518 research outputs found

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    A Novel Fuzzy c -Means Clustering Algorithm Using Adaptive Norm

    Get PDF
    Abstract(#br)The fuzzy c -means (FCM) clustering algorithm is an unsupervised learning method that has been widely applied to cluster unlabeled data automatically instead of artificially, but is sensitive to noisy observations due to its inappropriate treatment of noise in the data. In this paper, a novel method considering noise intelligently based on the existing FCM approach, called adaptive-FCM and its extended version (adaptive-REFCM) in combination with relative entropy, are proposed. Adaptive-FCM, relying on an inventive integration of the adaptive norm, benefits from a robust overall structure. Adaptive-REFCM further integrates the properties of the relative entropy and normalized distance to preserve the global details of the dataset. Several experiments are carried out,..

    SPOCC: Scalable POssibilistic Classifier Combination -- toward robust aggregation of classifiers

    Full text link
    We investigate a problem in which each member of a group of learners is trained separately to solve the same classification task. Each learner has access to a training dataset (possibly with overlap across learners) but each trained classifier can be evaluated on a validation dataset. We propose a new approach to aggregate the learner predictions in the possibility theory framework. For each classifier prediction, we build a possibility distribution assessing how likely the classifier prediction is correct using frequentist probabilities estimated on the validation set. The possibility distributions are aggregated using an adaptive t-norm that can accommodate dependency and poor accuracy of the classifier predictions. We prove that the proposed approach possesses a number of desirable classifier combination robustness properties

    DeepFT: Fault-tolerant edge computing using a self-supervised deep surrogate model

    Get PDF
    The emergence of latency-critical AI applications has been supported by the evolution of the edge computing paradigm. However, edge solutions are typically resource-constrained, posing reliability challenges due to heightened contention for compute capacities and faulty application behavior in the presence of overload conditions. Although a large amount of generated log data can be mined for fault prediction, labeling this data for training is a manual process and thus a limiting factor for automation. Due to this, many companies resort to unsupervised fault-tolerance models. Yet, failure models of this kind can incur a loss of accuracy when they need to adapt to non-stationary workloads and diverse host characteristics. Thus, we propose a novel modeling approach, DeepFT, to proactively avoid system overloads and their adverse effects by optimizing the task scheduling decisions. DeepFT uses a deep-surrogate model to accurately predict and diagnose faults in the system and co-simulation based self-supervised learning to dynamically adapt the model in volatile settings. Experimentation on an edge cluster shows that DeepFT can outperform state-of-the-art methods in fault-detection and QoS metrics. Specifically, DeepFT gives the highest F1 scores for fault-detection, reducing service deadline violations by up to 37% while also improving response time by up to 9%

    Feature Space Modeling for Accurate and Efficient Learning From Non-Stationary Data

    Get PDF
    A non-stationary dataset is one whose statistical properties such as the mean, variance, correlation, probability distribution, etc. change over a specific interval of time. On the contrary, a stationary dataset is one whose statistical properties remain constant over time. Apart from the volatile statistical properties, non-stationary data poses other challenges such as time and memory management due to the limitation of computational resources mostly caused by the recent advancements in data collection technologies which generate a variety of data at an alarming pace and volume. Additionally, when the collected data is complex, managing data complexity, emerging from its dimensionality and heterogeneity, can pose another challenge for effective computational learning. The problem is to enable accurate and efficient learning from non-stationary data in a continuous fashion over time while facing and managing the critical challenges of time, memory, concept change, and complexity simultaneously. Feature space modeling is one of the most effective solutions to address this problem. For non-stationary data, selecting relevant features is even more critical than stationary data due to the reduction of feature dimension which can ensure the best use a computational resource to produce higher accuracy and efficiency by data mining algorithms. In this dissertation, we investigated a variety of feature space modeling techniques to improve the overall performance of data mining algorithms. In particular, we built Relief based feature sub selection method in combination with data complexity iv analysis to improve the classification performance using ovarian cancer image data collected in a non-stationary batch mode. We also collected time series health sensor data in a streaming environment and deployed feature space transformation using Singular Value Decomposition (SVD). This led to reduced dimensionality of feature space resulting in better accuracy and efficiency produced by Density Ration Estimation Method in identifying potential change points in data over time. We have also built an unsupervised feature space modeling using matrix factorization and Lasso Regression which was successfully deployed in conjugate with Relative Density Ratio Estimation to address the botnet attacks in a non-stationary environment. Relief based feature model improved 16% accuracy of Fuzzy Forest classifier. For change detection framework, we observed 9% improvement in accuracy for PCA feature transformation. Due to the unsupervised feature selection model, for 2% and 5% malicious traffic ratio, the proposed botnet detection framework exhibited average 20% better accuracy than One Class Support Vector Machine (OSVM) and average 25% better accuracy than Autoencoder. All these results successfully demonstrate the effectives of these feature space models. The fundamental theme that repeats itself in this dissertation is about modeling efficient feature space to improve both accuracy and efficiency of selected data mining models. Every contribution in this dissertation has been subsequently and successfully employed to capitalize on those advantages to solve real-world problems. Our work bridges the concepts from multiple disciplines ineffective and surprising ways, leading to new insights, new frameworks, and ultimately to a cross-production of diverse fields like mathematics, statistics, and data mining

