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Abstract

Image analysis starts with the purpose of configuring vision machines that can

perceive like human to intelligently infer general principles and sense the surrounding

situations from imagery. This dissertation studies the face centered image analysis

as the core problem in high level computer vision research and addresses the

problem by tackling three challenging subjects: Are there anything interesting in

the image? If there is, what is/are that/they? If there is a person presenting, who

is he/she? What kind of expression he/she is performing? Can we know his/her

age? Answering these problems results in the saliency-based object detection, deep

learning structured objects categorization and recognition, human facial landmark

detection and multitask biometrics.

To implement object detection, a three-level saliency detection based on the self-

similarity technique (SMAP) is firstly proposed in the work. The first level of SMAP

accommodates statistical methods to generate proto-background patches, followed

by the second level that implements local contrast computation based on image

self-similarity characteristics. At last, the spatial color distribution constraint is

considered to realize the saliency detection. The outcome of the algorithm is a full

resolution image with highlighted saliency objects and well-defined edges.

In object recognition, the Adaptive Deconvolution Network (ADN) is implemented

to categorize the objects extracted from saliency detection. To improve the system

performance, L1/2 norm regularized ADN has been proposed and tested in different

vi



applications. The results demonstrate the efficiency and significance of the new

structure.

To fully understand the facial biometrics related activity contained in the image,

the low rank matrix decomposition is introduced to help locate the landmark points

on the face images. The natural extension of this work is beneficial in human facial

expression recognition and facial feature parsing research.

To facilitate the understanding of the detected facial image, the automatic facial

image analysis becomes essential. We present a novel deeply learnt tree-structured

face representation to uniformly model the human face with different semantic

meanings. We show that the proposed feature yields unified representation in multi-

task facial biometrics and the multi-task learning framework is applicable to many

other computer vision tasks.
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Chapter 1

Introduction

Reasoning the surrounding environment and analyzing the situation from visual

input is not only a fundamental function of human vision system but also a long-

term striving goal of Artificial Intelligence and Computer Vision research. The

implementation of this ambitious goal would greatly enhance the development in

security surveillance and monitoring Thirde et al. (2006), robots visual navigation

and planning Newman et al. (2006), abnormal event awareness in large scale social

activity Thirde et al. (2006), computer-assisted medical image analysis for disease

diagnosis Mirota et al. (2009) and Internet image-based content search and acquisition

engine design Li et al. (2009). Each of these applications requires a complicated

reasoning in the image domain to distinguish the objects, background regions,

geometric positions, color distributions, lighting, 3D structure and their correlated

relationship. In the specific computer vision area, the image analysis is referred as

to name the scene and objects located in the image. However, this over-simplified

answer involves more challenges rather than a completed explanation. We are always

pursuing to reach a higher level which is reasoning more semantic properties and

structures from the image to enable the deep understanding of the objects, persons

and their identities, expression and potential activities.

1



It is obvious that image analysis has multiple level requirements. Taking human

vision generation processing as an example, in a short glance, human can rapidly

locate the salient things in the whole perceptive field. After the locating, the refine

process starts to recognize the attributes of the sensed objects and then estimate

the activity and situation associated with objects. The whole process involves

object detection, recognition and high level situation estimation. The straightforward

assumption to tackle the long-term goal in image analysis is to decompose the long-

term challenge into couple of highly correlated sub-tasks: object detection, recognition

and activity analysis. Because of the huge spaces that the information spanned, the

decomposition is quite reasonable to simplify the problem and meanwhile keeps it

focus on the essential key points to answer the questions: is there anything interesting

contained in the image? What are they? Who are they? And what are these people’s

current status and potential activities? The completed answers to these questions

spontaneously formulate the hierarchical procedure of human vision and neutron

system corporately processing the visual input and so forth implementing the entire

perceptive mechanism.

1.1 Saliency Based Object Detection

Human visual system has an incredible capability to implement the focus of attention

mechanism. This judgment capability enables the visual system to rapidly and

efficiently filter the important regions or objects out of the surrounding environment.

Related research Grossberg (1995); Treisman and Gelade (1980) reveals that

the behavior of the visual system is guided by both discriminant analysis and

stimulusdriven process. Generally speaking, the global discriminant analysis is related

to the human cognitive capability which is a learning process in memory and the

neuron system. Millions of special patterns are learned and accumulated from

personal experiences. Then classifiers formulated statistically are performed to locate

the salient object from its surroundings. Comparatively, the local stimulus-driven

2



process only asks for short-term, small region response on the image Cheng et al.

(2015). Thus, the local contrast becomes the essential factor that determines the

clear boundaries of salient objects Rutishauser et al. (2004).

In computer vision society, the concept of visual saliency originates from the

visual importance. The extracted saliency regions are valuable to assist various

image understanding tasks, including, for example, object detection, content-based

segmentation, image retargeting, and object recognition. However, without any

priorknowledge, accurately isolating the salient objects from complicated environment

still challenges the vision researchers.

In this work, we propose a novel saliency detection strategy, SMAP, which

combines both the discriminant method and the stimulus-driven approach to emulate

the human vision mechanism. In the proposed framework, the Gabor spectral residual

is firstly introduced to locate the proto-background region. Based on the similarity

measurement between the computing patch and background patches in the candidate

pool, the local contrast is computed to generate the raw saliency map. We also

incorporate the color distribution constraint to produce the full-resolution saliency

map. The proposed algorithm outperforms the state-of-the-art methods even in the

clutter environment where the background patches are full of texture information.

1.2 Object Recognition Via Deep Learning

Our visual world exists in a dedicated complexity. To understand scenes, the

computers or other intelligent machines have to classify or recognize a nature image

into different categories first. That is also the essential task for the human vision

system. To realize the recognition, the rich attributes of visual entries should be

uniquely encoded into reasonable representations. Although the visual scene is

continuous, to precisely entitle the image into functional and semantic group remains

a huge challenge in computer vision.

3



The main advances in object recognition were achieved thanks to the improvement

in object representation learning. The performance of recognition schemes is heavily

depended on the choice of features where the visual input applied. The manually

engineered representations combined with discriminatively trained models have been

among the best performing paradigms for related object recognition problems.

However, such feature engineering is labor-intensive and most of the times, is not

reliable to extract discriminative features for labeling the input.

In the recent years, the Restricted Boltzmann Machines (RBM) Hinton (2002) and

Convolutional Neutral Network (CNN) LeCun et al. (1998) have emerged as powerful

machine learning models. Adaptive Deconvolutional Network (ADN) Zeiler et al.

(2011) is one of these edge-cutting deeply structured network. ADN is a multi-layer

network which learns image representations that capture structure at all scales, from

low-level edges to high-level object parts, in an unsupervised manner. Specifically, at

each layer, the computing image/patch is decomposed into a linear combination of

candidate features with sparse constraint. The inter-layer connection is in the form

of max-pooling which responses the largest visual stimulus at a certain location. The

original input image is always reconstructed at each layer. In this way, there is no

information loss which exists in traditional Convolution Neutral Network, making the

ADN more promising in hierarchical feature learning, and meanwhile benefiting the

object recognition and categorization.

For ADN, despite the disentangling capability it has, we incorporate the L1/2 norm

regularization term instead of the original L1 norm penalty to enhance the capability

in feature learning. The proposed regularization forces the whole network to explore

more sparse representations of the data and generate the hierarchical features with

more discriminate information for object recognition.
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1.3 Facial Landmark Detection via Low-rank Ma-

trix Decomposition

To better understand the facial activity, we conduct facial feature parsing and

landmark detection to assist the better analysis.

In computer vision, facial feature parsing refers to the task that segmenting face

images into different facial feature components, e.g., eyes, nose and mouth, and

applying related information analysis. The study of facial parsing is an attractive area

due to its importance in multiple applications, including human identity recognition,

animation, demographic analysis Guo et al. (2013), facial image synthesis Amberg

et al. (2007) and face image sketching Wang and Tang (2009). All of these

applications ask for accurate segmentation and more requirements to the parsing

algorithm – robust to expression, pose and illumination variations. Most existing

works accomplish the task by localizing landmarks on the input face as the initial

points, and then refine them pixel-wisely by classification or regression till completely

segment the regions of interest out. As the prior knowledge, the template matching

model Liang et al. (2008) and graphic model Valstar et al. (2010) are applied to assist

the parsing process.

In this work, we address the parsing problem from a new perspective and focus

on facial feature detection from the face images instead of assigning label information

for each pixel. Compared to previous methods, this detection-based approach is more

efficient since it does not need to train the components descriptors piece-wisely. The

facial features are treated as an entire set and can be detected at once. Specifically,

our approach assumes a dataset of facial images with hand-labeled parsing map for

each individual face. We emphasize that the alignment of all faces is not necessary.

Clearly, the facial features contain discriminant shape, texture information, making

them salient on the face region compared to the skin background. The intuitive idea

to implement parsing is separating the salient components from the background. Our

algorithm employs low-rank matrix decomposition method Liu et al. (2013) which
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considers the skin background as the matrix spanning in low dimension subspace and

the facial features with their discriminant characteristics performed as sparse noise.

We also apply face detector to assist the face localization. In order to enhance the

matrix decomposition, we introduce a transformation matrix T to force the algorithm

learn the unique facial features.

1.4 Deep Tree-structured Face: A Unified Repre-

sentation For Multi-task Facial Biometrics

Automatic facial image analysis has received considerable research interests due to its

important role in computer vision and biometrics. As the key component, face feature

is usually conducted under largely controlled environment and learnt for specific tasks

which limit its discriminant capability in the unified representation. In this work, we

present a novel deeply learnt tree-structured face representation to uniformly model

the human face with different semantic meanings. The proposed feature is built

from unsupervisedly learnt feature set, hierarchically combined region-by-region to

generate a tree-structured representation. To enforce the semantic feature learning,

we recursively apply semi-supervised AutoEncoder to incorporate label information

which aims to disentangle the latent factors embedded in facial images. To validate

the effectiveness of the proposed facial representation, we design comprehensive

experiments based on FACES dataset which is considered as the most challenging one

in terms of multi-factor overlapped. We show that the proposed feature yield unified

representation in multi-task facial biometrics and the multi-task learning framework

is applicable to many other computer vision tasks.
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1.5 Contributions

The primary objective of the research is to provide a face centered image analysis

system which is strengthened by several advanced technologies in computer vision.

To approach this goal, the major contributions of this work can be summarized in

the listed details:

• The novel three-level saliency based object detection method SMAP is proposed.

Included in the methodology, the first level of SMAP accommodates statistical

methods to generate proto-background patches, followed by the second level

that implements local contrast computation based on image self-similarity

characteristics. At last, the spatial color distribution constraint is considered to

realize the saliency detection. The outcome of the algorithm is a full resolution

image with highlighted saliency objects and well-defined edges. Quantitative

evaluation based on a popular benchmark shows that the proposed approach

has higher detection accuracy and more consistent performance for various

categories of images;

• A revised Adaptive Deconvolutional Network (ADN) is studied as an approach

to implement the object recognition. To strengthen the capability of the original

deep network, L1/2 norm regularization term is applied layer wisely to explore

more discriminate features from images. Benefit from the new inference scheme

of ADN, we visualize features learnt from each layer, and validate their roles in

object recognition tasks. The hierarchical structure is evaluated based on the

most popular benchmark dataset;

• It is the first time that low-rank matrix decomposition is introduced to solve

the facial feature parsing problem. The proposed algorithm is detection-based

method which is the initial work in this area. With the parsing results,

we can easily extend the work to accomplish the facial landmark detection.
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The high parsing accuracy guarantees the detection results receive competitive

performance with the state-of-the-art;

• The unified deep face representation research is the first to propose the tree-

structured face representation and implement it with designed semi-supervised

AutoEncoder. It is proved to be effective in facial semantic learning. The

proposed architecture is the first attempt to bridge the multi-task learning and

deep learning to exploit latent feature learning for facial biometrics. It can be

extended to many other computer vision applications.

1.6 Outlines

The organization of the dissertation is list as follows:

In chapter 2, the literature review is provided to introduce the state-of-the-

art techniques in image analysis and facial biometrics included the salient object

detection, object recognition deep learning neural network, so as the low-rank matrix

decomposition theory. Chapter 3 explains the proposed salient object detection

based on self-similarity. Chapter 4 introduces the L1/2 norm regularized Adaptive

Deconvolutional Network as a novel approach for object recognition. As a case study,

facial expression recognition using ADN is studied in this part. Chapter 5 discusses

the further facial activity analysis in terms of facial feature parsing and landmark

detection. The further discussion about a unified face representation for multi-task

facial biometrics is in Chapter 6. The entire work is concluded in Chapter 7.
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Chapter 2

Literature Review

2.1 Review On Salient Region Detection

Finding and localizing an object or objects from 2-dimensional image is a fundamental

task in computer vision. Human localize a multitude of objects in their vision field

with little effort despite the position, type, color, contrast, size, perspectives and even

the translation, rotation of the objects. Indeed, humans can distinguish between

more than 30,000 visual categories, and can detect objects in the span of a few

hundred milliseconds. However, if we want to transfer the ability from human to the

vision machines, the detection task becomes crucial and challenged for many reasons.

Successful algorithms and systems should adopt the large range of uncertainties

included appearance changes, non-rigid transformations, scaling variations and object

obstructions. In other words, the universal model does not exist for the generic

detection problem.

One of the most common solutions for object detection/localization is to slide a

window across the image, and classify each such local window as target or background

locations. This approach has been successfully used to detect rigid objects such as

faces and cars and has even been applied to articulated objects such as pedestrians.

However, natural weakness of this algorithm exists in several aspects: the window
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size which is determined by object scaling is a hyper-parameter and different from

case by case. Without pre-knowledge about the detecting object, it is hardly to

choose the window size and trial it by random pick; another problem is that, the

classification operation which is involved to distinguish the windowed patch belonging

is a supervised process, which means for one category of objects, we should train a

specific model for it. It is not feasible to use the technique to detect multiple classes

of objects. The representative researches belonged to this approach include Dalal and

Triggs (2005), GIST Oliva and Torralba (2001) and Bag-of-Words Fei-Fei and Perona

(2005) in object detection.

With the unsupervised preliminary, recent studies about object detection shift

the focus to visual saliency. Visual saliency is the perceptual quality that makes a

pixel, patch, object or person stand out to its neighborhood and thus attract human

attention.

The study of the attention concept originates from human visual perception and

neuro-psychology research. Researchers follow the methodology in Physiology to

understand the eyes attention problem by analyzing the structure of human nervous

system and brain. Although the mechanism to explain the operation of attention

has not been completely understood, it shed light on computer vision groups that

modeling the visual system could provide a rapid and reliable visual saliency detection.

The pioneer work about attention theory was conducted by William James (2013),

where the key point proposed emphasized on the psychological response rather than

the physical aspect. Following this direction, Broadbent Broadbent (2013) established

the filtering theory of attention and Deutsch Deutsch and Deutsch (1963) proposed

the vision response selection principles. In 1960s, Hubel and Wiesels famous work

on cats vision research revealed the relationship between visual receptive fields and

cortex Hubel and Wiesel (1962). At the same time, Treisman Treisman and Gormican

(1988) proposed a theory which combines selection from early and late visual processes

into a comprehensive model, referred to as the Feature Integrated Theory (FIT).

The FIT model guided the biological attention research from theoretical reasoning
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into computational implementation. In 1985, Koch and Ullman proposed so-called

bottom-up saliency Koch and Ullman (1987), leading to the discovery of the

underlying mechanisms of neutral vision system, where the bio-inspired features were

used to highlight the saliency location. With the advanced technologies in biology,

recent works about attention explored deeper in the V1 and V4 areas of the optical

nerves Li (2002).

