 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .


,

(3.1)

where Dirichlet boundary conditions are applied in the standard way, by modifying the right-hand

side. For example, in the top left corner we have

−
(
Ki+ 1

2
(ui+1 − ui)−Ki− 1

2
ui +Kj+ 1

2
(uj+1 − uj)−Kj− 1

2
uj

)
= h2fij +Ki− 1

2
gi−1,0 +Kj− 1

2
g0,j−1,

and in the bottom right corner we have

−
(
−Ki+ 1

2
ui −Ki− 1

2
(ui − ui−1)−Kj+ 1

2
− uj −Kj− 1

2
(uj − uj−1)

)
= h2fij +Ki+ 1

2
gi+1,0 +Kj+ 1

2
g0,j+1

3.2 Parallelization

In this section we take a broad review of the parallelization approaches for continuum methods

on CPUs, GPUs and MICs. The performance for GPU and MIC codes for continuum methods at

various computational scales is summarized in Table 3.1.

3.2.1 CPU

Finite element methods on CPUs are typically parallelized through domain decomposition, the

parallelization of linear solvers [34, 35, 36], and adaptive mesh refinement [37]. These approaches

have been successfully implemented on petascale computers [38, 39], including applications to reactor

hydrodynamics [40] and mantle convection [41].

3.2.2 GPU

The development of finite element methods on GPUs has mostly been focused on the parallelization

of the numerical integration, matrix assembly and linear solution steps [42, 43, 44, 25]. These
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approaches have been used in a number of applications, including fluid flow [45, 46] and soft-tissue

surgery simulation [47, 48].

Ports of entire FEM codes to GPUs have primarily focused on nodal Discontinuous Galerkin

(DG) methods [49]. These methods have good performance on GPUs due to a large component

of the DG operator being evaluated at the element level, with less computation devoted to the

coupling between elements [49]. For a single GPU on an electromagnetic (EM) scattering problem,

the efficiency of DG was found to increase with higher order elements, which was attributed to a

greater fraction of the work being done at the element level. This was also found in multiple GPU

implementations [50]. In an EM wave propagation problem using 6th-order elements, a parallel

efficiency of 90.5% was achieved with 8 GPUs on 2 nodes [50].

At the low terascale, finite difference Weighted Essentially Non-oscillatory (WENO) methods and

finite volume method (FVM) have been implemented on GPUs for rectangular grids, using standard

domain decomposition techniques with ghost cells. For the Favre-averaged Navier-Stokes equations

in 3D, a finite difference implementation using 4 GPUs on a single node achieved a parallel efficiency

of 67.3% [51]. For the shallow water equations, a finite volume implementation using 4 GPUs on a

single node achieved a parallel efficiency of 86.0% [52].

At the medium terascale, applications of finite-difference time-domain (FDTD) and FEM are

dominated by seismic wave propagation problems [53, 54, 55, 56]. These methods achieve near-perfect

weak scaling, but have limited strong scaling (see Table 3.1).

3.2.3 MIC

The development of FEM code for the MIC architecture is currently fairly limited, presumably

due to the novelty of the architecture. Preliminary work has used a MIC port [27] of the libMesh

library [57]. The speedups were capped at around 14 times for 2D and 20 times for 3D using a 30-core

Knights Ferry (KNF) card. The authors pointed to FEM steps that were difficult or inefficient to

parallelize, such as matrix and mesh allocations and the application of constraints.
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Application Method Hardware # of unknowns Throughput Weak/strong scaling
EM DG 1×GTX 280 1.9× 106 200 GFlops N/A [49]
EM DG 8×Tesla T10 1.04× 108 1.64 TFlops -/90.5% [50]
Fluids WENO 4×Tesla C1070 1.20× 108 - -/67.3% [51]
Fluids FVM 4×Tesla C2050 4.7× 108 - 86.0%/- [52]
Seismic FEM 128×Tesla X2090 5.2× 109 10.0 TFlops 98.0%/50% [56]
Seismic FDTD 270×Tesla M2090 1.68× 1010 30.5 TFlops - [55]
Seismic FDTD 952×Tesla X2090 5.88× 1011 101.4 TFlops - [55]
Seismic FEM 896×Tesla X2090 5.2× 109 135.0 TFlops -/- [56]
Radiation KBA 928×Tesla K20m - 35.0 TFlops 64%/58% [58]
Fluids FEM 4096×Tesla K20m - - 46.4%/99% [59]

Table 3.1: Summary of performance on GPUs and MICs at various scales for implementations of
continuum method formulations of PDEs. Entries of “-” correspond to quantities that were not
explicitly reported by the authors.
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CHAPTER 4

Linear Solvers

In this chapter, we review a number of classical linear solvers, and their adaptations to high

performance computing environments. We focus primarily on Krylov subspace methods, and in

particular we examine the GMRES method and its derivatives. The enriched subspace method

(Section 4.1.2) and the deflation preconditioned method (Section 4.3) are given in full detail, as they

form the basis of the hybrid methods presented in this work (Chapter 6). We also examine a number

of high performance multigrid preconditioners for Krylov methods (Section 4.4), which are used as

state-of-the-art comparisons for these hybrid methods.

4.1 GMRES

GMRES is an iterative method for solving nonhermitian linear systems, introduced by Saad et.

al [60]. Suppose we have a subspace Vn = 〈v1,v2, . . . ,vn〉. If we want to minimize the residual on

Vn, we can write this as

min
y∈Rn

‖b−AVny‖,

where Vn is the matrix whose columns are the vectors vi, and the approximate solution is xn = Vny.

A simple approach to this would be to use a QR factorization of AVn, from which the problem can

be represented as

min
y∈Rn

‖b−QRy‖,

which reduces to solving

Rxn = Q∗b,

which is a single matrix-vector product and a back-substitution. GMRES is just least squares

minimization on the Krylov subspace Kn = 〈b, Ab, . . . , An−1b〉. Explicitly constructing the QR

factorization is unstable, however. Instead, the approach is to find a matrix Qn whose columns span
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Kn, from which the problem becomes minimizing

min
y∈Rn

‖b−AQny‖,

where xn = Qny.

This can be done with the Arnoldi iteration, which reduces a nonhermitian matrix to Hessenberg

form by orthogonal similarity transformations. Write this as decomposition Hn = Q∗nAQn. This

gives AQn = Qn+1H̃n, where

H̃n =



h11 . . . . . . h1n

h21 h22
...

0
. . . . . .

...

0
. . . hn,n−1 hnn

0 0 0 hn+1,n


.

The method is given in Algorithm 1. The result is that the columns of Qn do in fact span Kn.

Additionally, the recurrence allows the minimization problem to be reduced to

min
y∈Rn

‖b−Qn+1H̃ny‖

= min
y∈Rn

‖Q∗n+1b− H̃ny‖

= min
y∈Rn

‖H̃ny − ‖b‖e1‖.

The minimization step can be done via a QR decomposition of H̃n [60]. Combining the Arnoldi

iteration and the minimization gives GMRES, shown in Algorithm 2. If we denote the jth approximate

solution obtained by GMRES by xj and the corresponding residual by rj = b−Axj , the residuals

satisfy the property that [60, 61]

‖rj‖ = min
p∈P0

j

‖p(A)r0‖, (4.1)

where P0
j are the monic polynomials with degree less than or equal to j. This guarantees a

nondecreasing residual, but for larger problems, maintaining a linearly increasing Krylov subspace

for all of the iterations becomes prohibitive. This can be remedied by using a restarted version of
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GMRES, in which a maximum number of iterations, m, is chosen, after which the equation Ae = r

is solved in order to update the current approximation by x = x+ e. This equation itself is solved

by applying GMRES with a Krylov subspace generated from the current residual:

Kn = 〈r, Ar, . . . , An−1r〉.

These corrections proceed iteratively, to produce restarted GMRES, which is given in Algorithm 3.

4.1.1 Convergence

There are a number of convergence theorems for GMRES that are based on creating bounds

for Equation (4.1) by characterizing how it is affected by the properties of A and r0 [61]. Some are

based on the singular values of A [62], but the most relevant ones for this work are bounds based on

spectrum of A, which we denote by σ(A). The first step in constructing such a bound is to take

Equation (4.1) and bound it above by the worst case r0, leading to

‖rj‖ ≤ min
p∈P0

j

‖p(A)‖‖r0‖, (4.2)

so that we’re now concerned only with the properties of ‖p(A)‖. If A is diagonalizable, with

A = SΛS−1, then the inequality becomes [63, 60, 61]

‖rj‖ ≤ min
p∈P0

j

‖Sp(Λ)S−1‖‖r0‖, (4.3)

which gives [61]
‖rj‖
‖r0‖

≤ κ(S) min
p∈P0

j

max
λ∈Λ(A)

|p(λ)|, (4.4)

where κ(S) = ‖S‖‖S−1‖ is the condition number of S. In the methods described in Section 4.1.2

and Section 4.3, this bound is lowered by effectively removing eigensubspaces within span(S), and

eigenvalues from Λ(A) through Krylov subspace enrichment or deflation. For both methods, following

the notation in [64], we denote the subset of k eigenvectors that are removed by S1 = {ϕ1, · · · , ϕk},

and the remaining eigenvectors by S2 = {ϕk+1, · · · , ϕn}. We also split the initial residual into

r0 = r0,1 + r0,2, where r0,1 is the residual projected onto S1, and r0,2 is the residual projected onto

S2.
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Algorithm 1 Arnoldi Iteration
Input: A, b
Output: Qn+1, H̃n

q1 = b/‖b‖
for n=1,... do

v = Aqn
for j=1,..,n do

hjn = q∗jv
v = v − hjnqj

end for
hn+1,n = ‖v‖
qn+1 = v/hn+1,n

end for

Algorithm 2 GMRES
Input: A,b,x0,ε,m
Output: x
Initialization
r0 = b−Ax0

q1 = r0/‖r0‖

Arnoldi Iteration
for j = 1 to m do

v = Aqj
for i=1 to j do

hij = q∗iv
qj+1 = qj+1 − hijqi

end for
hj+1,j = ‖qj+1‖
qj+1 = qj+1/hj+1,j

end for

Find approximate solution
β = ‖r0‖
Find d̂ ∈ Rl that minimizes ‖βe1 − H̃d‖
x̂ = x0 +Qd̂
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Algorithm 3 Restarted GMRES
Input: A, b,x0, ε,m,nmax

Output: x
for n = 0 to nmax − 1 do

Initialization
r0 = b−Ax0

q1 = r0/‖r0‖

Arnoldi Iteration
for j = 1 to m do

v = Aqj
for i=1 to j do

hij = q∗iv
qj+1 = qj+1 − hijqi

end for
hj+1,j = ‖qj+1‖
qj+1 = qj+1/hj+1,j

end for

Find approximate solution
β = ‖r0‖
Find d̂ ∈ Rm that minimizes ‖βe1 − H̃d‖
x̂ = x0 +Qd̂

Restart
r = b−Ax̂
if ‖r‖ < ε then

return x
else

x0 = x̂
end if

end for
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4.1.2 Enriched subspace GMRES

The Krylov subspace can be extended to created the enriched subspace

Kmn = 〈b, Ab, . . . , An−1b,v1, . . . ,vm〉,

where v1, . . . ,vm is a set of vectors that each ideally have large components in the solution. The

goal is then to determine

min
y∈Rn

‖b−AKm
n y‖, (4.5)

where Km
n is a matrix whose columns span Kmn :

Km
n = (Kn|v1| . . . |v2) . (4.6)

A method by Morgan takes such an approach, in which the Krylov subspace is enriched with

approximate eigenvectors that are calculated during the course of each restart [65]. In that work, the

method is called “augmented GMRES”, but in this work it will be referred to as “enriched subspace

GMRES”, or simply “enriched GMRES”. In enriched subspace GMRES, the bound in Equation (4.4)

is lowered by seeking approximate eigenvectors that have the smallest associated eigenvalues [65]. In

the method, the Arnoldi iteration is carried out as in GMRES to produce an orthonormal matrix

V whose columns span the Krylov subspace (previously labeled Q). This matrix is then extended

to create a matrix W , formed by appending the previously-computed k approximate eigenvectors,

labeled ϕ1, · · · , ϕk to V [65]:

W = (V |ϕ1|ϕ2| · · · |ϕk)

The number of columns of W is then labeled l = m+ k. It is the subspace spanned by the columns

of W in which approximate eigenpairs with the smallest eigenvalues in magnitude are computed

using a particular Rayleigh-Ritz procedure [66, 67] for the reduced eigenvalue problem [65]:

W ∗A∗Wϕ̄i =
1

λ̄i
W ∗A∗AWϕ̄i.

