
DeepFT: Fault-Tolerant Edge Computing using a
Self-Supervised Deep Surrogate Model
Shreshth Tuli∗, Giuliano Casale∗, Ludmila Cherkasova† and Nicholas R. Jennings‡

∗Department of Computing, Imperial College London, UK. Email: {s.tuli20,g.casale}@imperial.ac.uk.
†ARM Research, USA. Email: ludmila.cherkasova@arm.com.
‡Loughborough University, UK. Email: n.r.jennings@lboro.ac.uk.

Abstract—The emergence of latency-critical AI applications
has been supported by the evolution of the edge comput-
ing paradigm. However, edge solutions are typically resource-
constrained, posing reliability challenges due to heightened con-
tention for compute and communication capacities and faulty
application behavior in the presence of overload conditions.
Although a large amount of generated log data can be mined
for fault prediction, labeling this data for training is a manual
process and thus a limiting factor for automation. Due to this,
many companies resort to unsupervised fault-tolerance models.
Yet, failure models of this kind can incur a loss of accuracy when
they need to adapt to non-stationary workloads and diverse host
characteristics. To cope with this, we propose a novel modeling
approach, called DeepFT, to proactively avoid system overloads
and their adverse effects by optimizing the task scheduling and
migration decisions. DeepFT uses a deep surrogate model to
accurately predict and diagnose faults in the system and co-
simulation based self-supervised learning to dynamically adapt
the model in volatile settings. It offers a highly scalable solution as
the model size scales by only 3 and 1 percent per unit increase in
the number of active tasks and hosts. Extensive experimentation
on a Raspberry-Pi based edge cluster with DeFog benchmarks
shows that DeepFT can outperform state-of-the-art baseline
methods in fault-detection and QoS metrics. Specifically, DeepFT
gives the highest F1 scores for fault-detection, reducing service
deadline violations by up to 37% while also improving response
time by up to 9%.

Index Terms—Self-supervised learning, Task Migration, Sur-
rogate Models, Fault-Tolerance, Edge Computing.

I. INTRODUCTION

Fault-tolerant computing is an essential aspect of reliable
service delivery. The recent IoT device explosion has given
rise to a significant increase in sensing data. In such settings,
sending all data to cloud backends is infeasible, compelling
us to process data at the edge [1]. Resource constraints in
edge devices can lead to unreliability, subsequently causing
information loss and poor system performance. For example,
the processing nature of data-intensive applications and bursty
request arrivals often lead to resource contention and system
overload, causing application performance degradation and
failures [2], [3]. This is exacerbated by the tight Quality
of Service (QoS) requirements of modern applications, for
instance, tight execution budgets and time-sensitive tasks. To
alleviate the adverse effects of system overload on QoS, fault-
tolerant schemes are required for reliable service delivery.

Challenges. The key challenge tackled in this paper is to
devise a proactive overload and contention protection scheme
that is efficient and accurate in the face of a lack of labeled

training data. As most traditional schemes depend on super-
vised training, most edge computing environments lack fault
labels. Recovery steps are required that deal with the diverse
effects of resource contention, such as network packet drops,
memory errors or disk failures requiring different remediation
steps. Besides, for such recovery steps to be effective, faults
must be predicted beforehand as reactive schemes have been
shown to have lower efficacy in edge systems [4]. We need
proactive predictions to enable running remediation steps in
advance to conform with the near real-time requirement of
fault recovery in volatile environments. In such environments,
the statistical moments and correlations of the workload char-
acteristics are non-stationary and vary over time, requiring
continuous task re-scheduling. This further complicates the
distinction between workload dynamism and fault-based devi-
ation in measurements. As the number of compute tasks and
available processing devices increases, this also becomes more
challenging to solve in a scalable manner. Further, to avoid
the overheads resulting from incorrect remediation decisions,
the designed proactive schemes have to be parsimonious
in executing such actions. This means, to tackle challenges
such as the lack of data and environment volatility, we need
an accurate unsupervised method to proactively predict and
remediate the faults and adapt to changing settings.

Existing solutions. Over the past few years, several fault-
tolerance approaches have been proposed that use heuristics or
traditional supervised learning strategies [5]–[7]. Many such
approaches utilize redundant nodes as a fallback to deal with
faults. However, in edge computing environments, having node
redundancy is inefficient and counterproductive for low-cost
deployments [8], [9]. Other prior work mainly aims to recover
from a faulty state that occurs due to resource contention and
over-utilization. This is common in scenarios where resource-
intensive applications are deployed on constrained edge com-
puting environments. Due to the limited capacities of edge
nodes, most works aim at solving the fault-tolerance problem
by balancing the load across different nodes in the system [10]
using preemptive migrations. Such migration decisions check-
point the running instances of tasks, migrate the saved states to
other nodes, and restore their execution states. As this can be
performed for a subset of tasks in the system in a non-blocking
fashion, it is an efficient method for load balancing in edge or
cloud platforms. However, choosing the tasks to migrate and
the destination host nodes for these tasks is challenging [11].
Several classical methods use threshold-based heuristics to

1



select faulty hosts, then determine the most resource-hungry
tasks within such hosts to be migrated to other nodes [12].
Other previously proposed methods use a supervised learning
framework with AI models to achieve the same [6], [13], [14].
However, the supervised learning schemes are not directly
suitable for large-scale settings due to the pragmatic diffi-
culties in obtaining labeled data [15]. Hence, recent methods
offer unsupervised schemes like clustering [16], sparse neu-
ral networks [15], autoencoders [17] or other meta-heuristic
formulations [7], [16]. Such methods extract patterns from
historical log data without any fault labels, mostly using data
reconstruction techniques. However, such methods struggle to
adapt in volatile environments as they need several datapoints
corresponding to operational and performance characteristics
of the system [17]. Moreover, these methods wait for the latest
data to detect faults, diminishing their appeal.

Background and new insights. A drawback of not using
any human domain knowledge is that unsupervised learning
approaches can vastly deviate from the ground truth [18,
§ 6.5]. A class of unsupervised learning, called self-supervised
learning, is a refactored supervised scheme where the labels
are generated by the model itself [19]. However, without
a trained model, generating such labels is hard. Thus, we
propose to obviate the lack of supervised data by means
of online simulation, enabled and driven by system data
(as per a digital modeling twin [20], [21]). A co-simulated
digital twin, referred to as a co-simulator in the rest of
the discussion, is a software that models the behavior of a
physical system, which in our case is an edge computing
platform. Recent developments, in co-simulator design, enable
a model to quickly run discrete-event simulations to get an
estimate of a future state of the system, allowing proactive fault
remediation [22]. However, running a co-simulator for every
preemptive migration decision is computationally expensive.
A key ingredient in our work is the use of a surrogate
model that mimics the behavior of these expensive simula-
tions [23]. Unlike a co-simulator, our surrogate model captures
the fundamental aspects of the system dynamics observed
from the data without incurring a state space explosion. We
propose to use a co-simulator to generate self-supervision
labels to fine-tune a reconstruction-based model on-the-fly
for fault detection. Using self-generated data permits model
training with limited historical data and adaptation to dynamic
settings. To obviate volatility, we cast the problem as a few-
shot learning classification [24], whereby a small number of
samples are needed to train a neural network. This allows for
faster learning under highly volatile workloads.