In par with the biological attention research, the other direction focuses on

the study of computational saliency models, where a number of models have been

constructed by adapting the FIT theory. Niebur and Koch were the first to realize

the computational saliency map Niebur and Koch (1998) in 1996. Itti and his group

refined Kochs work by generating a master saliency map considering various features

such as color, intensity, orientation, etc. Itti et al. (1998). Some later models added

more specific features, such as the symmetry pattern Kootstra et al. (2008), texture

contrast Parkhurst et al. (2002), or motion information Itti et al. (2004) to the original

structure. Saliency is also measurable in the frequency domain. In the spectral

residual model Hou and Zhang (2007), saliency is described as the abnormal frequency

from the smoothed FFT. This idea also incorporated natural image statistics related

to the power law. In Achanta et al. (2009), the DOG filter was utilized to extract

low-level features such as intensity and edges, which benefited the saliency evaluation.

Notice that, most models mentioned above are stimulus-driven approaches where

various features are crucial to determine the degree of saliency. The probability theory

based on natural image statistics also gains popularity Itti and Baldi (2005); Zhang

et al. (2008); Simoncelli and Olshausen (2001).

Among the aforementioned methods, the following algorithms are most state-of-

the-art methods from different perspectives and mostly quoted in the peers works.

The examination on properties of algorithms helps to reveal the advantages and

limitations contained in each method.

In the approach of IT Itti et al. (1998), a 9 levels Gaussian pyramid is firstly

created with successive Gaussian blurring and downsampling on the original input
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image. Each feature is computed by a set of center-surround operations akin to

visual receptive fields. Center-surround is implemented in the model as the difference

between fine and coarse scales: The center is a pixel at scale c ∈ 2, 3, 4,, and the

surround is the corresponding pixel at scale s = c + d, with d ∈ 3, 4.. The across-

scale difference between two maps is obtained by interpolation to the finer scale and

point-by-point subtraction. Totally three domain feature maps are calculated, which

are colors, intensities and orientations of the image. At higher level, the calculated

feature maps are fused together to generate the final saliency map with winner-take

all strategy. After the hierarchical blurring and downsampling, the net information

remained from original image contains few details and caused the saliency maps very

blurred.

In the approach of MZ Ma and Zhang (2003), a low-resolution image is created

by averaging the quantized blocks of the image. Each block is then represented by a

single averaged pixel value which is a simulation of low-pass filtering. The resulted

image is fed into the local contrast computation. The contrast value is computed by

calculating the summation of the Euclidean distances between the current pixel and

the surrounding pixels in LUV color space. After normalization, the saliency map is

generated by the contrast values.

In the approach of SR Hou and Zhang (2007), the spectral residual of the image

is computed by subtracting a smoothed version of the FFT log-magnitude spectrum

from the original log-magnitude spectrum. The author advocates that the spectral

residual represent the response towards the visual stimulus. By setting a hand crafted

threshold, the direct component of the spectrum is filtered out. The remaining

spectrum is applied inverse FFT to transfer into image space resulted in the saliency

map.

In the approach of HC Cheng et al. (2015), the pixel saliency value is defined as a

global histogram-based contrast. As an improvement over HC-maps, spatial relations

is incorporated to produce region-based contrast (RC) maps where the input image is

firstly segmented into regions, and then assign saliency values to them. The saliency
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value of a region is now calculated using a global contrast score, measured by the

regions contrast and spatial distances to other regions in the image.

Although extraction of salient objects by the aforementioned algorithms receives

reasonable results in some aspects, the reliable and accurate saliency estimation

remains challenging for computer vision society. Inherited from the advantages of

the modeling of human visual system, the bio-inspired algorithms attribute a strong

ability to precisely locate the attentive points related to the early stage responses of

the visual neurons toward the stimulus in the field of receptive. However, despite of its

precision, these points usually occupy only the blurred regions rather than the clear

objects in the image domain, making subsequent applications inconvenient. Other

computational strategies adopting multi-feature model are suffering to find out a

general model that encompasses all diverse variations in saliency detection. Once the

model failed to represent the salient feature, the computational result may generate

unexpected saliency values. In other words, the model-based strategies cannot receive

consistent performance considering the various application scenarios.

2.2 Deep Feature Learning Background

Recently, deep feature learning has been applied to a wide range of application

scenarios Bengio et al. (2013). The most attractive attribute of the deep learning is

the machines (RBM, CNN and AutoEncoder etc.) that learn a hierarchy of features

from primitively low level to semantically high level, and significantly outperform

existing approaches in areas like object recognition, music categorization, OCR and

speech recognition tasks Bengio et al. (2013). As the structure of the network

goes deeper, the learning machines are able to assemble the local features into a

composition, increasing the tolerance to translation, rotation and scaling Zeiler and

Fergus (2014). Meanwhile, with the standard pipeline, the deep structure is able to

build invariance to capture domain knowledge, such as the facial morphology in case

of facial expression recognition Rifai et al. (2012).
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2.2.1 Restricted Boltzmann Machine

One of unsupervised deep learning network successfully applied in machine learning

is using the Restricted Boltzmann Machine (RBM). The RBM is firstly proposed as a

random neutral network based on statistical mechanics. It is an undirected bipartite

network involved the Energy-based Model (EBM) Bengio (2009), and naturally

develops from Boltzmann Machine (BM). We introduce the mathematics of EBM

and BM here to understand the fundamental concepts of them.

Energy-based Model And Hidden Variables

The main objective of statistical modeling is helping to capture the dependencies

between variables. Once these dependencies are determined, a model can be easily

applied to inference the unknown variables given the value of the known variables.

However, the barrier always exists in many cases that distribution of the observation

data is not pre-acquirable. Energy-based model is helpful to solve it by associating a

scalar energy to each configuration of the variables. The problem converts to modify

that energy function so that it fits the desirable requirements Bengio (2009). The

energy-based model defines the energy function as,

P (x) =
e−Energy

Z
(2.1)

where, the normalization factor Z is called the partition function. It defines as a sum

running over the continuously input variable x,

Z =
∑
x

e−Energy(x) (2.2)

and describes physical prosperities of the statistical ensemble.

In many of the application cases, we do not directly observe the variable x, and

instead it will be reflected by some non-observable variables. Introducing the hidden

variable enriches the power of the model LeCun et al. (2006). Considering the model
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comprises an observation x and a hidden variable h, the energy-based probabilistic

models define the new probability distribution as,

P (x, h) =
e−Energy

Z
(2.3)

Since x is observable, the marginal distribution is the main part we focus on

P (x) =
∑
h

e−Energy(x,h) (2.4)

By introducing a new notation, free energy, the Eq. 2.4 can be mapped to the

similar one as Eq. 2.1,

P (x) =
e−FreeEnergy(x)∑
x e
−FreeEnergy(x) (2.5)

with Z =
∑

x e
−FreeEnergy(x) and

FreeEnergy(x) = − log
∑
h

e−FreeEnergy(x) (2.6)

The data log-likelihood gradient then becomes easily to calculate. Using θ to represent

the parameters of the model, and taking the gradient on the both sides of Eq. 2.5,

we can obtain,

∂ logP (x)

∂θ
= −∂FreeEnergy(x)

∂θ
+

1

Z

∑
x̃

e−FreeEnergy(x̃)
∂FreeEnergy(x)

∂θ

= −∂FreeEnergy(x)

∂θ
+
∑
x̃

P (x̃)
∂FreeEnergy(x̃)

∂x̃

(2.7)

The mathematical expectation of the Eq. 2.7 can be written as,

EP̂ [
∂ logP (x)

∂θ
] = −EP̂ [

∂FreeEnergy(x)

∂θ
] + EP [

∂FreeEnergy(x)

∂θ
] (2.8)
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On the right side of Eq. 2.8, the first term denotes the mathematical expectation

taking over the training set, and the second term denotes expected value under the

models distribution P . Therefore, to calculate the average log-likelihood gradient,

we could sample from P and compute the free energy and then estimate with a

Monte-Carlo way.

Boltzmann Machine

The Boltzmann Machine is a statistical model based on EBM and Restricted

Boltzmann Machine is a particular form of Boltzmann Machine with more constraints

on topological structure of the network. In the Boltzmann Machine, the energy

function is formulated as,

Energy(x, h) = −bTx− cTh− hTWx− xTUx− hTV h (2.9)

The model parameters denoted by theta contain two parts: the biases bi and ci,

and the weights Wij, Uij and Vij. Following the tractable form of Eq. 2.7, the gradient

of the log-likelihood can be written as,

∂ logP (x)

∂θ
=
∂ log

∑
h e
−Energy(x,h)

∂θ
−
∂ log

∑
x,h e

−Energy(x,h)

∂θ

=− 1∑
h e
−Energy(x,h)

∑
h

e−Energy(x,h)
∂Energy(x, h)

∂θ

+
1∑

x,h e
−Energy(x,h)

∑
x,h

e−Energy(x,h)
∂Energy(x, h)

∂θ

=−
∑
h

P (h|x)
∂Energy(x, h)

∂θ
+
∑
x,h

P (x, h)
∂Energy(x, h)

∂θ

(2.10)

Noted that ∂Energy(x,h)
∂θ

is easy to compute by taking derivative on Eq. 2.5.

Therefore, the main calculation becomes to implement a procedure to sample from

P (h|x) and sample from P (x, h). Then we can obtain an unbiases stochastic estimator

of the log-likelihood gradient. The problem is solvable by constructing an Monte
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Carlo Markov Chain (MCMC) Andrieu et al. (2003) or Gibbs sampling Geman

and Geman (1984). Recent work solved it using even shorter chains as Contrastive

Divergence Hinton (2002), and this method has been adopted in training of Restricted

Boltzmann Machine.

2.2.2 Principles of Convolutional Neural Network

Convolutional Neutral Network (CNN) is one of the most attractive models in the

recent development of cognition research Bengio (2009); Bengio et al. (2013); Bengio

(2012). It was firstly inspired by the visual systems structure which is proposed by

Hubel and Wiesel in their research of cats visual cortex Hubel and Wiesel (1962).

Based on their works, the specific convolutional neural network efficiently reduces

the complexity of back-propagation formed network. The CNN model based on the

local connectivities between neurons and on hierarchically organized transformations

of the image is efficient to obtain the translation invariant properties. Later on,

researchers Alexander and Taylor improved the CNN theory and proposed the

“improved perceptron which boosts the error-propagation algorithm Anthony and

Bartlett (2009). LeCun followed-up with his idea to build up a new network structure

trained with error gradient, obtaining the state-of-the-art performances in a variety

of vision tasks LeCun et al. (1998, 2010). In this dissertation, an alternative method

Decovolutional Network which improves the CNN is adopted to implement the object

recognition Zeiler et al. (2011); Zeiler and Fergus (2014). It inherits the advantages

from the CNN but empowers with the unsupervised learning method which makes it

be more suitable in discovering discriminate features from image space.

In general, the basic element of CNN is composed by a two-layer structure. The

first layer is called the convolutional layer. At this layer, the previous layers feature

maps are convolved with learnable kernels and put through the activation function

to form the output feature map. Each output map may combine convolutions with

multiple input maps. Another layer is called sub-sampling layer. A sub-sampling
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layer produces downsampled versions of the input maps. If there are N input maps,

then there will be exactly N output maps, although the output maps will be smaller.

Usually, the max-pooling is taken as the default down-sample scheme. On each

element, the sigmoid function is selected as the activation function which is helpful

to acquire the translation invariant LeCun et al. (2006).

The completed CNN is constructed by multiple network elements with a super-

vised perceptron as the output layer. The training method is following the traditional

back-propagation algorithm to fine tune each parameter associated with every neuron.

2.2.3 Adaptive Deconvolutional Network

One particularly successful deep learning architecture is the Adaptive Deconvolutional

Network (ADN) which offers appropriate features as well as the meaningful decompo-

sition of the input images in multi-scaled levels Zeiler et al. (2011); Zeiler and Fergus

(2014). The principle underlying of ADN is that, the features on each layer are learnt

directly by minimizing the reconstruction error of the input image under a sparsity

constraint from an over-complete set of feature maps. Unlike the traditional deep

machines, which use the lower level reconstruction as the input for subsequent layers,

there is no missing information resulted in error accumulation for ADN because of the

layer-wised reconstruction for the original input. The unique setting ‘switch’ enforces

the network to retrieve the max-pooling route, and thus makes the learning and

inference reversible between input and its layered features. Considering its properties

and advantages in feature extraction, we are the first to evaluate the effectiveness of

the ADN based feature hierarchy in capturing the expression changes in facial images.

2.3 Low Rank Matrix Decomposition

To complete the face centered image analysis, we still need to parse and locate the

landmarks on human face to get better face image understanding after we fully
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awareness that there is a person exist in the image. In the work, Low-rank Matrix

Decomposition is adopted to assist the landmark points detection. We detail the

assumption, problem formulation and related techniques in the following paragraphs.

2.3.1 Mathematics of Low Rank Matrix Decomposition

Suppose that we have a matrix A of size m × n with rank-r, where r � min(m,n).

In many engineering problems, the entries of the matrix are often corrupted by errors

or noise, some of them could even be missing, or only a set of measurements of the

matrix can be accessible instead of the matrix entries directly. In general, we model

the observed matrix D to be a set of linear measurements on the matrix A, subject

to noise and gross corruptions i.e., D = L(A) + η, where L is a linear operator, and η

represents the matrix of corruptions. The problem is seeking to recover the genuine

matrix A from D.

When to consider the case where L is the identity operator and η is a sparse matrix

but whose non-zero entries can be practically unbounded. Since the rank r of A is

unknown, the problem is to find the matrix of lowest rank that could have generated

D when added to an unknown sparse matrix η. Mathematically, for an appropriate

choice of parameter γ > 0, we have the following combinatorial optimization problem

to solve,

min
X,E

rank(X) + γ‖E‖0 subject to D = X + E (2.11)

where ‖‖0 is the L0 norm.

Since the solving the above problem is NP-hard, one can alternatively solve it by

another convex surrogate,

min
X,E
‖X‖∗ + λ‖E‖1 subject to D = X + E (2.12)
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where ‖‖∗ represents the matrix nuclear norm and is the best convex approxima-

tion to the rank function. ‖‖1 represents L1 norm, and λ is a positive constant. In

the paper proposed by Wright Wright et al. (2009), it shows that X and E can be

perfectly recovered from Eq. 2.12

20



Chapter 3

Saliency-based Object Detection

3.1 Saliency Region and Visual Saliency Analysis

The hypothesis of human attention theory Li (2002); Reynolds and Desimone (2003)

points out that the human visual system selectively analyzes the details of the partial

image in the vision field but ignores the majority rest. From the general statistical

analysis of natural images, we also found that, only a small portion of the single

image contains richer information. The straightforward assumption is thus that the

interesting part in vision has a corresponding relationship with the image region that

has more information. All the other patches sharing similar appearance are treated

as redundant Zhang et al. (2008). The similar idea appeared in Gao’s work Gao et al.

(2008). However, in his work, calculating the pre-defined clusters through a supervised

method is neither efficient nor affordable with limited database or computational

resource.

Take the image in Fig. 3.1 as an example where we manually select the patches

from the foreground and background objects and calculate the mutual information

between these patches, as shown in Table 3.1. We observe that the foreground

patch (F in Fig. 3.1) contains more distinct information than the background patches

(R1,R2,Y1,Y2 in Fig. 3.1).
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Figure 3.1: The background patches have the self-similarity attribute

Table 3.1: Mutual information (MI) between the labeled patches in Fig. 3.1. All
patches from the background share similar appearance with MI less than 3.704; the
MI between the foreground and background patches are more than 5.25.

M I F R1 R2 Y1 Y2
F 0 5.2585 6.2765 6.6777 6.8207

R1 5.2585 0 2.3687 2.5628 2.6069
R2 6.2765 2.3687 0 3.4273 3.3272
Y1 6.6777 2.5628 3.4273 0 3.7082
Y2 6.8207 2.6069 3.3272 3.7082 0

From the perspective of coding theory, one can always decompose the information

of a static image into two parts, the prior knowledge and the abnormal properties Hou

and Zhang (2007). The former, most of time, is redundant and supposed to be

suppressed by the coding process. The latter normally carries more distinctive

information and therefore is the main focus of our research. There have been quite

some efforts devoted to the search of the ‘disctinctive’ information in the image

from different aspects. Until now, there has been no general model proposed that

comprehensively describes the varieties of the whole image.