The solution of this generalized eigenvalue problem yields an approximate eigenvector through

ϕi = Wϕ̄i [65]. For the minimization problem, Q is created by orthogonalizing the vectors Aϕi
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against the Arnoldi vectors, through [65]

AW = QH̃.

The full method is given in Algorithm 4 [65], and continues to Algorithm 5. The quantities F and G

are shorthand for F = W ∗A∗W and G = W ∗A∗AW . The convergence bound for the method using

only approximate eigenvectors, and no Krylov vectors, is given in Theorem 1 [67, 64]. This bound

is constructed in a similar manner to that in Equation (4.4), but with the effect of the smallest

eigenvalues removed.

Theorem 1. Let S1 = {ϕ1, · · · , ϕk} and S2 = {ϕk+1, · · · , ϕn}. For m = 0, the residual rl computed

with Algorithm 4 satisfies

‖rl‖ ≤ ‖r0,2‖ min
p∈P0

l

max
k+1≤i≤n

|p(λi)|cond(S2), (4.7)

where cond(S2) = ‖S2‖‖(S∗2S2)−1S∗2‖.

4.2 Classical preconditioners

With left preconditioning, we solve the system

M−1Ax = M−1b,

and with right preconditioning we solve the system

AM−1Mx = b,

with a preconditioner M−1 designed to reduce the condition number of A. For GMRES, applying

preconditioning is straightforward, and we present right-preconditioned GMRES in Algorithm 6. We

briefly mention two simple preconditioners here that are used for benchmarking purposes in Chapter 6,

before describing deflation preconditioners in the next section. The two simple preconditioners both

start with the decomposition

A = D + L+ U,
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Algorithm 4 Restarted GMRES enriched with approximate eigenvectors
Input: A, b,x0, ε,m, nmax

Output: x
k = 0
for n = 0 to nmax − 1 do

Pick enrichment vectors y1, ..., yk from the previous approximate eigenvectors.
l = m+ k

Initialization
r0 = b−Ax0

q1 = r0/‖r0‖
w1 = q1

for i=1 to k do
wm+i = ϕi

end for
for j=m+ 1 to l do

for i=m+ 1 to l do
fij = ϕ̄∗iFoldϕ̄j

end for
end for

Arnoldi Iteration
for j = 1 to m do

v = Aqj
qj+1 = v
for i=1 to j do

hij = q∗iqj+1

fji = hij
qj+1 = qj+1 − hijqi

end for
for i=1 to k do

fj,m+i = ϕi ∗ v
end for
hj+1,j = ‖qj+1‖
qj+1 = qj+1/hj+1,j

if j < m then
wj+1 = qj+1

fj,j+1 = hj+1,j

end if
end for
Continues to Algorithm 5
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Algorithm 5 Restarted GMRES enriched with approximate eigenvectors
Continued from Algorithm 4
Addition of approximate eigenvectors
for j = 1 to m+ 1 do

v = Awj

qj+1 = v
for i=1 to j do

hij = q∗iqj+1

qj+1 = qj+1 − hijqi
end for
for i=1 to m do

fji = hij
end for
hj+1,j = ‖qj+1‖
qj+1 = qj+1/hj+1,j

end for

Find approximate solution
β = ‖r0‖
Find d̂ ∈ Rl that minimizes ‖βe1 − H̃d‖
x̂ = x0 +W d̂

Form the new approximate eigenvectors
k = k + 1
G = R∗R
Solve Fϕ̄k = 1

θk
Gϕ̄k

ϕk = Qϕ̄k
Aϕk = QH̃ϕ̄k
Fold = F

Restart
r = b−Ax̂
if ‖r‖ < ε then

return x
else

x0 = x̂
end if

end for
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Algorithm 6 Right-preconditioned restarted GMRES
Input: A, b,x0, ε, m, nmax

Output: x
for n = 0 to nmax − 1 do

Initialization
r0 = b−AM−1x0

q1 = r0/‖r0‖

Arnoldi Iteration
for j = 1 to m do

v = Aqj
for i=1 to j do

hij = q∗iv
qj+1 = qj+1 − hijqi

end for
hj+1,j = ‖qj+1‖
qj+1 = qj+1/hj+1,j

end for

Find approximate solution
β = ‖r0‖
Find d̂ ∈ Rm that minimizes ‖βe1 − H̃d‖
x̂ = x0 +M−1Qd̂

Restart
r = b−Ax̂
if ‖r‖ < ε then

return x
else

x0 = x̂
end if

end for
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where D is a diagonal matrix, L is a strictly lower triangular matrix, and U is a strictly upper

triangular matrix. The simplest of these, diagonal preconditioning, simply sets M−1 = D−1, which

can be effective for diagonally dominant matrices. A more viable extension of this idea is the two-step

Jacobi iteration [68]. First define r = ρ(L+ U) to be the spectral radius of L+ U , and premultiply

the system by D−1, defining b̄ = D−1b. Then, given a parameter α > 0, the iteration is [68]

((α+ r)I + L+ U)x = b̄+ (α+ r − 1)x.

The method converges if ρ(M(α)) < 1, where [68]

M(α) = (α+ r − 1) [(α+ r)I + L+ U ]−1 .

4.3 Deflation preconditioned GMRES

A number of methods take the approach of constructing a preconditioner for GMRES based on

approximations to the eigenvalues and eigenvectors of A. In one approach, the Implicitly Restart

Arnoldi method (IRA) [69, 70] is used to construct a preconditioner. In another approach, which we

focus on here, approximate eigenvectors are used at each restart to construct a deflation preconditioner

that is persistent throughout the method [71]. The aim of the preconditioner is primarily to create

an AM−1 for which the smallest magnitude eigenvalues of A have been removed. These eigenvalues

are replaced with eigenvalues equal to the magnitude of the largest magnitude eigenvalue of A [71].

If we assume that A is nondefective, and label the smallest r eigenvalues by |λ1| ≤ |λ2| ≤ · · · ≤ |λr|,

the preconditioner is constructed in order to solve Ax = b exactly in the subspace

P = 〈ϕ1, ϕ2, · · · , ϕr〉,

where ϕi is the eigenvector corresponding to the eigenvalue λi [71]. Given an orthonormal basis U of

P , the authors provide a method for constructing such a preconditioner, given in Theorem 2 [71].

Theorem 2. If T = UTAU and M = In+U (1/|λn|T − Ir)UT , then M is nonsingular, M−1 = In+

U
(
|λn|T−1 − Ir

)
UT , and the eigenvalues of AM−1 are λr+1, λr+2, · · · , λn, |λn|, with the multiplicity

of |λn| at least r.
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With that established, the remaining step is to construct an approximation to P using the

quantities available from a standard restarted GMRES. The authors naturally use the Ritz values

and vectors from the Arnoldi Hessenberg matrix H̃m. Specifically, they decompose it into the Schur

form H̃m = S̃BS̃∗, ordered by increasing eigenvalue, and use the vectors U = QS̃ to approximate the

Schur vectors of A. The method, known as DGMRES, is given in full in Algorithm 7. The authors

noted instances of increasing residuals for left-preconditioning in their implementation, so we only

deal with the case of right-preconditioning here, which guarantees a nonincreasing residual [71]. The

convergence bound for the method is given in Theorem 3 [64]. Other variants of this method include

ones that use harmonic projections for the eigenvector approximations, and a scheme in which the

vectors in U are continuously updated [64].

Theorem 3. Let Y2 = {yr+1, yr+2, · · · , yn} be the eigenvectors of AM−1 corresponding to the

eigenvalues λr+1, λr+2, · · · , λn. The residual rm computed with Algorithm 7 satisfies

‖rm‖ ≤ min
p∈P0

m

(
p(|λn|)‖r0,1‖+ max

k+1≤i≤n
|p(λi)|‖r0,2‖cond(Y2)

)
, (4.8)

where r0,1 is the projection of r onto S1, r0,2 is the projection of r onto Y2, and cond(Y2) =

‖Y2‖(Y ∗2 Y2)−1Y ∗2 ‖.

4.4 Multigrid methods

In this section we cover multigrid methods, which are used in a number of preconditioners for

Krylov methods. We first present a framework for multigrid methods (Section 4.4.1), and some

convergence theorems for a two-grid geometric multigrid method as both a standalone method,

and as a preconditioner for GMRES (Section 4.4.2). We then highlight the particular methods

that are implemented in the Lawrence Livermore National Laboratory (LLNL) package HYPRE

[72], which are taken to be representative of what is used in practice by the high performance

computing community. These methods are parallel full multigrid (PFMG) (Section 4.4.3) and SMG

(Section 4.4.4).

4.4.1 Two-grid multigrid

We adopt the framework used in [73] for the Poisson equation,

−∇2u = f,
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Algorithm 7 DGMRES
Pick an arbitrary x0.
Set a convergence tolerance ε
Pick a number of eigenvectors to approximate per restart, l
Pick a maximum number of restarts to update the preconditioner, kprecond

M−1 = I
for k=0 to kmax-1 do

Pick the dimension of the base Krylov subspace, m

Initialization
r0 = b−M−1Ax0

q1 = r0/‖r0‖

Arnoldi Iteration
Get M−1A = QmH̃mQ

∗
m

Find approximate solution
β = ‖r0‖
Find d̂ ∈ Rm that minimizes ‖βe1 − H̃d‖
x̂ = x0 +M−1Qd̂
r = b−M−1Ax̂
if ‖r‖ < ε then

return x
else

x0 = x̂
end if

Update preconditioner
if k<kprecond then

Schur factorize H̃m = S̃BS̃∗

Order Schur decomposition by increasing eigenvalue
λm = max(σB)
S = QmS̃
for j=1 to l do

J = j + kl
uJ = sj
for i=1 to j + kl − 1 do

uJ = uJ − (u∗iuJ)ui
end for
uJ = uJ/‖uJ‖

end for
T = U∗AU
M−1 = I + U∗(T−1‖λm‖ − I(k+1)l)U

end if
end for
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and give their convergence theorems in Section 4.4.2 for multigrid used both as a standalone method,

and as a preconditioner for GMRES. Given the current error in the approximation, vj−1, the effect

of a two-grid iteration is given by [73]

vj = M2h
h vj−1,

where vj is the error at iteration j, and M2h
h represents one multigrid cycle. We now break this

operator down this cycle into its smallest components. First, we have

M2h
h = Sν2h K

2h
h Sν1h ,

where Sν1h are ν1 iterations of pre-smoothing, K2h
h is the coarse-grid correction, and Sν2h are ν2

iterations of post-smoothing. The coarse grid correction is given by

K2h
h = Ih − Ih2h(∇2

2h)−1I2h
h ∇2

h,

where ∇2
h is the operator discretized on the fine grid, I2h

h is the fine-to-coarse transfer operator,

(∇2
2h)−1 is the coarse grid solve, Ih2h is the coarse-to-fine transfer operator, and Ih is the fine-grid

identity. Overall, this gives

vj = Sν2h (Ih − Ih2h(∇2
2h)−1I2h

h ∇2
h)Sν1h vj−1.