Our contributions. In this work, we propose DeepFT1, a
scalable Deep surrogate model based Fault-Tolerance method.
DeepFT utilizes a neural network as a surrogate model to
predict a future system state, the possible presence of faults
affecting it and their class. It uses co-simulation to generate
fault labels and trains the surrogate in a few-shot setting.
With a trained surrogate model, DeepFT generates preemptive

1We shall release the code on GitHub upon acceptance.

migration decisions for fault tolerance. Extensive experiments
on a Raspberry-Pi based edge cluster show that DeepFT out-
performs five recently proposed different baselines in terms of
fault-detection and QoS metrics. Specifically, DeepFT reduces
response times and latency-based service level objective (SLO)
violations by 9.41% and 37.21%, respectively, thanks to its
higher fault prediction scores and lower overheads.

The rest of the paper is organized as follows. Section II
overviews related work. Section III outlines the DeepFT
methodology for model training and the optimization of the
scheduling decisions. A performance evaluation of the pro-
posed method is presented in Section IV. Finally, Section V
concludes the paper and enumerates future directions.

II. RELATED WORK

We now analyze the prior work in fault-tolerant computing.
Meta-Heuristic Methods. Most contemporary fault pre-

vention techniques employ some form of heuristics or ma-
chine learning models. Dynamic Fault-Tolerant Migration
(DFTM) [7] proposes a recovery mechanism through live
virtual machine (VM) migration in cloud computing envi-
ronments. This work presents an Integer Linear Programming
(ILP) formulation to generate an optimal live-migration deci-
sion. However, the ILP model is not scalable due to its state ex-
plosion, limiting its efficacy in large-scale edge deployments.
Another related work for cloud computing environments is the
Proactive Coordinated Fault Tolerance (PCFT) [16] method,
which uses Particle Swarm Optimization (PSO) to solve the
coordinated consensus issue in fault-tolerance with multiple
heterogeneous cloud nodes. The consensus reached at the end
of this method is a VM migration decision to optimize network
consumption, transmission overheads and the service response
times. Like other heuristic-based methods (e.g., MCAFM and
PAFM [4]), this method uses a predefined thermal map of
the hosts’ CPU to determine source hosts and PSO based
QoS optimization to decide target hosts. Then, PCFT migrates
the VM with the maximum transmission overhead to the
target host. However, PCFT often fails to improve the I/O
performance of the compute nodes [7]. Another category of
methods for reliable cloud computing applies a Markov based
model of the system [25] to examine the potential failures
and take quick recovery measures. As these methods are
applicable in edge scenarios, we consider these as baselines
in our experiments.

AI Methods. Recently, many unsupervised methods have
started utilizing AI techniques for fault prevention and fault
recovery. The Energy-efficient Checkpointing and Load Bal-
ancing (ECLB) [13] approach applies Bayesian methods and
neural networks to classify host machines into overloaded,
under-loaded and normal categories. This is done using
heuristic thresholds instead of supervised class labels. It then
applies this classification to select tasks from the hosts in
the overloaded category. The target hosts are selected from
the under-loaded category. This approach primarily relies on
computational load-balancing for fault recovery, but does not
consider other resource types like memory, disk and network.

2



Figure 1. System Model

Very recent works also propose a few-shot learning method
for fault detection [26]. Such methods train using supervised
labels and do not present a mechanism to recover from
faults once detected, and hence are not considered baselines
in our work. Other recent methods utilize deep neural net-
works to execute fuzzy clustering [15], [27]. For instance,
the Adaptive Weighted Gath-Geva (AWGG) [15] clustering
method is an unsupervised model that detects faults using
stacked sparse autoencoders to reduce detection times. Due to
the better relative performance than prior works, the ECLB
and AWGG methods are also considered baselines in our
experiments. Another recent class of methods applies neural
networks to reconstruct the last state of the system [17],
[28]. The reconstruction error is used as an indicator of the
likelihood of the current state being anomalous. For instance,
TopoMAD [17] utilizes a topology-aware neural network that
is composed of a Long-Short-Term-Memory (LSTM) and a
variational autoencoder (VAE) to detect faults. However, the
reconstruction error is only obtained for the latest state, which
limits them to use reactive fault recovery policies. Moreover,
TopoMAD is not agnostic to the number of hosts or workloads
as it assumes a maximum limit of the active tasks in the
system. Nevertheless, our experiments show that TopoMAD
outperforms other baselines and is considered as a benchmark
in our evaluation.

III. METHODOLOGY

A. Environment Assumptions and Problem Formulation

System Model. We assume a standard edge computing envi-
ronment with heterogeneous nodes in a master-slave fashion
as summarized in Figure 1:
• The Compute Layer consists of a fixed set of m edge hosts

(worker nodes), denoted as H = {h1, . . . , hm}.
• The Management Layer receives all incoming tasks and

includes a broker node with sufficient compute capacity to
perform fault-tolerant tasks scheduling.

We consider that an execution in this environment runs for
a bounded time and that the timeline is divided into fixed-
sized scheduling intervals, where It denotes the t-th interval
(t ranging from 0 to T ). The edge broker can sample the
resource utilization metrics of all hosts at any time (e.g., CPU,
RAM, disk/network bandwidth, some additional fault-related
metrics including consumption of the swap space, disk buffers,
network buffers, disk and network I/O waits [29]).

Table I
SYMBOL TABLE

Symbol Meaning

H Set of hosts in the system
hi i-th host in H such that i ∈ {1, . . . ,m}
It t-th interval
xt System state at the start of It
Wt Sliding window at It of system states of length k
xi i-th state in Wt such that i ∈ {t− k + 1, . . . , t}
Ŵt Predicted reconstruction of Wt

St Scheduling decision in It
ft Fault score as the square of the L2 distance between Wt and Ŵt

Pt Prototype vector for fault classification
ci i-th class in the set of faults i ∈ {1, . . . , j}
c0 No fault class or No-Anomaly-Prototype (NAP) class

Fault Model. We consider resource contention type faults,
which frequently occur in edge workers, while executing data-
intensive applications. Here, a worker node may become unre-
sponsive due to resource over-utilization [2], we thus consider
faults of the form of CPU, RAM or Disk contention that we
raised when their utilization is greater than dynamically set
thresholds. As in prior work, edge hosts are connected to the
same power supply and unrecoverable faults like outages are
ignored [7], [8], [30]. We aim to prevent over-utilization faults
by adjusting the task scheduling and migration decisions.

Workload Model. We assume a bag-of-tasks workload
model, where a set of independent tasks enter the system
at the start of each scheduling interval. These are generated
from the users and are transferred to the edge broker via
gateway devices or IoT sensors. To evaluate the proposed
method in a controlled environment, we abstract out the
users and IoT layers in our experiments and apply a discrete
probability distribution to realize tasks as container instances
(see Section IV). Each task has an associated SLO deadline.

Formulation. Formally, at the start of the interval It, the
edge broker needs to make a decision denoted as St, that is a
mapping of new tasks in the interval It as well as the active
tasks from interval It−1 to hosts H = {h1, . . . , hm}.