In this paper, we take the inverse approach to conventional saliency detection by

first detecting the parts in the image that are not attractive. This approach would

identify patches that do not contain distinctive attributes and share the self-similarity

across the image, and thus are deemed as background candidates, referred to as

the “proto-background”, as opposed to “proto-foreground” detected in conventional
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approaches. Because of the self-similarity attributes, the accuracy of background

detection is better appreciable than the detection of foreground salient parts.

Following the early selection of perception which outputs only the attentive points

directly responding to outside stimulus, the subsequent biological process of human

vision is the ‘refinement process’ that generates the perceptive field containing the

semantic objects. To generate a perceptive field containing the salient objects with

clear boundaries, local contrast is incorporated to evaluate the distinctiveness of each

pixel. We define the local contrast as a feature-based similarity function between the

evaluated patch and the proto-background patches.

Another plausible feature to describe saliency is the color distribution. It is

commonly accepted that the color spatial distribution should be concentrated rather

than scattered in the salient object that are attractive. As a global feature, the color

distribution constraint also assists saliency representation to achieve a uniform and

consistent performance among all images.

3.2 The Saliency Detection Methodology - SMAP

The goal of the proposed saliency detection system is to locate the potentially

interesting foreground and to emulate the refinement process of eyes to better

represent the saliency region and extract salient objects with full resolution. To

achieve this goal, the pre-attentive process should filter the proto-background out of

the image. Next, local contrast calculation is conducted to generate the raw saliency

map. By adapting the observation that the color distribution of saliency object

cannot be widely spread, we introduce the color distribution as a global constraint to

assist the final detection. Correspondingly, the framework of the proposed system is

composed of three parts and the saliency map produced would benefit in accuracy and

uniform performance from both the local contrast and global constraint calculation.

23



Figure 3.2: The diagram of the proposed saliency detection system

3.2.1 The Local Stimuli Response: Proto-background Detec-

tion

Image analysis by Gabor filter bank is considered to resemble the perception in the

human visual system Daugman (1985), where the quantitative response and tuning

mechanism along the ventral stream of visual cortex is well modeled by the Gabor

wavelets Riesenhuber and Poggio (1999). We thus adopt a set of Gabor filters

at different scales and orientations to obtain the early attentive response. The

sinusoidal Gaussian property enables the filters to produce the scale and position-

tolerant features. The explicit form of the 2-dimensional Gabor filter in the spatial

domain is described by,

G(x, y) = exp(−x
′2 + γ2y′2

2σ2
) cos(

2π

λ
x′) (3.1)

where x′ = x cos θ + y sin θ and y′ = −x sin θ + y cos θ are the rotation factors of the

Gabor filter controlled by the angle θ. σ is the standard deviation of the Gaussian

envelope and γ is the spatial aspect ratio, which is fixed to γ = 0.3. λ represents the

wavelength of the sinusoidal factor. Tuning of λ relates to the change of the functional

scale of the Gabor filter. Features in six orientations at five scales are computed. This
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Figure 3.3: Gradient, spectral residual Hou and Zhang (2007) and Gabor residual
of the image from Fig. 3.1.

filter bank is designed to acquire strong responses at locations where sharp stimulus

matches at different orientations Guo et al. (2009).

In some natural scene images, the out-of-focus effect often causes blur at the object

boundaries, introducing more uncertainties to the detection. To be more tolerant

against the shift and out-of-focus effect, we measure the spectral residual from the

Gabor spectrum. In one dimension, the spectral residual is calculated as,

R(f) = ln |G(f)| − hn ∗ ln |G(f)| (3.2)

where hn =
[
1
3
, 1
3
, 1
3

]
works as an average filter, G(f) is the real part of the Gabor

spectrum of the input image. The iFFT operation applied on R(f) would create

an image with highlighted regions that relate to the early attentive points known

as ‘abnormal’, or more specifically, the ‘proto-object’. Because the response is only

analogous to the lowest level of early attention in the human visual system, it carries

little semantic information but the maximum contrast caused by stimulus. Different

from the classic spectral residual approach Hou and Zhang (2007), Gabor residual

enriches the response in multiple orientations and scales. The texture details captured

in the Gabor spectral space directly relate to the primitive receptive fields of the

human vision. Fig. 3.3 indicates the relationship between the gradient and the Gabor

residual. Clearly, Gabor residual has stronger response towards the gradient changes

than conventional spectral residual.

Based on the proto-object calculated, the proto-background detection process is

shown in Fig. 3.5. All the input images are uniformly rescaled to the size of 256 ×

256. Then the Gabor spectral residual algorithm is applied. We divide the resulting
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Figure 3.4: Various division thresholds and the resulting Gabor residual images.
From left, the division threshold is set to 0.2 to 0.8 with 0.2 as the interval. 0.6 is the
default setting.

mask into quantized blocks of size 32 × 32. Counter-intuitively, the blocks with

average intensity below a pre-defined threshold are selected as the proto-background

regions. The selected blocks are stored in the Background Candidate Pool (BCP). The

advantages of choosing the proto-background instead of the proto-object are two-fold.

On one hand, the ‘redundancy’ property in the proto-background is more generic in

different images. On the other hand, the scheme is robust to inaccurate detection. To

balance the accuracy between the proto-objects and proto-background detection, we

set the threshold as 0.6 times the average pixel intensity of the Gabor spectral residual

image to select proto-background patches from the Gabor residual images. Higher

threshold produces more precise proto-objects but poor proto-background estimation.

Figure 3.5: The process of generating the background candidate pool
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3.2.2 The Fine Tuning Process: Local Contrast Calculation

After locating the proto-background, the refining process is conducted to determine

the whole area of the salient targets.

Almost all saliency algorithms utilize the color channels in different color spaces.

The RGB color decomposition is the most frequently employed. Others argue Lab

provides better approximation as its components more closely match the human

perception in lightness and chromatics Borji and Itti (2012). Here we adopt the HSV

color space of Hue, Saturation and Value since it accommodates more traditional and

intuitive color mixing models based upon how colors are organized and conceptualized

in human vision Myers (1979). One favorable advantage received by using the HSV

color decomposition is that, the saliency value calculated does not rely on any specific

color.

Motivated by the color indexing technique, we incorporate the color moments

to differentiate image patches based on their color feature. The color distribution

of an image can be interpreted as the probability distribution. Thus, the moments

are always proper choice to represent this distribution. We propose the first three

moments mean, standard deviation and skewness as the image color index. If the pixel

value of a given color distribution is defined as pi in HSV color space, the moment

metrics can be defined as,

µ =


µH

µS

µV

 , σ =
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
(3.3)

27



where µ is the mean value of the distribution, N is the total amount of pixels in

the distribution and the superscript represents different color channels. The three

moments physically evaluate the average, variance and degree of asymmetry in

color distribution. An image (or a patch I) is then easily characterized by totally 9

moments in the 3 color channels, i.e., I = (µ, σ, s)T .

The similarity measurement is defined as a sum function of the weighted difference

between the moments of two distributions, H and I, i.e.,

dsim(H, I) = ωT1 ·∆µ+ ωT2 ·∆σ + ωT3 ·∆s (3.4)

where ∆µ, ∆σ and ∆s represent the difference of moments between two distributions.

Notice that the similarity comparison happens within the single image. The

environmental condition is supposed to be unchanged. The weight vector is set to

{ωi = [1, 1, 1]}i=1,2,3, with nondiscriminant treatment on every element. Although

these statistical representations vary significantly, they all help capture the color,

edge features, repetitive patterns and complicated texture in a unified way, where the

self-similarity is considered.

After acquiring the proto-background blocks, we subdivide these blocks into

smaller 7 × 7 cells with 50% overlap. When evaluating the local contrast of a pixel

pi, the moments of 3× 3 patch centered at pi are computed. The similarity between

pi and the background cells are calculated according to Eq. (3.4). We can obtain

a series of similarity values. The local contrast of pi is defined as the accumulated

minimal 128 similarity values between the computing patch Hi and the patches in

BCP. Hi is the 8-neighbor patch of pixel pi. The image texture with similar color

property and repetitive patterns is easily matched with the moment vectors in BCP ,

and thus receives a low contrast value. Apparently unique patches become visually

salient since its similarity measurement based on BCP is rather strong. The image

texture with similar color property and repetitive patterns is easily matched with the

moment vectors in BCP , and thus receives a low contrast value. Apparently unique
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Figure 3.6: Raw saliency map demonstration. From top row to the bottom: original
images, raw saliency maps.

patches become visually salient since its similarity measurement based on BCP is

rather strong.

The contrast values are normalized into the range [0 1]. The local contrast of the

input image is treated as the raw saliency map Sraw. The figures in the 2nd row of

Fig. 3.6 illustrate the computed raw saliency maps Sraw.

3.2.3 The Global Saliency Response: Color Distribution

Constraint

Although the Gabor spectral residual is quite effective to locate the saliency points

in the receptive fields, the frequency domain method still suffers from one deficiency

since the spatial distribution information is ignored. One of the possible drawbacks

is that, in the clutter environment, the detected saliency parts may scatter all over

the image.
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The spatial distribution of a specific color may contribute significant information

to the saliency detection. The concentration property of the saliency object indicates

that, the wider a color distributes, the less possible it attracts human vision.

It is assumed that the color of the saliency object concentrates around a small

region, making the small variance more attractive. Thus, the color distribution

constraint indeed provides another important feature for saliency.

The Gaussian Mixture Model (GMM) is introduced to represent colors Liu et al.

(2011); Schwarz et al. (1978); Calinon et al. (2007). The image is treated as a data

set with each pixel being a data point. A mixture model of c color clusters indexed

by j, j = 1, 2, ...c, is defined by a probability density function,

P (pi) =
∑
c

P (j)P (pi|j) (3.5)

where pi is a vector represents the pixel value, P (j) is the prior and P (pi|j) denotes

the conditional probability density function. The image is modeled by a mixture of

c Gaussians of dimension d (for color images, d = 3). The parameters in Eq. (3.5)

become

P (j) =πj

P (pi|j) =Φ(pi|µj,Σj)

=
1√

(2π)d|
∑

j |
exp{−1

2
(pi − µj)TΣ−1j (pi − µj)}

(3.6)

where {πj, µj,Σj} represent the prior, mean and covariance matrix of the color cluster

j in GMM respectively. The probability of a pixel pi assigned to the color cluster j

is defined as,

P (j|pi) =
P (j)Φ(pi|µj,Σj)

P (pi)
(3.7)

The standard Expectation-Maximization (EM) algorithm is applied to solve

the parameter estimation for mixed Gaussians iteratively. However, an obvious

shortcoming of EM is that the optimal number of clusters in one image is unknown

beforehand. To encode the image dataset with any fixed number of clusters will
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result in either the deficiency in data modeling or parameter over-fitting. A

traditional strategy to trade-off between optimizing data’s likelihood and minimizing

the number of parameters used is the model selection. Bayesian Information Criterion

(BIC) Schwarz et al. (1978) is then incorporated to tackle the estimation problem.

The BIC score provides selection criteria to determine the optimal number of GMM

clusters with the definition,

SBIC = −2L+ np log(N) (3.8)

where L =
∑N

i=1 log(P (pi)) and np is the number of free parameters in the model. For

GMM, np = (j− 1) + j(d+ 1
2
d(d+ 1)). N is the total number of data points. L is the

log-likelihood function which measures the fitness of modeling on the data. np log(N)

works as a penalty term to control the complexity of the model. Considering the

goal of the algorithm is to segment the image based on color, we select the optimal

number of color clusters as,

K =


argmin

c
SBIC if c <= 6

d(argmin
c

SBIC)/2e if c > 6
(3.9)

where operator ‘de’ represents the smallest integer greater than x. The selection of K

reaches a tradeoff between the optimal data fitting and reduced modeling complexity.

We compute with a set of candidate Gaussians up to 15 color clusters and select the

model parameters according to Eq. 3.9.

The spatial distribution variance for each color cluster can then be interpreted as

the weighted offset between each pixel position and the centroid. We penalize the

offset if it is larger than half of the image range. The horizontal variance is formulated

as

Vh(c) =
1

|X|c

∑
i

P (c|pi)
λ · |xh −mh|2

1 + exp(−γ · width · |xh −mh|2)
(3.10)
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where mh is the x-coordinate of the centroid for color cluster c, xh is the x-coordinate

of pixel pi, λ and γ are two positive constants which control the scope of the

sigmoid-like penalty function, width denotes the width of the input image, |X|c is the

normalization term which is the total intensity value of color cluster c. With similar

notation, the vertical color distribution variance Vv(c) should be computed in the

same way. In the following experiments, we use λ = 100 and γ = 0.5 as the default

settings for this paper. Once pixels within the color cluster scatter across the image

more than half of the image range, then the strength of the penalty would increase

gradually.

Associated with the color distribution variance, the color distribution-constraint

(CDC) feature map is defined as

Scdc(pi) =
∑
c

P (c|pi)(1− Vh(c))(1− Vv(c)) (3.11)

In Fig. 3.7, we evaluate the penalty effect using a toy example. The examined

image contains four color clusters. Except for the background color, the two squared

blocks and a horizontal bar exist within the image domain with three distinctive

colors. Without the spatial color distribution constraint, the squared blocks and the

bar should have the same saliency value since they have the same area of coverage.

Considering the concentration attribute of the salient object, the sigmoid-like term

penalizes the bar since the horizontal variance of the bar is larger than half of the

width of the image. From the demonstrated results, it is clear that the squared blocks

are more salient than the crossing bar after applying the color distribution constraint

in Eq. 3.11.

We normalize the feature map to the range of [0 1] which is comparable to the

raw saliency map Sraw. The color distribution constraint saliency maps Scdc are

demonstrated in the 2nd row of Fig. 3.8.
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Figure 3.7: A toy example to demonstrate the penalty effect. From left (a) original
image, (b) the CDC saliency map without spatial penalty, (c) the CDC saliency map
with sigmoid-like penalty term.

Figure 3.8: Color distribution-constraint saliency map demonstration. Top row:
original images; bottom row: color distribution-constraint saliency maps.
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3.2.4 Saliency Map Generation

The last process to generate the saliency map involves a linear combination of the raw

saliency map Sraw generated by local contrast and the color distribution constraint

map Scdc to produce the final saliency map Smap.

Sαmap = α · Sraw + (1− α) · Scdc(I) α ∈ (0, 1) (3.12)

where α is a user controlled parameter which tunes the contributions of the two

factors. Empirical study on α reveals that larger α (α > 0.5) performs well on

natural outdoor scene. However, without any presumption about the database,

various α values may result in unstable performance of the model. To optimize

the bias between local contrast and color distribution, and minimize the chaotic

information in the saliency detection, we propose the 2-dimensional entropy as the

criterion to evaluate the linear combination of the two maps. Unlike the conventional

entropy only considering the probability of information, 2D entropy incorporates

spatial information which represents the object geometric characteristics contained

in the image. The optimal α is determined by

αopt = argmin
α
{H(Sαmap)} α ∈ (0, 1) (3.13)

where H = −
∑

i

∑
j pij log pij, and pij represents element in 2D histogram of the

image Sαmap. Smaller entropy value illustrates that the texture/edge information is

largely suppressed and salient pixels are concentrated into small regions.

3.3 Experiments and Evaluation

We evaluate the performance of the proposed saliency model SMAP in two ways: 1)

predicting human visual fixations, and 2) detecting the saliency objects which humans

pay attention to. For these purposes, two standard databases, the MIT database

and the MSRA database, and the state-of-the-art saliency detection techniques are
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selected for comprehensive comparison. The MIT database collects eye-tracking data

of 15 views who free-viewed 1003 natural indoor and outdoor images Judd et al.