If we use red-black Gauss-Seidel smoothing, this can be broken down further into a red relaxation

followed by a black relaxation, given by

Sh = SBSR,
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where the effect of SR is
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4.4.2 Two-grid convergence

Standalone multigrid The discretization and approximation of ∇2 with 5-point finite-difference

stencil can be written as [73].

∇2
huh(x)

≈
∑
κ∈J

ακuh(x+ κh),
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where J is the set of stencil offsets, {(0, 0), (−1, 0), (1, 0), (0,−1), (0, 1)}, and κ is a multi-index.

More directly as a matrix:

Au =
∑
κ∈J

ακuκ,

where uκ is u shifted by the stencil offset. If we now call F (Ωh) the space of all grid functions on

the domain, one basis for F (Ωh) is the Fourier basis [73]:

ϕk,lh (x, y) = sin(kπx) sin(lπy),

with k, l = 1, . . . , n− 1, for (n− 1)2 total basis functions. It’s possible to divide F (Ωh) into a direct

sum of at most 4-dimensional spaces. There are
(
n
2

)2 of these spaces, denoted by

Ek,lh = span{ϕk,lh , ϕ
n−k,n−l
h , ϕn−k,lh , ϕk,n−lh },

with k, l = 1, . . . , n2 . The dimension is lower than 4 when k or l or both are equal to n/2. Elsewhere

it is proved that each of these subspaces is invariant under K2h
h . We can now take a vector x

represented in the Fourier basis,

x =
n−1∑
k,l=1

ck,lϕ
k,l
h ,

where ck,l are the Fourier coefficients, and write it in terms of the invariant subspaces Ek,lh [73]:

x =

n/2∑
k,l=1

4∑
i=1

cik,lE
k,l
i ,

where Ek,li is the ith vector in Ek,l and cik,l is the coefficient for that vector. Applying K2h
h , we get

K2h
h x =

n/2∑
k,l=1

K2h
h

4∑
i=1

cik,lE
k,l
i

=

n/2∑
k,l=1

4∑
i=1

dik,lE
k,l
i ,

where the dik,l, i = 1, . . . , 4 for a given k and l can be written as a linear combination of the cik,l. If

we write K2h
h in the Fourier basis and call it K̃, it will be a block matrix of 4×4 blocks. Additionally,
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the red-black Gauss-Seidel relaxations Sν1h and Sν2h leave the same invariant subspaces, so the matrix

M2h
h is orthogonally equivalent to a matrix M̃ of 4 × 4 blocks [73]. More specifically, it can be

written as M̃ = UM2h
h U−1, where U is a unitary matrix. Calling the blocks M̂(k, l), the two-grid

convergence factor can be written as [73]

ρF = ρ(M̃) = max
16k,l6n

2

ρ(M̂(k, l)).

That is, the convergence factors can be computed per block, with the worst determining the overall

convergence factor.

Multgrid preconditioned GMRES The multigrid cycle can be represented through the matrix

splitting [73]

Cuj + (A− C)uj−1 = f,

or more explicitly

uj = uj−1 + C−1(f −Auj−1).

Using this as a right-preconditioner

AM−1Mu = f,

where M−1 is the multigrid cycle, the problem is re-written as

AM−1y = f,

u = M−1y.

This leads to GMRES(m) finding a correction C(uj − uj−m) in the Krylov subspace Km =

span{rj−m, (AC−1)rj−m, . . . , (AC
−1)n−1rj−m}. Any element w in the affine subspace uj−m +

C−1Km(AC−1, rj−m) can be represented by [73]

w = uj−m + C−1(α1rj−m + α2AC
−1 + . . .+ αm(AC−1)m−1rj−m),
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where α1, . . . , αm are scalars. Substituting the vector into the residual equation gives

rw = b−Aw

= rj−m −AC−1(α1rj−m + α2AC
−1 + . . .+ αm(AC−1)m−1rj−m).

This leads to the representation [73]

rw = Pm(AC−1)rj−m,

where Pm = 1−
∑m

k=1 αkλ
k. In this case, rj satisfies the property [73]

‖rj‖2 = min
p∈P0

m

‖p(AC−1)rj−m‖.

An analysis with the spectrum of the iteration matrix gives the bound [73]

‖ri·m‖2 6 (1− α/β)m/2‖r(i−1)m‖2,

where α =
(
λmin

(
1
2(AC−1 + (AC−1)T )

))2 and β = λmax((AC−1)TAC−1).

4.4.3 Parallel full multigrid

A parallel multigrid preconditioner was developed by Ashby et. al. for use with conjugate

gradient (CG), specifically for groundwater flow problems of the form [74]

−∇ · (K∇u) = f,

called the multigrid conjugate gradient method (MGCG). When the multigrid component alone

from MGCG is used in other contexts, it’s simply referred to as PFMG [75].

4.4.4 Semicoarsening multigrid

The SMG method is a method designed for rectangular (at least in connectivity) discretizations of

general elliptic PDEs [76]. A highly scalable version of the method for distributed memory machines

was created for the subset of these problems of the form [77, 75]

−∇ · (K∇u)− qu = f
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This method is more robust than PFMG, but it’s slightly less efficient per V-cycle [72].
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CHAPTER 5

Kinetic Methods

In Chapter 4, we presented methods of preconditioning and Krylov subspace enrichment that

relied on the availability of approximate eigenvectors of the differential operator. In this chapter,

the focus is on obtaining these approximations by the use of methods from kinetic formulations of

the PDE. As will be seen in Chapter 6, where the concurrent schemes are presented, ideal methods

are ones that can be halted at an arbitrary point in the computation. Further, the methods will

need to be highly parallelizable, to allow for efficient GPU computation. The kinetic formulation

upon which these methods will be built is the Feynman-Kac formulation.

5.1 Feynman-Kac formulation

A link can be made between stochastic processes and second-order PDEs of the form in Equa-

tion (1.1). The link is made via the Feynman-Kac formula [78, 79], for which a special case is

given in Equation 5.2. The special case under consideration is the subset of problems that are

time-independent and have q(x) = 0, given by

d∑
i=1

αi(x)
∂u

∂xi
+

1

2

d∑
i,j=1

βij(x)
∂2u

∂xi∂xj
+ f(x) = 0. (5.1)

Furthermore, we consider the cases where the coefficients on the second order terms can be represented

as βij(x) =
∑d

k=1 σik(x)σjk(x). The solution to this class of equations can be written as [79]

u(x) = Ex

[∫ T

0
f(X(s))ds

]
+Ex[u(X(T ))], (5.2)

where the path X(t) is an Ito diffusion given by [79]

dX(t) = α(X(t))dt+ σ(X(t))dB(t), (5.3)
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terminating when it exits the domain at time T , and the expectations Ex are taken over sample

paths of this diffusion originating at X(0) = x.

5.1.1 Sample path integration

The Ito diffusions can be integrated in a number of ways. The simplest is the Euler-Maruyama

scheme, which is an analog of forward Euler, and reads [80]

Xn+1 = Xn + α(Xn)∆t+ σ(Xn)∆Bn, (5.4)

where ∆Bn =
√

∆tN (0, 1), with N (0, 1) a random variable drawn from a multivariate normal of

mean 0 and variance 1. This scheme is order 0.5 [80]. Alternative schemes are Milstein schemes

of order 1 [81, 82], and stochastic Runge-Kutta schemes of order 1 [83, 84], 1.5 [85] and 2 [86, 87].

However, the convergence in the number of samples is only of order 0.5, so using these schemes is

not worth the additional computation.

5.1.2 Adaptive time-stepping

In this work, there is a need to set timestep sizes to guarantee a particular probability of random

walks exiting a certain region. We start by calculating the expected displacement for a single step of

the Euler-Maruyama scheme. The displacement is given by

dX = Xn+1 −Xn

= α(Xn)∆t+ σ(Xn)
√

∆tN (0, 1).

We consider the 1D case where α(x) and σ(x) are constant, and use it to bound the cases of

non-constant coefficients.

Diffusion only Label the displacement from diffusion by dXσ = σ
√

∆tN (0, 1). The probability

that the displacement from diffusion is greater than some constant Dσ is

P (dXσ > Dσ) =
1

2
− 1

2

[
1 + erf

(
Dσ√

2σ
√

∆t

)]
,
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and the probability that the displacement from diffusion is less than some constant −Dσ is

P (dXσ < −Dσ) =
1

2
− 1

2

[
1 + erf

(
Dσ√

2σ
√

∆t

)]
,

to give

P (‖dXσ‖ ≤ Dσ) = erf

(
Dσ√

2σ
√

∆t

)
. (5.5)

From these, it follows that

∆σ(P ) = 2σ
√

∆terf−1(P )

is the displacement for which the probability of ‖dXσ‖ being less than ∆σ(P ) is P . For n steps,

Equation (5.5) becomes

P (‖dXσ‖ ≤ Dσ) = erf

(
Dσ√

2nσ
√

∆t

)
,

which gives

∆σ(P ) =
√

2nσ
√

∆terf−1(P ).

Now for a given number of steps n, we can now recover ∆t such that the walks remain with a domain

of width 2Dσ with probability P :

∆t =
1

2n

(
Dσ

σerf−1(P )

)2

. (5.6)

Diffusion and drift Now restoring the drift term, we label the constant displacement due to drift

as Dα = α∆t. The probability that the displacement is greater than some constant DR is

P (dX > DR) =
1

2
− 1

2

[
1 + erf

(
DR −Dα√

2σ
√

∆t

)]
,

and the probability that the displacement is less than some constant −DL is

P (dX < −DL) =
1

2
− 1

2

[
1 + erf

(
DL +Dα√

2σ
√

∆t

)]
,

to give

P (−DL ≤ dX ≤ DR) =
1

2

[
erf

(
DR −Dα√

2σ
√

∆t

)
+ erf

(
DL +Dα√

2σ
√

∆t

)]
.
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For n steps, this becomes,

P (−DL ≤ dX ≤ DR) =
1

2

[
erf

(
DR − nDα√

2nσ
√

∆t

)
+ erf

(
DL + nDα√

2nσ
√

∆t

)]
.

Simplifying for the case of a symmetric domain, this is

P (‖dX‖ ≤ D) =
1

2

[
erf

(
D − nDα√

2nσ
√

∆t

)
+ erf

(
D + nDα√

2nσ
√

∆t

)]
.

While ∆t cannot be solved for directly as in Equation (5.6), finding the roots of

F (∆t) = −P +
1

2

[
erf

(
D − nα∆t√

2nσ
√

∆t

)
+ erf

(
D + nα∆t√

2nσ
√

∆t

)]
(5.7)

numerically is trivial.

Non-constant coefficients For the case of non-constant coefficients, we simply bound the proba-

bility of the walks staying in the domain by:

P (‖dX‖ ≤ D) ≤ min
x

1

2

[
erf

(
D − nα(x)∆t√

2nσ(x)
√

∆t

)
+ erf

(
D + nα(x)∆t√

2nσ(x)
√

∆t

)]
.

5.2 Feynman-Kac formulation for principal eigenpair

An alternative to using the Feynman-Kac formulation directly for solving PDEs is to use it to

approximate the structure of differential operators. This approximate structure can then be used to

improve the convergence of deterministic solvers. The details of such approximations are examined

in this section, and their application to improving convergence are examined in Chapter 6.

Here, an approach by Lejay et al. [88] is summarized for the case of determining the the principal

eigenpair of the Laplacian on a domain through sampling of Ito diffusions. Extensions to multiple

eigenpairs and general semi-elliptic operators are presented in Subsections 5.3 and 5.4 respectively.