For new tasks, this becomes a scheduling decision and for
existing active tasks, it acts as a preemptive migration decision
(if the target host is different from the current host). Now, at
the beginning of interval It, for an input time-series of system
states {x0, . . . , xt}, the broker needs to predict the next system
state, i.e., xt+1. Here, the system state (xt) consists of values
for an arbitrary set of resource usage metrics for all active
tasks and hosts at the start of It. Instead of directly using the
system states, we consider a sliding window of length k to
capture the temporal contextual trends:

Wt = {xt−k+1, . . . , xt}.

We use replication padding [31] for the first k intervals to
ensure the time-series window is always of the same size.
Also, to ensure robust predictions in the DeepFT model, we
normalize these time-series windows using min-max scaling
to be in the range [0, 1]. Table I summarizes all symbols.

3



Figure 2. The DeepFT Surrogate Model.

Using the input window Wt and an input scheduling deci-
sion St, the model needs to predict whether there is likely to
be a fault in the next system state, i.e., xt+1. In lieu of directly
predicting whether the next system state is faulty, we predict
a fault score ft using a predicted reconstruction of the next
window Wt+1, denoted as Ŵt+1. The fault score ft is obtained
by calculating the deviation between the true window Wt+1

and its reconstruction Ŵt+1. We also predict the type of fault
(CPU/RAM/Disk contention), referred to as the fault class, of
the next state in the form of a prototype embedding Pt+1. A
prototype embedding [32] is a dense vector representation of
the fault class a particular input belongs to. Without loss in
generality, whenever unambiguous, we drop the subscripts for
simplicity. Hence, we only refer to the inputs and outputs as
W , S, Ŵ , P and f .

B. DeepFT Surrogate Model

As discussed in the previous subsection, for an input system
sliding window W and scheduling decision S, the surrogate
model of DeepFT predicts a future system state Ŵ and fault
classification prototype vector P . The surrogate model used in
DeepFT is a composite neural network presented in Figure 2.
The DeepFT model has four main components: (1) Scheduling
Decision Encoder, (2) System State Encoder, (3) System State
Decoder and (4) Prototype Vector Encoder.

Considering we have p tasks in the system as a sum of new
and active tasks, the scheduling decisions of these are encoded
as one-hot vectors of size m (number of hosts). We thus get
a matrix of scheduling decisions (S) of size [p × m]. Also,
the n features of m hosts and p tasks in the form of resource
utilization metrics, each state window (W ) is encoded as a
[(m + p) × n × k] tensor. All operations are performed in a
factored fashion, i.e., the neural network operates on S as a
batch of p vectors, each having dimension m, and on W as a
batch of size m+ p tensors of size n× k.

Scheduling Decision Encoder. The decision encoder encap-
sulates the scheduling decision in the form of a compressed
vector representation. This representation uses an encoding of
the time-series window (EW generated by the state encoder)
as an input to facilitate the prediction of the next window and
the fault class prototype embeddings. To do this, we utilize

a feed-forward layer to bring down the dimension size of
the input with batch-normalization and rectified linear unit
(ReLU) activation. The ReLU is a non-linear activation that
outputs the input directly if it is positive and zero otherwise.
Such non-linear activation functions allow the neural network
to learn complex data patterns and ReLU facilitates faster
training [33]. Thus,

ES = ReLU(BatchNorm(FeedForward(S))). (1)

Here, a feed-forward layer performs a matrix-multiplication
operation with a tunable set of parameters. A batch-
normalization layer normalizes the input data across each
dimension to zero mean and unit variance, which ensures faster
and more robust training [34].

We then use a multi-head self-attention operation [35] with
the window encoding EW to provide a representation that
focuses on only a subset of the tasks and hosts that may result
in faults, relieving the downstream predictors from inferring
over tasks/hosts that have low fault probability. Self-attention
passes the input through a feed-forward layer to generate a set
of weights, which are then used to take a convex combination
of the encodings of multiple tasks in EW . In the multi-headed
version, the input is passed through multiple such feed-forward
layers to capture the correlations across multiple such task
sets. This self-attention technique allows the designed model to
scale efficiently with the number of hosts or active tasks in the
system (demonstrated with a visualization in Section III-C).
This with the layer-normalization operation and the ReLU
activation gives

ES1 = Norm(ES+MultiHeadAtt(ES , ES , EW )),

ES2 = ReLU(ES1 ).
(2)

System State Encoder. The state encoder creates a succinct
encoding of the system state time-series window, conditioned
on the task scheduling decision to facilitate the prediction of
the next system state window. We first form a graph using the
task schedule S, such that there is an edge from host hi to
host hj if there is a task migration from hi to hj in schedule
S. The n characteristics of each host in xt are then used to
populate the feature vectors of the nodes in the graph. We
denote the feature vector of host hi as ei. We then pass the

4



graph through a gated-graph convolution network to capture
the inter-host dependencies rising from the new task allocation
S. Here, the features for host hi are aggregated over one-step
connected neighbors n(i) in the graph over r convolutions,
resulting in an embedding eri for each host node in the graph.
Specifically, the gating stage is realized as a Gated Recurrent
Unit (GRU) resulting in graph-to-graph updates [36] as:

e0i = tanh(W ei + b),

xqi =
∑
j∈n(i)

W qeq−1j ,

eqi = GRU(eq−1i , xqi ),

(3)

where the second equation performs the convolutions of the
features of immediate neighbors in the graph. However, for
large-scale graphs, to ensure that we capture the inter task
and host correlations, we perform the above convolution step
r times. Here, a GRU is a recurrent neural network that decides
the weightage of the output of the previous convolution
iteration with respect to the latest iteration. This allows the
model to efficiently scale with the size of input graph without
significantly losing performance. The stacked representation
for all hosts is represented as EH . We also pass the time-
series window through a multi-head self attention network.

EW1 = Mask(MultiHeadAtt(EW , EW , EW )),

EW2 = Norm(W + EW ).
(4)

The first attention operation is masked to prevent the encoder
from looking at the datapoints for future timestamp values
at the time of training as all time-series windows are given at
once to allow parallel training. The resulting window encoding
is denoted as EW2 . We then apply dot-product attention [37]
conditioned on the decision encoding ES , giving the final
window encoding as

EW3 = ReLU(FeedForward([EW2 , EH ])),

attn = softmax(FeedForward([EW2 , ES ]),

EW = attn · EW3 .

(5)

This attention is similar to the multi-headed attention operation
without multiple heads and also uses ES as the input of
the feed-forward layer, allowing us to generate an output
conditioned on the input scheduling decision S.

System State Decoder. Now that we have the embedding
that captures both decision and state ES2 , we generate the
reconstructed window as

Ŵ = sigmoid(FeedForward(ES2 )). (6)

Here, the sigmoid function allows us to bring the output in the
range [0, 1], the same as that of the normalized true window
(W ). To generate the fault score we only consider upward
spikes of the true window from the reconstructed window.
This is due to the nature of our state data, i.e, resource
utilization metrics leading to faults only when there is a sudden
increase in CPU/RAM/disk/network consumption. The ReLU
activation is apt for this as it gives a zero fault score when
the true utilization metrics are lower than the predicted ones.