(2009). The MSRA database (subset) contains 1000 images from various categories

such as plants, animals, traffic signs, human sports, etc. It also provides binary

masks of human labeled saliency ground truth. We select 9 state-of-the-art saliency

detection algorithms for comparison purpose. These algorithms cover the recent

popular techniques of global (HC Cheng et al. (2015), LC Zhai and Shah (2006)),

local (IT Itti et al. (1998), MZ Ma and Zhang (2003)), frequency domain (SR Hou and

Zhang (2007), AC Achanta et al. (2008), FT Achanta et al. (2009)), multi-modality

(GB Harel et al. (2006), CA Goferman et al. (2012), RC Cheng et al. (2015)) and

learning-based (LR Shen and Wu (2012)) approaches.

3.3.1 Human Visual Fixations Prediction

Human visual fixations, also known as attention points, directly relate to the primitive

level response towards the stimulus. Facilitated with the Gabor spectral residual in

local contrast calculation, saliency maps generated by SMAP should be effective to

cover the human fixations. We evaluate SMAP by employing MIT’s database and

compare it with the original work in Judd et al. (2009).

Unlike the proposed SMAP, the output of the MIT work is the gray level image

containing the saliency region rather than the clear-bounded salient objects. To

perform a fair comparison with the proposed SMAP, we design the experiment by

comparing the 100 most salient pixels with the fixation points. If the fixation point

meets the salient pixel at the same location, we count it as a hit. The percentage of

total number of hits over the number of fixations is used as the evaluation metric.

The MIT database has a strong bias on “centering” which means the salient

objects most likely locate at the center of the images. Considering this prior

knowledge, paper Judd et al. (2009) applied a convolution with Gaussian kernel on

the saliency map to compensate for the centering effect. Another solution to offset
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Figure 3.9: Human visual fixation comparison. From top row, the original images,
images with human fixation points (red dots), saliency maps from Judd et al. (2009)
with fixations and SMAP with fixations.

the centering effect was reported in Judd et al. (2012), where they linearly combined

the saliency map with a Gaussian map. In this paper, we adopt both methods in

SMAP with the same scheme but slightly change the weights in linear combination.

We reduce the weight on centering map to w = 0.2. The quantitative comparison

is shown in Fig. 3.10. Clearly, the top 10% salient pixels from the SMAP linearly

combined with the centering map cover nearly 90% of the fixation points. Compared

with the diffused maps given by Judd et al. (2009), SMAP also outperforms in term

of the clear boundaries and complete salient objects detected.

3.3.2 Visual Saliency Evaluation with Extracted Attention

View

Unlike the attention fixation points Ma and Zhang (2003) which are analogous to

the primitive level of human attention caused by visual stimulus, attention view

attracts more research interests by emphasizing on the detection of the whole objects
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Figure 3.10: Quantitative comparison for human visual fixation prediction. Using
hit ratio as the measurement metric.

rather than several isolated points from image. To generate rectangles containing the

complete saliency objects, we perform a raster scanning on the binarized SMAPs.

The output rectangles should contain at least 95% salient pixels in SMAP Liu et al.

(2011). If the image containing more than one center of attraction, the searching

algorithm automatically repeats and generates several rectangles for different objects

in the image.

The evaluation of the extracted attention view is carried out by user experi-

ments Ma and Zhang (2003). We set 3 assessment levels, GOOD, ACCEPTABLE

and FAILED, for the users to evaluate the extraction results, since quantitative

measurement is difficult to assign to these assessments. Generally, the GOOD cases

include precise detection with 80% accuracy. The ACCEPTABLE cases should cover

50% of the saliency objects, otherwise, it will be labeled as FAILED.

Human visual saliency prediction contains its own consistency. Therefore, three

users are involved to evaluate the extraction of attention view by feeding the images

with rectangles on the MSRA dataset. According to Judd et al. (2009), three

participants help to maintain the saliency detection accuracy to reach nearly 90%.

The statistical results are displayed in Table 3.2.
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Table 3.2: The quantitative evaluation of user experiment on extracted attention
view.

Users. GOOD ACCEPTABLE FAILED
1 88.81% 5.97% 5.22%
2 87.31% 6.72% 5.97%
3 86.57% 8.21% 5.22%

Avg. 87.56% 6.97% 5.47%

Figure 3.11: Visual saliency detection results. The red rectangles are extracted
attention view areas calculated based on SMAP. The yellow rectangles are ground
truth areas calculated based on ground truth mask with exhaustive search algorithm.

The average ratio of GOOD assessment reaches as high as 87.56%. The subjective

experiments showed the effectiveness in human attention view extraction strategy.

The visual saliency detection results are demonstrated in Fig. 3.11.

3.3.3 Visual Comparison on Different Types of Images

The first experiment in this section is designed to compare the color independency

property as the saliency at a visual location should be irrespective of the actual color

feature Li (2002). We choose the images which contain both multi-color saliency

objects and uni-color objects located in multiple color background as illustrated in

Fig. 3.14(a)(b)(c). Beside the Gabor spectral residual helping capture the color

changes, the local contrast scheme makes the repeat texture and color patterns
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redundant and thus decreases the degree of the saliency. The comparison is obvious

that the proposed SMAP method is color independent.

The SMAP algorithm also presents reliable performance to extract the saliency

from clutter environment, where the background of the images are full of texture

information. Most frequency domain methods would fail in detecting saliency objects

due to the high frequency texture in the background. The global histogram based

algorithms are also influenced a lot by the widely distributed texture. For this type of

images, the self-similarity property helps characterize the redundant texture. This in

turn facilitates the removal of the redundancy easily by the statistical attributes which

is calculated according the proto-background candidate pool. In Fig. 3.14(d)(e), we

demonstrate the effectiveness of the proposed algorithm in complicated environment.

In some extreme cases, the saliency foreground shares a similar appearance with

the background. That is, the contrast degrades and can be easily ignored. The

experimental results in (Fig. 3.14(f)(g)) further demonstrate that our method holds

an advantage to explore the subtle low contrast information than the peer.

3.3.4 Quantitative Comparison on Image Segmentation Re-

sults

To obtain a quantitative evaluation of the proposed method, we compute the binary

maps using thresholds ranging from 1 to 250 with the interval of 10 on the SMAP.

The precision and recall Achanta et al. (2009); Cheng et al. (2015) are calculated and

compared with on the whole benchmark database. This segmentation enhancement

test reflects the overall effectiveness of the SMAP algorithm. Fig. 3.12 shows that

SMAP outperforms the others.

Another objective comparison uses the adaptive threshold Ta as in Eq. (3.14)

instead of the fixed ones to binarize all the saliency maps, where S(x, y) denotes the

pixel value at (x, y) of the saliency map, Width and Height are the dimensions of
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Figure 3.12: Precision and Recall curve comparison with the state-of-the-art
algorithms. SMAP is the proposed algorithm.

the image. Average precision, recall and F-Measure are evaluated over the entire

database.

Ta =
2

Width×Height

Width−1∑
x=0

Height−1∑
y=0

S(x, y) (3.14)

Fβ =
(1 + β2)Precision×Recall
β2 × Precision+Recall

(3.15)

We use the setting β = 2 to emphasize on recall rather than precision. The

comparison results are shown in Fig. 3.13. Notice that, the RC combines graph-cut

segmentation method and thus narrows the contrast to a region-based scheme. With

this geometric prior, it receives relatively higher precision value.

The previous experiments demonstrate the effectiveness of the SMAP method. We

further investigate in the roles of the local raw saliency map (RAW) and the global

color distribution-constraint map (CDC) in terms of the F2 value to compare with

other algorithms. Clearly, the RAW and CDC maps contributes both the precision

and recall which guarantee the saliency maps generated by the SMAP algorithm

receive the highest F value. The highest recall ratio also demonstrates the SMAP

detection best covers the whole saliency region.
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Figure 3.13: F-measure evaluation.

3.4 Applications

Precise saliency detection benefits many computer vision applications. In this section,

three interesting applications that the saliency map can help are discussed.

3.4.1 Automatic Graphcut Segmentation

Segmenting foreground objects out of the image is an important task in computer

vision research. The graphcut based techniques which are adopted by popular

commercial softwares outperformed than many other methods. By scattering the

seeds labeled as foreground and background, the graphic model eventually determines

the attributes of the pixels and produces the binary masks. The significant drawback

of this segmentation method is that it should manually choose the initial seeds to

implement the cutting process. Introducing the saliency map we got, the seeds

selection procedure is transferable to saliency guided strategy. The most saliency

pixels are automatically chosen as the foreground, meanwhile, the corresponding

pixels with low saliency values are tagged as background. We then experimented

the growcut algorithm following Vezhnevets and Konouchine (2005) to generate

the saliency based segmentation on various images. Our saliency maps help the
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Figure 3.14: Saliency maps comparison. From the top row: original input images,
saliency maps generated by IT, SR, MZ, GB, CA, AC, LC, FT, HC, RC, LR and our
proposed method SMAP. Columns (a)(b) demonstrate the color independent attribute
which means the saliency map does not rely on color. Column(c) demonstrates the
color uniqueness in multi-color environment. (d)(e) illustrate the scenario that the
background contains texture information. Notice the red flower held by the toy bear
in column(f), the proposed SMAP method is the only one detected efficiently the red
part as the saliency part. In column (g), even in this extreme case, the gull is still
detectable using the proposed algorithm.42



growcut method with a high confidence to segment single/multiple object(s) in clutter

environment.

3.4.2 Image Retargeting

Image retargeting technique is developed for resizing images that is adaptive to the

image content. It functions by establishing a number of non-informative seams and

remove them to shrink the size of image. Therefore, image retargeting performance

greatly relies on accurate saliency map generation algorithms to locate ‘important’

and ‘boring’ bits on image. The reducible seams on dominant objects can be

effectively avoided by adopting our saliency detection algorithm. We performed our

saliency maps in image carving method proposed by Avidan and Shamir (2007). In

the original algorithm, the seams generated by calculating the distortion energy on

relative non-saliency regions other than the featured pixels. However, the energy map

used cannot be guaranteed to be uniformly distributed on the whole saliency objects.

The reducible seams generate not only in the background but also across the targets

and resulted in a distortion in the interesting objects. Comparative analysis on the

proposed saliency map preserves both the clear edges and highlights the content of

the completed saliency objects. Thus the outcomes of image resizing are smooth and
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uniform. In Fig.3.15, it is clearly to see the difference between the proposed saliency

map and normal resizing scheme.

Figure 3.15: Saliency map assisted image retargeting. (a) original images; (b)
default energy map by algorithm Avidan and Shamir (2007); (c) saliency map
generated by the SMAP; (d) retargeting results by Avidan and Shamir (2007); (e)
retargeting results by the SMAP algorithm.

3.4.3 Scene Depth Effect on Commercial DC

Instamatic camera is a popular digital device in modern household and widely used in

smartphones. For its convenient property, more than 30% digital photos are produced

by instamatic cameras. However, limited by its small CCD and aperture range, the

scence depth effect cannot be rendered directly from the pictures. Inspired from

the focusing and aperture tuning functions of the digital single lens reflex camera

(DSLR), the scene depth effect can be emulated by keeping the focus on saliency

objects and blurring the unimportant background from normal pictures. We designed

the algorithm which applied the Gaussian blur function based on saliency map. The

higher saliency value of a pixel, the lower strength of blurring effect it acquired. The

simple idea generates the photo with synthesized scene depth effect comparable to

the realistic photos produced by DSLR. (see Fig.3.16)

From the demonstrated images, the focused figures kept original resolutions while

the background patches were blurred at a certain degree to emulate the depth effect.
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Figure 3.16: Saliency map assisted scene depth effect rendering.

3.5 Conclusion

In this chapter, we performed a three-level saliency detection strategy, SMAP, to

analyze the saliency attribute of the images. It was implemented in a simple

structure which combines the local contrast technique based on bio-inspired attention

feature and the global color distribution constraint. From the experimental results,

we observed that the proposed approach fully satisfies the criteria of biological

observation on human vision and related application requirements. The proposed

technique emphasizes on segmentation enhancement application in the clutter

environment with full resolution requirement. The quantitative precision-and-recall

curves illustrated that our approach outperforms the state-of-the-art works.
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Chapter 4

Object Recognition via L1/2 Norm

Regularized ADN

4.1 Introduction

Object recognition is a process for identifying a specific object in a digital image

or video. Every day we discover and recognize a multitude of familiar and novel

objects. As the most fundamental capability, human can do this with little effort,

despite the fact that these objects may vary somewhat in form, color, texture, etc.

Objects are recognized from many different vantage points (from the front, side,

or back), in many different places, and in different sizes. Objects can even be

recognized when they are partially obstructed from view. To be able to accurately

recognize the subtle discriminants in the image would benefit a wide range of

applications, for instance, video stabilization, automated vehicle parking systems,

and cell counting in bio-imaging. Object recognition algorithms rely on matching,

learning, or pattern recognition algorithms using appearance-based or feature-based

techniques. Common techniques include edges, gradients, Histogram of Oriented

Gradients (HOG) Dalal and Triggs (2005), Haar wavelets Chen and Hsiao (1997),

and local binary patterns Ahonen et al. (2006); Ojala et al. (2002). Understanding
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its complex origin and processing mechanism, automatic object recognition remains

a great challenge in computer vision research.

To capture the subtle feature for automatic object recognition, we seek to extract

efficient representation from the raw images. To date, there have been two branches

of works in this area, roughly divided by the type of features extracted: feature-based

scheme and appearance-based scheme. The feature-based scheme aims to propose

a search that is used to find feasible matches between object features and image

features. The recognition relies on accurate and reliable feature detection, tracking

and geometric constraint. Comparably, in the appearance feature based approach,

the local features are often applied to model the appearance of the recognizing

objects in terms of feature descriptors. Usually, the edge, corner, texture and color

histogram features play the dominant role for object recognition. However, without

the proper post-process like feature selection, the generated feature contains too much

redundancy and thus degrades the performance in recognition.

To address the problems in object recognition, we investigate into the hierar-

chical structure of facial expression through the adaptive deconvolutional network

(ADN) Zeiler et al. (2011). The deep structured ADN is firstly proposed for objects

categorization problem. The most important advantage of ADN is the unsupervised

feature learning capability. Since the reconstruction constraint is applied layer-wise

on the stacked network, the extracted feature set is complete and hierarchical. The

de-convolution process in the intra-layer and the max pooling in the inter-layer enable

the network to exploit the most representative features. In this paper, we reformulate

the original deep ADN model by replacing the L1 norm with the proposed L1/2

norm. In addition, the ADN recognition architecture is redesigned to be adaptive

for FER. According to the existing literatures, the state-of-the-art results reported

in object recognition are mostly involved with a handcrafted feature selection or

supervised labeling. Without such a human guided pre-process, the proposed L1/2

norm regularized ADN is advantageous in terms of spontaneously constructing the

hierarchical features of the object. Our work demonstrates that, the proposed
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ADN can derive more compact features leading to more robust and reliable object

recognition performance, as validated by the comprehensive experiments in the large

dataset.

4.2 Feature Learning Approach: Adaptive Decon-

volutional Network

In this section, we first introduce the hierarchical feature learning framework based on

the Adaptive Deconvolutional Network (ADN) that decomposes the input image into

deep structured feature sets. We then describe the proposed L1/2 norm regularization

as the deconvolutional sparsity constraint that exploits the subtle feature in object

description to facilitate more accurate recognition. Based on the dense feature vector

produced from the previous learning and inference procedures, we apply the SVM

classifier for object recognition.

4.2.1 Feature Learning through Adaptive Deconvolutional

Network

The ADN is a multi-layer trainable architecture that can learn hierarchical set of

feature maps from input images Zeiler and Fergus (2014); Zeiler et al. (2011); Jamieson

et al. (2012). The whole structure consists of the sparse constrained convolutional

layers (named ‘deconvolutional’) and max-pooling. In each of the deconvolutional

layers, l, the input image y is decomposed into Kl feature maps zl = {zk,l|k =

1, · · · , Kl} convolved by the learnt Kl filters fl = {fk,l|k = 1, · · · , Kl},

ŷl =

Kl∑
k=1

zk,l ⊗ fk,l (4.1)
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For layer l, the training procedure minimizes the training cost function,

Cl(y) =
λ1
2
‖ŷl − y‖22 +

Kl∑
k=1

|zk,l|1 (4.2)

where the first term is the image reconstruction cost, and the second term is the L1

norm sparse penalty applied on the learnt feature maps zk,l, aiming to discourage

changes in the features associated with small changes in the input images.