The principal eigenpair of the Laplacian can be approximated by stochastic processes that solve
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the Cauchy problem [88]. The Cauchy problem for u(x, t) is

∂u(x, t)

∂t
=

1

2
∇2u(x, t) in Ω ⊂ Rd, (5.8)

u(x, t) = 0 on ∂Ω, (5.9)

with u(x, 0) = u0(x). For this problem, the solution is given by [88]

u(x, t) = P(τxΩ > t), (5.10)

where τxΩ is the exit time from the domain Ω, of an Ito diffusion (Equation (5.3)) with zero drift

(a(Xt) = 0) starting at x.

Given some initial condition u0(x) for the Cauchy problem (Section 5.2), taking an eigenfunction

expansion of u(x, t) yields a solution that can be written in terms of the evolution of the decomposition

of the initial condition in the eigenfunctions of the Laplacian [89]:

u(x, t) = 〈ϕ∗1(x), u0〉 exp(λ1t)ϕ1(x) +R(x, t), (5.11)

where ϕ1(x) is the principal eigenfunction and R(x, t) = o(exp(λ1t)) contains the evolution the

components of u0(x) in the remaining eigenfunctions. Using this along with Equation (5.10) yields

the following approximation to the principal eigenvalue of 1
2∇

2u [88]:

λ1 = lim
t→∞

1

t
logP(τxΩ > t), (5.12)

with x taken as any x ∈ Ω. Furthermore, an estimate for the principal eigenfunction of the adjoint

(which in this case is just 1
2∆ itself) is given by [89]:

E
x[u0(Xt)|t < τxΩ ] =

E
x[u0(Xt); t < τxΩ ]

Ex[1; t < τxΩ ]

=
〈u0, ϕ

∗
1〉ϕ1(x) exp(λ1t) + o(exp(λ1t))

〈1, ϕ∗1〉ϕ1(x) exp(λ1t) + o(exp(λ1t))

w
〈u0, ϕ

∗
1〉

〈1, ϕ∗1〉
, (5.13)
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which gives that the density of Xt is
ϕ∗
1

〈1,ϕ∗
1〉

for large t [89].

Since only the large time behaviour is required, the authors instead consider estimating [89]

F (t)− F (T )

1− F (T )
= Px[τ < t|τ > T ], (5.14)

for some T , with t > T and the shorthand Px(τ < t) ≡ P(τxD < t). If the distribution πT of the

process XT is known, then the Markov property of the process can be exploited to write the exit

time in terms of walks whose positions are initialized at T with the known distribution πT :

Px[τ < t|τ > T ] = Pπ
T

[τ < t] =

∫
D
Py[τ < t]dπT (y). (5.15)

An estimator for πT itself is acquired using walks up to time T . This procedure can be applied to a

sequence of times T1 < . . . < Tk, where estimators π̂T1 , . . . , π̂Tk are generated and the walks that

inform π̂Ti+1 are seeded from π̂Ti . The algorithm is give in Algorithm 8[89]. The authors used no

more than 3 branching times in their numerical experiments. They propose a number of ways of

estimating λ1 from Equation (5.12). As long as t is large enough so that 1−F (t) w C exp((λ1− c)t),

λ1 can be estimated as [89]:

λ1 =
1

t1 − t0
log

(
F̂ (t1)

F̂ (t0)

)
, (5.16)

with t1 > t0 > t.

5.3 Multiple eigenpairs

This approach can be generalized to multiple ordered eigenpairs by exploiting the relative decay

rates for each of the eigenpairs.

5.3.1 Cascading scheme

With this mechanism in mind, a cascading scheme can be designed where the first k eigenfunctions

are recovered. First, we introduce a notation for expanding Equation (5.11):

u(x, t) = 〈ϕ∗1, u0〉 exp(λ1t)ϕ1 +R1(x, t),

Ri(x, t) = 〈ϕ∗i+1, u0〉 exp(λi+1t)ϕi+1 +Ri+1(x, t),
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Algorithm 8 Branching Monte-Carlo method for the principal eigenpair of the Laplacian
Initialize
Fix the branching times T0 = 0 < T1 < . . . < Tk
Pick the number of samples per branch, N
Pick the point from which the walks originate, x
Set π̂T0 = δx (i.e. the walks of the first branch start at x)

for i = 0, . . . , k − 1 do
Simulate N independent walks with starting points drawn from π̂Ti for a time Ti+1−Ti. Denote

the final positions by {X(j)}j=1,...,N . Particles reaching the boundary are absorbed (removed).
Let N(i) be the set of the indices of the walks that were not absorbed.
Set π̂Ti+1 = 1

|N(i)|
∑

j∈N(i) δX(j) .
end for

Finalize
Simulate N independent walks with starting points drawn from π̂Tk until they exit the domain.
Estimate λ1 from the exit time distribution. (Equation 5.12)
Estimate ϕ∗1 from the realizations {X(j)}j=1,...,N of the position of XTk . (Equation 5.13)

where Ri(x, t) = o(exp(λit)). Denote the approximation of the solution to the Cauchy problem at

time Ti as ū(x, Ti) = Ex[u0(Xt)|t < Ti]. We know that

ū(x, Ti) = 〈ϕ∗1, u0〉 exp(λ1Ti)ϕ1 + R̄1(x, Ti)

⇒ ϕ1 ≈ ū(x, Ti)

〈ϕ∗1, u0〉eλ1Ti
+O(e(λ2−λ1)Ti),

and we also have that

R̄i(x, t) = ū(x, t)−
i∑

j=1

〈ϕ∗j , u0〉 exp(λjt)ϕj = 〈ϕ∗i+1, u0〉 exp(λi+1t)ϕi+1 + R̄i+1(x, t)

⇒ ϕi+1 ≈ R̄i+1(x, t)

〈ϕ∗i+1, u0〉eλi+1t
+O(e(λi+2−λi+1)t),

Suppose now that we have approximations ū(x, Tj) for j = 1, . . . , k. For convenience, denote

R0 = 〈ϕ∗1, u0〉 exp(λ1t)ϕ1. Combining these equations we can write

ϕ1 ≈ ū(x, Tk)

〈ϕ∗1, u0〉eλ1Tk
+O(e(λ2−λ1)Ti),

ϕi+1 ≈ R̄i+1(x, Tk−i)

〈ϕ∗i+1, u0〉eλi+1Tk−i
+O(e(λi+2−λi+1)Tk−i),
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which recovers the eigenfunctions ϕ1, . . . , ϕk. The eigenvalues can then be recovered by writing

〈ϕ∗
i
, u(x, t)〉 = 〈ϕ∗i , u0〉 exp(λit)‖ϕi‖2,

and then using u(x, t) at two branching times to recover

〈ϕ∗i , u(x, T2)〉
〈ϕ∗i , u(x, T1)〉

= exp(λi(T2 − T1)),

⇒ λi = log

(
〈ϕ∗iu, (x, T2)〉
〈ϕ∗iu, (x, T1)〉

)
/(T2 − T1).

5.3.2 Dealing with degeneracy

Suppose that some eigenvalues are very poorly separated or are truly degenerate. For the purpose

of illustration, suppose that the principal eigenvalue is degenerate:

u(x, t) = exp(λ1t)(〈ϕ∗11, u0〉ϕ11 + 〈ϕ∗12, u0〉ϕ12) +R1(x, t), (5.17)

where ϕ11 and ϕ12 are linearly independent eigenfunctions that share the eigenvalue λ1. First, we

need to be able to detect that this is the case. Consider two initial conditions, u0 and v0, such that

(〈ϕ11, u0〉, 〈ϕ12, u0〉) and (〈ϕ11, v0〉, 〈ϕ12, v0〉) are linearly independent. Now, using the cascading

scheme with u0 as the initial condition, we’ll naively recover

ϕ1,u = (〈ϕ11, u0〉ϕ11 + 〈ϕ12, u0〉ϕ12)/ exp(λ1t), (5.18)

where ϕ1,u is the approximation calculated using u0 as the initial condition. If instead we use v0 as

the initial condition, we’ll recover

ϕ1,v = (〈ϕ11, v0〉ϕ11 + 〈ϕ12, v0〉ϕ12)/ exp(λ1t), (5.19)

where ϕ1,v is the approximation calculated using v0 as the initial condition. If ϕ1,u and ϕ1,v are not

linearly dependent, then the eigenvalue λ1 is degenerate. In this case, we can simply orthogonalize

ϕ1,u and ϕ1,v to recover ϕ11 and ϕ12 (or rather two functions that span the same subspace as ϕ11
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and ϕ12):

ϕ11 = ϕ1,u,

ϕ12 = ϕ1,v − 〈ϕ1,v, ϕ11〉ϕ11,

where ϕ1,u and ϕ1,v have been normalized beforehand. For numerical purposes, we can say that ϕ1,u

and ϕ1,v are orthogonal if

|〈ϕ1,u, ϕ1,v〉| < εD, (5.20)

where εD that sets the tolerance, with εD = 0 recovering the strict definition of orthogonality.

5.3.3 Restarted scheme with dynamic branch time choice

In order for the scheme above to be effective, it is necessary to choose the branch times very

carefully so that succesive eigenfunctions can be well separated by their differing decay rates, yet

not have been completely dominated by the slower decaying eigenpairs. It’s impossible to optimally

determine this in advance, and if we could then we’d effectively have a very good sense of the

eigenvalues to begin with.

However, these differences can be assessed dynamically, and this section describes a scheme that

does so at the small additional cost of restarting the walks after each additional eigenpair recovery.

The idea is that once an eigenpair has been recovered, the solution history can be examined to

determine when last there were not insignificant components in directions other than the currently-

known dominant ones. This time is then set as the end time for the determination of the next

eigenpair. If the time is set much later than this then the contribution from this eigenpair will be

lost and if it is set much earlier than this, it will not be distinctly separated from the next smallest

eigenpair.

First, we need to define what we mean by significant components. We’ll say that significant

components remain after eigenpair k if

∥∥∥∥∥
k∑
i=1

〈ϕ∗i , ū(x, t)〉

∥∥∥∥∥ /‖ū(x, t)‖ < 1− ε, (5.21)

where ε is a small parameter that defines what proportion of the solution must be in directions

orthogonal to the first k eigenfunctions. We must prescribe how many branching times are taken
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for each eigenfunction. Call this parameter NB. Finally, we must define a criterion for ending the

determination of the first eigenpair, since there will be no reference time to work with. We choose to

end the computation of the first eigenpair when

‖λ(i)
1 − λ

(i−1)
1 ‖/‖λ(i)

1 ‖ < δ, (5.22)

where λ(i)
1 is the approximation to the first eigenvalue at branch i, and δ determines the tolerance for

determining that the leading eigenvalue has converged. The algorithm is presented in Algorithm 9.

Here u(i)
0 denotes the initial condition used for determining the ith eigenpair and T (i)

j denotes the

jth branch time for determining eigenpair i. The scheme is illustrated in Figure 5.1.

Algorithm 9 Restarted cascading scheme for eigenpairs of the Laplacian
Input: u0

Output: ϕ0, ϕ1, ...
Initialize
Choose ε, δ and NB.

First eigenpair
Choose some branch spacing ∆T .
for i = 1, . . . . do

Step to branch time Ti = i∆T .
Estimate λ(i)

1 and check if it satisfies Equation 5.22. If yes, continue to the remaining eigenpairs.
end for

Remaining eigenpairs
for i = 2, . . . do

for j = NB, NB − 1, . . . , 1 do
Check if Equation (5.21) is satisfied at branch time T (i−1)

j of the previous eigenpair

computation. If yes, set the maximum time for the current eigenpair computation to T (i)
NB

= T
(i−1)
j

and continue to the current eigenpair computation.
end for
Set the initial condition u(i)

0 = u0 −
∑i−1

j=1〈ϕ∗j , u0〉ϕj .
Take NB steps to branch time T (i)

NB
. Estimate ϕi and λi.

end for

Choosing end times from eigenvalues If we have another source of approximations to the

eigenvalues of the system, we can choose the branch times directly based on preserving a certain

fraction of an eigenvector. That is, if the remaining fraction for the eigenvector ϕi is wi = exp(−λiti)
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Figure 5.1: The restarted cascading scheme
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we invert this to get the end time to recover that fraction of the ith eigenvector:

ti = − log(wi)

λi
(5.23)

5.4 Generalization

The approach in Section 5.2 can be applied to any differential operator of the kind described in

Equation 5.1. The following is a presentation of the approach developed in [89] for this purpose.