Algorithm 1 The DeepFT offline training algorithm
Require:

Deep Surrogate Model M
Dataset used for training {Wt, St}Tt=1

Iteration limit L
1: Initialize weights in M . Set l← 0
2: do
3: Calculate (µi, σi) for each class {ci}ji=0

4: for (t = 1 to T ) do
5: Ŵt, Pt ←M(Wt, St)
6: Calculate lt using (7)
7: if (lt) do
8: φ = argminji=1D(Pt, ci)
9: else

10: φ = 0
11: LR = ‖Ŵt −Wt+1‖2
12: LT = D(Pt, cφ)−

∑
i6=φD(Pt, ci)

13: Update weights of M using LR + LT
14: l← l + 1
15: while l < L
16: return trained M

Moreover, the fault detection label is decided by comparing
the fault score with a threshold. We use Peak-Over-Threshold
(POT) [38] to generate the fault label for input W . POT is a
dynamic thresholding technique that uses extreme value theory
to set thresholds for each input dimension. Thus, our fault
score and label (1 if faulty and 0 otherwise) are calculated as

f = ‖ReLU(W − Ŵ )‖2,
l = 1(f > POT (W )).

(7)

Prototype Vector Encoder. Our prototype encoder is mo-
tivated by prototypical networks proposed in prior work [32].
Such networks are standard few-shot learning models for
supervised clustering of the input data. Few-shot learning is
a paradigm in which models aim to achieve the required task
using only a few data points. This allows the DeepFT model
to adapt to changing environments in a few scheduling inter-
vals. Prototypical networks perform clustering by maintaining
representative prototype vectors for each class. Such networks
generate a prototype embedding for an input and ensure that
the output vector is close to the prototypes for the correct
class and far from the prototypes of the incorrect classes. The
prototype embedding is generated from the ES2 embedding as

P = sigmoid(FeedForward(ES2 )). (8)

C. Offline Model Training

We now describe the training process for the DeepFT surrogate
model, summarized in Algorithm 1. To do this, we collect a
dataset of scheduling decisions and time-series window pairs
{Wt, St}Tt=1. To do this, we use a random scheduler to cover
as much of the decision space as we can. We use the model to
find the prototype vectors of each data pair and calculate their
mean and standard deviations for each class ci as {(µi, σi)}ji=0

5



C
P

U
 %

 -
 H

os
t 

1
C

P
U

 %
 -

 H
os

t 
2

C
P

U
 %

 -
 H

os
t 

3
C

P
U

 %
 -

 H
os

t 
4

Figure 3. Visualization of attention weights, truncated with the CPU
utilization of four hosts in the system. The attention operation allows the
model to scale with the number of hosts or workloads.

(line 3). For an input pair (Wt, St), the model generates an
output (Ŵt, Pt) (line 5). Now, for the state decoder, we define
the reconstruction loss as the mean-square-error

LR = ‖Ŵt −Wt+1‖2. (9)

Minimizing this loss ensures that our model generates a precise
prediction of the next state.

The prototype encoder outputs the embedding Pt. In our
case, true class labels are a-priori unknown. To circumvent
this issue, we use the fault prediction from the state decoder.
Thus, we first generate the fault prediction label lt using (7). If
a faulty state is predicted, we label it as one of the j classes
{c1, . . . , cj}. Here, j is a hyperparameter corresponding to
the different types of faults in an edge worker. Motivated
by [39], to generate the ground-truth class in the case that
an anomaly is detected by the state decoder, we choose the
class corresponding to the closest class prototype from the
output Pt (line 8). This class label may not correspond to
any semantically defined fault, but helps the model implicitly
segregate faults and improve learnability [39]. If there is
no fault, we call it the No-Anomaly-Prototype (NAP) class,
denoted as c0 (line 10). This training style requires only a few
datapoints to generate a class prototype as the centroid of the
points in that class; hence, it is called few-shot learning.

As the fault distribution is highly skewed in typical exe-
cutions with most states belonging to the NAP class, we use
the Kullback–Leibler divergence between the output Pt and a

Algorithm 2 The DeepFT scheduling algorithm
Require:

Trained Deep Surrogate Model M
Use converged {(µi, σi)}ji=0 from training

1: for(t = 1 to T )
2: St ← St−1 if t > 0 else initialize randomly
3: Ŵt, Pt ←M(Wt, St)
4: Wt+1 ← Sim(Wt, St)
5: LO = ‖ReLU(Wt+1 − Ŵt)‖2 +D(Pt, c0)
6: Optimize St using LO and Adam optimizer
7: Update weights of M using LR +LT in Eqs.(9),(12)
8: return S

class representative pair (µi, σi):

D(Pt, ci) =
(µi − Pt)2

2σ2
i

+
1

2
lnσ2

i . (10)

Unlike the Euclidean distance between the predicted prototype
Pt and the mean of the class µi, this divergence accounts for
the overall distribution of the class vectors. The ground-truth
class (cφ) is then determined as

cφ s.t. φ =

{
argminji=1D(Pt, ci), if lt
0, otherwise.

(11)

To train the model, we apply the triplet loss [32] to ensure
the predicted prototype embedding is closer to the true class
cφ (minimizing D(Pt, cφ)) and far from the incorrect class
vectors ci∀i 6= φ (maximizing

∑
i 6=φD(Pt, ci)):

LT = D(Pt, cφ)−
∑
i 6=φ

D(Pt, ci). (12)

Visualization of attention weights. Figure 3 visualizes the
attention weights averaged across the heads of the attention
operation in the scheduling decision encoder. The model is
trained using a dataset collected from a physical setup (see
details in Section IV) using a random scheduler. We show
the ground-truth (in black) and predicted time-series (in red)
using the first state vector of the reconstructed window. The
fault scores are also shown in green. The red heatmap shows
the average attention weights for each window. The attention
operation compresses the scheduling decision matrix to a fixed
size vector allowing the model to scale to higher number of
hosts or workloads in the system. For instance, the number
of parameters of the model increases by only 3% or 1%
for each new task or host in the system. Moreover, there
is a high correlation between the fault scores and attention
weights, showing how attention facilitates focusing on only
those dimensions that may result in faults. The fault labels are
also highlighted using the POT thresholds.