    Overlapping Clusters and Support Vector Machines Based Interval Type-2 Fuzzy System for the Prediction of Peptide Binding Affinity

    Get PDF
    In the post-genome era, it is becoming more complex to process high dimensional, low-instance available, and nonlinear biological datasets. This paper aims to address these characteristics as they have adverse effects on the performance of predictive models in bioinformatics. In this paper, an interval type-2 Takagi Sugeno fuzzy predictive model is proposed in order to manage high-dimensionality and nonlinearity of such datasets which is the common feature in bioinformatics. A new clustering framework is proposed for this purpose to simplify antecedent operations for an interval type-2 fuzzy system. This new clustering framework is based on overlapping regions between the clusters. The cluster analysis of partitions and statistical information derived from them has identified the upper and lower membership functions forming the premise part. This is further enhanced by adapting the regression version of support vector machines in the consequent part. The proposed method is used in experiments to quantitatively predict affinities of peptide bindings to biomolecules. This case study imposes a challenge in post-genome studies and remains an open problem due to the complexity of the biological system, diversity of peptides, and curse of dimensionality of amino acid index representation characterizing the peptides. Utilizing four different peptide binding affinity datasets, the proposed method resulted in better generalization ability for all of them yielding an improved prediction accuracy of up to 58.2% on unseen peptides in comparison with the predictive methods presented in the literature. Source code of the algorithm is available at https://github.com/sekerbigdatalab

    An Interval-based Multiobjective Approach to Feature Subset Selection Using Joint Modeling of Objectives and Variables

    Get PDF
    This paper studies feature subset selection in classification using a multiobjective estimation of distribution algorithm. We consider six functions, namely area under ROC curve, sensitivity, specificity, precision, F1 measure and Brier score, for evaluation of feature subsets and as the objectives of the problem. One of the characteristics of these objective functions is the existence of noise in their values that should be appropriately handled during optimization. Our proposed algorithm consists of two major techniques which are specially designed for the feature subset selection problem. The first one is a solution ranking method based on interval values to handle the noise in the objectives of this problem. The second one is a model estimation method for learning a joint probabilistic model of objectives and variables which is used to generate new solutions and advance through the search space. To simplify model estimation, l1 regularized regression is used to select a subset of problem variables before model learning. The proposed algorithm is compared with a well-known ranking method for interval-valued objectives and a standard multiobjective genetic algorithm. Particularly, the effects of the two new techniques are experimentally investigated. The experimental results show that the proposed algorithm is able to obtain comparable or better performance on the tested datasets

    Face Centered Image Analysis Using Saliency and Deep Learning Based Techniques

    Get PDF
    Image analysis starts with the purpose of configuring vision machines that can perceive like human to intelligently infer general principles and sense the surrounding situations from imagery. This dissertation studies the face centered image analysis as the core problem in high level computer vision research and addresses the problem by tackling three challenging subjects: Are there anything interesting in the image? If there is, what is/are that/they? If there is a person presenting, who is he/she? What kind of expression he/she is performing? Can we know his/her age? Answering these problems results in the saliency-based object detection, deep learning structured objects categorization and recognition, human facial landmark detection and multitask biometrics. To implement object detection, a three-level saliency detection based on the self-similarity technique (SMAP) is firstly proposed in the work. The first level of SMAP accommodates statistical methods to generate proto-background patches, followed by the second level that implements local contrast computation based on image self-similarity characteristics. At last, the spatial color distribution constraint is considered to realize the saliency detection. The outcome of the algorithm is a full resolution image with highlighted saliency objects and well-defined edges. In object recognition, the Adaptive Deconvolution Network (ADN) is implemented to categorize the objects extracted from saliency detection. To improve the system performance, L1/2 norm regularized ADN has been proposed and tested in different applications. The results demonstrate the efficiency and significance of the new structure. To fully understand the facial biometrics related activity contained in the image, the low rank matrix decomposition is introduced to help locate the landmark points on the face images. The natural extension of this work is beneficial in human facial expression recognition and facial feature parsing research. To facilitate the understanding of the detected facial image, the automatic facial image analysis becomes essential. We present a novel deeply learnt tree-structured face representation to uniformly model the human face with different semantic meanings. We show that the proposed feature yields unified representation in multi-task facial biometrics and the multi-task learning framework is applicable to many other computer vision tasks

    Hardware Considerations for Signal Processing Systems: A Step Toward the Unconventional.

    Full text link
    As we progress into the future, signal processing algorithms are becoming more computationally intensive and power hungry while the desire for mobile products and low power devices is also increasing. An integrated ASIC solution is one of the primary ways chip developers can improve performance and add functionality while keeping the power budget low. This work discusses ASIC hardware for both conventional and unconventional signal processing systems, and how integration, error resilience, emerging devices, and new algorithms can be leveraged by signal processing systems to further improve performance and enable new applications. Specifically this work presents three case studies: 1) a conventional and highly parallel mix signal cross-correlator ASIC for a weather satellite performing real-time synthetic aperture imaging, 2) an unconventional native stochastic computing architecture enabled by memristors, and 3) two unconventional sparse neural network ASICs for feature extraction and object classification. As improvements from technology scaling alone slow down, and the demand for energy efficient mobile electronics increases, such optimization techniques at the device, circuit, and system level will become more critical to advance signal processing capabilities in the future.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/116685/1/knagphil_1.pd
    • …
    corecore