In this case, the operator is no longer self-adjoint, and the eigenvalues are no longer strictly real.

However, under certain regularity assumptions, there is a real eigenvalue λ1 such that the real parts

of all other eigenvalues are larger in magnitude. This allows us to recover the principal eigenpair in

the same manner as in Section 5.2. The time dependent problem is examined first, given by

∂u(x, t)

∂t
=

d∑
i=1

αi(x)
∂u(x, t)

∂xi
+

1

2

d∑
i,j=1

βij(x)
∂2u(x, t)

∂xi∂xj
+ q(x)u(x, t) (5.24)

with u(x, 0) = u0(x) and βij(x) =
∑d

k=1 σik(x)σjk(x). If we call the operator

L =

d∑
i=1

αi(x)
∂

∂xi
+

1

2

d∑
i,j=1

βij(x)
∂2

∂xi∂xj
, (5.25)

then the adjoint of the operator is

L∗ = −
d∑
i=1

∂

∂xi
(αi(x)·) +

1

2

d∑
i,j=1

∂2

∂xi∂xj
(βij(x)·). (5.26)

The algorithms in Sections 5.2 and 5.3 compute the principal eigenfunction, ϕ∗1, of L∗. If we want

to compute the principal eigenfunction of L, we use the fact that L∗∗ = L, and rather apply the

algorithm to L∗ as the operator. Now, L∗ is not in an appropriate form, but it can be converted

into [89]

L∗ =

d∑
i=1

ᾱi(x)
∂

∂xi
+

1

2

d∑
i,j=1

βij(x)
∂2

∂xi∂xj
+ γ(x), (5.27)

where

ᾱi(x) =
1

2

d∑
j=1

∂βij
∂xi
− αi, (5.28)
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and

γ(x) =
1

2

d∑
i,j=1

∂2

∂xi∂xj
(βij(x))−

d∑
i=1

∂αi(x)

∂xi
. (5.29)

This is now a more general case, where the evolution equation for the adjoint is:

∂u(x, t)

∂t
=

d∑
i=1

ᾱi(x)
∂u(x, t)

∂xi
+

1

2

d∑
i,j=1

βij(x)
∂2u(x, t)

∂xi∂xj
+ γ(x)u(x, t). (5.30)

To begin with, we solve a modified equation [89]. Denote

L =
d∑
i=1

ᾱi(x)
∂

∂xi
+

1

2

d∑
i,j=1

βij(x)
∂2

∂xi∂xj
(5.31)

Suppose that γ is bounded above by a constant Γ. Now let v be the solution to

∂v

dt
= Lv + γv − Γv,

v(0,x) = v0,

with a (zero) Dirichlet boundary condition on the cylinder R+ × ∂D, that is, having zero Dirichlet

boundary conditions over all time t > 0. The solution v can be represented by the Feynman-Kac

formula:

v(t, x) = Ex

[
v0(Xt) exp

(∫ t

0
γ(Xs) ds−Γt

)
; t < τ

]
, (5.32)

where τ is the exit time from the domain, and X is the process generated by L. That is, the process

is governed by

dX(t) = ᾱ(X(t))dt+ σ(X(t))dB(t),

where, as usual, σ is given by

βij(x) =

d∑
k=1

σik(x)σjk(x). (5.33)

This can also be written as [89]

v(t, x) = Ex

[
v0(Xt);

∫ t

0
γ(Xs) ds−Γt > ζ and t < τ

]
, (5.34)
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where ζ is an exponential random variable with parameter 1. That is, we first sample ζ, then run the

diffusion until either inequality is violated, and stop there. Now, returning to the decay arguments

from before, we know that

v(t, x) w exp(λ∗1)〈v0, ψ
∗
1〉ψ∗1(x), (5.35)

when t is large. We also know that ψ∗1 = ϕ1, and λ∗1 = λ1 − Γ. This can now be plugged into the

formulations in Sections 5.2 and 5.3.

5.5 Implementation

When implementing these schemes, the vast majority of the work comes in propagating the Ito

Diffusions. Here we define a subroutine that carries out Ito diffusions in 2D of an initial condition

u(0), given Ito coefficients σ and α over the whole domain, a diffusion time T , a timestep ∆t

and a number of samples nsamples. This basic subroutine is labeled ItoDiffuse, and is given in

Algorithm 10. A naive implementation of this subroutine on GPUs is relatively straightforward,

but not optimal. In the following subsections, we describe modifications to this approach and

implementation specifics that drastically improve its efficiency, based on the considerations described

in Chapter 2.

5.5.1 Pseudorandom number generator

In choosing a psuedorandom number generator to generate the samples of N (0, 1), we need to

evaluate it based on the following properties, in order of decreasing importance:

1. The correlation between successive numbers

2. The memory footprint for the state of the generator

3. The number of FLOPs per iteration

Having a low correlation between successive numbers is a basic requirement for any good pseudoran-

dom number generator. Having a high memory footprint has huge consequences for performance,

as we need to keep the number of registers per thread as low as possible. The number of FLOPs

per iteration is less important, as the performance is generally constrained by memory operations.

However, with very careful management of memory, it may again be relevant. An ideal candidate

that satisfies all three criteria is the Philox [90] counter-based PRNG, which has been demonstrated

to be highly efficient on GPUs for applications as varied as lattice QCD [91] and genetic algorithms
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Algorithm 10 ItoDiffuse

Input: u(0),σ,α,T,∆t,nsamples

Output: u(T )

mx is the number of grid points in the x dimension
my is the number of grid points in the y dimension
u(T ) = 0
for i = 0, ...,mx− 1 do

for j = 0, ...,my − 1 do
for k = 0, ..., nsamples − 1 do
x(0) = xij

u(0) = u
(0)
ij

t = 0
while t < T do
x = x+α(x)∆t+ σ(x)

√
∆tN (0, 1)

t = t+ ∆t
if x /∈ Ω then

Break
end if

end while
if x ∈ Ω then

Determine ix, iy for the nearest grid point xix,iy to x
u

(T )
ix,iy = u(0)/nsamples

end if
end for

end for
end for
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[92]. In this work we use the Philox4x32-10 variant.

5.5.2 Memory management

A potential bottleneck in the code is the reading of the coefficients and source terms from global

GPU memory to local thread memory. This is mitigated with a system in which coefficients from

global memory are loaded into shared block memory in a radius around the points from which walks

are emanating. Given the size of this block, an appropriate timestep size and/or number of timesteps

is chosen for the walks to remain in the region, using the approach described in Section 5.1.2.

Assigning threads to blocks The first step is to set the main block dimensions, bx × by, which

are the dimensions of a standard block in the interior. These are chosen to be as close to square as

possible, while satisfying bx × by = nthreads. The second step is to decompose the domain into blocks

of this size, with smaller blocks for edge and corner regions if necessary. A method for achieving

these steps is presented in Algorithm 11, and the result of the method method is illustrated in

Figure 5.2 for a domain with 11× 9 interior nodes and nthreads = 32.

Algorithm 11 Block decomposition for Ito Diffusions
Input: nthreads, mx, my
Set block size
bx = d√nthreadse is the block size in the x dimension
while nthreads mod bx 6= 0 do

bx = bx + 1
end while

Block decomposition
for jmin = 0, by, 2by, ... do

jmax = min(jmin + by − 1,my − 1)
for imin = 0, bx, 2bx, ... do

imax = min(imin + bx − 1,mx− 1)
Add a new block with extents [imin, imax]× [jmin, jmax].

end for
end for

Allocating shared memory to blocks With threads assigned to blocks, the next task is to

load coefficients and source terms into shared memory around these blocks. Suppose that we have

sufficient shared memory to load these variables for nshared grid points into a block of shared memory

of dimension sx × sy. We simply take the thread block dimensions computed by Algorithm 11,
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Figure 5.2: The block assignment scheme
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and extend them until we run out of shared memory. This process is given in Algorithm 12. This

approach applied to block 2 in Figure 5.2, with nshared = 85, is shown in Figure 5.3.

Algorithm 12 Shared memory allocations for Ito Diffusions
Input: imin, imax, jmin, jmax, mx, my
Initialize shared block dimensions to thread block dimensions
kmin = imin

kmax = imax

lmin = jmin

lmax = jmax

Extend shared block dimensions
ns = (kmax − kmin + 1)× (lmax − lmin + 1)
while ns ≤ nshared do

Decrement/Increment the next one of kmin, kmax, lmin, lmax

ns = (kmax − kmin + 1)× (lmax − lmin + 1)
end while

Copying coefficients from global to shared memory When copying coefficients from global

memory to shared memory, care needs to be taken to avoid bank conflicts (see 2.2.1) when reading.

This is achieved by having thread n read into the shared memory indices given by

Ishared = {n, n+ nthreads, n+ 2nthreads, ..., n+ knthreads, } (5.36)

where k is the total number of reads done by the thread. With 32 banks, this gives the bank indices

that the thread reads from as

Ibank = {n mod 32, n+ nthreads mod 32, n+ 2nthreads mod 32, ..., n+ knthreads mod 32}, (5.37)

Since nthreads should be a factor of 32, this simplifies to:

Ibank = {n mod 32, ..., n mod 32}. (5.38)

This guarantees that no successive 32 threads will have bank conflicts.
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Figure 5.3: The shared memory assignment scheme. Blue: dimensions of the thread block. Red:
dimensions of the shared memory.
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Figure 5.4: The scheme for reading coefficients from global memory to shared memory
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5.6 Multiscale Random Walks

For the cascading scheme we initially wish to simulate the long-time evolution of the Cauchy

problem. If we use a small timestep and the full resolution of the coefficients in the domain, this first

simulation can possibly take a very long time. Since our aim is to recover the lowest frequency modes

of the operator first, a sensible step in mitigating the long simulation time is to initially propagate

the random walks on a coarser grid, with a larger time-step, before taking smaller timesteps on

successively finer grids. This approach is inspired by multigrid, so we use similar nomenclature. We

label the quantities on the finest grid by uh,σh,αh, T h,∆th, and the quantities on the ith coarsened

grid by u2ih,σ2ih,α2ih, T 2ih,∆t2
ih. The total number of grids, including the finest one, is labeled

as L. The restriction or prolongation operations that transfer variables from one grid to another are

labeled as Inhmh, where mh is the refinement level being transferred from, and nh is the refinement

level being transferred to. The modification of the random walks to fit this multiscale approach is

presented in Algorithm 13.

Algorithm 13 Multiscale Ito Diffusion

Choose a decomposition T =
∑L−1

i=0 T
2ih.