D. Scheduling and Online Model Fine-Tuning

We now describe how we use the surrogate model to generate
scheduling decisions for fault-tolerant computing, summarized
in Algorithm 2. Our method is motivated by gradient-based

6



Figure 4. Raspberry Pi Cluster as evaluation platform.

optimization using backpropagation of the output of a sur-
rogate model to the input, called the GOBI method [22].
At the beginning of interval It, we start from St−1 (if
t > 0 otherwise initialize randomly) and optimize it using
DeepFT’s surrogate model, denoted as M (line 2). Compared
to initializing St randomly, this helps us to reduce the number
of migrations. Also, to generate our self-supervision next-state
Wt+1 at test time, we use a co-simulator to find the next state
using the current state and scheduling decision, denoted as
Wt+1 ← Sim(Wt, St) (line 4). Our co-simulator runs a single-
step execution trace of the scheduling decision St using the
workload characteristics Wt to estimate the system state at the
start of the next interval, i.e., Wt+1. For input (Wt, St) and
model output Ŵt, Pt ← M(Wt, St), we define optimization
loss as

LO = ‖ReLU(Wt+1 − Ŵt)‖2 +D(Pt, c0). (13)

Optimizing using this loss minimizes the fault score and
updates the prototype vector to move towards the NAP class.
As we update the scheduling decisions to minimize LO, when
converged, we hypothesize that this decision should facilitate
fault avoidance. To optimize the scheduling decision St, we
can use the stochastic gradient descent St ← St − ∇St

LO.
However, advances like root-mean-square propagation and
adaptive gradients facilitate faster convergence; hence, we
utilize the Adam optimizer [40] with cosine annealing [41] to
optimize the scheduling decision. Thus, running an optimiza-
tion over the scheduling decision St to minimize LO should,
in principle, give us a scheduling decision, say S∗t , such that
Pt with S∗t as input belongs to the NAP class and hence,
it does not lead to a contention-like fault in the subsequent
interval. The final converged decision is applied to schedule
and migrate tasks. As we do not need the ground-truth labels,
we can fine-tune the surrogate model on-the-fly at test time
(line 7 of Alg. 2).

IV. EXPERIMENTS

We compare the DeepFT method against the baselines
DFTM [7], ECLB [13], PCFT [16], AWGG [15] and Topo-
MAD [17] (more details in Section II). As TopoMAD and
AWGG are only fault-detection methods, we supplement them
with the PSO based preemptive migration scheme for fault-
recovery from the next best baseline, i.e., PCFT. We use
hyperparameters of the baseline models as presented in their
respective papers. We train all deep learning models using the
PyTorch-1.8.0 [42] library.

A. Evaluation Setup

As our experimental setup, we use an edge computing cluster
of 16 Raspberry Pi 4B nodes as shown in Figure 4. This cluster
consists of eight 4-GB RAM nodes and another eight 8-GB
RAM nodes. Instead of using the watt-meter, we consider the
power consumption models from the commonly-used Stan-
dard Performance Evaluation Corporation (SPEC) benchmarks
repository [43]. We run all experiments for 100 scheduling
intervals, with each interval being 5 minutes long, giving a
total experiment time of 8 hours 20 minutes. We average over
5 runs and apply diverse workload types to ensure statistical
significance. The offline model training (explained in Sec-
tion III-C) was performed on a system with configuration: Intel
i7-10700K CPU, 64GB RAM, Nvidia RTX 3080 and Windows
11 OS. The scheduling and the online fine-tuning of the model
was performed by the edge broker with configuration: laptop
with Intel i3-1115G4 and 8GB RAM.

To generate the tasks in our system, we utilize the DeFog
applications [44]. DeFog is a fog computing benchmark suite
that consists of various real-world application instances used in
edge and cloud computing environments [14]. The three spe-
cific application types: Yolo, PocketSphinx and Aeneas were
used in our experiments due to their volatile characteristics
and heterogeneous resource requirements. At the start of each
scheduling interval, we create Poisson(λ) new tasks, sampled
uniformly from the three applications. Poisson distribution is
a natural choice for a bag-of-tasks workload model, common
in edge environments [22], [45], [46]. Our tasks are executed
using Docker containers [47], common in edge platforms [48].

B. Evaluation Metrics

To collect the training data for the surrogate model, we use
a random scheduler. To test the fault detection and diagnosis
performance, we utilize historical log data collected by running
the GOBI approach [22] on our testbed. To generate the
ground-truth fault labels, we consider the Anomaly Detection
Engine for Linux Logs (ADE) tool [49]. For every state of
the dataset, we use the fault flag from the ADE tool for the
subsequent state as our ground-truth label. This fault flag is
raised when one or more of the metrics like CPU, RAM,
disk and network utilization is/are greater than dynamically
set thresholds. These may be caused due to memory leaks,
buffer overloads and resource throttling.

To evaluate fault-detection efficacy, we utilize commonly
considered metrics including accuracy, precision, recall and F1
score. For fault-diagnosis (i.e., the prediction of the specific
hosts that have faults), the factored style prediction of fault
scores and labels enables us to output labels for each host
independently. We use two popular metrics for comparison:
(1) HitRate@100% is the measure of how many ground truth
dimensions have been included in the top candidates predicted
by the model [50], (2) Normalized Discounted Cumulative
Gain (NDCG@100%) [51]. To also compare how well the
model is performing compared to our reference scheduler
GOBI that is used to collect our test dataset, we present a
more insightful metric called the “Improvement Ratio”. For

7



R
ec

on
st

ru
ct

io
n 

Lo
ss

Tr
ip

le
t 

Lo
ss

(a) Loss

Fault Detection Score

Fa
ul

t 
D

et
ec

ti
on

 S
co

re

(b) Prediction Accuracy

Figure 5. Convergence plots for the DeepFT model.

any model X , we calculate this using the co-simulator to
obtain the QoS estimate (denoted as QoS(.)) of the scheduling
decision of X (SXt ) and that of GOBI (SGOBIt ). Thus,

Impr. Ratio =
1

T

T∑
t=1

1(QoS(SXt ) > QoS(SGOBIt )). (14)

This denotes the ratio of the times the model X can predict
a better scheduling decision than the reference. As GOBI is
oblivious to future faults, this metric should always be > 0.5.
The QoS estimate is calculated using a combination of metrics
like energy consumption and response time, common in edge
computing deployments [22], [46]. Thus,

QoS(St) = 1− α ·ARTt − β ·AECt. (15)

Here, ARTt is the average response time of the tasks leaving
the system at the end of It and AECt is the average energy
consumption of the system in It. Both are obtained by execut-
ing St on a co-simulator of a scheduling interval. Also, α, β
are convex combination weights that can be set as per user
requirements. For our experiments, we consider α = β = 0.5
as per prior work [22]. Note that a higher QoS score is better.

To compare the scheduling times, we normalize them with
respect to the scheduling time of the reference GOBI scheduler
and call these overhead ratios. We also consider standard QoS
metrics, including resource utilization, fraction of service level
objective (SLO) violations, fairness and average migration
time. We consider the relative definition of SLO (as in [22])
where the deadline is the 90th percentile response time for the
same application (Yolo/Pocketsphinx/Aeneas) on the state-of-
the-art baseline TopoMAD. For fairness, we use the Jain’s
fairness index [22]. Migration time is the time spent to live-
migrate the running container instances in the system.

C. Implementation and Training Details

To conduct our tests, we extend the COSCO framework
that supports Docker based container orchestration in edge
environments [22]. COSCO is at present the only framework
that allows the generation of QoS scores using co-simulated
traces. We extend the co-simulation feature with an existing
fault model [52]. The resource metrics described in Section III
are collected every 10 seconds and the corresponding time-
series windows are sent to the broker asynchronously at the

O
pt

im
iz

at
io

n 
Lo

ss
 

NAP

a

b

c d e

e

d

c

b

a

Iteration

Figure 6. Visualization of the optimization loop for a sample scheduling
decision. The plot (left) shows how the optimization loss LO reduces with
iteration count. The t-SNE plot (right) shows how the prototype vector of the
decision changes and converges to be within the NAP (no-fault) class.

start of each scheduling interval. The preemptive migration
decisions are extracted as the difference between the input
and the output schedules of the DeepFT method. Only those
migrations are performed that can be accommodated by the
target hosts.