At the top of each deconvolutional layer, the 3D max-pooling is performed to

shrink the feature maps by pooling the local maximal pixel values within the 2D image

field as well as the neighboring channels. During the max-pooling, the characteristic

process ‘switching’ is also performed. The locations of the pooled maxima are stored

by the switches. Taking the switch s as an output augment, the pooling operation is

treated as a linear process: [p, s] = P (z), where the specified elements in z are copied

to p and their locations are recorded in s. With such setting, the unpooling operation

Us is also a linear process, where elements in p are copied to the reconstructed feature

map ẑ. The remain elements in ẑ are set to zero: ẑ = Usp. Us = P T is captured.

The inference from features on l layer is defined with reconstruction process Rl,

ŷl = F1Us1F2Us2...Flzl = Rlzl (4.3)

Fl contains the convolutional results between filters fkl and feature maps zkl . In

learning on lth layer, we firstly infer the reconstructed ŷl according to Eq. (4.3), and

then compute filters fl by optimizing the objective function in Eq. (4.2).

The multi-layer learning strategy remains the same as the aforementioned method

, except that the number of feature maps increases. By max-pooling and increasing

the number of feature maps, the sizes of receptive fields in the feature maps have

been changed, resulting in the formulation of hierarchical features. Details on the

filter learning and feature map inference procedures are illustrated in Fig. 4.1, and

the mathematical details can be found in Zeiler et al. (2011).
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Figure 4.1: Illustration of the Adaptive Deconvolutional Network (first two layers).

4.2.2 L1/2 Norm Regularization on Feature Learning

Recently, sparsity has become a necessary requirement in both statistics and optimiza-

tion tasks in order to control the dimension complexity for many applications Guo and

Qi (2013). It has been shown, through biological experiments that sparsity is natural

process in the entire hierarchical processing of visual information Bengio (2012).

For example, the L0 norm regularization on representation learning encourages to

learn sparse and discriminant features. In the work of Donoho (2006), the L1 norm

regularization has been proved to have the equivalent ability as the L0 constraint on

sparse signal reconstruction. However, when we consider the unsupervised feature

learning task in FER, the capability to decouple tightly mixed factors of variation

underlying expression, facial morphology and nuisances is highly desired. L1 norm

penalty, as a convex optimization, is suffering in enforcing further sparsity and often

leading to an over-penalized regularization Xu et al. (2012).

To exploit the more discriminant features, we adopt L1/2 norm regularization as

the sparsity penalty on the layer-wise learning during ADN model construction. Thus,

the per-layer cost function is redefined as,
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Cl(y) =
λ1
2
‖ŷl − y‖22 + λ ·

Kl∑
k=1

‖zk,l‖1/2 (4.4)

where, ‖zk,l‖1/2 represents the L1/2 quasi-norm, and λ is the regularization parameter

to coordinate the strength of model accuracy and sparse penalty. The L1/2 norm

regularization is a natural improvement to convert FER feature extraction into a non-

convex and non-smooth optimization, which is more realistic in real-world scenario.

The sparsity of feature maps zl is learned by applying hard thresholding in

ISTA Beck and Teboulle (2009) iterations at the inference phase. The computation

scheme contains iterative gradient and shrinkage steps. In gradient step, the

reconstruction error is calculated with respect to zl, and then the gradient gl is defined

as gl = RT
l (Rlzl − y). Once gl is computed, zl is updated by zl = zl − λlβlgl, where

βl parameterizes the gradient step size. In shrinkage step, the per-element shrinkage

operation is added to enforce the sparsity by

zl =

 zl − sgn(zl)βl |zl| > βl

0 otherwise
(4.5)

Inspired by the ISTA, we adopt the half thresholding Xu et al. (2012) to solve the

L1/2 norm regularization by shrinking zl in terms of

zl =

 2
3
zl(1 + cos(2

3
π − 4

3
ϕ(zl))) |zl| >

3√54
4

(2βl)
2
3

0 otherwise
(4.6)

where ϕ(zl) = arccos(βl
4

( |zl|
3

)−
3
2 ). The convergence of the solver is proved in Xu et al.

(2012).

The chosen L1/2 norm penalty is not an ad-hoc constraint for ADN framework. By

introducing the sparse constraint, we are expecting to decompose images into patches

with oriented gradient feature in different scales. These features are called Gabor-like

features. The final recognition can be explained as the descriptor matching with a
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designed distance metric. Recently, the related research reveals that the statistics

of such gradient based feature matching derives a heavy-tailed distribution Jia and

Darrell (2011). Considering such a prior, L1/2 norm regularization performs better in

handling signal reconstruction with a heavy-tailed distribution which has been proved

in theory Xu et al. (2012).

4.2.3 Feature Vector Formulation and Classification

The ADN model learns the hierarchical image features in an unsupervised way. In

other words, given the input images, the facial expression is automatically decomposed

into multi-layer feature sets on the layers with the fixed filters. However, the switches

between different images are not with the same configurations. That means, within

the same expression class, the image decompositions share similar features, but their

reconstructions are quite different from each other. Thus, for expression recognition

purpose, it is problematic to use the learned feature maps directly. An alternative

method is to construct the feature vector by selecting the largest M activations from

the top layer and re-project them to the first layer and use the reconstructed images

to represent the input. The reconstructed images on the first layer are subdivided into

equal-size small patches with spaced pixel shifts (‘stride’s). Within each patch, the

max-pooling is processed to generate a single value to represent the whole patch. The

down sampled images from different channels are reshaped, stitched and concatenated

into a vector in our work, which is the final representation for an input image used

for recognition. The entire process to construct the feature vector is illustrated in

Fig. 4.2.

We add a supervised classifier upon the learned features to implement the

classification. After the feature vectors are generated, we apply the SVM classifier

with the RBF kernel to expression recognition. All the classifications are based on 4-

fold cross validation. Due to the dense sampling in the aforementioned feature vector
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Figure 4.2: Feature vector formulation. The input is the projected first layer feature
maps.

formulation, the resulting feature vectors are of high dimension. Before we feed the

feature vectors into the classifier, we also apply PCA to reduce the dimensionality.

4.3 Object Recognition via L1/2 Norm Regularized

ADN: Evaluation

The object recognition experiment is carried on with the same MSRA saliency dataset.

There are totally 1000 images. The input image is not the raw image but the image

patch with detected salient objects. Since the dataset is not naturally designed for

object recognition, the image annotation is manually made. The whole dataset is

labelled as Animal, Bird, Building, Car, Plant, Human, Traffic Sign and Miscellaneous

class. To avoid the trivial affection from miscellaneous class, in the recognition

experiment, we use the images of first 7 classes but remove the miscellaneous class.

For testing, the MSRA saliency dataset B is used. There are totally 5000 images

(1000 duplicates to the original MSRA saliency dataset). Following the same criteria,

totally 585 testing images in aforementioned 7 classes are selected to formulate the

testing set. The statistics of the testing dataset is list in Table. 4.1. The dataset is

demonstrated in Fig. 4.3.
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Table 4.1: Statistics of the testing dataset from MSRA dataset B

Total Animal Bird Building Car Plant Human Traffic Sign
585 87 74 68 72 118 85 81

Figure 4.3: Demonstrations of MSRA saliency dataset for object recognition. From
top row to the bottom: Animal, Bird, Building, Car, Plant, Human and Traffic
Sign. The demonstrated images are saliency detection results. All the images are
normalized into the size of 256× 256.
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Figure 4.4: Learned filter kernels after training using 1000 saliency patches from
MSRA dataset. The numbers of kernels in each layer are 15, 50, 100 and 150
respectively. Each of them is of size 7× 7.

Pre-processing: Each image is converted to gray-scale and resized to 256× 256

(Bicubic interpolation). Local subtractive and divisive normalization (i.e. the patch

around each pixel should have zero mean and unit norm) is applied using a 1313

Gaussian filter with = 5. Since the images are various in illumination condition, the

pre-processing helps to reduce the negative effect from the lighting.

Model architecture: We use a 4 layer model, with 7 × 7 filters, and E = 10

epochs of training. From layer 1 to layer 4, the numbers of filter kernel are 15, 50, 100

and 150. Benefiting from the efficient inference scheme, the proposed ADN is able to

handle with many more feature maps and more data than conventional approaches.

By the 4th layer, the receptive field of each feature map element covers the majority

part of the image (189 × 189), making it suitable for the novel feature extraction

considering the representative and discriminant attributes.

Timings: With 585 training images and E = 10 epochs, it takes around 26 hours

to train the entire 4 layer model using a MATLAB implementation on intel i-5 CPU

(laptop environment without GPU acceleration). For inference, a single epoch suffices

with 10 ISTA iterations at each layer. The total inference time per image is 0.79 sec.

The learned filter kernels are demonstrated in Fig. 4.4. The learned feature maps are

also visualized in Fig. 4.5.
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Figure 4.5: Learned feature maps for each layer. The leftmost are feature maps
from layer 1 and the rightmost are feature maps from layer 4. Clearly, the fourth
layer feature maps have already depicted object contours and detailed structures.

Figure 4.6: Reconstructed images on image layer with M = 100 activations in the
fourth layer.

By utilizing the training and feature vector formulation strategy described in

previous section, we choose M = 100 at the fourth layer and re-project them back

to the pixel layer. Several reconstructed images in testing dataset are demonstrated

in Fig. 4.6. We trained the SVM classifier with RBF kernel on the generated feature

vector and calculated the recognition accuracy. We use 2-fold cross-validation in the

testing stage. Recognition accuracies are reported in Table. 4.2.

Appplying the SVM classifier to layer 4 features from the proposed ADN structure

produces the best results. Although the accuracy is lower than the convolutional
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Table 4.2: Recognition performance on MSRA saliency dataset. The comparison
approaches include PCA, SIFT and 5 layer CNN structure.

Proposed ADN + layer 2 64.6 ± 2.7%
Proposed ADN + layer 3 70.6 ± 3.2%

Proposed ADN + layer 4 81.3 ± 2.4%
Original ADN + L1 norm 72.3%

PCA + SVM 63.5%
SIFT + SVM 69.8%

CNN + 5 layers 88.4%

Table 4.3: Performance comparison between saliency detection results, ground truth
object patch and entire image, as the training and testing inputs.

Proposed ADN + saliency detection 81.3%
Proposed ADN + ground truth patch 84.0%
Proposed ADN + entire image 68.2%

neural network with the same task, it is acceptable that CNN is supervised training.

It asks for extra labeling information to fine tune the network parameters so as

the classifier. The proposed model received a gain of 11% over SIFT feature based

approach indeed encourages the research.

Noticed that, the input training and testing images are from the saliency detection

results which contains imperfect detection. Another experiment is conducted to

evaluate the performance of the proposed model on ground truth object patches

and the raw images without detection. It reflects the efficiency of the proposed ADN

so as to the complexity of the dataset. The final recognition results are illustrated in

Table. 4.3.

More detailed analysis of the L1/2 norm regularized ADN can be found in the

following section with a case study on facial expression recognition.
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4.4 Case Study: Facial Expression Recognition via

L1/2 Norm Regularized ADN

To evaluate the strength of the proposed ADN, we also conduct a case study

by applying the ADN structure on facial image data and implementing the facial

expression recognition.

From the psychology society, the recently FACES database Ebner et al. (2010)

provides a relatively large expression library. The FACES database contains two sets

with the same 171 individuals. Each person performs six expressions with the frontal

view position. Each expression is performed twice and separated into two sets. So

we have 2052 images in total.

Another labeled expression database is the Lifespan database Minear and Park

(2004). It is more challenging considering its diversity in races of performers, age span,

slight pose variations and uneven numbers of images for each expression. We take

only two types of expressions ‘Happy’ and ‘Neutral’ from this database for evaluation

usage (comparable to the existing work). There are 590 neutral face images and 254

happy face images in the database.

FER-2013 is one of the largest publicly accessible facial expression datasets Good-

fellow et al. (2013). The entire data consist of 28709 training images with unified

48 × 48 resolution under 7 different types of expression. The testing set is of 3589

images. We conduct the classification task on the dataset to validate the robustness

of the extracted features in the proposed unsupervised manner. The examples of

images from the dataset are shown in Fig. 6.6.

To perform a comprehensive investigation on the performance of the L1/2 norm

regularized ADN, we design four experiments using the FACES and Lifespan facial

expression databases. In the first two experiments, we retrieve the layer-wise

hierarchical features learnt by the proposed deep network and inspect the effect of L1/2

norm regularization by comparing the expression recognition accuracy with that using

the L1 norm regularized network . The third experiment evaluates the adaptation
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Figure 4.7: Expression databases illustration. The first row contains the six
expressions from FACES (Happy, Angry, Fearful, Sad, Disgusted and Neutral). The
second row is the Lifespan database with two expressions. All the images are cropped
based on region of interest for further usage. The last two rows contain the seven
expressions from FER-2013 (Angry, Disgust, Fear, Happiness, Sadness, Surprise and
Neutral).

of the ADN with respect to different image resolutions. In the fourth experiment,

we apply the model learnt from the FACES database on the Lifespan database to

validate the transfer learning capability of the proposed framework.

4.4.1 Visualization of the Learnt ADN and Layer-wise Com-

parison for Expression Recognition

The original FACES images are of the size 2500 × 2500. We crop out the region of

interest (ROI) containing the majority of face (from forehead to chin, ear to ear) and

downsample them to 128×128 to save the computation time. We randomly select 504

images from the whole database and use them as the training set. The remaining 1548

images are formulated as the testing set. There is no identity overlapping between

the training and testing sets, which means the images from the same person can be

either in the training group or the testing group, but not both.
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Figure 4.8: Hierarchical features learnt by the proposed ADN architecture. Feature
generated by projecting the largest one activation from each layer back to the pixel
space. From left, features learnt by layer 4 to layer 1. The activation from layer 4 has
the receptive field covered the entire face. In the 3rd layer, features are acquired at
the facial parts level (nose, eyes, mouse, etc.). Features in 2nd layer are mostly basic
junction parts. In the 1st layer, the primitive level Gabor-like features are learnt. The
four-layer feature sets form the feature hierarchy. Noted that features are not in the
original scale.

A four-layer ADN is trained in our experiments with the 7×7 filters in each layer.

The general parameter configurations and statistics are shown in Table 4.4. Other

latent parameters have the same setting as in Zeiler et al. (2011). These settings

remain the same for the following experiments until changes are mentioned.

By feeding the training set into the ADN network, the top-down hierarchical

representation is learned. As the pooling process being applied, the feature maps zl

shrinks in size but increases in numbers and size of receptive fields. More and more

distinct features are learnt gradually. Different from other deep feature hierarchies,

in the proposed ADN model, the features at all layers can be visualized with a clear

semantic meaning. From the first layer, the face image is decomposed into facial

parts (facelets), followed by layers subdividing the features in smaller scales that

form the junctions, curves, edges till the oriented Gabor-like features in the fourth
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layer. The learnt hierarchical features are illustrated in Fig. 4.8. At the 4th layer,

the receptive field of each feature map element covers the whole image range. The

largest activations picked from this layer reflect the strongest response towards the

input stimuli, and the re-projection back to the first layer feature maps with these

activations are deemed as the appropriate features for expression recognition.

Table 4.4: General L1 and L1/2 norm regularized ADN parameter setting and layer-
wised recognition performance. The last two rows contain the recognition accuracies
for L1-ADN and L1/2-ADN respectively.