Set timesteps ∆th, · · · ,∆t2ih.
for i=0,..,L− 2 do

m = 2i, n = 2i+1

σnh = Inhmhσ
mh

αnh = Inhmhα
mh

end for
u2L−1h

0 =
(∏L−2

i=0 I
2i+1h
2ih

)
uh0

for i=L− 1, L− 2, ..., 0 do
m = 2i, n = 2i−1

umh = ItoDiffuse(umh0 , σmh, αmh, Tmh, ∆tmh)
unh0 = Inhmhu

mh

end for

5.6.1 Restriction and prolongation in 2D

The restriction operation is a nearest neighbor averaging defined by

vi,j =
1

8
(4u2i,2j + u2i−1,2j + u2i+1,2j + u2i,2j−1 + u2i,2j+1), (5.39)
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where v is the vector of averaged values, with i = 0, . . . , m2 − 1 and j = 0, . . . , n2 − 1. The averaging

matrix then has the non-zero entries

CH,I =
1

2
,

CH,I2i−1 =
1

8
,

CH,I2i+1 =
1

8
,

CH,I2j−1 =
1

8
,

CH,I2j+1 =
1

8
,

where now the definition for the relabeled index H is Hij = i+ m
2 j, where the indices are i and j if

omitted. The matrix now has the following structure:

C2h
h =

1

8


4 1 0 · · · 0 1 0 . . . 0 1 0 . . . 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 . (5.40)

The prolongation operation is a linear interpolation defined by

u2i,2j = vi,j ,

u2i+1,2j =
1

2
(vi,j + vi+1,j),

u2i,2j+1 =
1

2
(vi,j + vi,j+1),

u2i+1,2i+j =
1

4
(vi,j + vi+1,j + vi,j+1 + vi+1,j+1).
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The interpolation matrix then has the non-zero entries

CI,H = 1,

CIi−1,H =
1

2
,

CIi+1,H =
1

2
,

CIj−1,H =
1

2
,

CIj+1,H =
1

2
,

CIi−1,j−1,H =
1

4
,

CIi+1,j−1,H =
1

4
,

CIi−1,j+1,H =
1

4
,

CIi+1,j+1,H =
1

4
.

The matrix now has the following structure:

Ch2h =
1

4



4 0
. . . . . . . . . . . . . . . . . . . . . . . .

2 2
. . . . . . . . . . . . . . . . . . . . . . . .

0 4 0
. . . . . . . . . . . . . . . . . . . . .

0 2 2
. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . 2 0 . . . . . . 0 2 0
. . .

. . . . . . 1 1 0 . . . 0 1 1
. . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



. (5.41)

5.7 Results

In this section we present results for the restarted cascading eigensolver (Algorithm 9) in 2D. The

operator whose eigenvectors are being solved for arises from the 2D case of the general inhomogeneous
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diffusion problem Equation (1.3), given by:

−∇ · (K(x)∇u(x)) = f(x) in Ω ⊂ R2, (5.42)

u(x) = g(x) on ΓD,

K(x)∇u(x) · n = h(x) on ΓN ,

ΓD ∪ ΓN = ∂Ω,

ΓD ∩ ΓN = ∅,

In the notation of the Feynman Kac formulation (see Equation (5.1)), this corresponds to

βij(x) = 2δijK(x)

αi =
∂K

∂xi

q(x) = 0.

In the following sections, the method is applied on the domain Ω = [0, 1]× [0, 1], and the effect of

various parameter choices is investigated. In Sections 5.7.1-5.7.4, the problem is defined by

K(x) = 1

f(x) = 1

g(x) = x

ΓD = ∂Ω, (5.43)

and the method is applied to the domain discretized with 256× 256 cells. For all of the comparisons,

the initial condition for the cascading scheme is given by the residual from a concurrently running

linear solver, as this is how the eigensolver is used in the hybrid method. In Section 5.7.5, the

method is applied to a moderately complex domain.

5.7.1 Decay cutoff times

In this section we investigate the effect of the fraction of eigenvector decay at which the method

restarts. This is the parameter ε in Equation (5.21). If ε is set too small, then only the very slowest
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decaying eigenvectors remain, and information about the remainder of the spectrum is lost, as shown

in Figure 5.5 for ε = 0.01. On the other hand, if ε is too large, the highest frequency eigenvectors do

not decay quickly enough, and no information is gathered about the spectrum at all, as illustrated

in Figure 5.6. If ε is in a moderate range, of approximately 0.3− 0.7, the eigenvectors are recovered

by ascending eigenvalue magnitude in the low end of the spectrum. This is illustrated in Figure 5.7.

5.7.2 Timestep size

In this section we investigate the effect of the timestep on the eigenvectors computed by the

method. The timestep is not set directly in the method, but is rather determined by the number of

desired substeps within in a shared memory block, and the allowed probability of random walks exiting

that shared memory block before completing the full duration of the given walk (see Section 5.1.2).

We fix the number of substeps at 4, and vary the exit probability, which we label p. If p is too

high, walks exit their shared memory region too early, and are excluded from the full Feynman-Kac

evolution. This leads to clear aliasing of the regions, as shown for p = 0.5 in Figure 5.8 and for

p = 0.1 in Figure 5.9. This effect disappears or is negligible for sufficiently small p, as shown for

p = 0.0001 in Figure 5.10.

5.7.3 Number of samples

In this section we investigate the effect of the number of samples taken on the eigenvectors

computed by the method. As expected, increasing the number of samples reduces the noise in the

eigenvectors, as shown for 4 samples in Figure 5.11, 16 samples in Figure 5.12, and 128 samples in

Figure 5.13.

5.7.4 Filtering

An alternative (or supplement) to additional sampling is filtering to reduce high frequency noise.

The effect of a nearest neighbor averaging filter is shown for 1 iteration in Figure 5.14, 4 iterations in

Figure 5.15, and 16 iterations in Figure 5.16. It’s possible for too many filtering iterations to wash

out useful information however, which is shown to slow convergence when the eigenvectors are used

in a deflation preconditioner (Section 6.4.1).

5.7.5 Complex domains

It is also possible to implement this approach on complex domains. Here we show an im-

plementation on a moderately complex domain based on the The University of North Carolina

(UNC) logo (Figure 1.1). This domain is particularly challenging for this approach, as the near
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Figure 5.5: Eigenvectors from the restarted cascading eigensolver, with decay fraction ε = 0.01
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Figure 5.6: Eigenvectors from the restarted cascading eigensolver, with decay fraction ε = 0.99
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Figure 5.7: Eigenvectors from the restarted cascading eigensolver, with decay fraction ε = 0.4
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Figure 5.8: Eigenvectors from the restarted cascading eigensolver, with exit probability p = 0.5
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Figure 5.9: Eigenvectors from the restarted cascading eigensolver, with exit probability p = 0.1
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Figure 5.10: Eigenvectors from the restarted cascading eigensolver, with exit probability p = 0.0001
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Figure 5.11: Eigenvectors from the restarted cascading eigensolver, with 4 samples

64



Figure 5.12: Eigenvectors from the restarted cascading eigensolver, with 16 samples
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Figure 5.13: Eigenvectors from the restarted cascading eigensolver, with 128 samples
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Figure 5.14: Eigenvectors from the restarted cascading eigensolver, with 1 filter iteration
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Figure 5.15: Eigenvectors from the restarted cascading eigensolver, with 4 filter iterations
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Figure 5.16: Eigenvectors from the restarted cascading eigensolver, with 16 filter iterations
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Figure 5.17: The first two approximations to the eigenvectors of the Laplacian as determined by the
restarted cascading eigensolver.

symmetries create clusters of eigenvectors with nearly identical eigenvalues. The first two eigenvector

approximations computed by this approach are shown in Figure 5.17. For the remainder of this

work, the implementation is on a rectangular domain, for ease of implementation, analysis, and

comparison with external packages that take structured grid inputs, such as HYPRE.
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CHAPTER 6

Continuum-Kinetic Hybrid Methods

The eigenvector approximations calculated by the method in Chapter 5 can be used to improve

the convergence of standard iterative linear solvers as described in Chapter 4 applied to the continuum

formulations presented in Chapter 3. Two approaches are examined here. The first approach is

to use the approximate eigenvectors to enrich a Krylov subspace, and the second approach is to

use them to construct a deflation preconditioner. In both cases, the eigenvector computations are

carried out on a GPU, while the linear solver computations are carried out concurrently on a CPU.

The general concurrent computation framework is described Section 6.1, with the application of

that framework to Krylov subspace enrichment in Section 6.2, and to deflation preconditioning

in Section 6.3. This class of methods will be referred to as hybrid augmented GMRES, while the

enriched subspace method in particular will be referred to as hybrid enriched GMRES (HEGMRES),

and deflation preconditioner will be referred to as HDGMRES.

6.1 Concurrent computation

The general hybrid augmented GMRES method is designed so that there is no latency for either

the CPU or the GPU caused by waiting for the other device to complete its operations. The first

useful property of each method is that they’re both performing some sort of iterative process, which

is capable of taking new inputs at each new iteration. For the CPU, this is each restart of augmented

GMRES, where the new inputs are additional eigenvectors. For the GPU, this is each cycle of the

restarted eigensolver (Algorithm 9), where the new inputs are initial conditions for the cascading

scheme. The second useful property is that each algorithm can also proceed without these new

inputs at each iteration. With these two properties, it’s easy to design a concurrent scheme in which

each device:

1. At some point in each iteration, writes new inputs for the other device into common memory,

without interrupting it.
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Algorithm 14 Hybrid augmented GMRES - CPU Side
Input: A, b
r = b−Ax0

Launch GPU eigensolver (Algorithm 15) with initial condition u0 = r
for nrestart=1 to maxrestarts do

Perform Arnoldi iteration
Minimize and update approximate solution x
r = b−Ax0

Write new u0 = r to common memory
Set flag notifying GPU that a new u0 is available
if Algorithm 15 has returned new eigenvectors then

Use the eigenvectors ϕi, ϕi+1, ... to enrich the Krylov subspace, or to update the precondi-
tioner

end if
end for

Figure 6.1: Timeline for a concurrent hybrid augmented GMRES implementation. Blue indicates
the main computations for both timelines. Green on the GMRES timeline indicates writing of u0

from the CPU to common memory, while on the eigensolver timeline, it indicates the reading of
u0 from common memory to GPU memory. Red on the eigensolver timeline indicates writing of ϕi
from the GPU to common memory, while on the GMRES timeline, it indicates the reading of ϕi
from common memory to CPU memory. This particular timeline shows a computation in which the
eigensolver iterations take slightly longer than a single GMRES restart.

2. At another point in each iteration, checks for new inputs in the common memory, and uses

them if available.

A template concurrent computation method for implementing these steps is given in Algorithm 14

(CPU side) and Algorithm 15 (GPU side). A timeline for this general concurrent method is illustrated

in Figure 6.1. Extensions of the general method are given with results for HEGMRES in Section 6.2

and for HDGMRES in Section 6.3.
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Algorithm 15 Hybrid augmented GMRES - GPU Side
Input: u0

Output: ϕ0, ϕ1, ...
Receive u0 from CPU
while not converged do

if CPU has provided new u0 then
Subtract components in previously computed eigenvectors from u0

Begin cascading eigenvector scheme (Algorithm 9) with initial condition u0

else
Continue cascading eigenvector scheme

end if
if Algorithm 9 returns a new ϕi then

Write ϕi to common memory
Set flag notifying CPU that ϕi available

end if
if CPU set converged flag then

Break
end if

end while

6.2 Hybrid enriched GMRES

For hybrid enriched GMRES, the eigenvectors provided by the GPU eigensolver are used to

enrich the Krylov subspace, taking the place of the approximate eigenvectors in the method by

Morgan [65] (see Section 4.1.2). The extension of the template concurrent method (Algorithm 14) to

hybrid enriched GMRES is given in Algorithm 16, and the progression of the method is illustrated

in Figure 6.2.

6.2.1 Results in 1D

Based on 1D experiments, it was found that enriched GMRES would not be ideal for this

concurrent approach, as even when given the analytic eigenvectors directly, convergence isn’t

guaranteed to be much better than diagonal preconditioning. This is shown in Figure 6.3, and is

caused by previously eliminated eigenvectors being re-excited on subsequent restarts, as illustrated

in Figure 6.4. Since all of the work done on the GPU is to generate approximate eigenvectors, it

would be preferable to have that information explicitly retained once computed, which is why we

explore HDGMRES in much more depth.