To train and fine-tune the surrogate model of the proposed
approach, we use the AdamW optimizer [53]. We apply a
learning rate of 10−4, number of fault classes j = 3 and
windows size of k = 5. We also use a weight regularization
parameter of 10−4. The hyperparameters were obtained using
grid-search. Figure 5 shows the convergence plots for the
DeepFT’s surrogate model. We use the early stopping criterion
to train the model. In 21 epochs, the reconstruction and triplet
losses converge and we reach detection and classification
accuracy of 0.9422 and 0.9592. As this classification does not
correspond to any semantic fault class labels, we do not report
these results for other models.

D. Results

Visualization of the DeepFT method. Figure 6 shows how
the DeepFT method works starting from a sample scheduling
decision. The plot on the left shows the optimization loss LO
with iteration count for the Adam optimizer. The blips in
the optimization curve are due to the warm restarts in cosine
annealing. In 20 iterations, the optimization loss drops from
3.03 to 2.43. On the right is a t-SNE plot of the NAP (no-
fault) class and the three fault classes. The scheduling decision
belongs to the c2 fault class in the beginning, but moves
towards the NAP class with iterations. Finally, the converged
scheduling decision belongs to the no-fault class shown in red.

Comparison with baselines. Table II shows the detection
and diagnosis metrics with the improvement and overhead
ratios. Figure 7 show the QoS metrics of all models for
Poisson(λ = 5). We also present QoS results for the GOBI
scheduler. The fault-detection accuracy of the DeepFT model
is the highest (0.9422), improving the best among baseline
(0.9229) of the TopoMAD model. Similarly, the DeepFT
model also outperforms the baselines in terms of F1 score.
The diagnosis scores of the proposed method are close to the
state-of-the-art values. The scores are close to the supervised
PreGAN method [14] without the need for any supervised
labels. This demonstrates the efficacy of the DeepFT approach

8



Table II
PERFORMANCE SCORES OF DEEPFT AND THE BASELINE METHODS WITH STANDARD DEVIATION. THE BEST SCORES ARE SHOWN IN BOLD.

Method Detection Diagnosis Overhead
Ratio

Improvement
Ratio

Accuracy Precision Recall F1 Score HR@100 NDCG@100

DFTM [7] 0.8731 ±0.0234 0.7713 ±0.0823 0.8427 ±0.0199 0.8054 ±0.0872 0.5129 ±0.0212 0.4673 ±0.0019 1.0413 ±0.0021 0.3783 ±0.1001
ECLB [13] 0.9213 ±0.0172 0.7812 ±0.0711 0.8918 ±0.0203 0.8329 ±0.0901 0.4913 ±0.0010 0.5239 ±0.0024 1.1028 ±0.0009 0.5912 ±0.0341
PCFT [16] 0.8913 ±0.0108 0.8029 ±0.0692 0.9018 ±0.0165 0.8495 ±0.0312 0.5982 ±0.0094 0.5671 ±0.0020 1.0913 ±0.0014 0.6824 ±0.0473
AWGG [15] 0.9194 ±0.0081 0.8237 ±0.0124 0.9012 ±0.0081 0.8607 ±0.0135 0.6284 ±0.0010 0.5564 ±0.0007 1.2130 ±0.0001 0.7209 ±0.0027
TopoMAD [17] 0.9229 ±0.0028 0.8562 ±0.0038 0.8927 ±0.0015 0.8741 ±0.0101 0.6098 ±0.0023 0.5330 ±0.0030 1.2892 ±0.0007 0.7313 ±0.0016
DeepFT 0.9422 ±0.00783 0.8635 ±0.0011 0.9001 ±0.0092 0.8814 ±0.0271 0.6193 ±0.0012 0.5682 ±0.0072 1.2092 ±0.0009 0.7556 ±0.0047

(a) Energy Consumption per task (b) Number of active containers (c) CPU Utilization (d) RAM Utilization

(e) Average Response Time (f) Average Response Time (per appli-
cation)

(g) Fraction of SLO Violations (h) SLO Violations (per application)

Deep
FT

TopoMAD
AWGG

PCFT
ECLB

DFTM
GOBI

Model

0.0

0.1

0.2

0.3

0.4

F
a
ir

n
es

s
(J

a
in

’s
in

d
ex

)

(i) Fairness (j) Migration Count

0 20 40 60 80 100

Execution Time (Interval)

0

25

50

75

100

125

150

In
te

rv
a
l

A
ll
o
ca

ti
o
n

T
im

e
(s

ec
o
n
d
s) DeepFT

TopoMAD

AWGG

PCFT

ECLB

DFTM

GOBI

(k) Migration Time vs Interval (l) Migration Time
Figure 7. Comparison of QoS parameters of DeepFT against baselines.

and its capacity to generalize to settings where supervised
methods, such as PreGAN, would not be able to perform
well due to the lack of ground-truth data. The improvement
ratios of all models except DFTM are higher than 0.5. This
shows that the DFTM model performs slightly worse than the
GOBI scheduler in terms of the QoS metrics of response time
and energy consumption. However, the SLO violation rates of
the DFTM model are lower than GOBI (Fig. 7(g)). This is

partly because the DFTM approach performs migrations very
aggressively (Fig. 7(j)).

In terms of the improvement ratio, TopoMAD has the
highest score of 0.7313 among the baselines. The DeepFT
gives a 3.32% higher score of 0.7556. Even with the periodic
fine-tuning of the surrogate model, the overhead ratio of
the DeepFT model is 6.20% lower than the best baseline,
TopoMAD. This is due to the relatively time consuming PSO

9



1 3 5 10 15

λ

14

15

16

E
n

er
g
y

(K
W

-h
r)

(a) Energy Consumption

1 3 5 10 15

λ

0.1

0.2

0.3

F
ra

ct
io

n
o
f

S
L

A
V

io
la

ti
o
n
s

(b) Fraction of SLO Violations

1 3 5 10 15

λ

0.7

0.8

0.9

F
1

S
co

re

(c) F1 Score

1 3 5 10 15

λ

0.2

0.4

0.6

0.8

Im
p
ro

v
em

en
t

R
a
ti

o

(d) Improvement Ratio

Figure 8. Sensitivity Analysis for all models with λ (parameter of the Poisson distribution).

optimization strategy in baselines like TopoMAD and AWGG.
DeepFT, on the other hand, uses a directed gradient-based
update strategy to optimize the scheduling decision, which has
been shown to converge quickly compared to gradient-free
methods [22]. In terms of the diagnosis results, the AWGG
method has the highest HitRate (0.6309), with the DeepFT
being very close (0.6193). The NDCG score of the DeepFT
model is the highest (0.5682). This is due to the factored fault
prediction in the DeepFT model.