Property Layer 1 Layer 2 Layer 3 Layer 4

# of F-Maps 15 50 100 150

Pooling Size 3× 3× 3 3× 3× 2 3× 3× 2 3× 3× 2

Recep Field 7× 7 21× 21 63× 63 189× 189

Feat Dims 134× 134 51× 51 23× 23 14× 14

L1-ADN 58.70% 61.06% 68.31% 70.59%

L1/2-ADN 74.13% 69.22% 64.89% 81.70%

Considering the expression recognition task, the straightforward question is that

at which level the expression manifold is best represented. To inspect this, we test

the trained ADN with the testing dataset, and construct all-layer features. Then

the feature vectors from each layer are extracted and used for the SVM classifiers

following the method∗ discussed in Section 4.2.3. The classification results and

comparison are shown in Table 4.4. The feature using top layer activations produces

the highest recognition accuracy. As a comparison, in Guo et al. (2013) which uses the

handcrafted Gabor features on the same database, it only gives 69.32% in accuracy,

as shown in Table 4.5. At this point, we have successfully constructed the ADN

based deep network and applied it to the expression recognition task. We also

conducted the experiments on the state-of-the-art methods with the same dataset.

The final results are reported in Table 4.5. As an unsupervised deep hierarchy, the

proposed architecture performs only two major computations: intra-layer convolution

and intra-layer max-pooling, but gains the capability to extract the expression related

∗To generate the feature vector, pixel shift is set to 4, patch size is equal to 4 × 4. There is no
overlap between patches. PCA is set to cover 95% of the information. The number of top largest
activations selected is set to M = 100
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Figure 4.9: Demonstrations of the pooling locations on the images. The red blocks
represent the pooling position at one channel. Notice that, most of the pooling
position are coincident to the local landmarks on the face.

components from the complex facial image space and receives competitive results in

FER tasks.

ADN belongs to the family of bio-inspired models which also include the famous

works CNN LeCun et al. (2010) and HMAX Serre et al. (2005). In the HMAX model,

a hierarchy of increasingly complex features are generated by alternating template

matching and max-pooling. In particular, at its S1 layer, the input image is firstly

convolved with the Gabor filter banks to closely mimic the visual cortical processing.

We receive the same feature maps in the higher layer and this kind of Gabor-like

features is coincidentally used in the state-of-the-art expression recognition works and

received the highest classification accuracy in the reports. The max-pooling is also

shared in HMAX and ADN, leading to increased invariance to distortions. Facilitated

with the ‘switch’ setting, when we re-project the features from top layer back to the

image space, we are able to locate the pooling positions precisely. Visualizing these

pooling locations, we find that most of these points align with the key feature points

(FPs) representing the landmarks on the face Bettadapura (2012). The ADN captures

both the local appearance and globally geometric shape in its simple operations while

at the same time to strengthen itself in expression recognition capability.
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Table 4.5: FER accuracy comparison. For LDA Yu and Yang (2001) (Linear
Discriminant Analysis), 504 images are used for training, the rest are used as testing
samples; for RI-LBP Shan et al. (2009) (Rotation-Invariant LBP), we use one-vs-all
classification scheme and SVM as the classifier; for CNN Phung and Bouzerdoum
(2009), we use one-vs-all classification scheme and percepton as the classifier.

Approaches Recognition Accuracy
LDA 29.54%

Gabor ? 69.32%
RI-LBP 79.20%

CNN 80.95%
L1/2-ADN (Layer 4) 81.70%

Table 4.6: Recognition accuracies comparison based on FER-2013.

Methods Recognition Accuracy
Human Accuracy 65± 5%

DLSVM L2 Tang (2013) 71.16%
L1/2-ADN (Layer 3) 61.48%

4.4.2 The Robustness of The Unsupervised Feature

The robustness of the extracted feature against pose, illumination and occlusion

variations is an essential factor in the real world FER task. We conduct the

experiment to validate such property over the FER-2013 dataset. Since the image

resolution is 48× 48, we use a different configuration of the network by reducing the

number of layers to 3, meanwhile, fixing the kernel size of all the filters and pooling

operation. Consequently, the feature map dimensions are changed into 54×54, 24×24

and 14 × 14 respectively in each layer. We keep the same processes for the feature

vector generation and recognition using SVM. The learnt filter kernels and features

are shown in Fig. 4.10. The final FER accuracy is reported in Table. 4.6.

According to Goodfellow et al. (2013), the human recognition accuracy on FER-

2013 is 65±5% due to the pose, illumination and occlusion variations included in the

dataset. The winning solutions in FER-2013 challenge are all supervised schemes or

using handcrafted features Goodfellow et al. (2013). We received encouraging results

in terms of the unsupervised learning approach embedded in the proposed L1/2-ADN
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Figure 4.10: Demonstrations of the learnt filter kernels and projected features from
3rd layer activations to the image space on FER-2013 dataset. We have 15, 50 and
100 filters on each layer.

for FER task. The layerwise convolution and the pooling indeed assist in capturing

subtle semantic features from the facial images.

4.4.3 The Role of L1/2 Norm Regularization

Sparsity constraint is deployed to encourage learning of distinctive features in the

representation learning. Mostly, L1 norm regularization is adopted as a proxy for

optimizing L0 sparsity. However, L1 regularization cannot give out the sparsest

solution for certain data distributions, i.e. uniform distribution, heavy-tailed

distribution Xu et al. (2012). We introduce the L1/2 norm regularization with

iterative solver to the ADN framework aiming to exploit the optimized features in the

expression manifold. The quantitatively analysis of the L1/2 norm regularization is

conducted from two aspects. For comparison purpose, we train two ADN models with

the L1 regularization prior and the proposed L1/2 regularized prior respectively with

the same network settings. The layer-wise recognition results are shown in Table 4.4.

We evaluate the facial image reconstruction capability and expression recognition
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Figure 4.11: Demonstrations of the image reconstruction using 4th layer feature
activations. From left: original input image (gray value), reconstruction with L1/2

norm regularized ADN and the reconstruction with L1 norm regularized ADN. From
the figure, the left side nasolabial fold cannot be well reconstructed in the L1 norm
regularized ADN. The MSE is reported in Table 4.7.

accuracy with the learnt feature maps at the 4th layer of the two regularizations. The

reconstruction error is measured as MSE.

Table 4.7: L1/2 norm and L1 norm regularization comparison in image reconstruction

Experiments Recon Error (MSE)
L1-ADN (Layer 4) 1.8311e-04
L1/2-ADN (Layer 4) 6.1035e-05

The reconstruction results in Table 4.7 suggest that the ADN regularized by the

L1/2 norm constraint is more efficient in distinctive feature learning to decouple

the expression manifold factors from the image space. Both the L1 norm penalty

and L1/2 norm constraint force the representation learner to generate the Gabor-

like features at the higher layers. The layer-wise recognition results are shown in

Table 4.4. However, from our experimental results, L1/2 norm regularization indeed

produces more discriminant feature for expression representation. As reported in

the original ADN paper Zeiler et al. (2011), one of the reasons to project the top

layer activations back to the 1st layer is that, the feature maps perform similarly as

the dense SIFT feature descriptors. The visualization of 4th layer features in Fig 4.8

clearly demonstrates the property of the generated features is oriented gradient based.

We conduct the statistics on the feature maps by calculating the histogram of

derivatives ∇xF and ∇yF , where F represents the 4th layer features. The generated

curves are consistent with the assumption that the features are highly non-Gaussion,
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Figure 4.12: Histogram of ∇xF (left) and ∇yF (right) by accumulated 50 facial
image feature maps on 4th layer.

but kurtotic with a heavy tail, as shown in Fig. 4.12. Thus, the L1/2 norm constraint

is naturally validated to be more efficient in FER tasks.

4.4.4 Effect of Multi-resolution

Although the ADN enables the efficient learning of multi-scale features to represent

the input images, as a hyper parameter, the filter size is determined empirically in

all related literatures Zeiler and Fergus (2014); Zeiler et al. (2011). The relationship

between the input image resolution and the deep structured filter size is rarely studied.

In this experiment, we investigate into the effect of input image resolution on the

expression feature extraction with fixed filter size. The input images are re-scaled to

64× 64 and 256× 256 separately. The stacked filters in the ADN keep their original

size. Then the dimension of the learnt feature maps and their receptive fields at each

layer are changed. For the 64× 64 dimensional images, the newly required receptive

field at the 3rd layer has already covered the whole image range. Comparatively, for

the 256 × 256 sized image, the receptive field in the top layer shrinks to the limited

scope of the image. The top layer features degenerate to local features. Other network

configurations keep the same as the previous experiment, and we show the expression

recognition results in Table 4.8.

When we look close to the recognition results, although the 256× 256 resolution

images contain more facial details, instead, the 128× 128 images receive the highest
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Table 4.8: Comparison between multiple input resolutions with L1/2-ADN and 4th

layer features

Property
Feature Map Dims

(4th Layer)
Recog Acc

Res. 64× 64 12× 12 69.32%
Res. 128× 128 14× 14 81.70%
Res. 256× 256 19× 19 57.76%

recognition accuracy. In the learnt feature hierarchy, the first layer feature maps are

obtained by convolving the image patch-wise with the fixed sized filters. The size of

filters determines the strength scale. Combined with pooling size, it also determines

the receptive field of one element in each layer, and so, define the type of feature is

a global one or not. The compatible correlation between the filter size and image

resolution results in both the best local representation and global abstraction for

ADN in face image feature learning. Such a corporative setting is extremely desirable

in the challenging tasks, such as FER. Based on our observation, the filters sized to

7× 7 are suitable to measure the scale of the major landmarks (eyes: 20 to 25 pixels

in length; nose: 50 pixels in length; mouse: 60 pixels in length) and beneficial to

obtain the global geometry of the face with 128× 128 resolution inputs.

4.4.5 Transfer Learning: Feature Adaptation

A good representation learning algorithm is expected to exploit the commonalities

between different learning domains in order to share and transfer learnt knowledge

across databases Bengio (2012). We hypothesize the L1/2 norm regularized ADN

has such advantage in feature adaptation because of its unique learning manner

that designed to learn the distinctive features from facial images. By using the

filters trained on FACES and applying them to classify the Lifespan database, we

validate the generalization attribute of the proposed ADN model. Particularly, in

this experiment, we preprocess the Lifespan images the same way as we did on the

FACES images (crop ROI and rescale into 128×128). For comparison reason, we only
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classify the ‘Happy’ and ‘Neutral’ expression in Lifespan database. The recognition

accuracy is 71.42%. The comparable result reported in Guo et al. (2013) for Lifespan

database is 64.04%, and this result is obtained using the features in the same domain

as the training.

The promising result indicates that, the hierarchical feature set gains itself by

providing multi-level, multi-scale representation for the face image. The rich features

are genuinely encoding the expression components rather than the environmental

factors. Such an impressive property enables the proposed ADN framework

successfully apply in transfer learning and multi-domain tasks.

4.4.6 Discussion

Upon now, we have comprehensively investigated the L1/2 norm regularized ADN

and its performance in facial expression recognition. The promising results arise

more attentions to the principles behind the unsupervised deep structure.

Lots of research papers have formally analyze the behavior of deep network in

learning hierarchical feature from unlabeled data. These algorithms are believed to

be a mimic to the organization of the cortex Lee et al. (2008). The information of

the learnt feature passed through the shallow layer to deep should be analog to the

computations performed in visual areas of human brain.

To date, researchers have revealed certain properties of visual area V1 and V2.

As demonstrated in Lee et al. (2008), on the shallow layer, localized, oriented, edge

filters are extracted to model V1 cell receptive fields. Further on deeper layer, the

network gains capability to pick up both contour and corners as well as junctions

information.

Although we cannot clearly define the facial expression with such components,

it indeed enriches the description of expression. Most of all, these features are

spontaneously generated from deep network with sparse constraint without any other

priors. It makes the unsupervised learning realistic in representation learning.
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Look close to Fig. 4.8, the proposed deep network generates the hierarchical

features which comprise of the oriented bars, junctions and contours. The behavior

of the network just obeys the mechanism of visual cortex in area V1 and V2.

Combined with data prior which is heavy-tailed distribution in both of the input data

and generated features, we have confidence to enforce the expression representation

learning with L1/2 norm regularization. From this perspective, the performance of

the proposed deep network for unsupervised FER is theoretical advantageous.
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Chapter 5

Facial Feature Parsing and

Landmark Detection via Low-rank

Matrix Decomposition

5.1 Related Work

In general, the facial parsing tasks are implemented in two ways: landmark-based

approach and segmentation-based algorithm Smith et al. (2013). On one side, the

landmark-based method computes to mark each pixel on the face with semantic part

label based on the pixel attribute. The performance heavily replies on well-defined

initialization. The improved version of such approach includes the Markov Shape

Model Liang et al. (2006) which considers the local line segments and appearance to

alleviate the dependency of the initialization. However, the problem still remains since

such technique asks for expensive computation cost and make it fails in multiple real-

world applications. On the other side, the segmentation-based approach is proposed

by considering the computational efficiency and robustness to pose, expression

variations. In literature Liang et al. (2008), a component-based discriminant search

algorithm is designed. Multiple facial component detectors are combined to detect
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the facial parts. In the recent research, since facial parts have unique geometric

configurations and appearances, the sparse matching and deep learning network are

adopted to detect and correlate the facial parts and their label belongings. However,

there are still drawbacks in these methods. First, facial features are hard to be given a

uniform model. For example, there is no clear shape model to describe the mouth with

different expressions. Pose variation may also cause appearance change in different

scenarios. Once it failed to generate the model, it is impossible for matching process

to locate the correct components on face. Second, it is difficult for a single detector

to precisely locate all facial components. Thus, we either need to increase the number

of detectors or get a failure parsing map in the process of matching.

Inspired by the saliency detection work in Shen and Wu (2012); Lang et al. (2012),

we model the facial parsing as the salient feature detection on face. The motivation of

this work compromises with the observation that, the facial features, e.g., eyes, nose

and mouth have their unique appearances and thus making them visually salient

comparing with the skin texture. We decompose the face image into small patches.

It should be noted that, the facial features only occupy a small amount in these

patches. It is coincide with the observation of sparsity. In the detailed process,

multi-level features are explored to represent each patch. The feature vectors are

then stacked to formulate the matrix. Both of the appearance information and

spatial coherence of the sparsity would be reserved. Meanwhile, a linear feature

transformation matrix is multiplied to boost the training in order to get a good feature

representation with labeled data. After applying the low-rank matrix decomposition

on the feature matrix, as the sparse noise, the facial feature components are expected

to separate out from the recovered skin background. The whole algorithm is detection-

based without any high level prior knowledge or models. That means if the facial

components disappear due to occlusion, the algorithm cannot predict the positions

of the features.
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5.2 Parsing Algorithm

Before we introduce the parsing algorithm details, the overview of low-rank matrix

decomposition is given in Section 5.2.1. After that, we describe the proposed feature

representation and transformation matrix learning in two steps. To complete the

parsing task, the refining process, as well as the landmark detection task are discussed

in Section 5.2.4.

5.2.1 Matrix Decomposition by Low-rank Matrix Represen-

tation

Instead of using the spatial information of the image, the face is represented in feature

space and denoted as F. We model the facial image as a combination of low-rank

skin background L and facial features as sparse noise S. The prototype of matrix

decomposition by low-rank representation (LLR) Liu et al. (2013) is formulated as

solving the following problem,

(L∗, S∗) = arg min
L,S

(rank(L) + λ‖S‖0)

s.t. F = L+ S

(5.1)

where, L∗ and S∗ are optimized results of skin background and the noise residual

respectively. ‖ · ‖0 represents the L− 0 norm of the vector.

Solving Eq. (5.1) is NP-hard. A convex surrogate of the equivalent problem

resulted in

(L∗, S∗) = arg min
L,S

(‖L‖∗ + λ‖S‖1)

s.t. F = L+ S

(5.2)

where ‖ · ‖∗ represents the nuclear norm and ‖ · ‖ indicates the L− 1 norm. Solvers

of LRR problem are proposed in many research articles. We adopt the most popular

RobustPCA method Liu et al. (2013) which is more extendable and flexible in many

cases. We are interested in the decomposition result S∗ which contains the extracted
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parsing map in gray-scale. The highlight pixels in S∗ demonstrate the segmented

facial components.