6.3 Hybrid deflated GMRES

For hybrid deflated GMRES, the eigenvectors provided by the GPU eigensolver are used to

construct a deflation preconditioner, complementing or replacing the Schur decomposition vectors
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Algorithm 16 Hybrid enriched GMRES - CPU Side - continues to Algorithm17
Input: A,b
Output: x
Pick an arbitrary x0.
Set a convergence tolerance ε
Allocate common memory for CPU and GPU
Launch GPU eigensolver (Algorithm 15) with initial condition u0 = r = b−Ax0

for n = 0 to nmax − 1 do
Pick the dimension of the base Krylov subspace, m
Check common memory for k new eigenvectors φ1, ..., φk
l = m+ k

Initialization
r0 = b−Ax0

q1 = r0/‖r0‖
w1 = q1

for i=1 to k do
wm+i = yi

end for

Arnoldi Iteration
for j = 1 to m do

v = Aqj
qj+1 = v
for i=1 to j do

hij = q∗iqj+1

qj+1 = qj+1 − hijqi
end for
hj+1,j = ‖qj+1‖
qj+1 = qj+1/hj+1,j

if j < m then
wj+1 = qj+1

end if
end for
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Step 2 Step 5

Step 6 Step 11

Step 12 Step 14

Step 17 Step 20

Figure 6.2: Augmented GMRES timeline
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Figure 6.3: Enriched GMRES convergence
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Figure 6.4: Previously eliminated eigenvectors being re-excited by enriched GMRES
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Algorithm 17 Hybrid enriched GMRES - CPU Side - continued from Algorithm 16

Addition of approximate eigenvectors
for j = 1 to m+ 1 do

v = Awj

qj+1 = v
for i=1 to j do

hij = q∗iqj+1

qj+1 = qj+1 − hijqi
end for
hj+1,j = ‖qj+1‖
qj+1 = qj+1/hj+1,j

end for

Find approximate solution
β = ‖r0‖
Find d̂ ∈ Rl that minimizes ‖βe1 − H̃d‖
x̂ = x0 +W d̂

Restart
r = b−Ax̂
if ‖r‖ < ε then

Set converged flag for GPU
return x

else
x0 = x̂

end if
Write new u0 = r to common memory
Set flag notifying GPU that a new u0 is available

end for

in the method by Erhel [71] (see Section 4.3). The extension of the template concurrent method

(Algorithm 14) to hybrid deflated GMRES is given in Algorithm 18. A full parallel implementation

in 2D is described in Section 6.3.1, with results and scaling studies presented in Section 6.4.

6.3.1 Implementation in 2D

For a parallel implementation in 2D, we consider a cluster comprised of p computational nodes,

with q logical CPU cores per node, and r GPUs per node. For the purposes of this description, it’s

assumed that all of the processors have identical characteristics. We label the nodes as ni, with

i = 0, .., p− 1. We label the logical CPU cores an index cij , where j = 0, · · · , q − 1, and assign a

single Message Passing Interface (MPI) thread to each logical core. The “root” core is c0,0, and the

“root” thread is the one assigned to that core. We define an index set Ip that contains the global
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Algorithm 18 Hybrid deflated GMRES - CPU Side
Input: A,b,x0,ε,kprecond

Output: x
Allocate common memory for CPU and GPU
Launch GPU eigensolver (Algorithm 15) with initial condition u0 = r = b−Ax0

M−1 = I
for k=0 to kmax-1 do

Pick the dimension of the base Krylov subspace, m

Initialization
r0 = b−M−1Ax0

q1 = r0/‖r0‖

Arnoldi Iteration
Get M−1A = QmH̃mQ

∗
m

Find approximate solution
β = ‖r0‖
Find d̂ ∈ Rm that minimizes ‖βe1 − H̃d‖
x̂ = x0 +M−1Qd̂
r = b−M−1Ax̂
if ‖r‖ < ε then

Set converged flag for GPU
return x

else
x0 = x̂

end if
Write new u0 = r to common memory
Set flag notifying GPU that a new u0 is available

Update preconditioner
Check common memory for l new eigenvectors φ1, ..., φl
if k<kprecond then

Schur factorize H̃m = S̃BS̃∗

Order Schur decomposition by increasing eigenvalue
λm = max(σB)
S = QmS̃
for j=1 to l do

J = j + kl
uJ = φj
for i=1 to j + kl − 1 do

uJ = uJ − (u∗iuJ)ui
end for
uJ = uJ/‖uJ‖

end for
T = U∗AU
M−1 = I + U∗(T−1‖λm‖ − I(k+1)l)U

end if
end for
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index of a single thread per node, which is referred to as the primary thread on the node. This set

has m elements (one per node), which for many MPI implementations and cluster configurations

can be given simply by

Ip = {0, q − 1, 2q − 1, · · · , (p− 1)q − 1}.

For other configurations, we group threads within a node using a hash table based on the name

of the node, as returned by MPI_Get_processor_name. The first thread within the grouping on

node i then has its index placed in Ip, and is labeled ci,0. The GPUs themselves are labeled gik,

with k = 0, · · · , r − 1. The thread hierarchy is illustrated for the case of p = 3, q = 3, r = 2 in

Figure 6.5. Within this hierarchy, particular operations are carried out only by certain subsets of

these (co)processors. The operations carried out by all threads are:

• Sparse matrix-vector multiplications

• Dot products

• Norms

The operations carried out only by primary threads (with global indices in Ip) are:

• Communication with the GPU(s) on the node

• Gathering/scattering of GPU outputs/inputs between nodes

The operations carried out only by the root thread are:

• Averaging of GPU samples

• Dense linear algebra

The assignment of operations to certain threads is highlighted in an annotated version of the hybrid

deflated GMRES, given in Algorithm 19. Green operations are carried out by all threads, blue are

carried out only by primary threads, and red are carried out only by the root thread.

6.4 HDGMRES results in 2D

In the following section, in a similar manner to Section 5.7, the method is applied on the

domain Ω = [0, 1]× [0, 1], and the effect of various eigensolver parameter choices on the convergence

80



Algorithm 19 Hybrid deflated GMRES - CPU Side - Parallel annotations
Input: A,b,x0,ε,kprecond

Output: x
Allocate common memory for CPU and GPU
Launch GPU eigensolver with initial condition u0 = r = b−Ax0

M−1 = I
for k=0 to kmax-1 do

Pick the dimension of the base Krylov subspace, m

Initialization
r0 = b−M−1Ax0

q1 = r0/‖r0‖

Arnoldi Iteration
Get M−1A = QmH̃mQ

∗
m

Find approximate solution
β = ‖r0‖
Find d̂ ∈ Rm that minimizes ‖βe1 − H̃d‖
x̂ = x0 +M−1Qd̂
r = b−M−1Ax̂
if ‖r‖ < ε then

Set converged flag for GPU
return x

else
x0 = x̂

end if
Write new u0 = r to common memory
Set flag notifying GPU that a new u0 is available

Update preconditioner
Check common memory for l new eigenvectors φ1, ..., φl
if k<kprecond then

Schur factorize H̃m = S̃BS̃∗

Order Schur decomposition by increasing eigenvalue
λm = max(σB)

S = QmS̃
for j=1 to l do

J = j + kl
uJ = φj
for i=1 to j + kl − 1 do

uJ = uJ − (u∗iuJ)ui
end for
uJ = uJ/‖uJ‖

end for
T = U∗AU
M−1 = I + U∗(T−1‖λm‖ − I(k+1)l)U

end if
end for

81



Figure 6.5: Hierarchy of threads for a parallel implementation of HDGMRES with p = 3 nodes,
q = 3 threads per node, and r = 2 GPUs per node.

of HDGMRES is investigated. For all of these variations, the method is run on a single node

configuration with 12 CPU cores and 2 GPUs. As in Section 5.7, the problem is defined by

K(x) = 1

f(x) = 1

g(x) = x

ΓD = ∂Ω, (6.1)

and the method is applied to the domain discretized with 256× 256 cells. In Section 6.4.2, the effect

of different diffusivity distributions on the convergence of HDGMRES is investigated.

6.4.1 Effect of eigensolver parameters on convergence

Initial condition The parameter with the greatest significance is the choice of vector used for the

initial condition of the eigensolver. If a uniform vector u0 = 0 is used, the convergence is significantly

worse than if the initial condition is set to the current residual, u0 = r. This effect is shown in

Figure 6.6. This is due to the fact that given no additional information about the problem, the

eigensolver may compute eigenvectors that have insignificant components in the residual. However,

if the initial condition is simply set to the current residual, the eigensolver naturally recovers those

that do have components in the residual.

Decay ratio In Section 5.7, it was suggested that the decay fraction ε should be in the range

0.3-0.7 to sufficiently resolve a broad range of the spectrum. This is borne out in the effect of

the decay fraction on the convergence of HDGMRES, which is given in Figure 6.7. For very large
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Figure 6.6: Convergence of HDGMRES as a function of the initial condition. The convergence
is improved significantly by setting the initial condition to the current residual as opposed to an
arbitrary uniform vector.
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Figure 6.7: Convergence of HDGMRES as a function of the decay fraction ε

decay ratios, convergence is worse than base DGMRES, as no eigenvectors are resolved at all. For

very small decay ratios, only a few eigenvectors are resolved very well, while the remainder of the

eigenvectors decay entirely, slowing convergence.

Eigenvector resolution The remaining parameters do not affect which eigenvectors are recovered,

but how well they are resolved. The effect of the exit probability p on convergence is given in

Figure 6.8, showing that lower exit probabilities reduce the aliasing of shared memory regions,

improving the quality of the eigenvectors, and therefore improving convergence. The effect of the

number of samples on convergence is given in Figure 6.9, showing that a greater number of samples

reduces the noise in the eigenvectors, improving convergence. Finally, the effect of the number

of filtering iterations on convergence is given in Figure 6.10, showing that a moderate number of

filtering iterations reduces very high frequency noise in the eigenvectors, improving convergence, but
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Figure 6.8: Convergence of HDGMRES as a function of the exit probability p

that excessive filtering ultimately washes out high frequency eigenvectors, worsening convergence.

Comparison with existing solvers Finally, a comparison of DGMRES with the PETSc im-

plementation of GMRES and DGMRES, and the HYPRE implementation of the 2-step Jacobi

preconditioner is given in Figure 6.11.

6.4.2 Varying diffusivities

In this section we examine a number of cases with varying diffusivity distributions. Depending

on the context, we use either diffusivity or permeability to mean the quantity K(x).

Smooth variations The first case is a smoothly varying vertical diffusivity gradient, given by

K(x) = 1 + (κ− 1)y. The parameter κ controls the ratio of the largest diffusivity to the smallest.

Figure 6.12 shows a comparison of the convergence for 2-step Jacobi preconditioned GMRES,
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Figure 6.9: Convergence of HDGMRES as a function of the number of samples
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Figure 6.10: Convergence of HDGMRES as a function of the number of filtering iterations
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Figure 6.11: Convergence of HDGMRES compared with the PETSc implementation of GMRES and
DGMRES, and the HYPRE implementation of the 2-step Jacobi preconditioner
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κ = 8 κ = 32

κ = 256 κ = 512

Figure 6.12: Convergence of HDGMRES for a smoothly varying vertical diffusivity gradient, compared
with the PETSc implementation of DGMRES, and the HYPRE implementation of the 2-step Jacobi
preconditioner

DGMRES and HDGMRES. The convergence of HDGMRES is maintained throughout a range of

diffusivity ratios, while the parent method, DGMRES, begins to stagnate at around κ = 32. The

second case is a smoothly varying horizontal gradient, given by K(x) = 1 + (κ− 1)x. Figure 6.13

shows a comparison of the convergence for the three methods, with similar results to the vertical

gradient case.

Stratified variations For the second case, we use a problem similar to the porous media flow

problem in [93], where alternating layers of shale, sandstone and a combination of both are used.