In terms of QoS scores, DeepFT gives the lowest energy
consumption per completed task 13.55 KW-hr, with TopoMAD
being next with 13.74 KW-hr. This is due to the relatively low
average CPU and RAM utilization in DeepFT (Figs. 7(c)-7(d))
and the high number of active containers (Fig. 7(b)). Moreover,
DeepFT gives the lowest average response time of 149.2
seconds, with AWGG giving the next best of 164.7 seconds
(Fig. 7(e)). DeepFT also gives a significant reduction of
37.21% on the SLO violation rates (Fig. 7(g)). This is because
DeepFT avoids unnecessary migrations to prevent avoidable
use of network resources, improving overall system reliability
(Fig. 7(j)) leading to low overall migration times (Fig. 7(l)).
Figures 7(f) and 7(h) show the average response time and
SLO violations for each application. The Yolo application has
the highest response time and SLO violation rates due to its
computationally heavy requirements. The PCFT method gives
the highest fairness index of 0.39, with DeepFT coming second
with 0.28 as shown in Fig. 7(i).

Summary. The results demonstrate that all method for
fault-tolerant computing lead to performance improvement,
in terms of critical metrics such as SLO violation rates and
response times, compared to the case without any fault-
tolerance (GOBI). Across all methods, the DeepFT approach
gives the best QoS scores, thanks to its high fault prediction
accuracy and low overheads.

E. Sensitivity Analysis

Figure 8 shows the variation of the energy consumption,
SLO violations, F1 score and improvement ratio with the
λ parameter in our Poisson distribution used to model the
workloads. We vary λ from 1 to 15 (λ = 15 constantly gives
> 90% CPU utilization for all hosts). Under a higher λ more
tasks are produced, making the fault prediction harder. This
is apparent from the drop in the F1 scores, leading to higher

SLO violations. Even the energy consumption increases due
to the increase in the average CPU utilization of the system.
Overall, DeepFT shows the lowest relative drop in F1 scores
and improvement ratio as we increase λ giving the lowest SLO
violations even in workload heavy executions.

V. CONCLUSIONS

We have presented a deep surrogate model-based fault-
tolerance approach (DeepFT) for reliable edge computing.
DeepFT can detect and diagnose faulty system conditions
without the need for extensive labeled data. Instead, DeepFT
utilizes a deep surrogate model that analyzes the scheduling
decision and state information to predict a reconstruction of the
next state window and fault prototype. Using reconstruction
and few-shot based triplet loss, the surrogate model is trained
offline to predict fault scores based on the past data trends. The
model represents a self-supervised training model, where it
applies co-simulations to generate true state windows. Gener-
ating its own ground-truth labels (by utilizing a co-simulator)
allows the model to be fine-tuned on-the-fly to adapt it in
volatile settings.

These advances allow DeepFT to have high fault detec-
tion and diagnosis scores that facilitate efficient fault-aware
scheduling for optimal QoS. Specifically, DeepFT achieves an
improvement of 2% and 3% for fault-detection accuracy and
improvement ratio. DeepFT achieves this with 6.2% lower
overhead than the best baseline TopoMAD. DeepFT is also
able to support 1.38%, 9.41% and 37.21% lower energy
consumption, response times and SLO violations, respectively
compared to the state-of-the-art models.

Moreover, the parameter size of the surrogate model scales
by only 3% and 1% with the growth of active tasks and hosts
in the system. This makes DeepFT an ideal choice for reliable
edge computing with time-critical applications.

As a future work, we plan to explore whether the DeepFT
approach can be used for efficient resource and application
management of SLO-based serverless (FaaS) computing at
the edge. Also, considering (in some cases) the availability
of limited supervised data, the model may be able to benefit
from semi-supervised learning strategies for generalizability.

SOFTWARE AVAILABILITY

The code is available under BSD-3 License at https://github.
com/imperial-qore/DeepFT.

10

https://github.com/imperial-qore/DeepFT
https://github.com/imperial-qore/DeepFT


REFERENCES

[1] A. Narayanan, A. S. De Sena, D. Gutierrez-Rojas et al., “Key advances
in pervasive edge computing for industrial Internet of Things in 5G and
beyond,” IEEE Access, vol. 8, pp. 206 734–206 754, 2020.

[2] X. Vasilakos, W. Featherstone, N. Uniyal et al., “Towards Zero Down-
time Edge Application Mobility for Ultra-Low Latency 5G Streaming,”
in 2020 IEEE Cloud Summit. IEEE, 2020, pp. 25–32.

[3] S. Tuli, G. Casale, and N. R. Jennings, “Dragon: Decentralized fault
tolerance in edge federations,” IEEE Transactions on Network and
Service Management, 2022.

[4] B. Ray, A. Saha, S. Khatua et al., “Proactive fault-tolerance technique
to enhance reliability of cloud service in cloud federation environment,”
IEEE Transactions on Cloud Computing, 2020.

[5] A. Samanta, F. Esposito, and T. G. Nguyen, “Fault-tolerant mechanism
for edge-based IoT networks with demand uncertainty,” IEEE Internet
of Things, 2021.

[6] S. Negi, M. M. S. Rauthan, K. S. Vaisla et al., “CMODLB: an efficient
load balancing approach in cloud computing environment,” The Journal
of Supercomputing, pp. 1–53, 2021.

[7] V. Sivagami and K. Easwarakumar, “An improved dynamic fault tolerant
management algorithm during VM migration in cloud data center,”
Future Generation Computer Systems, vol. 98, pp. 35–43, 2019.

[8] S. Bagchi, M.-B. Siddiqui, P. Wood et al., “Dependability in edge
computing,” Communications of the ACM, vol. 63, no. 1, 2019.

[9] M. Goudarzi, H. Wu, M. Palaniswami et al., “An application placement
technique for concurrent IoT applications in edge and fog computing
environments,” IEEE Transactions on Mobile Computing, 2020.

[10] S. Kumar, D. S. Rana, and S. C. Dimri, “Fault tolerance and load bal-
ancing algorithm in cloud computing: A survey,” International Journal
of Advanced Research in Computer and Communication Engineering,
vol. 4, no. 7, pp. 92–96, 2015.

[11] A. Ledmi, H. Bendjenna, and S. M. Hemam, “Fault tolerance in
distributed systems: A survey,” in 2018 3rd International Conference
on Pattern Analysis and Intelligent Systems (PAIS). IEEE, 2018.

[12] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers,” Concurrency
and Computation: Practice and Experience, vol. 24, no. 13, 2012.

[13] A. Sharif, M. Nickray, and A. Shahidinejad, “Fault-tolerant with load
balancing scheduling in a fog-based iot application,” IET Communica-
tions, vol. 14, no. 16, pp. 2646–2657, 2020.

[14] S. Tuli, G. Casale, and N. R. Jennings, “PreGAN: Preemptive Migration
Prediction Network for Proactive Fault-Tolerant Edge Computing,” in
IEEE Conf. on Computer Communications (INFOCOM). IEEE, 2022.

[15] X. Hu, Y. Li, L. Jia et al., “A novel two-stage unsupervised fault
recognition framework combining feature extraction and fuzzy clustering
for collaborative AIoT,” IEEE Trans. on Industrial Informatics, 2021.

[16] J. Liu, S. Wang, A. Zhou et al., “Using proactive fault-tolerance
approach to enhance cloud service reliability,” IEEE Transactions on
Cloud Computing, vol. 6, no. 4, pp. 1191–1202, 2016.