5.2.2 Facial Image Representation

Given a face image, we firstly apply Cascade Face Detector Viola and Jones (2004)

to locate the face region. The detected face region is augmented to the uniform size

256× 256. To acquire a complete representation of the face, similar to Shen and Wu

(2012), we extract multi-modality visual features of the face region which are,

• Color Features in HSV color space. The image hue, saturation and light value

are used to represent the color information;

• Texture Steerable Pyramids Simoncelli and Freeman (1995). The steerable

pyramid filter is adopted to extract the texture information. We use the filter

responses in 4 orientations and 3 scales results in 12 pyramid maps;

• Gabor Wavelet Features. Gabor filter is also performed to explore more detailed

texture features. We totally use Gabor wavelet filters in 6 orientations and 3

scales on the image, yielding to 18 wavelet feature maps.

All of these features are properly normalized to reduce the cross-data variations.

They are vertically stacked to formulate the feature vector. In the image space, we

equally divided the face region into 4 × 4 non-overlapping cells. For each cell, the

mean value of feature vectors fi is computed to represent the entire cell. By reshaping

the feature vectors, the matrix representation of feature maps is generated in the form

of F = [f1, f2, ...fN ], F ∈ RD×N , where D is the feature dimension (33) and N is the

number of cells (4096 in our case). Matrix F is the facial image representation.

5.2.3 Learning Process of Linear Transformation Matrix

The matrix of the facial skin background is naturally low-rank in face image. To

boost its characteristic, a linear transformation matrix T is employed to learn in
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the feature space. In the learning process, we use the dataset with hand-labeled

parsing map. For each training image, the image feature representation is extracted

according to Sec. 5.2.2. A diagonal matrix M = diag(m1,m2, ...,mN) is generated to

indicate feature vectors belongings to the skin background or not with the value 1 or

0. With such configuration, the transformation matrix T is learnable by solving the

optimization problem,

T ∗ = arg min
T

(
1

K

K∑
k=1

‖TFkMk‖∗ − γ‖T‖∗)

s.t. ‖T‖2 = c

(5.3)

where, K is the total number of training images and k is the image index. To avoid

a trivial result, we add a constraint to keep the L− 2 norm of T be a small constant

value (c = 2 in our experiments). For the solver of Eq. (5.3), one can refer to Shen and

Wu (2012). The role of indicate matrix M is that it zeros out all the vectors in the

feature matrix if it is not skin background. Therefore, the transformation matrix T is

indeed forcing TFM to learn the features from background and meanwhile keeping

it in low-rank form. The learnt T ∗ is used for all the testing images for parsing. In

the testing stage, we multiply T with facial image representation F and derive the

parsing map by applying Eq. (5.2) on T ∗F .

5.2.4 Post-process and Landmark Detection

With the parsing map, our algorithm can be easily extended to detect the landmark

points on face. In our work, we consider five landmarks which are left eye center,

right eye center, nose tip, left mouth corner and right mouth corner. This setting is

coincide with Sun et al. (2013) and most commonly used for landmark detection.

The landmark points are extracted based on the paring map. Considering the face

detection algorithm we used for locate the face region, we have the prior knowledge

that face is generally centered at the face region. So we multiply a Gaussian map Judd
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et al. (2009) to enhance the detected feature localization. Then the kNN clustering

algorithm is used to separate feature components. To acquire the clear boundary

for each feature component, ellipse matching Ellis et al. (1991) is applied for each

cluster. Although the facial components may not perfectly fit in the ellipse shape,

it would not hurt the landmark localization. The eye center points are equivalent to

the centers of the eye clusters and so as the nose tip. For the mouth corners, they

are boundary points achieved by mouth cluster.

5.3 Experiments

We conduct two experiments on two challenging datasets FACES Guo et al. (2013)

and LFPW Belhumeur et al. (2013) to evaluate the effectiveness of the proposed

algorithm. Both of the datasets come with manually pointed landmarks. Parsing

maps can be generated though. We perform transformation matrix learning based

on FACES with randomly selected 1000 images. More concrete, the FACES image

contains 80 human labeled landmarks along the entire face. We select the related

points to formulate bounded rectangles which covered eyes, nose and mouth regions,

as shown in Fig. 5.1. Based on these rectangles, the indicate matrix M is established

according to the discussion in Sec. 5.2.3. All the images are uniformly resized into

256× 256 as the input.

5.3.1 Experiment I: Qualitative Performance of Face Parsing

We test the proposed parsing algorithm on FACES initially. FACES images are

challenging in terms of the large range of ages and variation in expressions. The

proposed algorithm is designed to be robust against the variations. Notice that,

eyebrows are not considered in our indicate matrix M , so that they are not the

expected components in parsing although they are visually salient on face. To

demonstrate the effectiveness of the transformation matrix T . We also apply LLR
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Figure 5.1: Hand-labeled points on FACES image and the generated bounding
rectangles for training.

Figure 5.2: Qualitative comparison on LFPW dataset. Noticed that, our results
received by testing on 500 non-occluded images.

to the facial feature representation matrix alone. The parsing results are shown in

Fig. 5.3. Clearly, the matrix T enhances the capability to learn discriminant features

which is beneficial to distinguish the facial components from the face region. For the

LFPW dataset, it is more challenge because the faces contain more variations, such as

pose, illumination change and occlusion. As we mentioned, the proposed algorithm is

detection-based, once the facial components are occluded by other object and do not

visually exist in face region, our method cannot predict their locations and segment

them out. It is reasonable for real-world application scenarios. So we do not count it

as failure. The parsing results are illustrated in Fig. 5.3.
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Figure 5.3: Parsing map demonstration. The first row contains the original input
faces with Cascade Face Detector localized face regions. The second row contains the
parsing map without transformation matrix T . The last row illustrates the parsing
maps generated by the proposed algorithm. The parsing maps without T are polluted
with unrelated pixels and the proposed method detects more regions on the facial
components.

5.3.2 Experiment II: Quantitative Performance of Landmark

Detection

The five-points landmark detection is validated by applying the method in Sec. 5.2.4

from derived parsing maps. The detected landmarks are demonstrated in Fig. 5.4.

Quantitative performance is measured with average detection error which is defined

as,

err =
√

(x− x′)2 + (y − y′)2/l (5.4)

where (x, y) is the ground truth and (x′, y′) is the detected location. l represents the

width of the bounding box. It is the same criteria as in Sun et al. (2013). If an error

is larger than 5%, it is counted as a failed detection. The failure rate is also reported.
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Figure 5.4: Landmark detection demonstration. The top row contains the images
from FACES and the bottom row images come from LFPW.

For FACES, except the 1000 training images, the rest images (1052) in dataset

are used for testing. The results are recorded in Table 5.1. For LFPW, since its

nature that is not proper for our algorithm, we select 500 non-occluded images as

testing samples. We give ‘*’ mark on the comparison results with other methods.

The comparable results are list in Fig. 5.2.

Table 5.1: Testing results on FACES dataset

LE RE N LM RM
Average Errors (%) 3.2 4.4 5.7 1.9 2.1
Failure Rates (%) 1.7 1.5 7.8 2.1 1.8

From the experiments, the proposed algorithm receives favorable results on

benchmark database. The effectiveness is completely validated.

5.4 Conclusion

In this chapter, we proposed a novel face parsing algorithm where the facial

features are segmented out by modeling them as sparse noises via low-rank matrix

decomposition. For precise parsing, a learnt linear transformation matrix T is added
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to boost the performance. With the generated parsing maps, we further extended the

work to accomplish the landmark detection on face. The proposed algorithm is tested

on two benchmark datasets and demonstrated competitive performance comparing

with the state-of-the-art techniques.
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Chapter 6

Deep Tree-structured Face: A

Unified Representation for Facial

Biometrics

6.1 Introduction

Faces possess multiple channels information. It conveys biometric information such

as human identity, age, expression, gender, etc. The ability to automatically under-

stand face information is essential for computer vision, biometrics and psychology

researches. Although the face analysis has been extensively studied for decades,

face recognition, facial expression recognition and age estimation are still addressed

separately in independent tasks. The critical problem of uniformly representing

human face with multiple semantic meanings has not been well studied due to the

highly coupled relationships of the latent factors in facial images.

Previous methods of facial image analysis allow the discriminant feature learning

for specific facial biometric. Feature descriptors are proposed to model the face in

shape Gökberk et al. (2006); Le et al. (2011), landmark Burgos-Artizzu et al. (2013),

local texture information Guo et al. (2009); Ahonen et al. (2004) or even facial parts
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Figure 6.1: Motivation of this work. Traditional facial image analysis treats the face
recognition, expression recognition and age estimation separatively. We propose to
jointly learn a unified representation for the face and use it in multi-task biometrics.

with geometric relationship Senior (1999); Li et al. (2010). However, all these features

are impractical to represent multi-factor facial semantics.

In the recent years, deep learning neural network receives a great deal of

research interests. The deep models such as ConvNets LeCun et al. (1998),

AlexNet Krizhevsky et al. (2012) and GoogLeNet Szegedy et al. (2015) have been

proved effective to extract hierarchical visual features and successfully applied in facial

biometrics. The success of deep learning comes from its strong discriminant learning

capability and hierarchical representation for different patterns. However, in its layer-

wised learning strategy, the feature map shrinkage by subsampling or low-dimension

projection at the same spatial plane destroys the composite symbolic structures of

input data, such as trees and graphs. It limits the generative representation for such

data.

Motivated by the multi-task learning Collobert and Weston (2008) and deep

learning concepts, we propose to build a new architecture which enables to jointly

81



learn a unified tree-structured face representation Socher et al. (2012). The proposed

representation is constructed from the shallow neural network model which gains

the advantage of utilizing over-complete low-level features Sun et al. (2014). It

hierarchically combines local patches to generate the root node representation in

tree structure. We recursively apply the semi-supervised AutoEncoder to enhance

the semantic learning. The final learnt feature is claimed to uniformly represent the

face image and be applicable to multi-task biometric recognitions. The motivation of

the work is illustrated in Fig. 6.1.

6.2 Learning Tree-structured Face Representation

In this section, we describe the algorithm that is designed to formulate the tree-

structured face presentation via the hybrid deep neural network. We firstly learn

CNN filter kernels by clustering random patches from facial images. Images will be

fed into the single layer CNN network, resulting in the translation-invariant low level

multi-layer representation. Semi-supervised AutoEncoder is applied recursively to

compose the tree-structured features that we would adopt for classification tasks.

6.2.1 Single-layer CNN Network Learning

The recent researches on ‘Width versus Depth’ in deep neural network reveal the

important role of large number of nodes in the intermediate layers Coates et al.

(2011); Socher et al. (2012). We follow the procedure proposed by Coates et al. Coates

et al. (2011) to generate the low-level features with single layer CNN network. The

algorithm contains K-means clustering to compute the filter kernels and single-layer

CNN feature extraction with such learnt kernels.
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Figure 6.2: Unsupervised CNN Filter Kernel Learning. The solid squares represent
centroids of clusters.

Unsupervised CNN Filter Kernel Generation

We randomly extract patches from given images. Normalization and whitening are

used on these patches to reduce the variations. Then K-means clustering is applied

over the patch set. Each cluster centroid is treated as the learnt filter kernel. Since

we consider RGB-color images, both of the edge and color information are captured.

We demonstrate filter kernel generation process in Fig. 6.2, and the learnt kernels

are illustrated in Fig. 6.3. Clearly, the Gabor-like edge kernels with different scales

and orientations are preserved. One particular result when using a large k value in

K-means is that, the QR code-like kernels emerge in the learnt filter set, which have

been proved to be deeper layer features in deep belief net Hinton et al. (2006). The

unsupervised learnt kernels will be used in the following CNN network.
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Figure 6.3: K-means learnt CNN filter kernels. k = 400, kernel size 9× 9. Noticed
that, both of the Gabor-like kernels and QR code-like kernels emerge which are similar
to the deep belief net first two layers kernels.
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Single-layer CNN Network

To generate the low-level features for the tree-structured face representation, we use

the single-layer CNN network. The main idea is to explore the translation-invariant

attributed features and the rich texture information from facial images. For each

image of the size SI (equally in height and width), we convolve it with squared filter

kernels of the size Sk, which resulting in L convolution response of the dimensionality

SI − Sk + 1. We adopt max-pooling strategy after the convolution process. Each

pooling is taken on a squared region of size Sp with a stride s. We then obtain a

pooled response with equal height and width, sized as r = (SI − Sp)/s+ 1. The final

output after the single-layer CNN network would be a 3D matrix of the dimensionality

L×r×r. The 3D matrix will be served as the input for the subsequent neural network.

6.2.2 Tree-structured Face Representation via Semi-supervised

AutoEncoder

Given a facial image, we are exploiting to find a hierarchical representation considering

latent variables such as identity, expression and aging factors embedded in the image.

The modeling process is implemented in a recursive manner via the semi-supervised

AutoEncoder Socher et al. (2011). We firstly introduce the AutoEncoder network and

proceed it to a semi-supervised version. Based on such a configuration, we describe

how to apply it recursively to formulate the tree-structured representation for the

face. We use the same procedure to all the facial images to generate the features for

subsequent multi-task classification.

AutoEncoder Neural Network

AutoEncoder is a diabolo-shaped neural network. It is usually used to learn a reduced

dimension representation for its input vector. Considering the goal of this research is

to find a compact representation for face image, we follow the concept proposed by
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A.Lemme et al. Lemme et al. (2012) to model the AutoEncoder with sparse and non-

negative constraints which are efficient in encoding. Assume we are given a pair of

input vectors [xkp, x
k
q ] from dataset with the length k, the AutoEncoder is used to find a

new vector representation yk for the input pair. It tries to learn the parameters in the

network that reconstruct input vector catenation by minimizing the error function,

denoted as

Erec([x
k
p, x

k
q ]) = ‖g ◦ f([xkp, x

k
q ])− [xkp, x

k
q ]‖2 (6.1)

where yk = f(W [xkp, x
k
q ] + b) is called encoder, W ∈ Rk×2k is the tied weight matrix

connects between input nodes and hidden nodes. g(yk) = W Tyk acts as a decoder. f

is usually a component-wise activation function deployed on the output layer. To

enhance the compact feature learning, the sparsity constraint is incorporated by

adopting the augmented logistic function as the activation which is in the form of

h([xkp, x
k
q ]) =

1

1 + exp−(aigi−bi)
(6.2)

The information transformation between the neurons are controlled by adjusting the

parameter ai and bi. As the sparsity measurement, the mean activity level µ appears

in the learning process of ai and bi. As proposed in the intrinsic plasticity mechanism,

we acquire the sparsity by setting µ to [0, 1] ranged small value. The updating rule

for ai and bi is simply the gradient descent with learning rate ηIP ,

4 bi = ηIP (1− (2 +
1

µ
)hi +

1

µ
h2i ) (6.3)

4 ai = ηIP
1

ai
+ gi4 bi (6.4)

where hi is the activation of the ith neuron. The lifetime sparsity is accomplished in

gradient learning. We set ηIP = 0.001 and sparsity µ = 0.5 for all the configurations.
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To enhance the non-negative weight learning, we simply deploy the online error

correlation rule in the weight matrix updating,

4 wij = η(xi − x̂i)hj + |w̃ij| (6.5)

where |w̃ij| converts negative value into positive. Learning rate η is set to 0.002.

Such a configured AutoEncoder acquires encoding efficiency in a self-adaptive way

that accelerates the procedure with sparse and non-negative properties Guo et al.

(2015).

Semi-supervised AutoEncoder Neural Network

Upon now, the AutoEncoder neural network was completely under the unsupervised

regime and totally induced to represent the general information towards capturing

facial identity semantic in terms of reducing the facial image reconstruction error.

Apparently, to find a unified facial representation which is suitable for different

biometrics, such as expression recognition and age prediction, we need to disentangle

such latent factors with more discriminative learning.