Here we define a permeability that is stratified with three layers, defined by y < 0.25, 0.25 ≤ y ≤ 0.75
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κ = 8 κ = 32

κ = 256 κ = 512

Figure 6.13: Convergence of HDGMRES for a smoothly varying horizontal diffusivity gradient,
compared with the PETSc implementation of DGMRES, and the HYPRE implementation of the
2-step Jacobi preconditioner
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and y > 0.75. The permeabilities are 1,
√
κ and κ in these layers respectively. The convergence

of the methods for this vertical stratification is shown in Figure 6.14, and the convergence for a

horizontal stratification is shown in Figure 6.17. In both cases, as with in the smooth variation cases,

HDGMRES consistently outperforms DGMRES, which stagnates for κ > 32. However, HDGMRES

also stagnates at around κ = 512, which can be explained by the fact that diffusion now occurs

at vastly different timescales on this domain. The effect this has is that initial conditions for the

eigensolver rapidly diffuse out of the lower strata completely, leading to poor approximations of the

eigenvectors. The onset of this effect is shown for κ = 8 in Figure 6.15, and the full effect is shown

for κ = 256 in Figure 6.16

Low permeability barriers Instead of full strata of sharp variations, here we examine the effect

of many distinct regions of sharply different permeabilities. We take a problem from an application of

long term migration of CO2 in saline formations [94], in which the domain has uniform permeability,

with the exception of a number of randomly distributed shale barriers that are impermeable. The

barriers are oriented horizontally, and have fixed height and a variable width. We generate these

barriers with a Monte Carlo method until a given fraction of the domain is taken up by the shale.

Instead of having the barrier be fully impermeable, we set the barriers to have a permeability of

K = 1/κ, where κ is a large constant, and study the effect of varying κ. The convergence for a

domain composed of 10% impermeable barriers is given in Figure 6.19, with an example permeability

distribution shown in Figure 6.18. The convergence for a domain composed of 20% impermeable

barriers is given in Figure 6.21, with an example permeability distribution shown in Figure 6.20.

For both this problem, as with sharp stratification problem, DGMRES, HDGMRES have limited

effectiveness for very high diffusivity/permeability ratios. The key limitation in this case is the

fact that these methods aim to improve convergence through completely removing components of

the error in a few low frequency eigenvectors. However, in problems where there are significant

components of the error in the remainder of the spectrum, this approach is less effective. In these

cases, a more appropriate choice of method is one that quickly eliminates high frequency components

in the error. Multigrid methods (Section 4.4) for example are more effective in these situations, both

as standalone methods and as preconditioners. This is illustrated in Figure 6.22, where SMG is

applied as a preconditioner to GMRES for the same low permeability barrier problem, with better
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κ = 8 κ = 16

κ = 64 κ = 512

Figure 6.14: Convergence of HDGMRES for a vertically stratified diffusivity gradient, compared
with the PETSc implementation of GMRES and DGMRES, and the HYPRE implementation of the
2-step Jacobi preconditioner
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Figure 6.15: Eigenvectors from the cascading eigensolver for a vertically stratified diffusivity gradient,
with κ = 8.
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Figure 6.16: Eigenvectors from the cascading eigensolver for a vertically stratified diffusivity gradient,
with κ = 256.
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κ = 8 κ = 16

κ = 64 κ = 512

Figure 6.17: Convergence of HDGMRES for a horizontally stratified diffusivity gradient, compared
with the PETSc implementation of GMRES and DGMRES, and the HYPRE implementation of the
2-step Jacobi preconditioner

95



Figure 6.18: Permeability distribution for a domain composed of 10% low permeability barriers for
κ = 4096

convergence than any of the other methods.

6.5 HDGMRES parallel efficiency

Parallel efficiency studies were done for problems ranging in size from 1024×1024 to 17324×17324

on configurations of 1-27 nodes, each with 12 CPU cores and 2 GPUs. Two different method

configurations were used; one with large RAM requirements (Section 6.5.1), and one with lower

RAM requirements (Section 6.5.2).

6.5.1 Large memory configuration

In the first configuration, HDGMRES was run with a Krylov subspace of dimension 30, and

a deflation preconditioner of dimension at most 20. The run times this configuration are given in

Table 6.1, the weak scaling is given in Figure 6.23, and the strong scaling is given in Figure 6.24.
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κ = 2 κ = 32

κ = 512 κ = 4096

Figure 6.19: Convergence of HDGMRES for a domain with horizontally aligned low permeability
barriers composing 10% of the domain. This is compared with the PETSc implementation of GMRES
and DGMRES, and the HYPRE implementation of the 2-step Jacobi preconditioner

Number of nodes 1 2 4 8 16 27
1024× 1024 problem 29.78 15.28 9.41 7.57 9.56 21.38
2048× 2048 problem 165.77 78.95 33.55 20.98 20.78 26.47
4096× 4096 problem - 358.41 183.20 97.91 53.49 48.07
8192× 8192 problem - - 619.23 385.74 240.85 175.62
16384× 16384 problem - - - 1803.83 1099.35 763.67
17324× 17324 problem - - - 2467.68 1698.92 950.86

Table 6.1: Run times in seconds of HDGMRES with a Krylov subspace of dimension 30, and a
deflation preconditioner of dimension at most 20. Entries of “-” correspond to configurations where
the number of nodes was too small to fit the problem into memory.
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Figure 6.20: Permeability distribution for a domain composed of 20% low permeability barriers for
κ = 4096

98



κ = 2 κ = 16

κ = 1024 κ = 4096

Figure 6.21: Convergence of HDGMRES for a domain with horizontally aligned low permeability
barriers composing 20% of the domain. This is compared with the PETSc implementation of GMRES
and DGMRES, and the HYPRE implementation of the 2-step Jacobi preconditioner
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Figure 6.22: Convergence of HDGMRES for a domain with horizontally aligned low permeability bar-
riers composing 20% of the domain, with κ = 64. This is compared with the PETSc implementation
of DGMRES, and the HYPRE implementation of the 2-step Jacobi and SMG preconditioners
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Figure 6.23: Weak scaling of HDGMRES with a Krylov subspace of dimension 30, and a deflation
preconditioner of dimension at most 20
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Figure 6.24: Strong scaling of HDGMRES with a Krylov subspace of dimension 30, and a deflation
preconditioner of dimension at most 20
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Number of nodes 1 4 8 16 27
1024× 1024 problem 19.32 7.97 8.45 15.36 39.26
2048× 2048 problem 106.63 23.71 18.55 23.04 44.04
4096× 4096 problem 428.13 118.24 66.83 50.02 60.96
8192× 8192 problem 1513.97 413.64 243.46 148.07 132.60
16384× 16384 problem - 2345.86 1117.41 749.66 479.55
17324× 17324 problem - 3296.18 1528.77 904.50 819.77

Table 6.2: Run times in seconds of HDGMRES with a Krylov subspace of dimension 15, and a
deflation preconditioner of dimension at most 10. Entries of “-” correspond to configurations where
the number of nodes was too small to fit the problem into memory.

6.5.2 Small memory configuration

In the second configuration, HDGMRES was run with a Krylov subspace of dimension 15, and a

deflation preconditioner of dimension at most 10. This allowed for larger problem sizes to be run for

the 1, 2, and 4 node configurations. The run times for this configuration are given in Table 6.2, the

weak scaling is given in Figure 6.25, and the strong scaling is given in Figure 6.26.

6.5.3 Modifications for petascale implementations

The method has been shown to scale effectively up to 8-16 nodes, but with a dropoff in efficiency

for larger configurations. We identify the primary bottleneck in the method as being the step in

which eigenvectors are fetched from the GPUs and averaged. This can be seen clearly in comparing

the timelines for a run with 8 nodes (Figure 6.27), and one with 27 nodes (Figure 6.28). A potential

way to mitigate this effect is to distribute the work between the GPUs not by the number of samples,

but by a full domain decomposition. In order for such a scheme to be concurrent, it would be

necessary to transfer grid quantities between GPUs on the network without any involvement by the

CPUs. This could be facilitated by the Remote Direct Memory Access (RDMA) feature in Compute

Unified Device Architecture (CUDA) 5.0 and higher, but care would need to be taken to ensure that

the networked GPU to GPU transfers don’t significantly impede the networked CPU-CPU transfers

occurring concurrently.
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Figure 6.25: Weak scaling of HDGMRES with a Krylov subspace of dimension 15, and a deflation
preconditioner of dimension at most 10
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Figure 6.26: Strong scaling of HDGMRES with a Krylov subspace of dimension 15, and a deflation
preconditioner of dimension at most 10
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Figure 6.27: Timeline for HDGMRES with 8 nodes. The cost of gathering all 16 GPU eigenvectors
for this configuration is significant.
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Figure 6.28: Timeline for HDGMRES with 27 nodes. The cost of gathering all 54 GPU eigenvectors
for this configuration is the primary bottleneck.
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CHAPTER 7

Discussion and Conclusion

7.1 Discussion

In this work, we have developed a novel parallel hybrid linear solver for elliptic equations. This

development has two novel components. The first is a Feynman-Kac based eigensolver, which extends

prior work on a solver for the principal eigenvector to the case of arbitrarily many eigenvectors. The

eigensolver was further modified to facilitate efficient implementation on GPUs, by decomposing the

domain into shared memory regions to bound the range of memory accesses by the random walks in

the Feynman-Kac method. This efficient method was found to be effective at recovering eigenvectors

with small associated eigenvalues, but was not as effective for eigenvectors on the high end of the

spectrum. The second novel component is a concurrent computation scheme that combines the new

eigensolver with a deflation preconditioner for GMRES. This new scheme allows for information

to be traded between the CPU and GPU without a need for explicit synchronization between the

devices. These exchanges can also occur at arbitrarily irregular intervals, allowing for both devices

to be maximally utilized, regardless of their relative capabilities.

The full hybrid concurrent method, named HDGMRES, was found to outperform its parent

method, DGMRES, in a number of convergence studies for varied distributions of the elliptic

operator coefficients within the domain. With these coefficients interpreted as diffusivities, the

method performed well for smooth diffusivity variations with the ratio between the largest and

smallest diffusivities in the range κ = 1 − 512, which was representative of solutions with large

components in eigenvectors at the low end of the spectrum. For sharply stratified variations,

the method was found to stagnate for κ > 64, which was representative of solutions with large

components throughout the spectrum. For a similar case, with a random placement of low diffusivity

barriers with permeability 1/κ, the method was found to converge more slowly, but not stagnate

for increasing κ. The relative performance of these cases is attributed to the relative quality of the

eigenvectors recovered by the eigensolver, which was shown earlier to perform best on the lower end
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of the spectrum.

The method was also shown to exhibit a parallel efficiency of 80% in the low-medium terascale, as

demonstrated on a problem with 300 million variables, run on a configuration of 324 CPU cores and

54 GPUs. For the larger configurations, the most significant bottleneck in the method was identified

as the gather operation required to average the random walk samples across all of the GPUs.

7.2 Future Directions

The immediate future developments for the current method involve improving the performance of

the eigensolver on the higher end of the spectrum, and improving the parallelism to make the method

viable at the high terascale and low petascale. For improving the performance of the eigensolver,

one possible modification of the Feynman-Kac evolution algorithm is to create an analog of adaptive

mesh refinement, where coarser subdomains with larger timesteps are used for low diffusivity regions,

and finer subdomains with smaller timesteps are used for high diffusivity regions.

For the development of the method to larger computational scales, the two issues to be addressed

are domains that are too large to fit into a single GPU’s memory, and the bottleneck of gathering

samples from multiple GPUs. The most direct remedy both of these issues is to use a domain

decomposition technique on the GPUs, but this will come with its own challenges in managing

networked GPU to GPU transfers without slowing down those of the CPUs.

7.3 Conclusion

In the broader scope of highly parallel linear solvers on heterogeneous architectures, the method

presented in this work has demonstrated the viability of using a concurrently computed GPU

preconditioner to improve upon the CPU-only version of the same preconditioner. This approach

in general, where CPUs and GPUs are never explicitly synchronized, has the potential to be

highly effective for large scale heterogeneous computing, where the cost of networked transfers and

synchronization is high.
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