[17] Z. He, P. Chen, X. Li et al., “A spatiotemporal deep learning approach
for unsupervised anomaly detection in cloud systems,” IEEE Transac-
tions on Neural Networks and Learning Systems, 2020.

[18] M. G. Pecht and M. Kang, “Machine learning: Anomaly detection,”
2019.

[19] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[20] C. H. d. Santos, J. A. de Queiroz, F. Leal et al., “Use of simulation in
the industry 4.0 context: Creation of a digital twin to optimise decision
making on non-automated process,” Journal of Simulation, pp. 1–14,
2020.

[21] S. Tuli, G. Casale, and N. R. Jennings, “Simtune: bridging the simu-
lator reality gap for resource management in edge-cloud computing,”
Scientific Reports, vol. 12, no. 1, pp. 1–12, 2022.

[22] S. Tuli, S. R. Poojara, S. N. Srirama et al., “COSCO: Container
Orchestration Using Co-Simulation and Gradient Based Optimization
for Fog Computing Environments,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 1, pp. 101–116, 2022.

[23] M. J. Kochenderfer and T. A. Wheeler, Algorithms for optimization.
Mit Press, 2019.

[24] Y. Wang, Q. Yao, J. T. Kwok et al., “Generalizing from a few examples:
A survey on few-shot learning,” ACM Computing Surveys (CSUR),
vol. 53, no. 3, pp. 1–34, 2020.

[25] L. Luo, S. Meng, X. Qiu et al., “Improving failure tolerance in large-
scale cloud computing systems,” IEEE Transactions on Reliability, 2019.

[26] H. Won and Y. Kim, “Performance analysis of machine learning based
fault detection for cloud infrastructure,” in 2021 International Confer-
ence on Information Networking (ICOIN). IEEE, 2021, pp. 877–880.

[27] C. Li, M. Cerrada, D. Cabrera et al., “A comparison of fuzzy clustering
algorithms for bearing fault diagnosis,” Journal of Intelligent & Fuzzy
Systems, vol. 34, no. 6, pp. 3565–3580, 2018.

[28] J. Audibert, P. Michiardi, F. Guyard et al., “USAD: UnSupervised
Anomaly Detection on Multivariate Time Series,” in Proc. of the 26th
ACM SIGKDD Intl. Conf. on Knowledge Discovery & Data Mining,
2020, pp. 3395–3404.

[29] A. S. Tanenbaum and A. S. Woodhull, Operating systems: design and
implementation. Prentice Hall Englewood Cliffs, 1997, vol. 68.

[30] A. Javed, K. Heljanko, A. Buda et al., “CEFIoT: A fault-tolerant iot
architecture for edge and cloud,” in 2018 IEEE 4th world forum on
internet of things (WF-IoT). IEEE, 2018, pp. 813–818.

[31] G. Liu, F. A. Reda, K. J. Shih et al., “Image inpainting for irregular holes
using partial convolutions,” in The European Conference on Computer
Vision (ECCV), 2018.

[32] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot
learning,” in Proceedings of the 31st International Conference on Neural
Information Processing Systems, 2017, pp. 4080–4090.

[33] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. USA: Prentice Hall Press, 2009.

[34] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
conference on machine learning. PMLR, 2015, pp. 448–456.

[35] A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is all you need,” in
Proceedings of the 31st International Conference on Neural Information
Processing Systems, 2017, pp. 6000–6010.

[36] L. Ruiz, F. Gama, and A. Ribeiro, “Gated graph recurrent neural
networks,” IEEE Transactions on Signal Processing, vol. 68, pp. 6303–
6318, 2020.

[37] D. Bahdanau, K. H. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in 3rd International Conference
on Learning Representations, ICLR 2015, 2015.

[38] A. Siffer, P.-A. Fouque, A. Termier et al., “Anomaly detection in streams
with extreme value theory,” in ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2017.

[39] C. Medina, A. Devos, and M. Grossglauser, “Self-Supervised Proto-
typical Transfer Learning for Few-Shot Classification,” International
Conference on Machine Learning (ICML) - Workshop on Automated
Machine Learning, 2020.

[40] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, 2015.

[41] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with
warm restarts,” arXiv preprint arXiv:1608.03983, 2016.

[42] A. Paszke, S. Gross, F. Massa et al., “Pytorch: An imperative style, high-
performance deep learning library,” Advances in Neural Information
Processing Systems, vol. 32, pp. 8026–8037, 2019.

[43] Standard Performance Evaluation Corporation. SPEC Power
Consumption Models. [Online]. Available: https://www.spec.org/cloud
iaas2018/results/

[44] J. McChesney, N. Wang, A. Tanwer et al., “DeFog: fog computing
benchmarks,” in The 4th ACM/IEEE Symp. on Edge Computing, 2019,
pp. 47–58.

[45] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE
Journal on Selected Areas in Communications, 2016.

[46] D. Basu, X. Wang, Y. Hong et al., “Learn-as-you-go with megh: Efficient
live migration of virtual machines,” IEEE Transactions on Parallel and
Distributed Systems, vol. 30, no. 8, pp. 1786–1801, 2019.

[47] C. Boettiger, “An introduction to docker for reproducible research,” ACM
SIGOPS Operating Systems Review, vol. 49, no. 1, pp. 71–79, 2015.

[48] R. Morabito, I. Farris, A. Iera et al., “Evaluating performance of
containerized iot services for clustered devices at the network edge,”
IEEE Internet of Things Journal, vol. 4, no. 4, pp. 1019–1030, 2017.

[49] Open Mainframe Project. Anomaly Detection Engine (ADE) for
Linux Logs. [Online]. Available: https://www.openmainframeproject.
org/projects/anomaly-detection-engine-for-linux-logs-ade

[50] Y. Su, Y. Zhao, C. Niu et al., “Robust anomaly detection for multivariate
time series through stochastic recurrent neural network,” in Proc. of the

11

https://www.spec.org/cloud_iaas2018/results/
https://www.spec.org/cloud_iaas2018/results/
https://www.openmainframeproject.org/projects/anomaly-detection-engine-for-linux-logs-ade
https://www.openmainframeproject.org/projects/anomaly-detection-engine-for-linux-logs-ade


25th ACM SIGKDD Intl. Conf. on Knowledge Discovery & Data Mining,
2019, pp. 2828–2837.

[51] K. Järvelin and J. Kekäläinen, “Cumulated gain-based evaluation of ir
techniques,” ACM Trans. on Information Systems (TOIS), vol. 20, no. 4,
pp. 422–446, 2002.

[52] M.-C. Nita, F. Pop, M. Mocanu et al., “Fim-sim: fault injection module
for cloudsim based on statistical distributions,” Journal of telecommu-
nications and information technology, no. 4, pp. 14–23, 2014.

[53] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in International Conference on Learning Representations, 2018.

12


	Introduction
	Related Work
	Methodology
	Environment Assumptions and Problem Formulation
	DeepFT Surrogate Model
	Offline Model Training
	Scheduling and Online Model Fine-Tuning

	Experiments
	Evaluation Setup
	Evaluation Metrics
	Implementation and Training Details
	Results
	Sensitivity Analysis

	Conclusions
	References