In the previous section, AutoEncoder is designed to model the input vector

distribution with a compact representation. We can leverage the encoding process by

adding on two softmax layers to predict expression and age distributions respectively,

dexp(y; θexp) = softmax(W label
exp · y) (6.6)

dage(y; θage) = softmax(W label
age · y) (6.7)

Assuming we have Kexp labels for expression prediction, dexp would be a Kexp-

dimensional multinomial distribution. Let texpk be the kth element of the ground

truth label information for expression, the cross-entropy error is defined as

EcExp(y, t
exp; θexp) = −

Kexp∑
k=1

texpk log dexpk (y, θexp) (6.8)
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The cross-entropy error for age prediction is defined in the same way, as

EcAge(y, t
age; θage) = −

Kage∑
k=1

tagek log dagek (y, θage). (6.9)

The final semi-supervised AutoEncoder objective function is updated by adding

these two cross-entropy terms together and applied over the entire training set

E([xp, xq], t
exp, tage, θ) = λ1Erec([xp, xq])

+ λ2EcExp(y, t
exp, θ)

+ λ3EcAge(y, t
age, θ).

(6.10)

The hyperparameters λ1, λ2 and λ3 weight and normalize the strengthes from

different error terms with the constraint
∑
λi = 1. In the training stage, the errors

backpropagate and force the neural network to learn a new representation y which

carries different semantics in terms of minimizing the objective function iteratively.

In practice, we use the same gradient descent-like rule to learn all the parameters,

as described in Section 6.2.2. The semi-supervised AutoEncoder neural network is

demonstrated in Fig. 6.4.

Tree-structured Representation Learning

AutoEncoder is easily to be applied recursively to learn a tree-structured represen-

tation once the tree’s setting is available as a prior. It has already been used in the

symbolic data representation learning, such as in natural language processing, it is

used to predict sentence sentiment distribution Socher et al. (2011). Inspired by these

work, we design a new setting which does not rely on the given tree structure, instead,

the model can autonomously learn it from the data.

In Section 6.2.1 we have obtained the 3D matrix representation in dimensionality

of L×r×r to represent the facial image. In the image plane, the facial image is consist

of r×r super-pixels. The computation loop of the tree-structured representation starts
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Figure 6.4: The structure of the semi-supervised AutoEncoder. We incorporate
labeling information in terms of cross-entropy errors to enforce discriminant feature
learning.

applying the semi-supervised AutoEncoder recursively on each pair of neighboring

super-pixels, and recording the resulting errors. We compare and pick the super-

pixel pair which has the smallest reconstruction error as the leaf nodes to generate a

parent super-pixel. Then we shift the AutoEncoder to the parent super-pixel position,

calculate the reconstruction errors between it and its neighbors, and update the error

recording list. The computation loop continues to find the pair with smallest error

and combine them until there is only one super-pixel remained, as shown in Fig. 6.5.

The entire search and combine path is also recorded. The resulting super-pixel is the

facial image representation and the final path is the learnt tree-structure. We would

use them in the testing stage.

6.3 Experiments

In this section, we firstly introduce the multi-factor facial image dataset FACES Ebner

et al. (2010) and the standard face recognition, expression recognition and age

estimation experiments based on it. We then conduct extended experiments to

analyze the performance of the unified representation. To receive the objective

89



Figure 6.5: The computation model demonstration. The super-pixels are recursively
combined to generate a tree-structured representation for the face image. Semi-
supervised AutoEncoder is applied on each triplets to combine two super-pixels into
one parent super-pixel.
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Figure 6.6: FACES databases illustration. It contains the six expressions from
Angry, Disgust, Fear, Happy, Neutral and Sad. The two individuals represent persons
from different aging group.

comparison, we also tune the important parameters of the model and compare the

proposed algorithm with other state-of-the-art techniques.

6.3.1 FACES Dataset

It is merely to see a facial image dataset considering multiple biometric factors

including face identity, facial expression and aging influence in computer vision

society. We turn to psychology study and find the FACES dataset carries human

labeled ground truth for expression and age in a certain amount of images. It is the

ideal testing benchmark for our research. The FACES dataset contains 171 individuals

in the aging range from 18 to 94. Each individual performs 6 fundamental expressions

(angry, disgust, happy, fear, neutral and sad) twice resulting totally 2052 images.

All the images are captured under the laboratory environment in front view. The

statistics of the dataset is list in Table. 6.1. The sample images are demonstrated in

Fig. 6.6. We crop and resize all the images into size of 128× 128.

Table 6.1: The statistics of the FACES dataset

Exp.
No.

Age Group Total
Images18-29 30-49 50-69 70-94

6 51 35 31 54 2052
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Based on the dataset, we categorize the ages into four groups which are 18− 29,

30 − 49, 50 − 69 and 70 − 94. It covers the typical aging range in demographic

study. The age labels are binarized as (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0) and (1, 0, 0, 0)

respectively. The same labeling method is used for expression categorization. Each

of the expression label is a 6-digit binary code.

6.3.2 The Standard Tree-structured Representation Learn-

ing

The single-layer CNN feature extraction is conducted completely in unsupervised

manner. We use LFW face dataset ? to generate the CNN filter kernels aiming to

explore more face related features. To acquire the rotation-invariant feature property,

we adopt ‘bootstrap’ idea which spontaneously rotate each image by ±15◦, ±30◦ and

±45◦. Thus, the LFW dataset is augmented by 6 times amount of images with

different rotations. We then randomly select 500000 patches from the entire dataset.

Each patch is of size 9× 9. We run K-means over the patch set with k = 400 in the

first experiment. The resulting 400 clustering centroids are used as filter kernels. The

pooling kernel is chosen as 15× 15 and the stride s = 7. After the single-layer CNN,

we have the 3D matrix representation in the dimensionality of 400× 16× 16 for each

image.

Each semi-supervised AutoEncoder is applied spatially on the image plane through

the tree-structured representation learning. It leads to a final root feature which

has 400 dimensions. We claim this feature as the unified representation for the

facial image. The face recognition, expression recognition and age estimation are

implemented based on the extracted feature set.

We use entire one set for training which contains 1026 images, and the other set

for testing. The RBF kerneled SVM classifier is chosen for face recognition. The root

layer trained softmax classifiers are used for expression recognition and age estimation.
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Table 6.2: Multi-task biometrics accuracies and average ranking

Methods
Face
Rec.

Exp.
Rec.

Age
Est.

Ave.
Rank

Feat.
Dim.

Gabor 73.2% 69.4% 49.2% 3 558
LBP-PCA 81.0% 63.3% 41.1% 3.33 400

CNN 92.3% 51.8% 54.5% 2.33 1000
Proposed 86.5% 76.5% 71.3% 1.33 400

We compare our model to related models in the literatures. We choose hand-

crafted Gabor feature Guo et al. (2013) as the baseline. LBP Shan et al. (2009) is

also investigated as the unsupervised comparison. Finally, the state-of-the-art CNN

based AlexNet Krizhevsky et al. (2012) (input size: 256 × 256) is also implemented

in our multi-task biometrics. The classifiers used for comparison methods are all

RBF kerneled SVMs. Table. 6.2 lists the main accuracy numbers. To receive a fair

comparison, we also adopt average ranking as the metric in this multi-task experiment.

In the average ranking comparison, our proposed algorithm outperform all the

methods. In the single task, the CNN feature performs 5.8% better than ours in

face recognition, but badly performs in expression recognition. It can be explained

that CNN has a strong discriminant learning capability to model the face image.

But when the identity and expression factors coupled together, the expression related

latent feature would be concealed by the greedy pooling strategy in CNN, which

resulted in the failure to disentangle the semantic information.

6.3.3 Expression Recognition and Age Estimation Without

Identity

There is a strong evidence that identity and expression are two deeply coupled factors

in facial biometrics Rifai et al. (2012). We have already shown the disentangling

capability of the proposed tree-structured representation in previous experiment. To

make it complete, we conduct a new experiment that split the dataset into training

and testing parts without any identity overlaps. Then the recognition tasks only focus
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Table 6.3: Multi-task biometrics accuracies without identity.

Methods
Expression
Recognition

Age
Estimation

Feature
Dimension

Gabor 82.9% 70.4% 558
LBP-PCA 81.7% 65.3% 400

CNN 76.2% 69.8% 1000
Proposed 81.4% 75.2% 400

on the feature itself and its performance to modeling subtle changes in expression

and aging related activities. We randomly select 84 individuals from FACES dataset

and use their facial images as training samples. Then the remaining 87 individuals

and their images only emerge in the testing set. All the other settings are kept

the same as the previous experiment. The final accuracy numbers are reported in

Table. 6.3. The baseline Gabor feature and LBP received much improvements which

is not surprised. The original literatures reveal that the skin wrinkle is the dominant

feature to describe expression and aging activities. Gabor wavelets and LBP are

typical texture information descriptors used broadly in expression and age related

facial modeling. Our proposed facial representation achieves comparable accuracies

which approves its effectiveness in modeling face texture information as well as in

tree structure facial modeling.

6.3.4 Key Parameters Tuning

The proposed algorithm contains several hyper-parameters, such as convolution kernel

size and kernel number, pooling kernel size, etc. We pick these values empirically in

the previous experiments. Systematically parameter tuning is necessary to improve

the performance. In this section, we conduct experiments to tune the convolution

kernel size and kernel number to qualitatively analyze their roles and influences on

the recognition tasks.

We reset the experimental configuration to the standard tree-structured represen-

tation learning, but vary the convolution kernel number in 100, 225, 400, 625 and 900.
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Figure 6.7: The recognition accuracies when tuning the key parameters.

The final multi-task classification accuracies are illustrated in the left side of Fig. 6.7.

The accuracies reach stable values after using 400 kernels. One of the reasonable

explanations can be addressed is that, 400 kernels over-completely represent the

fundamental low-level features. Increasing kernel number more than 400 only resulted

in the redundancy which decreases the discriminant feature learning capability.

The tuning on convolution kernel size is tested by using 8×8, 9×9 and 10×10 three

configurations. We did not test it in extreme case since the deep learning research has

already discussed about it Coates et al. (2011). The tuning of convolution kernel size

affects all the following operations since the input dimension changed. To avoid the

trivial configurations, after convolution operation, we linearly resize the 3D matrix

to the same size as 400 × 120 × 120. The experiment results are illustrated in the

right side of Fig. 6.7. Clearly, the classification accuracies are not sensitive to this

parameter.
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6.4 Related Work

6.4.1 Facial Biometrics

To the best of our knowledge, this paper is the first one working on unified face

representation for multi-task biometrics. The most related facial biometrics works

consider the expression recognition task under aging influence and verse vase Guo

et al. (2013); Guo and Wang (2012). In these studies, skin texture information are

modeled to represent the face image since both of the aging and expression activities

cause the skin wrinkles and distortion. To enforce the discriminative of the features,

the correlation learning is deployed in the feature extraction process. Facial identity is

treated as disturbance which is removed by splitting training and testing sets without

identity overlap.

The newly proposed deep models mainly focus on extracting robust features to

represent human face for the identification purpose Sun et al. (2014). In this scenario,

the expression and aging influences will be treated as variations. Through the strong

supervised learning, these factors are suppressed in feature learning.

Unsupervised deep network for expression recognition has been proposed in Rifai

et al. (2012). In this paper, multi-scale contractive convolutional network and

contractive discriminative analysis are combined to extract expression features against

variations like identity, pose and face morphology.

6.4.2 Tree-structured Data Representation

The tree-structured face representation is initialized in this paper. The concept of

such representation origins from natural language processing research. In Pollack’s

RAAMs model Pollack (1990), the recursive AutoEncoder was firstly introduced to

learn vector representation with fixed data structure. Recently, Socher et al. Socher

et al. (2011, 2012) proposed semi-supervised AutoEncoder to learn the tree-structured

representation for sentence sentiment analysis. Later on, they continued the work on
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recursive neural network with single-layer CNN for 3D object classification. Different

from our algorithm, they adopted random weights in AutoEncoder with fixed tree

structure. In our model, the weight and the tree structure are learnt from training

data, which is more plausible to capture semantic contents from images.

6.5 Conclusion

We designed a new model based on a hybrid deep neural network to construct the

tree-structured face representation. This architecture allows the learnt representation

uniformly to be used in multi-task facial biometrics. The experiments were conducted

comprehensively on a multi-factor dataset. Our proposed algorithm outperformed

other state-of-the-art methods in terms of average rank evaluation. We also discussed

the capability of the learnt representation in decoupling the latent information and the

robustness when changed the key parameters. The final results shown its functional

effectiveness in wide biometrics and computer vision applications.

One of the possible arguments may arise in facial image alignment requirement.

The FACES dataset comes in the front view setting with slightly alignment of nose tip.

The proposed tree-structured representation is learnt from training data. Different

settings in pose, scales and occlusion definitely affect the tree structure or even make

it failed to represent the face. Considering the single-layer CNN feature learning, the

feature maps shrink at pooling stage which enables the tolerance to rotation and shift

in a certain degree. Benefit from recording generated tree path, these deficiencies can

also be handled by content-aware facial landmark detection or parsing. It is still a

valuable novel face representation model in facial biometric research.
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Chapter 7

Conclusion

A series of novel methods have been proposed to tackle the challenging task of

image analysis with emphasization on facial biometric analysis. The image analysis

problem can be decomposed into several different sub-problems. We focused the

research in this work on three highly correlated sub-problems namely object detection,

recognition, and detected facial image analysis. The goal was to design object models

such that learning and inference can be performed efficiently for a large number of

categories.

In the detailed implementation, we adopted saliency based object detection

technique. The proposed approach conducted both of the local contrast technique

based on bio-inspired attention feature and the global color distribution constraint. It

was also observed that the proposed approach fully satisfies the criteria of biological

observation on human vision and related application requirements. The proposed

saliency based object recognition approach does not rely on any prior knowledge about

the data distribution. Both of the texture, color and shape saliency can be efficiently

pop out. The testing experiments were carried on with different benchmark databases

of multiple object categories and validated with quantitative and qualitative analysis.

The general performance reached the state-of-the-art in current unsupervised saliency
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detection techniques. As the initial step to detect interesting objects, the proposed

SMAP satisfied to provide stable detection results.

In the recognition stage, we investigated a novel approach based on the unsu-

pervised deep ADN architecture. To strengthen the discriminant learning capability,

we introduced the L1/2 norm regularization to the prototype ADN. By conducting

comprehensive evaluations on it, the proposed ADN structure was shown to be

efficient in exploiting related features in an unsupervised manner. With the

hierarchical features, our designed system receives competitive recognition accuracies

compared to the previous state-of-the-art approaches on the saliency detection results.

We also evaluated the method with a case study on the facial expression recognition

task. The testing on benchmark databases received competitive performance and

transfer learning ability. With the recognition process, the system gained the

contextual awareness capability.

Once the human face was detected, we did facial feature parsing and landmark

detection based on the detected face. We proposed a novel face parsing algorithm

where the facial features are segmented out by modeling them as sparse noises via

low-rank matrix decomposition. For precise parsing, a learned linear transformation

matrix T is added to boost the performance. With generated parsing maps, we further

extended the work to accomplish the landmark detection on face. The proposed

algorithm is tested on two benchmark datasets and demonstrated competitive

performance comparing with the state-of-the-art techniques. The completion of the

work provided the capability to analyze the facial related activity (expression change,

facial animation).

To better reason on the facial images, we designed a new model based on a

hybrid deep neural network to construct the tree-structured face representation.

This architecture allows the learnt representation uniformly to be used in multi-

task facial biometrics. The experiments were conducted comprehensively on a multi-

factor dataset. The proposed algorithm outperformed other state-of-the-art methods

in terms of average rank evaluation. We also discussed the capability of the learnt
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representation in decoupling the latent information and the robustness when changed

the key parameters. The final results shown its functional effectiveness in wide

biometrics and computer vision applications.

The image analysis utilized methods following the pipeline of the object detection,

recognition and contextual analysis (detected face) have been fully implemented with

advanced techniques in aforementioned steps. The comprehensive evaluations on

each step indicated its efficiency and effectiveness to complete the proposed tasks.

Considering the individual module, it is easy to transplant into different computer

vision applications.
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